CN203950028U - 零磁通直流电流互感器电子测量单元误差检测装置 - Google Patents

零磁通直流电流互感器电子测量单元误差检测装置 Download PDF

Info

Publication number
CN203950028U
CN203950028U CN201420390586.2U CN201420390586U CN203950028U CN 203950028 U CN203950028 U CN 203950028U CN 201420390586 U CN201420390586 U CN 201420390586U CN 203950028 U CN203950028 U CN 203950028U
Authority
CN
China
Prior art keywords
current
unit
magnetic flux
zero magnetic
electronic surveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201420390586.2U
Other languages
English (en)
Inventor
徐先勇
孟军
王珂
罗志坤
欧朝龙
陈福胜
向华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd
State Grid Hunan Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd
State Grid Hunan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd, State Grid Hunan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201420390586.2U priority Critical patent/CN203950028U/zh
Application granted granted Critical
Publication of CN203950028U publication Critical patent/CN203950028U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型公开了一种零磁通直流电流互感器电子测量单元误差检测装置,包括单相直流电源、电流检测单元、电压检测单元和信号采集单元,单相直流电源的输出端分别与电流检测单元、被检测的零磁通直流电流互感器电子测量单元的输入端相连,电压检测单元的输入端与被检测的零磁通直流电流互感器电子测量单元的输出端相连,电流检测单元、电压检测单元的输出端分别与信号采集单元的输入端相连,信号采集单元的输出端与上位机相连。本实用新型具有使用方便、检测快速高效、简单易行、经济性高、可靠性和安全性好的优点。

Description

零磁通直流电流互感器电子测量单元误差检测装置
技术领域
本实用新型涉及高压直流输电技术领域,具体涉及一种零磁通直流电流互感器电子测量单元误差检测装置。
背景技术
高压直流输电系统目前在我国得到了快速发展,特别是在近几十年国家电网公司和南方电网公司所属区域内电网建设了很多座±500kV、±800kV直流换流站,同时马上还要建设±1000kV直流输电系统。目前,各电压等级直流输电系统中一般采用传统的电磁式直流电流互感器或电子式直流电流互感器来测量直流侧的直流电流信号,而直流电流互感器输出的二次直流信号是否准确和正常,是直流输电系统的直流控制保护能否正确动作的重要因素之一。
目前,在高压直流输电系统中最常用的直流电流互感器为零磁通直流电流互感器(Zeroflux DC current transformer,DCCT),其中DCCT的电子测量单元又是零磁通直流电流互感器能否正确、及时反映一次直流电流量的重要测量单元。如图1所示,零磁通直流电流互感器主要包括5个线圈绕组(辅助绕组N1、N2、N3,补偿绕组N4,校准绕组N5)、三个铁芯(T1、T2、T3)、峰值检测器、功放、振荡器、负载电阻以及输出功放。铁芯T1、T2、T3分别对应辅助绕组N1、N2、N3,匝数相同的补偿绕组N4和校准绕组N5并联并围绕三个铁芯(T1、T2、T3)。校准绕组N5在校准补偿绕组N4时,与补偿绕组N4解开并联,正常运行时补偿绕组N4和校准绕组N5并联使用。一次绕组及补偿绕组N4,校准绕组N5分别与三个铁芯T1、T2、T3交链。正常工作时,铁芯T1、T2由振荡器激励,进入饱和状态。此时若一次电流Id≠0,将导致铁芯进一步饱和,电流陡增。峰值检测器通过图中的电阻感应到电流的陡增(正负峰值),并向功放提供校正信号,后经功放提供一个电压进而产生一个二次电流I2,二次电流I2流经负载电阻形成输出电压,且该输出电压通过输出功放放大后输出。其中,二次电流I2流过补偿绕组N4、校准绕组N5时会产生磁通I2W2(W2为二次绕组匝数,包含补偿绕组N4和校准绕组N5的绕组)来平衡一次电流Id在铁芯T1、T2、T3中产生的磁通,使得铁芯的饱和程度降低,峰值检测器检测不到峰值。因此可以看出,二次电流I2可以反映一次电流Id,通过测量二次电流I2在负载电阻上形成的直流电压信号,即可得到一次电流信号大小,实现直流电流测量目的。实际上,由于功放有限的增益和磁通量漂移,原边和副边磁势不能保持平衡。为了恢复安匝数平衡,需要形成一个具有负反馈的系统,此时,磁积分器实现了该目的。磁通的一切变化都会在辅助绕组N3上产生感应电压,感应电压在积分器反相输入端驱动,从而改变功放输出的二次电流I2,使得原边和副边绕组产生的磁势完全平衡。因二次电流I2流过补偿绕组N4、校准绕组N5产生的磁通I2W2与一次电流Id在铁芯T1、T2、T3中产生的磁通相平衡,故一次绕组及补偿绕组N4、校准绕组N5共同作用于铁芯T1、T2、T3后,整体的磁通量为零,也就是I2W2=IdW1,W1为一次通流回路匝数。
依据已有文献,现有技术的DCCT电子测量单元主要基于三种原理:第一种是从磁化电流波形的成份来进行分析利用零磁通平衡时,检测线圈被正弦波激励后所产生的磁化电流中只有奇次谐波成分,偏离平衡时则有偶次谐波成份,且以二次谐波为主,故采用检测二次谐波的方法来检测出直流信号。第二种是从磁化电流的幅度大小来进行分析,依据正弦波信号激励检测线圈而产生的磁化电流在零磁通平衡时存在半波对称性,在偏离平衡时,磁化电流的半波不对称,而通过检测正弦信号驱动检测线圈而产生的磁化电流的正负峰值来检测被测电流的检测信号。第三种是将两个相同的检测磁芯上的检测线圈平均分为四组,每个检测磁芯上两组,同一检测磁芯上的线圈绕向相同,不同检测磁芯的线圈绕向相反,通过线圈组合使磁化电流的奇次波相抵消,偶次谐波相加,以此来获得被测电流的检测信号。由于DCCT电子测量单元的准确性、功能完好性关系到直流控制和保护系统能否正确动作,进而关系到整个直流输电系统能否安全、稳定运行。同时,目前DCCT电子测量单元的现场检测主要为人工比对方式,数据的准确性、及时性较差,整个检测过程耗时较长,自动化程度不高,效率较低。
实用新型内容
本实用新型要解决的技术问题是:针对现有技术的上述技术问题,提供一种能够满足直流输电系统中零磁通直流电流互感器电子测量单元现场误差检测的需要,能够适应现代直流输电系统控制保护的需求,使用方便、检测快速高效、简单易行、经济性高、可靠性和安全性好的零磁通直流电流互感器电子测量单元误差检测装置。
为了解决上述技术问题,本实用新型采用的技术方案为:
一种零磁通直流电流互感器电子测量单元误差检测装置,包括单相直流电源、电流检测单元、电压检测单元和信号采集单元,所述单相直流电源的输出端分别与电流检测单元、被检测的零磁通直流电流互感器电子测量单元的输入端相连,所述电压检测单元的输入端与被检测的零磁通直流电流互感器电子测量单元的输出端相连,所述电流检测单元、电压检测单元的输出端分别与信号采集单元的输入端相连,所述信号采集单元的输出端与上位机相连。
优选地,所述信号采集单元包括数据接口模块、DSP处理器、微处理器、供电电源模块和通讯接口,所述电流检测单元、电压检测单元的输出端与数据接口模块相连,所述数据接口模块与DSP处理器相连,所述DSP处理器和微处理器相连,所述供电电源模块分别与DSP处理器、微处理器相连,所述微处理器通过通讯接口与上位机相连。
优选地,所述数据接口模块包括IEEE488接口芯片、数据驱动电路、控制驱动电路,所述电流检测单元、电压检测单元的输出端分别通过IEEE488总线与IEEE488接口芯片相连,所述IEEE488接口芯片分别与数据驱动电路、控制驱动电路、DSP处理器相连。
优选地,所述信号采集单元还包括外置存储器,所述外置存储器与DSP处理器相连。
优选地,所述信号采集单元还包括网络接口,所述网络接口与微处理器相连。
优选地,所述信号采集单元还包括USB接口,所述USB接口与微处理器相连。
优选地,所述信号采集单元还包括键盘模块和液晶显示模块,所述键盘模块、液晶显示模块分别与微处理器相连。
优选地,所述信号采集单元还包括打印模块,所述打印模块与微处理器相连。
优选地,所述电流检测单元和电压检测单元均为数字万用表。
本实用新型零磁通直流电流互感器电子测量单元误差检测装置具有下述优点:本实用新型零磁通直流电流互感器电子测量单元误差检测装置为本实用新型零磁通直流电流互感器电子测量单元误差检测方法专用的检测装置,通过单相直流电源能够为零磁通直流电流互感器电子测量单元输入单相直流电流,通过电流检测单元、电压检测单元和信号采集单元粪便检测单相直流电流、检测零磁通直流电流互感器电子测量单元的输出电压并输出给上位机,从而为上位机计算零磁通直流电流互感器电子测量单元的理论输出电压提供基础数据,便于应用本实用新型的上位机计算零磁通直流电流互感器电子测量单元的误差,检测人员能够在与零磁通直流电流互感器一次回路没有电气接触的情况下检测得到零磁通直流电流互感器电子测量单元误差检测所需的基础数据,可使检测工作大为简化,整个检测工作可以在数分钟内自动完成,提高了零磁通直流电流互感器电子测量单元现场检测工作的效率,从而为直流输电系统零磁通直流电流互感器及其电子测量单元的检修及运行维护提供技术支撑,能够适应直流输电系统的需要,解决直流输电系统中零磁通直流电流互感器电子测量单元的现场误差检测,使得零磁通直流电流互感器电子测量单元的现场误差检测方便、简洁、高效和安全,具有检测速度快、简单易行、经济性高、可靠性和安全性好的优点。
附图说明
图1为现有技术零磁通直流电流互感器的电路原理示意图。
图2为使用本实用新型实施例装置的误差检测实施流程示意图。
图3为本实用新型实施例和零磁通直流电流互感器电子测量单元的连接结构示意图。
图4为本实用新型实施例的详细框架结构示意图。
图5为使用本实用新型实施例的上位机的功能框架结构示意图。
图例说明:1、单相直流电源;2、电流检测单元;3、电压检测单元;4、信号采集单元;41、数据接口模块;411、IEEE488接口芯片;412、数据驱动电路;413、控制驱动电路;42、DSP处理器;421、外置存储器;43、微处理器;431、网络接口;432、USB接口;433、键盘模块;434、液晶显示模块;435、打印模块;44、供电电源模块;45、通讯接口;5、零磁通直流电流互感器电子测量单元。
具体实施方式
如图2所示,使用本实施例零磁通直流电流互感器电子测量单元误差检测装置的误差检测流程实施步骤如下:
1)向零磁通直流电流互感器电子测量单元输入单相直流电流并检测单相直流电流;
2)检测零磁通直流电流互感器电子测量单元的输出电压;
3)根据式(1)计算零磁通直流电流互感器电子测量单元的理论输出电压;
U out = I 1 × U N I N - - - ( 1 )
式(1)中,Uout表示零磁通直流电流互感器电子测量单元的理论输出电压,I1表示检测得到的输入零磁通直流电流互感器电子测量单元的单相直流电流,UN表示零磁通直流电流互感器电子测量单元的二次额定输出电压,IN表示零磁通直流电流互感器电子测量单元的二次额定输入电流;零磁通直流电流互感器电子测量单元的二次额定输出电压UN、二次额定输入电流IN是零磁通直流电流互感器电子测量单元的设备参数,一般在零磁通直流电流互感器电子测量单元的铭牌上有标注。
4)根据式(2)计算零磁通直流电流互感器电子测量单元的误差;
d = U 1 - U out U out × 100 % - - - ( 2 )
式(2)中,d表示零磁通直流电流互感器电子测量单元的误差,U1表示检测得到的零磁通直流电流互感器电子测量单元的输出电压,Uout表示零磁通直流电流互感器电子测量单元的理论输出电压。
如图3所示,本实施例的零磁通直流电流互感器电子测量单元误差检测装置包括单相直流电源1、电流检测单元2、电压检测单元3和信号采集单元4,单相直流电源1的输出端分别与电流检测单元2、被检测的零磁通直流电流互感器电子测量单元5的输入端相连,电压检测单元3的输入端与被检测的零磁通直流电流互感器电子测量单元5的输出端相连,电流检测单元2、电压检测单元3的输出端分别与信号采集单元4的输入端相连,信号采集单元4的输出端与上位机相连。本实施例通过将单相直流电源1作为单相直流电流的激励源,通过电流检测单元2直接实时检测并输出的直流电流信号I1、通过电压检测单元3实时检测零磁通直流电流互感器电子测量单元5输出的直流电压信号U1,并通过信号采集单元4将电流检测单元2检测的直流电流信号I1、电压检测单元3检测的直流电压信号U1输出至上位机,从而为上位机的提供计算零磁通直流电流互感器电子测量单元5误差所必须的基础数据,检测人员基于该方法能够在与零磁通直流电流互感器一次回路没有电气接触的情况下检测得到零磁通直流电流互感器电子测量单元5的误差,可使检测工作大为简化,整个检测工作可以在数分钟内自动完成,提高了零磁通直流电流互感器电子测量单元现场检测工作的效率,直流输电系统零磁通直流电流互感器及其电子测量单元的检修及运行维护提供技术支撑,能够适应直流输电系统的需要,解决直流输电系统中零磁通直流电流互感器电子测量单元的现场误差检测,使得零磁通直流电流互感器电子测量单元的现场误差检测方便、简洁、高效和安全,具有检测速度快、简单易行、经济性高、可靠性和安全性好的优点。
本实施例中,单相直流电源1具体采用0.01级高精度直流模拟信号源。
本实施例中,电流检测单元2和电压检测单元3均为数字万用表,电流检测单元2具体采用0.005级34401A数字万用表,电压检测单元3具体采用0.005级1281数字万用表。0.005级34401A数字万用表串接在0.01级高精度直流模拟信号源的输出端、信号采集单元4之间,用于检测0.01级高精度直流模拟信号源输出的单相直流电流;0.005级1281数字万用表串接在被检测的零磁通直流电流互感器电子测量单元5的输出端、信号采集单元4之间,用于检测零磁通直流电流互感器电子测量单元5的输出电压;0.005级34401A数字万用表、0.005级1281数字万用表的输出同时输入信号采集单元4,通过信号采集单元4来完成0.01级高精度直流模拟信号源输出的单相直流电流、零磁通直流电流互感器电子测量单元5的输出电压的采集并输出给上位机,从而确保检测人员能够在与零磁通直流电流互感器一次回路没有电气接触的情况下进行。
如图4所示,信号采集单元4包括数据接口模块41、DSP处理器42、微处理器43、供电电源模块44和通讯接口45,电流检测单元2、电压检测单元3的输出端与数据接口模块41相连,数据接口模块41与DSP处理器42相连,DSP处理器42和微处理器43相连,供电电源模块44分别与DSP处理器42、微处理器43相连,微处理器43通过通讯接口45与上位机相连。在工作状态下,本实施例的电流检测单元2检测的直流电流信号I1、电压检测单元3检测的直流电压信号U1经过IEEE488总线,进入信号采集单元4的DSP处理器42,由DSP处理器42将直流电流信号I1转换成电压信号之后输出给微处理器43,通过微处理器43输出给上位机,上位机上运行有零磁通直流电流互感器电子测量单元自动检测系统(以下简称自动检测系统),自动检测系统的核心功能共即为接收电流检测单元2检测的直流电流信号I1、电压检测单元3检测的直流电压信号U1,并在此基础上根据前述的步骤4)计算出被检测的零磁通直流电流互感器电子测量单元5的误差,从而为实现利用对被检测的零磁通直流电流互感器电子测量单元5的误差检测提供基础数据。
本实施例中,数据接口模块41包括IEEE488接口芯片411、数据驱动电路412、控制驱动电路413,电流检测单元2、电压检测单元3的输出端分别通过IEEE488总线与IEEE488接口芯片411相连,IEEE488接口芯片411分别与数据驱动电路412、控制驱动电路413、DSP处理器42相连。本实施例通过IEEE488接口芯片411、数据驱动电路412、控制驱动电路413实现了IEEE488通信协议,能够实现对数字万用表良好地兼容,从而方便地通过IEEE488总线接收电流检测单元2检测的直流电流信号I1、电压检测单元3检测的直流电压信号U1
本实施例中,信号采集单元4还包括外置存储器421,外置存储器421与DSP处理器42相连。因此通过外置存储器421,DSP处理器42能够实现对电流检测单元2检测的直流电流信号I1、电压检测单元3检测的直流电压信号U1的数据存盘,从而方便实现对零磁通直流电流互感器电子测量单元5的误差在线监测,从而能够对零磁通直流电流互感器电子测量单元5的故障分析提供详细的基础数据。本实施例中,信号采集单元4还包括网络接口431和USB接口432,网络接口431、USB接口432分别与微处理器43相连,网络接口431用于通过网络实现和外部计算机设备的数据交互,USB接口432用于通过USB存储器实现和外部计算机设备的数据交互。此外,信号采集单元4还包括键盘模块433和液晶显示模块434,键盘模块433、液晶显示模块434分别与微处理器43相连,能方便地进行人机交互。本实施例中,信号采集单元4还包括打印模块435,打印模块435与微处理器43相连,从而能够方便地将电流检测单元2检测的直流电流信号I1、电压检测单元3检测的直流电压信号U1打印输出以便进行现场数据分析。本实施例中,微处理器43具有基于80C196单片机实现,80C196单片机主要与网络接口431、USB接口432、键盘模块433、液晶显示模块434、打印模块435、通讯接口45相连接,实现外围输入输出等外围事件的处理。
如图5所示,自动检测系统主要由模块选择、参数设定、系统设置三大功能模块组成。模块选择模块主要包括实时数据模块和历史数据模块,实时数据模块可实现选择路径后进行测试界面显示、精度测试,实时数据模块用于实时接收电流检测单元2检测的直流电流信号I1、电压检测单元3检测的直流电压信号U1,并在此基础上根据前述的步骤4)计算出被检测的零磁通直流电流互感器电子测量单元5的误差,从而进行现场误差测试;历史数据模块可实现选择路径后进行读取故障存盘数据以及定时存盘数据等,校验人员还可通过历史数据模块查看以往校验时存盘的合格及不合格数据,便于分析及查找原因。参数设定主要进行检测量限、通讯设置、检测项目和检测点设置共四个功能模块。系统设置主要包括用户注册、数据导出、导入数据和主帮助共四个功能模块,校验人员还可以在系统设置的用户注册中设置登录用户名及密码,以避免无关人员的误操作,增强系统的安全性。
以上所述仅是本实用新型的优选实施方式,本实用新型的保护范围并不仅局限于上述实施例,凡属于本实用新型思路下的技术方案均属于本实用新型的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理前提下的若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。

Claims (9)

1.一种零磁通直流电流互感器电子测量单元误差检测装置,其特征在于:包括单相直流电源(1)、电流检测单元(2)、电压检测单元(3)和信号采集单元(4),所述单相直流电源(1)的输出端分别与电流检测单元(2)、被检测的零磁通直流电流互感器电子测量单元(5)的输入端相连,所述电压检测单元(3)的输入端与被检测的零磁通直流电流互感器电子测量单元(5)的输出端相连,所述电流检测单元(2)、电压检测单元(3)的输出端分别与信号采集单元(4)的输入端相连,所述信号采集单元(4)的输出端与上位机相连。
2.根据权利要求1所述的零磁通直流电流互感器电子测量单元误差检测装置,其特征在于:所述信号采集单元(4)包括数据接口模块(41)、DSP处理器(42)、微处理器(43)、供电电源模块(44)和通讯接口(45),所述电流检测单元(2)、电压检测单元(3)的输出端与数据接口模块(41)相连,所述数据接口模块(41)与DSP处理器(42)相连,所述DSP处理器(42)和微处理器(43)相连,所述供电电源模块(44)分别与DSP处理器(42)、微处理器(43)相连,所述微处理器(43)通过通讯接口(45)与上位机相连。
3.根据权利要求2所述的零磁通直流电流互感器电子测量单元误差检测装置,其特征在于:所述数据接口模块(41)包括IEEE488接口芯片(411)、数据驱动电路(412)、控制驱动电路(413),所述电流检测单元(2)、电压检测单元(3)的输出端分别通过IEEE488总线与IEEE488接口芯片(411)相连,所述IEEE488接口芯片(411)分别与数据驱动电路(412)、控制驱动电路(413)、DSP处理器(42)相连。
4.根据权利要求3所述的零磁通直流电流互感器电子测量单元误差检测装置,其特征在于:所述信号采集单元(4)还包括外置存储器(421),所述外置存储器(421)与DSP处理器(42)相连。
5.根据权利要求4所述的零磁通直流电流互感器电子测量单元误差检测装置,其特征在于:所述信号采集单元(4)还包括网络接口(431),所述网络接口(431)与微处理器(43)相连。
6.根据权利要求5所述的零磁通直流电流互感器电子测量单元误差检测装置,其特征在于:所述信号采集单元(4)还包括USB接口(432),所述USB接口(432)与微处理器(43)相连。
7.根据权利要求6所述的零磁通直流电流互感器电子测量单元误差检测装置,其特征在于:所述信号采集单元(4)还包括键盘模块(433)和液晶显示模块(434),所述键盘模块(433)、液晶显示模块(434)分别与微处理器(43)相连。
8.根据权利要求7所述的零磁通直流电流互感器电子测量单元误差检测装置,其特征在于:所述信号采集单元(4)还包括打印模块(435),所述打印模块(435)与微处理器(43)相连。
9.根据权利要求1~8中任意一项所述的零磁通直流电流互感器电子测量单元误差检测装置,其特征在于:所述电流检测单元(2)和电压检测单元(3)均为数字万用表。
CN201420390586.2U 2014-07-15 2014-07-15 零磁通直流电流互感器电子测量单元误差检测装置 Active CN203950028U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420390586.2U CN203950028U (zh) 2014-07-15 2014-07-15 零磁通直流电流互感器电子测量单元误差检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420390586.2U CN203950028U (zh) 2014-07-15 2014-07-15 零磁通直流电流互感器电子测量单元误差检测装置

Publications (1)

Publication Number Publication Date
CN203950028U true CN203950028U (zh) 2014-11-19

Family

ID=51892056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420390586.2U Active CN203950028U (zh) 2014-07-15 2014-07-15 零磁通直流电流互感器电子测量单元误差检测装置

Country Status (1)

Country Link
CN (1) CN203950028U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101856A (zh) * 2014-07-15 2014-10-15 国家电网公司 零磁通直流电流互感器电子测量单元误差检测方法及装置
CN105068034A (zh) * 2015-08-19 2015-11-18 国网安徽省电力公司检修公司 一种电流互感器检测系统及其检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101856A (zh) * 2014-07-15 2014-10-15 国家电网公司 零磁通直流电流互感器电子测量单元误差检测方法及装置
CN105068034A (zh) * 2015-08-19 2015-11-18 国网安徽省电力公司检修公司 一种电流互感器检测系统及其检测方法
CN105068034B (zh) * 2015-08-19 2018-04-20 国网安徽省电力公司检修公司 一种电流互感器检测系统及其检测方法

Similar Documents

Publication Publication Date Title
CN201867490U (zh) 多表位标准电能表检定装置
CN201859213U (zh) 智能电能表检定装置
CN107884654A (zh) 一种变电站多点电能质量监测装置及方法
CN103472433B (zh) 智能变电站电能计量二次系统虚负荷误差检测装置及方法
WO2017045488A1 (zh) 一种电流互感器抗直流分量和偶次谐波测试系统
CN104101856A (zh) 零磁通直流电流互感器电子测量单元误差检测方法及装置
CN103885438A (zh) 一种变电站测控设备的自动测试系统和方法
CN107942192A (zh) 一种配电设备ct自动测试方法及系统
CN105785118A (zh) 仿真智能电能表
CN204269808U (zh) 一种带有虚拟电流源的三相电能表现场校验仪
CN203324466U (zh) 一种可同时检定多个具有不同电流规格电能表的检定系统
CN204154892U (zh) 一种电能表标准装置自动检定系统
CN203950028U (zh) 零磁通直流电流互感器电子测量单元误差检测装置
CN203811737U (zh) 直流漏电监测报警装置
CN203287499U (zh) 一种永磁伺服同步电机转矩常数测试装置
CN103558571A (zh) 电子式互感器及合并单元校验系统
CN202815204U (zh) 交流仪表检验装置检定系统
CN203587701U (zh) 一种光伏逆变器对地绝缘电阻的在线检测电路
CN103439682B (zh) 采用一种便携式电流互感器复合误差测试装置进行电流互感器复合误差测试的方法
CN109541520B (zh) 电能计量装置故障差错电量的分相计算法
CN102809684A (zh) 电源供应器一次侧电路的功率检测方法及其功率检测电路
CN103323663A (zh) 一种整流机组直流电流和整流器损耗的测量方法
CN105785117A (zh) 计量电路
Kabalci et al. A low cost smart metering system design for smart grid applications
CN108107313A (zh) 空载状况下判断电能表接线正确性的方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant