CN205785728U - 直线导轨副五种静刚度综合测量装置 - Google Patents

直线导轨副五种静刚度综合测量装置 Download PDF

Info

Publication number
CN205785728U
CN205785728U CN201620501430.6U CN201620501430U CN205785728U CN 205785728 U CN205785728 U CN 205785728U CN 201620501430 U CN201620501430 U CN 201620501430U CN 205785728 U CN205785728 U CN 205785728U
Authority
CN
China
Prior art keywords
fixture
displacement
clamp
displacement transducer
static stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201620501430.6U
Other languages
English (en)
Inventor
王禹林
李作康
欧屹
冯虎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHANGJIAGANG SIKESI PRECISION MACHINERY TECHNOLOGY Co Ltd
Nanjing University of Science and Technology
Original Assignee
ZHANGJIAGANG SIKESI PRECISION MACHINERY TECHNOLOGY Co Ltd
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHANGJIAGANG SIKESI PRECISION MACHINERY TECHNOLOGY Co Ltd, Nanjing University of Science and Technology filed Critical ZHANGJIAGANG SIKESI PRECISION MACHINERY TECHNOLOGY Co Ltd
Priority to CN201620501430.6U priority Critical patent/CN205785728U/zh
Application granted granted Critical
Publication of CN205785728U publication Critical patent/CN205785728U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型公开了一种可同时测量直线导轨副垂直、侧向、俯仰、偏摆和倾斜静刚度的装置。本实用新型的下夹具固定在水平台面板上,其上表面相对水平面倾斜θ角,并安装有基准板和导轨;上夹具固定安装于滑块上表面,并安装用于测量导轨副变形的位移传感器组;加载装置通过连接件连接力传感器,力传感器通过螺纹连接压盘,从而使加载装置带动压盘下降,通过受力装置,在上夹具施加一个竖直向下的偏心载荷F。本实用新型实现了在一次加载中,同时测量导轨副的五种静刚度,大幅提高直线导轨副静刚度测评的效率,对导轨副多种静刚度综合测量装置的研制和发展有重要意义。

Description

直线导轨副五种静刚度综合测量装置
技术领域
[0001] 本发明属于测量技术领域,特别是直线导轨副五种静刚度综合测量装置。
背景技术
[0002] 直线导轨副具有精度高、磨擦系数小、耐磨损等优点,被广泛用于高精度数控机床 和加工中心。静刚度是直线导轨副的重要指标,是指导轨副承载恒定载荷时抵抗变形的能 力,导轨副静刚度具体可分为垂直静刚度、侧向静刚度、俯仰静刚度、偏摆静刚度及倾斜静 刚度。导轨副在实际工作中不只是受垂直载荷作用,尤其是在重型机床、有振动和冲击的机 床或工作速度较快的机床中,导轨副受到侧向力、俯仰力矩力、偏摆力矩和倾斜力矩作用的 效果更加明显,此时,垂直、侧向、俯仰、偏摆及倾斜静刚度指标分别体现导轨副抵抗相应方 向的位移变形的能力,对导轨副的精度和寿命等产生重要影响。虽然目前我国直线导轨副 垂直静刚度测量装置的研制取得了一定的成果,但是五种静刚度的综合测量装置的研制还 处于起步阶段。
[0003] 检索现有技术的文献发现,中国发明专利公开号CN103017992A,名称为直线导轨 副静刚度测量装置及方法,该专利介绍了一种通过更换装夹组件来测量直线导轨副垂直、 倾斜、俯仰及偏摆静刚度的试验装置,该装置根据所需测量静刚度种类的不同,改变安装夹 具、载荷方向、和测点位置,进而试验测得不同系列导轨副的垂直、倾斜、俯仰及偏摆静刚度 曲线,该试验装置需要多套夹具组件,测量直线导轨副静刚度时,需要频繁更换夹具,改变 装夹方式,实验繁琐效率低,并且容易引进安装误差使测量结果不准确。中国发明专利公开 号CN104075886A,名称为模块化直线导轨副结合部静刚度测试方法与装置,该专利介绍了 一种模块化直线导轨副静刚度测试装置,通过三个定位孔单独施加拉压偏心载荷,分别测 量出直线导轨副多种静刚度,该方法需要不断转换载荷施加方式,实验时间较长,并且没考 虑多种载荷作用下,导轨副多种变形之间的耦合关系,不能保证测量结果的真实可靠性。中 国发明专利公开号CN104034522A,名称为一种检测直线导轨副静刚度的实验台,该专利介 绍了一种测量直线导轨副静刚度的装置,该装置通过三个螺孔分别施加垂直载荷、滚动力 矩和水平载荷,移动测试导轨的滑块和压板,可以施加倾覆力矩和旋转力矩。该装置虽然能 实现了在多种载荷作用下直线导轨副的静刚度检测,但是难以保证多种载荷同时加载,实 验过程中无法避免装置间隙导致的误差,并且需移动滑块和压板,不能保证实验结果的重 复性和准确性。
[0004] 可见,目前直线导轨副多种静刚度的测量方法不够完善,均需改变导轨副装夹方 式或施加载荷的方式,实验装置复杂,实验过程繁琐,且将引入安装间隙带来的误差,一定 程度上将影响垂直、侧向、俯仰、偏摆和倾斜静刚度测量结果的重复性和准确性,给直线导 轨副静刚度的全面测评工作带来困难。
发明内容
[0005] 本发明的目的在于提供一种操作简单,能在一次加载实验中,同时自动精确测量 出导轨副垂直、侧向、俯仰、偏摆和倾斜静刚度的装置。
[0006] 实现本发明目的的技术解决方案为:一种直线导轨副五种静刚度综合测量装置, 包括加载装置、力传感器、压盘、位移传感器组、位移传感器夹具、滑块、导轨、下夹具、台面 板、基准板、上夹具、受力装置,其中下夹具固定在水平台面板上,该下夹具上表面相对水平 面倾斜9角,基准板和导轨设置在下夹具的上表面;上夹具上安装位移传感器组,该上夹具 固定连接在滑块上表面,该滑块在导轨上滑动,滑块和导轨为被测导轨副;加载装置通过连 接件固定连接力传感器,该力传感器连接压盘,从而使加载装置带动压盘升降,压盘挤压安 装在上夹具上的受力装置,给上夹具施加一个竖直向下的偏心载荷F。
[0007] 本发明与现有技术相比,其显著优点:(1)下夹具上表面设计为斜面,导轨副及上 夹具固定安装在下夹具上,压盘通过受力装置向上夹具施加竖直向下的偏心载荷,上夹具 上最少只需安装5个位移传感器,优选对称布置方式,简化了测量装置,避免了在测量不同 种静刚度时配套多种夹具工装,降低导轨副静刚度测评的成本;并且下夹具固定安装有基 准板,基准板无需重复安装,提高了测量基准的一致性,最大程度的减小了基准不重合和安 装误差,提高测量精度,使测量结果具有高重复性和准确性。(2)下夹具和上夹具均具有良 好的刚性和稳定性,加载后上下夹具各自的变形量远远小于被测导轨副的位移变形量,使 位移传感器测量值可准确等效为导轨滑块的整体位移变形量,解决了由于夹具工装刚性不 足而引入较大系统误差的问题,增强试验装置测评结果公信度。
[0008] 下面结合附图对本发明作进一步详细描述。
附图说明
[0009] 图1为本发明直线导轨副五种静刚度综合测量装置的结构示意图。
[0010] 图2为图1的三维视图。
[0011]图3为载荷等效分解不意图。
[0012] 图4为位移传感器组安装示例图。
具体实施方式
[0013] 结合图1和图3,本发明直线导轨副五种静刚度综合测量装置能够同时测量直线导 轨副垂直、侧向、俯仰、偏摆和倾斜静刚度,包括加载装置1、力传感器3、压盘4、位移传感器 组5、位移传感器夹具6、滑块7、导轨8、下夹具9、台面板10、基准板11、上夹具12、受力装置 13,其中下夹具9固定在水平台面板10上,该下夹具9上表面相对水平面倾斜0角,基准板11 和导轨8设置在下夹具9的上表面;上夹具12上安装位移传感器组5(能够测量位移变形量), 该上夹具12固定连接在滑块7上表面,该滑块7在导轨8上滑动,滑块7和导轨8为被测导轨 副;加载装置1通过连接件2固定连接力传感器3,该力传感器3连接压盘4,从而使加载装置1 带动压盘4升降,压盘4挤压安装在上夹具12上的受力装置13(受力装置13可以采用刚性的 金属球),给上夹具12施加一个竖直向下的偏心载荷F。本发明结构简单、实用性高,通过对 与下夹具9上表面夹角为0的偏心载荷F分解和对位移传感器组5测量值的分离提起,可同时 精确直线导轨副垂直、侧向、俯仰、偏摆和倾斜静刚度。
[0014] 本发明在上夹具12上开设凹槽或锥孔,受力装置13设置在凹槽或锥孔中;在上夹 具12中加工沉头孔,将滑块7固定在沉头孔中。下夹具9的材料选用实心花岗岩,刚性和稳定 性好。下夹具9上表面相对水平面倾斜角0在30° - 45°之间。上夹具12的材料选用淬火钢,刚 性和稳定性好,在上夹具12施加一个竖直向下的偏心载荷F,载荷作用位置与上夹具12中心 相对坐标为(a,b)且a,b^30mm,可以选a = b = 40mm。
[0015]本发明上夹具12上安装位移传感器组5主要有两种方式,第一种方式是位移传感 器组5有n个位移传感器,n多5,安装i个位移传感器,使i个位移传感器均垂直于下夹具9的 上表面,以该倾斜的上表面为基准测量导轨副在该方向上的相对变形量,并确保至少3个位 移测量点不在同一直线上,i彡3;安装n-i个位移传感器,使n-i个位移传感器均垂直于基准 板11的测量基准面,测量导轨副在该方向上的相对变形量,n-i多2,试验有
Figure CN205785728UD00051
个 选择组。
[0016]第二种方式是位移传感器组5有n个位移传感器,n多5,安装i个位移传感器,使i个 位移传感器均垂直于下夹具9上表面,以该倾斜的上表面为基准测量导轨副在该方向上的 相对变形量,i多2;安装n-i个位移传感器,使n-i个位移传感器均垂直于基准板11的测量基 准面,测量导轨副在该方向上的相对变形量,并确保至少3个位移测量点不在同一直线上, n-i彡3,试验有
Figure CN205785728UD00052
个选择组。
[0017] 结合图1,本发明直线导轨副五种静刚度综合测量方法,步骤如下:
[0018] 第一步,下夹具9固定在水平台面板10上,该下夹具9上表面相对水平面倾斜9角, 基准板11和导轨8设置在下夹具9的上表面;上夹具12上安装位移传感器组5,该上夹具12固 定连接在滑块7上表面,该滑块7在导轨8上滑动,滑块7和导轨8为被测导轨副;加载装置1通 过连接件2固定连接力传感器3,该力传感器3连接压盘4,从而使加载装置1带动压盘4升降, 压盘4挤压安装在上夹具12上的受力装置13,给上夹具12施加一个竖直向下的偏心载荷F; 按照上述要求安装被测导轨副,使压盘4中心正对受力装置13中心,夹紧位移传感器组5,保 证测量期间不松动。
[0019]第二步,将力传感器3与位移传感器组5进行标定,并做回零初始化处理,根据样本 手册确定最大加载载荷和被测直线导轨副额定动载荷,进行预加载,消除各部件的间隙带 来的误差。
[0020]第三步,在额定动载荷量程范围内进行测量,加载到导轨副额定动载荷的20-60% 后,开始卸载,过程中实时采集力传感器3与位移传感器组5上的数据,直到卸载为零。
[0021]第四步,对采集的数据进行处理和参数分离,即将上夹具12受到的偏心载荷F,等 效分解为垂直、侧向、俯仰、偏摆及倾斜载荷分量;根据坐标变换原理,建立由位移传感器组 5所测变形量换算得到的变换矩阵的数学模型,并折算成垂直、侧向、俯仰、偏摆及倾斜五个 方向的变形分量,再根据刚度计算公式,同时计算出垂直、侧向、俯仰、偏摆及倾斜静刚度, 具体过程如下。
[0022] 1.将上夹具12受到的偏心载荷F,等效分解为垂直、侧向、俯仰、偏摆及倾斜载荷分 量,结合图3,压盘4通过受力装置13施加集中载荷到上夹具12上,以上夹具12的几何中心为 原点,建立参考坐标系,X轴垂直基准板11基准面,Y轴沿导轨安装方向,Z轴垂直于下夹具9 倾斜9角的上表面,集中力F等效作用点为(a,b,0 ),依据公式(1)将载荷分解成X轴向力Fx、Z 轴向力Fz、俯仰扭矩Ma、偏摆扭矩Mb和倾斜扭矩Mc:
[0023]
Figure CN205785728UD00061
[0024] 2.根据坐标变换原理,建立由位移传感器组5所测变形量换算得到的变换矩阵的 数学模型,即位移传感器组5的传感器测点采用规格化齐次坐标矩阵表示,根据坐标变换原 理,则有:
[0025]
Figure CN205785728UD00062
(2)
[0026]式中P1为无载荷时位移传感器组5测点的规格化齐次坐标矩阵;
[0027] P2为施加载荷时位移传感器组5测点的规格化齐次坐标矩阵;
[0028] Sx、Sy、Sz为分别为X、Y、Z方向的位移变化量;
[0029] 0A为俯仰角;0B为偏摆角;0C为倾斜角。
[0030] 3.根据位移传感器组5的分布方式,建立垂直、侧向、俯仰、偏摆及倾斜五个方向的 变形分量的折算模型。位移传感器组5安装在上夹具12时有以下方式:
[0031] 3.1第一种方式为:所述位移传感器组5有n个位移传感器,n多5,安装i个位移传感 器,使i个位移传感器均垂直于下夹具9的上表面,以该倾斜的上表面为基准测量导轨副在 该方向上的相对变形量,并确保至少3个位移测量点不在同一直线上,i多3;安装n-i个位移 传感器,使n_i个位移传感器均垂直于基准板11的测量基准面,测量导轨副在该方向上的相 对变形量,n-i^2,试验有
Figure CN205785728UD00063
'个选择组;
[0032] 在第一种方式中,根据位移传感器组5的分布,建立垂直、侧向、俯仰、偏摆及倾斜 五个方向的变形分量的折算模型,根据公式(2),在他个选择组中,第j个选择组的感器测点 坐标矩阵可表不为公式(3);五个方向的位移分量如公式(4);所有选择组平均位移分量如 公式(5),
[0033]
Figure CN205785728UD00064
(3)
[0034] (4)
Figure CN205785728UD00071
[0035] (S)
[0036] 式中上标1代表第一种方式;
[0037]下标jx代表第j个选择组中的第X个位移传感器;
[0038] Xjx,Yjx,Zjx分别代表相应位移传感器的测量点空间坐标值;
[0039] Sjx代表相应传感器的测量值;
[0040] A :为方案(1)的五种变形量的矩阵表示;
[0041] 根据刚度计算公式,结合公式(1),按照公式(9)计算出第一种方式中的五种静刚 度:
[0042] R=F • Af1 (9)
[0043] 3.2第二种方式为:所述位移传感器组5有n个位移传感器,n多5,安装i个位移传感
Figure CN205785728UD00072
器,使i个位移传感器均垂直于下夹具9上表面,以该倾斜的上表面为基准测量导轨副在该 方向上的相对变形量,i多2;安装n-i个位移传感器,使n-i个位移传感器均垂直于基准板11 的测量基准面,测量导#上的相对变形量,并确保至少3个位移测量点不在同一 直线上,n-i彡3,试验# 个选择组;
Figure CN205785728UD00073
[0044]在第二种方式中,根据公式(2),在犯个选择组中,第j个选择组的感器测点坐标矩 阵可表不为公式(6);五个方向的位移分量如公式(7);所有选择组平均位移分量如公式 (8):
[004; ((,)
[004< 7)
[0047]
Figure CN205785728UD00081
(8)
[0048] 式中上标2代表第二种方式;
[0049] 下标jx代表第j个选择组中的第X个位移传感器;
[0050] Xjx,Yjx,Zj^别代表相应位移传感器的测量点空间坐标值;
[0051] Sjx代表相应传感器的测量值;
[0052] A2为方案(2)的五种变形量的矩阵表示。
[0053]根据刚度计算公式,结合公式(1),按照公式(10)计算出五种静刚度:
[0054] R=F-AiT1 (10)
[0055] 3.3如果根据刚度计算公式,同时计算出垂直、侧向、俯仰、偏摆及倾斜静刚度,即 当上夹具上分布安装位移传感器个数满足i>3且n_i>3时,两种方式同时存在,五个方向的 变形量取两种方式的平均值,根据刚度计算公式(11),结合公式(1),即同时计算出五种静 刚度:
[0056] 两种方案同时存在:R = 2F •( AdA2)+1
[0057] (H)
[0058]式中R为测得五种静刚度的矩阵表示:
[0059]
Figure CN205785728UD00082
[0060] Rx为侧向静刚度;
[00611 Rz为垂直静刚度;
[0062] Ra为俯仰静刚度;
[0063] Rb为偏摆静刚度;
[0064] Rx为倾斜静刚度。
[0065]所述位移传感器组5分布最优方案可以(以第一种方式为例进行说明)为:选用6个 位移传感器,其中4个位移传感器垂直于下夹具9的倾斜表面,并确保任意3个位移测量点不 在同一直线上;2个位移传感器垂直于基准板11的测量基准面,选取5个组成一组,试验选择 组为4,保证实验准确性同时试验数据量适中:为能减少设计参数,方便研究计算,便于优化 测量装置结构,在安排传感其安装具体位置时,优先选择对称布置方式。结合图4,根据上述 的位移传感器布置方案,举例说明对称安装5个位移传感器组成一个试验选择组,其中5个 测量点坐标分别为51 :(厶,-8,-〇、52:(厶,8,-〇、53:(-厶,8,-〇、54 :(-0,0,卩)、55:(-0,-£,-F),传感器测点用规格化齐次坐标矩阵表示,根据坐标变换原理,则有:
[0066] (12)
Figure CN205785728UD00091
[0067]
[0068] (13)

Claims (6)

1. 一种直线导轨副五种静刚度综合测量装置,其特征在于包括加载装置(I)、力传感器 (3)、压盘(4)、位移传感器组(5)、位移传感器夹具(6)、滑块(7)、导轨(8)、下夹具(9)、台面 板(10)、基准板(11)、上夹具(12)、受力装置(13),其中下夹具(9)固定在水平台面板(10) 上,该下夹具(9)上表面相对水平面倾斜0角,基准板(11)和导轨(8)设置在下夹具(9)的上 表面;上夹具(12)上安装位移传感器组(5),该上夹具(12)固定连接在滑块(7)上表面,该滑 块(7)在导轨(8)上滑动,滑块(7)和导轨(8)为被测导轨副;加载装置(1)通过连接件(2)固 定连接力传感器(3),该力传感器(3)连接压盘(4),从而使加载装置(1)带动压盘(4)升降, 压盘(4)挤压安装在上夹具(12)上的受力装置(13),给上夹具(12)施加一个竖直向下的偏 心载荷F。
2. 根据权利要求1所述的装置,其特征在于在上夹具(12)上开设凹槽或锥孔,受力装置 (13)设置在凹槽或锥孔中;在上夹具(12)中加工沉头孔,将滑块(7)固定在沉头孔中。
3. 根据权利要求1所述的装置,其特征在于上夹具(12)上安装位移传感器组(5),该位 移传感器组(5)有n个位移传感器,n多5,安装i个位移传感器,使i个位移传感器均垂直于下 夹具(9)的上表面,以该倾斜的上表面为基准测量导轨副在该方向上的相对变形量,并确保 至少3个位移测量点不在同一直线上,i多3;安装n-i个位移传感器,使n-i个位移传感器均 垂直于基准板(11)的测量基准面,测量导轨副在该方向上的相对变形量,n-i多2,试验有
Figure CN205785728UC00021
个选择组。
4. 根据权利要求1所述的装置,其特征在于上夹具(12)上安装位移传感器组(5),该位 移传感器组(5)有n个位移传感器,n多5,安装i个位移传感器,使i个位移传感器均垂直于下 夹具(9)上表面,以该倾斜的上表面为基准测量导轨副在该方向上的相对变形量,i>2;安 装n-i个位移传感器,使n-i个位移传感器均垂直于基准板(I 1)的测量基准面,测量导轨副 在该方向上的相对变形量,并确保至少3个位移测量点不在同一直线上,n-i多3,试验有
Figure CN205785728UC00022
个选择组。
5. 根据权利要求1所述的装置,其特征在于下夹具(9)上表面相对水平面倾斜角0在 30° - 45° 之间。
6. 根据权利要求1所述的装置,其特征在于在上夹具(12)施加一个竖直向下的偏心载 荷F,载荷作用位置与上夹具(12)中心相对坐标为(a,b)且a,b彡30mm。
CN201620501430.6U 2016-05-26 2016-05-26 直线导轨副五种静刚度综合测量装置 Withdrawn - After Issue CN205785728U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620501430.6U CN205785728U (zh) 2016-05-26 2016-05-26 直线导轨副五种静刚度综合测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620501430.6U CN205785728U (zh) 2016-05-26 2016-05-26 直线导轨副五种静刚度综合测量装置

Publications (1)

Publication Number Publication Date
CN205785728U true CN205785728U (zh) 2016-12-07

Family

ID=57408806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620501430.6U Withdrawn - After Issue CN205785728U (zh) 2016-05-26 2016-05-26 直线导轨副五种静刚度综合测量装置

Country Status (1)

Country Link
CN (1) CN205785728U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973550A (zh) * 2016-05-26 2016-09-28 南京理工大学 直线导轨副五种静刚度综合测量装置及其方法
CN108645368A (zh) * 2018-08-29 2018-10-12 吕永昌 直线滚动导轨行走平行度测量装置及其使用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973550A (zh) * 2016-05-26 2016-09-28 南京理工大学 直线导轨副五种静刚度综合测量装置及其方法
CN105973550B (zh) * 2016-05-26 2019-02-22 南京理工大学 直线导轨副五种静刚度综合测量装置及其方法
CN108645368A (zh) * 2018-08-29 2018-10-12 吕永昌 直线滚动导轨行走平行度测量装置及其使用方法
CN108645368B (zh) * 2018-08-29 2021-01-22 吕永昌 直线滚动导轨行走平行度测量装置及其使用方法

Similar Documents

Publication Publication Date Title
CN105973550A (zh) 直线导轨副五种静刚度综合测量装置及其方法
CN100549649C (zh) 一种用于六维力传感器标定装置的标定方法
US9121799B2 (en) Multi-axle joint shifting loading apparatus for processing center and detection method for static stiffness distribution
CN105588718B (zh) 机床主轴综合性能检测/监测试验系统及方法
CN100365384C (zh) 圆锥滚子轴承内圈大挡边球面半径的测量装置和测量方法
CN205785728U (zh) 直线导轨副五种静刚度综合测量装置
CN102262025A (zh) 用于直线滚动导轨副的实验平台
CN104034522B (zh) 一种检测滚动直线导轨副静刚度的实验台
CN101493308B (zh) 一种垂直度检测装置及其检测方法
CN106052599B (zh) 一种测量直线导轨精度的非接触式测量方法
CN205426517U (zh) 机床主轴综合性能检测/监测试验系统
CN102539238A (zh) 一种精密级材料拉压刚度试验机
CN208847148U (zh) 一种用于检测联合误差的标准器
CN108571943B (zh) 一种接触式两圆柱体轴线交叉角度自动测量装置
CN202002606U (zh) 一种钣金件平面度测量装置
CN206019607U (zh) 一种直线导轨精度检测装置
CN206258054U (zh) 一种用于检测辊轮最大外径的检具
CN202420973U (zh) 一种精密级材料拉压刚度试验机
CN209131569U (zh) 一种非平面曲轴锻件的相位角检具
CN208736640U (zh) 高精度直线导轨副静刚度综合测量装置
CN205940484U (zh) 一种测量直线导轨精度的装置
CN205981543U (zh) 一种基于伺服驱动加载的三维力传感器动态响应标定装置
CN207035984U (zh) 一种导柱跳动测试仪
CN2881534Y (zh) 空间角度测量仪
CN213455431U (zh) 一种高精度粗糙度测试仪

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20161207

Effective date of abandoning: 20190222