CN204470363U - A kind of device realizing hollow metal component high-temperature barometric pressure load - Google Patents

A kind of device realizing hollow metal component high-temperature barometric pressure load Download PDF

Info

Publication number
CN204470363U
CN204470363U CN201520004773.7U CN201520004773U CN204470363U CN 204470363 U CN204470363 U CN 204470363U CN 201520004773 U CN201520004773 U CN 201520004773U CN 204470363 U CN204470363 U CN 204470363U
Authority
CN
China
Prior art keywords
main body
induction coil
counterdie main
upper mould
counterdie
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520004773.7U
Other languages
Chinese (zh)
Inventor
姚圣杰
赵洪运
初冠南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Weihai
Original Assignee
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Weihai filed Critical Harbin Institute of Technology Weihai
Priority to CN201520004773.7U priority Critical patent/CN204470363U/en
Application granted granted Critical
Publication of CN204470363U publication Critical patent/CN204470363U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

The utility model discloses a kind of device realizing hollow metal component high-temperature barometric pressure load, comprise mould, mould is divided into upper and lower two parts, and every part is divided into internal layer and skin, and skin is counterdie main body and upper mould body; Counterdie main body and upper mould body correspondence are arranged; Internal layer is inner membrance; Counterdie main body is fixed on lower mold holder, is provided with backing plate between counterdie main body and lower mold holder; The two ends of counterdie main body are respectively provided with a master shield, side is respectively provided with a side shield; The angle of one 95 ° ~ 110 ° is had between the base plate of master shield and side plate; Counterdie main body or upper mould body are provided with recessed channel, in recessed channel, are equipped with induction coil; Spacing between recessed channel is identical with the spacing between induction coil, is 1 ~ 10mm.The utility model can not only reduce shaping equipment investment, reduce plastic force, and at high temperature can be shaped and comprise the associated metal material hollow of aluminium alloy, magnesium alloy and high-strength steel.

Description

A kind of device realizing hollow metal component high-temperature barometric pressure load
Technical field
The utility model relates to a kind of device, particularly relates to a kind of device realizing hollow member high temperature barometric pressure load based on axial temperature and pressure, belongs to industrial manufacturing technology field.
Background technology
In recent years, along with petroleum resources price rises steadily, the growing tension of its storage capacity and constantly serious environmental problem, the requirement of various countries to automobile emissions standards is more and more higher.Based on the impact of various factors, the auto manufacturing that the whole world is advanced now has led automobile making to carry out fast development towards Main way such as low-carbon (LC), green, energy-conserving and environment-protective and crashworthinesses.
In order to alleviate Pressure on Energy and meet the quality requirement that automobile consumer improves day by day, automotive light weight technology becomes one of Main way of automobile manufacturing field research.Automobile lightweight has two Basic Ways: first optimization change body of a motor car, and chassis structure, reduces element size, reduces component weight; Its two be adopt lightweighting materials, as the materials such as high strength steel, alloy in lightweight, composite and sandwich plate replace traditional ferrous materials.
The lightweight of structural member, high strength are one of automobile lightweight key issues urgently to be resolved hurrily, and along with the development of material science and manufacturing technology, some new materials start to be widely applied.But ubiquity formability is poor at normal temperatures for these materials, and shaping stress is high, to problems such as die wear are large, traditional mould and technique cannot meet production requirement.For the problem of light material difficult forming at normal temperatures, there are two kinds of high temperature rapid shaping techniques, i.e. high-temperature metal gas pressure compacting and quick Plastic Forming.
In automotive field, the use of high-strength super-high strength steel hollow is exactly a kind of method of automotive light weight technology, but high-strength, super-high strength steel and the metal such as aluminium alloy, magnesium alloy are under normal temperature state, and formability is poor, cannot the hollow member of contoured cross-section complexity; Or the briquetting pressure needed for the high strength under room temperature is high, therefore high to the requirement of the equipment such as mould, press, the cost of input higher, therefore need new mould and method to solve these problems.
In addition, for hydroforming technology, need the key issue solved to be exactly the control of component wall thickness reduction up to now always, realize the uniformity of the wall thickness everywhere of component after being shaped as far as possible.Traditional low temperature internal high pressure forming and Design of Dies are because plastic deformation is limited and many restrictions of mould, make component after being shaped cannot obtain less radius of corner, and the local wall thickness reduction less in radius of corner is high, easily damaged in this position.Therefore a kind of device that can realize hollow metal component high-temperature barometric pressure load is completely newly needed.
Utility model content
In order to the weak point in solving the problem, the utility model provides a kind of device realizing hollow metal component high-temperature barometric pressure load.
In order to solve above technical problem, the technical solution adopted in the utility model is: a kind of device realizing hollow metal component high-temperature barometric pressure load, comprises mould, and mould is divided into upper and lower two parts, every part is divided into internal layer and skin, and skin is counterdie main body and upper mould body; Counterdie main body and upper mould body correspondence are arranged; Internal layer is inner membrance; Counterdie main body is fixed on lower mold holder, is provided with backing plate between counterdie main body and lower mold holder; The two ends of counterdie main body are respectively provided with a master shield, side is respectively provided with a side shield; The angle of one 95 ° ~ 110 ° is had between the base plate of master shield and side plate; Counterdie main body or upper mould body are provided with recessed channel, in recessed channel, are equipped with induction coil; Spacing between recessed channel is identical with the spacing between induction coil, is 1 ~ 10mm.
Backing plate is provided with positioning spline upper mould body and counterdie main body being played to fixation; Master shield and backing plate are all bolted in lower mold holder or top mold frame.
Four angles place of counterdie main body is respectively provided with a guide pillar, and guide pillar matches with the guide pin bushing being arranged on upper mould body corner.
Inner membrance is fixed by two pieces of top boards and is compressed on the inside of upper mould body or counterdie main body; Top board adopts rivet to be combined with upper mould body or counterdie main body.
Induction coil is in counterdie main body, between upper mould body and inner membrance; Induction coil is multiple, and multiple induction coil forms induction coil group jointly, and be respectively furnished with an induction coil group in counterdie main body and upper mould body, the single induction coil in induction coil group is connected into one group of path by water conduction hose, forms one group of cooling water.
Counterdie main body and upper mould body form dies cavity after coincideing; Induction coil is provided with a metal contact.
The utility model can not only reduce shaping equipment investment, reduce plastic force, and at high temperature can be shaped and comprise the associated metal material hollow of aluminium alloy, magnesium alloy and high-strength steel, is especially applicable to the complex section product preparing small fillet radius.
Accompanying drawing explanation
Fig. 1 is structural representation of the present utility model.
Fig. 2 is the left view of Fig. 1.
Fig. 3 is the ordered state structural representation of soft drainpipe.
Fig. 4 is the structural representation that Fig. 3 disassembles rear the latter half.
Fig. 5 is the structural representation of backing plate.
Fig. 6 is the installment state structural representation of induction coil.
Fig. 7 a-Fig. 7 d is the utility model barometric pressure load process flow diagram.
Fig. 8 a-Fig. 8 c is the implementation process schematic diagram of embodiment 1.
Fig. 9 a-Fig. 9 c is the implementation process schematic diagram of embodiment 2.
In figure: 1, lower mold holder; 2, backing plate; 3, counterdie main body; 4, master shield; 5, dies cavity; 6, induction coil; 7, upper mould body; 8, top mold frame; 9, inner membrance; 10, metal contact; 11, hose coupling; 12, guide pillar; 13, guide pin bushing; 14, guide pin bushing pressing plate; 15, side plate washer; 16, overhead gage; 17, positioning spline; 18, water conduction hose; 19, come directly towards; 20, air-filled pore.
Detailed description of the invention
Below in conjunction with the drawings and specific embodiments, the utility model is described in further detail.
As shown in figs 1 to 6, the utility model comprises lower mold holder 1, backing plate 2, master shield 4, dies cavity 5, induction coil 6, top mold frame 8, inner membrance 9, metal contact 10, hose coupling 11, guide pillar 12, guide pin bushing 13, guide pin bushing pressing plate 14, side plate washer 15, overhead gage 16, positioning spline 17, water conduction hose 18 and mould.
Mould is divided into upper and lower two parts, and every part is divided into inside and outside two-layer, and skin is counterdie main body 3 and upper mould body 7; Counterdie main body 3 and upper mould body 7 correspondence are arranged; Internal layer is inner membrance 9.Internal layer adopts the material of hypotonicity, high rigidity, is used for ensureing the profile of workpiece; Outer employing ceramic material, mainly plays a supportive role.Four angles place of counterdie main body 3 is respectively provided with a guide pillar 12, and guide pillar matches with the guide pin bushing 13 being arranged on upper mould body 7 four jiaos.
Counterdie main body 3 is fixed on lower mold holder 1, is provided with backing plate 2 between counterdie main body 3 and lower mold holder 1.The two ends of counterdie main body 3 are respectively provided with a master shield 4, side is respectively provided with a side shield 15.Master shield 4 and backing plate 2 are all bolted on lower mold holder 1.The version of this section is equally applicable to assemble relation between each parts in upper mould body 7 and upper mould body.
The angle of one 95 ° ~ 110 ° is had between the base plate of master shield 4 and side plate, the design of this kind of angle can limit again the while of can limiting moving up and down of mould and move left and right, side shield 15 stops die main body to move in the longitudinal direction, thus be completely fixed in above mould bases by die main body.
With positioning spline 17 on backing plate 2, can be fixed upper and lower mould main body, ensure the reliability of mold work.
Inner membrance 9 is fixed by two pieces of top boards 16 and is compressed on the inside of upper mould body or counterdie main body, rivet is adopted to be combined with upper mould body or counterdie main body top board 16 again, top board 16 is the high-strength steel of 60mm*20mm*5mm, inner membrance is fixed by the form of fixed head, easy to removal and installation like this, different inner membrances can be fixed by the same mode simultaneously, be conducive to the interchangeability improving inner membrance.
Induction coil 6 is embedded in recessed channel that counterdie main body 3 or upper mould body 7 reserve, and the spacing between recessed channel passage and the spacing between induction coil, all select suitable numerical value according to heater and efficiency, be generally 1 ~ 10mm.Induction coil 6 is in counterdie main body 3, between upper mould body 7 and inner membrance 9; Induction coil 6 is multiple, multiple induction coil 6 is composition induction coil group jointly, an induction coil group is respectively furnished with in counterdie main body 3 and upper mould body 7, single induction coil 6 in induction coil group is connected into one group of path by water conduction hose 18, form one group of cooling water, in counterdie main body 3 and upper mould body 7, respectively have one group of cooling water.Counterdie main body 3 and upper mould body 7 form dies cavity 5 after coincideing.
Induction coil 6 is provided with a metal contact 10, the effect of metal contact the induction coil in upper and lower mould main body is connected into the closed loop of one group of group, power connection end in upper mould body one piece of good copper coin of electric conductivity couples together, and forms a negative pole common port.Electrode in counterdie main body is controlled separately by single controller, thus reach each induction coil can by control carry out independent power supply, make material-to-be-heatedly to regulate by controlled temperature, have different heating-up temperatures for different distortion degree like this, be conducive to materials processing.
The technique of hollow metal component high-temperature barometric pressure load, its processing step is as follows, as shown in Fig. 7 a-Fig. 7 d:
1, pipe pretreatment (comprising preheating or prebuckling) is heated to 300 ~ 900 DEG C by eddy-current heating, Electricity Contact Heating or heating furnace, also without preheating, directly pipe can be placed in mould and heat;
2, pipe is placed in the counterdie main body of mould fast, pressurize after matched moulds under the effect of press mold clamping force, dwell pressure is not less than 100 tons, and promoting sealing top by two pipe both ends sealing (horizontal cylinder takes constant pressure adjustable speed to design) by two horizontal cylinder on press, the induction coil 6 pairs of pipes temperature vertically simultaneously by being embedded in mould inside compensates heating;
3, gases at high pressure are passed into by gas pressurized approach; , adapt with gas pressurized path meanwhile, mate with rational horizontal cylinder feed speed, at the one or both sides axial supplement of mould; While the feed supplement of end, eddy-current heating in step 2 is utilized to control the heating-up temperature of pipe diverse location, to regulate the regional area flow performance of metal material, to ensure that strain maximum does not appear at the very easily rupture location such as radiused apex;
4, treat that gas pressurized is complete, terminate axial supplement simultaneously, die sinking after short time pressurize, take out component control its cooling velocity, final obtain required for Components Shape and performance.
Embodiment 1:
Pipe, after preheating, puts into counterdie main body (as shown in Figure 7a); Pressurize after matched moulds, end part seal top compresses end sealing (as shown in Figure 7b) simultaneously; Induction coil energising compensates heating, fills gases at high pressure and carry out bulging (as shown in Fig. 7 c, 7d) after predetermined temperature to be achieved.Usually, in Bulging Process, pipe is first fitted at h place, position mould, and has larger wall thickness reduction herein.For reducing wall thickness reduction, run by the induction coil work with oblique line in control chart 8a, make pipe I region be in high temperature high-ductility state, apply pipe end feed supplement simultaneously, thus can ensure that pipe can comparatively homogeneous deformation in die cavity, present state shown in Fig. 8 b.
For molding less radius of corner, as shown in position i in Fig. 8 c.Linkage controls grey load coil in axial supplement and Fig. 8 c, while realizing keeping high temperature high-ductility in tubing regional area II, is obtained the maximum of bulging amount by feed supplement, thus the less radius of corner that can be shaped.
Embodiment 2:
Pipe, without preheating, directly puts into counterdie main body (Fig. 7 a); Pressurize after matched moulds, end part seal top compresses end sealing (Fig. 7 b) simultaneously; Direct heat temperature raising is carried out in induction coil energising, fills gases at high pressure and carry out bulging (Fig. 7 c, Fig. 7 d) after predetermined temperature to be achieved and temperature retention time.Run by the induction coil work with oblique line in control chart 9a, make pipe I region be in high temperature high-ductility state, apply pipe end feed supplement in corresponding one end simultaneously, pipe in die cavity can be made at predetermined region first bulging, to present state shown in Fig. 9 b.
Then apply axial supplement in the suitable time at the pipe other end, pipe can be realized and preferentially to fit at h place, position mould, as is shown in fig. 9 c.Certainly, by the black induction coil work in region shown in control chart 9c whether, the flow behavior of its relevant position metal pipe billet can be regulated and controled, to reach required wall thickness control target.
Above-mentioned embodiment is not to restriction of the present utility model; the utility model is also not limited in above-mentioned citing; the change that those skilled in the art make within the scope of the technical solution of the utility model, remodeling, interpolation or replacement, also all belong to protection domain of the present utility model.

Claims (6)

1. realize a device for hollow metal component high-temperature barometric pressure load, comprise mould, it is characterized in that: described mould is divided into upper and lower two parts, every part is divided into internal layer and skin, and skin is counterdie main body (3) and upper mould body (7); Counterdie main body (3) and upper mould body (7) correspondence are arranged; Internal layer is inner membrance (9); Counterdie main body (3) is fixed on lower mold holder (1), is provided with backing plate (2) between counterdie main body (3) and lower mold holder (1); The two ends of counterdie main body (3) are respectively provided with a master shield (4), side is respectively provided with a side shield (15); The angle of one 95 ° ~ 110 ° is had between the base plate of master shield (4) and side plate; Counterdie main body (3) or upper mould body (7) are provided with recessed channel, in recessed channel, are equipped with induction coil (6); Spacing between recessed channel is identical with the spacing between induction coil, is 1 ~ 10mm.
2. the device realizing hollow metal component high-temperature barometric pressure load according to claim 1, is characterized in that: described backing plate (2) is provided with the positioning spline (17) upper mould body and counterdie main body being played to fixation; Described master shield (4) and backing plate (2) are all bolted in lower mold holder (1) or top mold frame (8).
3. the device realizing hollow metal component high-temperature barometric pressure load according to claim 1, it is characterized in that: four angles place of described counterdie main body (3) is respectively provided with a guide pillar (12), guide pillar matches with the guide pin bushing (13) being arranged on upper mould body (7) corner.
4. the device realizing hollow metal component high-temperature barometric pressure load according to claim 1, is characterized in that: described inner membrance (9) is fixed by two pieces of top boards (16) and is compressed on the inside of upper mould body or counterdie main body; Top board (16) adopts rivet to be combined with upper mould body or counterdie main body.
5. the device realizing hollow metal component high-temperature barometric pressure load according to claim 1, is characterized in that: described induction coil (6) is positioned at counterdie main body (3), between upper mould body (7) and inner membrance (9); Induction coil (6) is for multiple, multiple induction coil (6) is composition induction coil group jointly, an induction coil group is respectively furnished with in counterdie main body (3) and upper mould body (7), single induction coil (6) in induction coil group is connected into one group of path by water conduction hose (18), forms one group of cooling water.
6. the device realizing hollow metal component high-temperature barometric pressure load according to claim 5, is characterized in that: described counterdie main body (3) and upper mould body (7) form dies cavity (5) after coincideing; Described induction coil (6) is provided with a metal contact (10).
CN201520004773.7U 2015-01-06 2015-01-06 A kind of device realizing hollow metal component high-temperature barometric pressure load Expired - Fee Related CN204470363U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520004773.7U CN204470363U (en) 2015-01-06 2015-01-06 A kind of device realizing hollow metal component high-temperature barometric pressure load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520004773.7U CN204470363U (en) 2015-01-06 2015-01-06 A kind of device realizing hollow metal component high-temperature barometric pressure load

Publications (1)

Publication Number Publication Date
CN204470363U true CN204470363U (en) 2015-07-15

Family

ID=53626105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520004773.7U Expired - Fee Related CN204470363U (en) 2015-01-06 2015-01-06 A kind of device realizing hollow metal component high-temperature barometric pressure load

Country Status (1)

Country Link
CN (1) CN204470363U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550403A (en) * 2015-01-06 2015-04-29 哈尔滨工业大学(威海) Device and process for realizing high-temperature barometric bulging of hollow metal component
CN105921584A (en) * 2016-04-19 2016-09-07 南京航空航天大学 Air pressure bulging method of ultrahigh-strength steel hollow component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550403A (en) * 2015-01-06 2015-04-29 哈尔滨工业大学(威海) Device and process for realizing high-temperature barometric bulging of hollow metal component
CN105921584A (en) * 2016-04-19 2016-09-07 南京航空航天大学 Air pressure bulging method of ultrahigh-strength steel hollow component

Similar Documents

Publication Publication Date Title
CN104550403A (en) Device and process for realizing high-temperature barometric bulging of hollow metal component
CN102500675B (en) Hot forming tool of titanium alloy thin-wall part and machining method of hot forming tool
CN102632125B (en) Plate differential temperature hydroforming device capable of realizing radial pressurizing and hydraulic blank pressing
CN109482690B (en) Current-assisted roll forming method for special-shaped section pipe fitting made of difficultly-deformed material
CN102873239A (en) Full-closed multi-way integral die-forging forming process for large-size valve bodies
CN106180347A (en) A kind of hollow unit low pressure thermal forming device
CN103736888B (en) Forging forming method for magnesium alloy rings
CN102489958B (en) Process and equipment for manufacturing wide-width magnesium alloy plate in coils
CN111408660B (en) Flange-free edge forming method of thin-wall metal sheet metal component
CN103962425A (en) Electric heating stretching-bending forming device for airplane titanium alloy sectional materials
CN204449176U (en) A kind of block forging mould for cross axle Warm Extrusion
CN103230955A (en) Hot extrusion forming die of light alloy horn-shaped pipe fitting
CN102729364B (en) Thermoplastic resin-base braiding composite material thermoforming mold structure
CN204470363U (en) A kind of device realizing hollow metal component high-temperature barometric pressure load
CN202845674U (en) Steel die assembly joint bolt combined forming die
CN1785550A (en) Forging method of soliding fork
CN103658292A (en) Normal temperature or thermal state fluid reconfigurable die bulging system and bulging method
CN102059802A (en) Method for making special PVC (polyvinyl chloride) floor
CN202877315U (en) Normal temperature or heat state fluid reconfigurable mould bulging device
CN209577759U (en) A kind of heat extruder with high extruding precision
CN101596572A (en) The manufacturing technique method of axle housing stiffening ring
CN103230951A (en) Hot extrusion forming method of light alloy horn-shaped pipe fitting
CN110328275A (en) The hot forming tool and method of vehicle A column reinforcement plate
CN202571117U (en) Steel tie rod end forming equipment
CN104493436A (en) Method for manufacturing cylindrical titanium alloy parts with two ends flanged inwards through forced supplementing

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Yao Shengjie

Inventor after: Zhao Hongyun

Inventor before: Yao Shengjie

Inventor before: Zhao Hongyun

Inventor before: Chu Guannan

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150715

Termination date: 20160106