CN203261317U - Electronic circuit based on chopping for merged MEMS accelerometer sensor - Google Patents

Electronic circuit based on chopping for merged MEMS accelerometer sensor Download PDF

Info

Publication number
CN203261317U
CN203261317U CN 201320171757 CN201320171757U CN203261317U CN 203261317 U CN203261317 U CN 203261317U CN 201320171757 CN201320171757 CN 201320171757 CN 201320171757 U CN201320171757 U CN 201320171757U CN 203261317 U CN203261317 U CN 203261317U
Authority
CN
China
Prior art keywords
circuit
differential
configured
chopper
mems sensor
Prior art date
Application number
CN 201320171757
Other languages
Chinese (zh)
Inventor
乔纳森·亚当·克莱克斯
约恩·奥普里斯
贾斯廷·森
Original Assignee
快捷半导体(苏州)有限公司
快捷半导体公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201261620019P priority Critical
Priority to US61/620,019 priority
Application filed by 快捷半导体(苏州)有限公司, 快捷半导体公司 filed Critical 快捷半导体(苏州)有限公司
Application granted granted Critical
Publication of CN203261317U publication Critical patent/CN203261317U/en

Links

Abstract

The utility model discloses an electronic circuit based on chopping for a merged MEMS accelerometer sensor. The electronic circuit comprises a capacitance-to-voltage converter circuit configured to be electrically connected to a micro-electromechanical system (MEMS) sensor circuit. The capacitance-to-voltage converter circuit comprises a differential chopping circuit path configured to receive a differential MEMS sensor output signal and invert a polarity of the differential chopping circuit path, and a differential sigma-delta analog-to-digital converter (ADC) circuit configured to sample the differential MEMS sensor output signal and provide a digital signal representative of a change in capacitance of the MEMS sensor.

Description

基于对合并式MEMS加速计传感器斩波的电子电路 Based on a combined chopper type MEMS accelerometer sensor electronic circuitry

技术领域 FIELD

[0001] 本实用新型大体上涉及电子电路,尤其涉及MEMS传感器电路。 [0001] The present invention relates generally to electronic circuits, and particularly to the MEMS sensor circuit.

背景技术 Background technique

[0002] 微机电系统(MEMS )包括执行电功能和机械功能的小型机械装置,所述小型机械装置通过与制作集成电路使用的技术相似的光刻技术制作而成。 [0002] Micro electromechanical systems (MEMS) include mechanical means for performing small electrical and mechanical functions, and by means of the small mechanical and integrated circuit fabrication techniques similar to photolithographic techniques used made. 一些MEMS装置是检测动作的传感器(如加速计),或是检测角速度的传感器(如陀螺仪)。 Some MEMS device is a sensor for detecting the operation (e.g., an accelerometer), or an angular velocity detecting sensor (e.g., a gyroscope). 加速计是一种经受响应于作用在其上的加速度的可测变化的装置。 Accelerometer means is changed on the acceleration which can be measured in response to the action of one kind subjected. MEMS加速计包括压电性加速计、压阻性加速计和电容性加速计。 MEMS accelerometer comprises a piezoelectric accelerometer, piezoresistive accelerometers and capacitive accelerometers. 由于MEMS传感器尺寸小,因而被包含在电子装置(例如,视频游戏控制器和智能手机)中。 Due to the small size of the MEMS sensor, which is included in an electronic device (e.g., a video game controller and smart phones) in.

[0003] 响应于加速度,电容性加速计的电容发生变化。 [0003] In response to acceleration, the capacitance of the capacitive accelerometer changes. 感应电路用于感应MEMS传感器中的电容变化。 Sensing circuitry for sensing changes in the capacitance of the MEMS sensor. 这些感应电路的设计对噪声的降低和尺寸的最小化提出了挑战。 The sensing circuitry designed to minimize the size reduction and noise presents a challenge.

实用新型内容 SUMMARY

[0004] 除其它情况之外,本实用新型讨论了降低MEMS传感器中噪声的系统。 [0004] In addition to other situations, the present invention discusses the reduction system (MEMS) sensor noise. 装置实例为电子电路,其包括被配置为电连接于MEMS传感器电路的电容-电压转换电路。 Examples of an electronic circuit device, which comprises a capacitor configured to be electrically connected to the MEMS sensor circuit - voltage converting circuit. 所述电容-电压转换电路包括差分斩波电路通路和差分Sigma-delta模数转换器(ADC)电路,所述差分斩波电路通路被配置为接收差分MEMS传感器输出信号,并对所述差分斩波电路通路的极性进行反转;所述差分Sigma-delta模数转换器(ADC)电路被配置为对差分MEMS传感器输出信号进行采样,并提供表示所述MEMS传感器的电容变化的数字信号。 The capacitance - voltage converting circuit includes a differential chopper circuit and the differential path Sigma-delta analog to digital converter (ADC) circuit, the differential chopper circuit path is configured to receive a differential MEMS sensor output signal, and the differential chopper a polarity inverting circuit path wave; the differential Sigma-delta analog to digital converter (ADC) for the differential circuit is configured MEMS sensor output signal is sampled, and provides a digital signal representing a change in capacitance of the MEMS sensor.

[0005] 本实用新型还提供了另一种电子电路,包括:电容-电压转换电路,被配置为电连接到MEMS传感器电路。 [0005] The present invention also provides another electronic circuit, comprising: a capacitance - voltage converting circuit configured to be electrically connected to the MEMS sensor circuit. 所述电容-电压转换电路包括:差分电路通路,被配置为接收差分MEMS传感器输出信号;差分sigma-delta ADC电路,被配置为对所述差分MEMS传感器输出信号进行采样并提供表示所述MEMS传感器电路中电容变化的数字信号,其中,所述差分sigma-delta ADC电路包括比较器电路;以及伪随机噪声发生电路,电连接到所述比较器电路且被配置为将抖动噪声加至所述比较器电路的输入端。 The capacitance - voltage converting circuit comprising: a differential circuit path configured to receive the differential output signal of the MEMS sensor; differential sigma-delta ADC circuit is configured to output the differential signal is sampled MEMS sensor and providing a sensor the MEMS digital circuit capacitance change signal, wherein the differential circuit comprises a sigma-delta ADC comparator circuit; and a pseudo random noise generating circuit electrically connected to said comparator circuit and configured to compare the dithering noise added to input circuit.

[0006] 本实用新型提供的电子电路的有益效果之一是对从MEMS传感器采样得到的输出进行斩波,降低了1/f噪声和热噪声,使得一阶sigma-delta ADC电路具有大于IOOdB的动态范围。 One of the beneficial effects [0006] The present invention provides an electronic circuit is obtained by sampling the output from the MEMS sensor chopping, reducing the 1 / f noise and thermal noise, so that a first-order sigma-delta ADC circuit is greater than IOOdB Dynamic Range.

[0007] 该部分旨在概述本专利申请的主题,而非排他性或穷尽性解释本实用新型。 [0007] This section is intended to present an overview of subject matter of patent application, and not an exclusive or exhaustive explanation of the present invention. 本文包含了具体实施方式以提供有关本专利申请的进一步信息。 This article contains specific embodiments to provide further information about the present patent application.

附图说明 BRIEF DESCRIPTION

[0008] 在附图(其不一定按比例绘制)中,相似的附图标记可在不同的视图中描述相似的部件。 [0008] In the drawings (which are not necessarily drawn to scale), like reference numerals may describe similar components in different views. 具有不同字母后缀的相似附图标记可表示同类部件的不同例子。 Having different letter suffixes may represent different like reference numerals of similar components example. 附图以示例而非限制的方式大体示出了本文中所论述的各个实例。 BRIEF way of example and not limitation generally illustrate various examples discussed herein. [0009] 图1为MEMS传感器和用于监测MEMS传感器输出端中变化的感应电路的实例部分的结构不意图; [0009] FIG. 1 is a MEMS sensor and a MEMS sensor for monitoring the change in the output of sensing circuit portion is not intended structural example;

[0010] 图2示出了斩波开关矩阵电路的实例; [0010] FIG. 2 shows an example of the chopper circuit switch matrix;

[0011] 图3示出了具有差分斩波电路通路的电容-电压转换电路的另一实例; [0011] FIG. 3 shows a capacitor circuit having a differential chopper passage - another example of the voltage conversion circuit;

[0012] 图4为MEMS加速计感应电路中降低噪声的方法流程图。 [0012] The method of FIG. 4 is a MEMS accelerometer sensor meter circuitry to reduce noise. FIG.

具体实施方式 Detailed ways

[0013] 图1为MEMS传感器电路105和感应电路110的实例部分的结构示意图,其中,感应电路110电连接于MEMS传感器电路105以监测MEMS传感器输出端的变化。 [0013] FIG. 1 is a schematic structural example of the MEMS sensor portion of the sensor circuit 105 and the circuit 110, wherein sensing circuit 110 is electrically connected to the MEMS sensor circuit 105 to monitor the change in the output of the MEMS sensor. MEMS传感器电路105可为电容性加速计,感应电路110对所述电容性加速计中响应于作用在传感器上的加速度的传感器的电容变化作出监测。 MEMS sensor circuit 105 may be a capacitive accelerometer, a change in capacitance of the sensor to the sensor sensing an acceleration circuit 110 in response to the capacitive effect of an accelerometer to monitor.

[0014] 典型的MEMS电容性加速计包括具有电容性元件的可移动检测质量块(proofmass),所述电容性元件通过机械悬吊件连接在参考结构中。 [0014] A typical capacitive MEMS accelerometer includes a movable proof mass (proofmass) having a capacitive element, the capacitive element is connected to the reference structure by a mechanical suspension element. 如图1所示,MEMS传感器的两个电容性元件为电路电容器,标记为Clmem和C2mem。 1, the two capacitive elements is a MEMS sensor circuit capacitor, and labeled Clmem C2mem. 实际的电容性元件可由电连接(如并联)的多个极板构成,以产生图中电容器Clmem和C2mem所表示的总的电容值。 The actual capacitive element may be electrically connected (e.g., parallel) of the plurality of plates configured to produce a total capacitance value of the capacitor in FIG C2mem Clmem and expressed. 所述电容器形成从MEMS传感器电路105的两个输出端到公共电路节点145之间的桥梁,所述公共电路节点145可表示到所述可移动检测质量块的电路连接。 End of the capacitor is formed between the common bridge circuit node 145 from the output of two of the MEMS sensor circuit 105, the node 145 may represent a common circuit to said motion detection circuit is connected to mass. 每个电容器的一个极板或极板组能够连接于可移动检测质量块,同时另外一个极板或极板组静止不动。 An electrode plate or capacitor electrode plate of each group can be connected to a movable proof mass, while the other electrode plate or a stationary electrode plate group.

[0015] 通过对电容器Clmem、Clofs、C2mem和C2ofs形成的差分电容桥两侧的电荷不平衡的检测来感应加速度信号。 [0015] sensing the acceleration signal detected by the charge imbalance in the bridge on both sides of the differential capacitance capacitor Clmem, Clofs, C2mem and C2ofs formed. 电容器Clmem和Clofs形成差分电容桥的一个桥臂,电容器C2mem和C2ofs形成差分电容桥的第二桥臂。 Forming a capacitor Clmem and Clofs differential capacitance bridge arm of the bridge, a second capacitor is formed C2ofs C2mem and differential capacitance bridge arm of the bridge. 所述差分桥的两个输入端为:1)电路节点145,其为由驱动电路140驱动的MEMS检测质量块连接;以及2)以与节点145反相的方式被驱动的电路节点150。 The difference of two input terminals of a bridge: 1) circuit node 145, which is driven by the driving circuit 140 MEMS proof mass is connected; and 2) circuit node and the node 145 to inverter 150 is driven manner. 所述差分桥的输出端为电路节点155和160。 Output of the bridge is a differential circuit node 155, and 160. 这样,节点155和160形成感应电路110的传感器输入端。 Thus, nodes 155 and 160 form a sensor input 110 of the sensing circuit. 所述电容桥电路中电容器的任何差分失衡将以差分电荷的形式在节点155和160处显现出来,感应电路110将测量该差分电荷。 Any differential circuit in the capacitor capacitance unbalance bridge will form the differential charge was manifested nodes 155 and 160, sensing circuit 110 measures the differential charge.

[0016] MEMS加速计上的加速度引起所述检测质量块的移动。 [0016] MEMS accelerometer acceleration causes the movement of the proof mass. 所述检测质量块的位移改变电容器极板之间的间距。 Detecting a displacement of the mass change the spacing between the capacitor plates. 所述位移约与两电容性元件之间引起的电容值之差成正比。 Approximately proportional to the difference between the displacement element and two capacitors caused by the capacitance value. 将所述检测质量块和机械悬吊件作为弹性元件,这使得加速度可根据胡克定律(Hooke' s Law)由位移来确定。 The proof mass and mechanical suspension member as an elastic member, so that the acceleration which may be determined by the displacement according to Hooke's Law (Hooke 's Law).

[0017] 一般来说,电容器对的电容变化与一个方向的线性加速度相关。 [0017] In general, a change in capacitance of the capacitor associated with a direction of linear acceleration. 垂直于所述第一电容器对的另一电容器对可使第二方向上的加速度被确定。 Another capacitor is perpendicular to the first capacitor pair is determined to make a second acceleration in the direction. 这能够提供两轴加速计。 This can provide a two-axis accelerometer. 三个电容器对可实现三轴或三维(3D)加速计。 Three capacitors may be three-axis or three-dimensional (3D) accelerometer.

[0018] 感应电路110感应MEMS传感器的电容变化,并将电容性变化转换为电压。 [0018] 110 sensing a change in capacitance sensing circuit of the MEMS sensor, and converted into a voltage changes the capacitance. 因此,感应电路110起到电容-电压转换电路或电容-电压(C2V)传感器的作用。 Thus, the sensing circuit 110 functions as a capacitance - voltage effect (C2V) sensor - voltage conversion circuit or capacitance. 所述电容-电压转换电路从MEMS传感器电路105接收MEMS传感器输出信号。 The capacitance - voltage converting circuit receives the output signal of the MEMS sensor from MEMS sensor circuit 105. 所述电容_电压转换电路包括差分sigma-delta模数转换器(ADC)电路,所述差分sigma-delta模数转换器(ADC)电路对差分MEMS传感器输出信号进行采样,并提供表示MEMS传感器电路105中电容变化的数字信号。 _ The capacitive voltage conversion circuit comprises a differential sigma-delta analog to digital converter (ADC) circuit, a differential sigma-delta analog to digital converter (ADC) circuit of a differential MEMS sensor output signal is sampled, and providing a MEMS sensor circuit a digital signal 105 changes in capacitance. 由图中可见,MEMS传感器电路105中的电容器与偏置电容器Clofs和C2ofs一同作为sigma-delta ADC的感应电容器来使用;有效地将电容-电压感应与sigma-deltaADC电路融合在一起。 Seen from the figure, MEMS capacitor sensor circuit 105 and bias capacitor Clofs C2ofs sigma-delta ADC with a sensing capacitor used; the effective capacitance - together with the voltage sensing circuit is sigma-deltaADC.

[0019] 在图1所示的实例中,sigma-delta ADC电路包括积分电路和比较器电路120。 [0019] In the example shown in Figure 1, sigma-delta ADC circuit includes an integrating circuit and a comparator circuit 120. 实例中的所述积分电路为一阶积分电路,且包括运算放大器(opamp)电路125。 The integrating circuit example of a first-order integrating circuit, and includes an operational amplifier (OPAMPs) circuit 125. 在某些实例中,所述积分电路包括更高阶(如二阶)的积分电路。 In certain instances, the integrating circuit comprises the integrating circuit higher order (e.g., second order) of. 所述比较器电路提供数字输出信号,且其后设置有低通滤波器用以降低对MEMS传感器输出进行采样产生切换噪声。 The comparator circuit provides a digital output signal, and thereafter is provided with a low-pass filter to reduce the output of the MEMS sensor is sampled to produce switching noise.

[0020] 所述电容-电压转换电路还包括差分斩波电路通路,所述差分斩波电路通路接收差分MEMS传感器输出信号并对差分斩波电路通路的极性进行反转。 [0020] The capacitance - voltage converting circuit further includes a differential chopper circuit path, the differential receiving the differential signal of the differential output of the MEMS sensor chopper circuit path and a polarity inverting chopper circuit path. 感应MEMS传感器输出的其他方法包括对所述MEMS传感器输出信号进行相关双采样。 Other methods include induction MEMS sensor output of the MEMS sensor output signal correlated double sampling. 在MEMS加速计模拟前端感应电路中,斩波方法提高了1/f噪声的降噪。 In MEMS accelerometer sensing analog front-end circuit, chopper method improves the noise 1 / f noise. 斩波方法还采用比相关双采样方法更少的电容器。 The method also uses less power than chopper correlated double sampling capacitor. 电容器数量的减少降低了热噪声(KT/C)且减少了集成电路(如专用集成电路或ASIC)上电容-电压转换电路的使用面积。 Reducing the number of capacitors to reduce thermal noise (KT / C) and reducing the integrated circuit (e.g., application specific integrated circuit or ASIC) capacitor - voltage converting circuit using the area. 电容器数量的减少还能够减少放大器(例如,积分电路中使用的opamp)的稳定时间(settling time)。 Reducing the number of capacitors can be reduced further amplifier (e.g., the integrating circuit used in OPAMPs) settling time (settling time). 稳定时间的减少能够降低功率消耗。 Reduce the settling time of the power consumption can be reduced. 基于这里所述的降噪方法,一阶sigma-delta ADC电路能够提供大于100分贝的动态范围。 Based on noise reduction method described herein, a first order sigma-delta ADC circuit capable of providing more than 100 dB dynamic range.

[0021] 差分斩波电路通路通过斩波开关矩阵电路(115么,1158,1150来实现。图2示出了斩波开关矩阵电路215的一个实例。电路根据斩波时钟电路230提供的斩波时钟信号CK_A和CK_B来工作。当所述斩波开关矩阵电路由斩波时钟相位CK_A提供时钟,则电路输入端的差分信号被传递。当所述斩波开关矩阵电路由斩波时钟相位0(_8提供时钟,则电路输入端的差分信号反转。当CK_A为有效或“接通”时,CK_B为关断,反之亦然。 [0021] differential chopper circuit path is achieved by the chopper circuit switch matrix (115 Mody, 1158,1150. FIG. 2 shows an example of chopper switch matrix circuit 215. The chopper circuit 230 provides a chopper clock circuit CK_A CK_B clock signal and to work when the chopper switch matrix circuit is clocked by the clock phase chopper CK_A, the differential circuit input signal is transmitted when the chopper switch matrix circuit by the chopper clock phase 0 (_8 provides the clock, the input terminal of the differential signal inverting circuit. when CK_A active or "ON", CK_B is oFF, and vice versa.

[0022] 在图1的实例中,差分斩波电路通路包括在opamp电路125的输入端反转差分斩波电路通路极性的第一斩波开关矩阵电路115A和在opamp电路125的输出端反转差分斩波电路通路极性的第二斩波开关矩阵电路115B。 [0022] In the example of FIG. 1, the differential chopper circuit path includes an input circuit 125 inverting differential opamp chopper circuit via a first polarity chopper switch matrix circuit 115A and the output of the inverse circuit 125 opamp the second chopper switch matrix circuit 115B via the chopper circuit to differential polarity. 在一些实例中,差分斩波电路通路包括第三斩波开关矩阵电路115C,所述第三斩波开关矩阵电路115C转换差分sigma-delta ADC电路中差分反馈电路通路的极性。 In some examples, the differential path comprises a third chopper circuit chopper switch matrix circuit 115C, the third chopper switch matrix circuit 115C convert the differential sigma-delta ADC circuit polarity differential feedback circuit path. 在所示的实例中,差分反馈电路通路从第二斩波开关矩阵电路115B的输出端延伸到第三斩波开关矩阵电路115C的输入端。 In the example shown, the differential feedback circuit path extending from the output of the second chopper circuit switch matrix 115B to the input of the third chopper circuit 115C of the switching matrix.

[0023] 图3示出了具有差分斩波电路通路的电容-电压转换电路的另一实例。 [0023] FIG. 3 shows a capacitor circuit having a differential chopper passage - another example of the voltage conversion circuit. 该实例在差分斩波电路通路中仅包括两个斩波开关矩阵电路315A和315B。 In this example, the differential chopper circuit path includes a switch matrix only two chopper circuits 315A and 315B. 差分斩波电路通路还包括从第二斩波开关矩阵电路315B的输出端延伸到第一斩波开关矩阵电路315A的输入端的差分反馈电路通路。 Further comprising a differential chopper circuit path extending from the output terminal 315B of the second chopping switch matrix circuit to the differential input of the feedback circuit via a first chopper switch matrix circuit 315A of.

[0024] 返回图1,驱动电路140可电连接到MEMS传感器电路105,以将方波激励信号加至MEMS传感器的驱动输入端。 [0024] Returning to Figure 1, the drive may be electrically connected to the input terminal of the MEMS sensor circuit 105 to the square wave excitation signal is applied to the MEMS sensor driving circuit 140. 所述驱动输入端可电连接到表示MEMS传感器电路105中检测质量块的电路节点145。 The driver may be electrically connected to the input of a circuit node of the MEMS sensor circuit 105 of the proof mass 145. 感应电路110可包括产生第一运算时钟相位(Phl)和第二运算时钟相位(Ph2)的相位时钟电路(未示出)。 Sensing circuit 110 may include generating a first clock phase operation (of PhI) and a second operational phase clock (and Ph2) phase of the clock circuit (not shown). 运算时钟相位Phl和Ph2是不相重叠的且具有相反的极性。 Operation clock phase Phl and Ph2 are non-overlapping and have opposite polarities. 在Phl期间,第一斩波开关矩阵电路115A将MEMS传感器电路105与差分sigma-delta ADC电路电隔离。 During Phl, the first chopper switch matrix circuit 115A and the MEMS sensor circuit 105 differential sigma-delta ADC circuit is electrically isolated. 第二斩波开关矩阵电路115B和第三斩波开关矩阵电路115C保持所述传感器输出信号的原先值。 The second chopper circuit switch matrix 115B and 115C of the third chopper circuit switch matrix holding the previous value of the sensor output signal.

[0025] 在Ph2期间,第一、第二和第三斩波开关矩阵电路115AU15B和115C将差分斩波电路通路的极性进行反转。 [0025] During and Ph2, the first, second and third inverted chopping switch matrix circuit 115AU15B 115C and polarity of the differential chopper circuit path. MEMS传感器电路105的电容值可关于激励信号进行采样。 MEMS capacitance value of the sensor circuit 105 may be on the excitation signal is sampled. 第一运算时钟相位和第二运算时钟相位Ph1、Ph2可具有与所述方波激励信号相同的频率和占空比。 The first and second arithmetic operation clock phase clock phase Ph1, Ph2 may have the same frequency and duty cycle of the square wave excitation signal. 第二斩波开关矩阵电路和第三斩波开关矩阵电路115BU15C可通过斩波时钟一起切换。 The second chopper switch matrix circuit, and a third chopper circuit switch matrix can be switched together by 115BU15C chopping clock. 第一斩波开关矩阵电路115A可通过对所述斩波时钟和Ph2时钟进行逻辑与(AND)的信号进行切换。 A first chopper switch matrix circuit 115A can be a logic signal (AND) of the chopping clock and switched by Ph2 clock.

[0026] sigma-delta ADC 电路易受死带(dead-bands)或死区(dead-zones)的影响。 [0026] sigma-delta ADC circuit susceptible dead-band (dead-bands) or dead zone (dead-zones) of. 当信号被米样,所述输出包含I和0的重复样式,有时被称为空闲音(idle tone)o对于小振幅的输入信号,sigma-delta电路可以重复样式连续输出。 When the m signal samples, I and the output comprising a repetitive pattern of 0, sometimes called idle tones (idle tone) o a small amplitude of the input signal, sigma-delta circuit pattern may be repeated continuously output. 所述小振幅的输入信号可不通过导致输入信号的死带范围的sigma-delta ADC进行编码。 The input signal by causing a small amplitude may not be dead band range of the input signal is encoded sigma-delta ADC. 然而,最好是对小振幅的信号进行编码,以利用图1和图3中所示的差分sigma-delta ADC电路的整个动态范围。 Preferably, however, a small amplitude signal is coded to sigma-delta ADC with a differential circuit shown in FIG. 1 and FIG. 3 in the entire dynamic range.

[0027] 电容-电压转换电路可包括向差分斩波电路通路提供周期性或规则斩波时钟信号的斩波时钟电路。 [0027] The capacitance - voltage converting chopper circuit may include a clock circuit providing a periodic or regular chopping clock signal to the differential chopper circuit path. 为了防止或最小化差分sigma-delta ADC电路中的死带,电容-电压转换电路可包括向差分斩波电路通路提供伪随机时钟信号的斩波时钟电路。 In order to prevent or minimize dead band differential sigma-delta ADC circuit, the capacitance - voltage converting chopper circuit may include a clock circuit providing a clock signal to the pseudo-random chopper circuit path difference. 所述伪随机时钟信号包括由高到低的随机转换,与此同时确保在CK_B关断时仅有CK_A接通,反之亦然。 The pseudo-random clock signal comprises a random high to low transition at the same time ensuring that only CK_A turned off and vice versa when CK_B. 所述伪随机时钟减小了可导致死带的积分电路的极限环(I imi t eye I e )。 The pseudo-random clock can lead to the integrating circuit is reduced dead band limit ring (I imi t eye I e).

[0028] 防止或最小化差分sigma-delta ADC电路中死带的另一种方法是在比较器电路120中加入抖动噪声。 Another method of [0028] preventing or minimizing differential sigma-delta ADC circuit deadband dither noise is added in the comparator circuit 120. 电容-电压转换电路可包括伪随机噪声发生电路135,所述伪随机噪声发生电路135电连接到所述比较器电路以将抖动噪声加至比较器电路的输入端。 Capacitance - voltage converting circuit may include a pseudo-random noise generating circuit 135, circuit 135 is electrically connected to the comparator circuit to the dithering noise added to the input of the comparator circuit of the pseudo-random noise occurs. 如果比较器的输出在第二运算时钟相位Ph2的末端进行求值,则伪随机抖动噪声信号就能够在Ph2期间加至比较器中以移除死带空闲音。 If the output of the comparator is evaluated at the end of the second clock phase Ph2 of operation, the pseudo-random jitter noise signal period can be applied to the comparator Ph2 to remove dead band idle tones. 抖动噪声迫使所述sigma-delta ADC电路的输出离开所述死带。 Dithering noise sigma-delta ADC forcing the output of the circuit away from the dead band.

[0029] 如上文所释,MEMS传感器电路可为两轴加速计。 [0029] The above release, MEMS sensor circuit may be a two-axis accelerometer. 在这种情况下,MEMS传感器电路可响应于第一方向上的线性加速度而改变第一电容值,并且可响应于第二方向(例如与所述第一方向正交的方向)上的线性加速度而改变第二电容值。 In this case, the MEMS sensor circuit may be responsive to a linear acceleration in the first direction to change the first capacitance value, and in response to a second linear direction (the direction orthogonal to the first direction, for example) acceleration second capacitance value is changed. 所述感应电路可包括第一电容-电压转换电路和第二电容-电压转换电路,其中,所述第一电容-电压转换电路产生表示所述第一电容的变化的第一数字信号,所述第二电容-电压转换电路产生表示所述第二电容的变化的第二数字信号。 The sensing circuit may comprise a first capacitance - voltage converting circuit and the second capacitance - voltage converting circuit, wherein the first capacitance - voltage converting circuit generating a first digital signal representative of the variation of the first capacitor, the second capacitance - voltage converting circuit generating a second digital signal representative of the change in a second capacitance. 三轴加速计的输出可通过第三电容-电压转换电路来感应。 Triaxial accelerometer output via a third capacitor - to sense the voltage conversion circuit.

[0030] 图4为MEMS加速计感应电路中降低噪声的方法400的流程图。 [0030] FIG. 4 is a MEMS accelerometer sensor count circuit method of flowchart 400 to reduce noise. 在方框405,MEMS传感器的输出被感应,以产生差分传感器输出信号。 In block 405, the output of the MEMS sensor is sensed, to generate a differential output signal of the sensor. 在方框410,将MEMS传感器的输出加至差分斩波电路通路,以降低电路中的噪声。 In block 410, the output of the MEMS sensor is added to the differential chopper circuit path to reduce noise in the circuit. 为了实现斩波,按照时间间隔对所述差分斩波电路通路的极性进行反转。 In order to realize chopping, at a time interval of inverting the polarity of the differential chopper circuit path. 在某些实例中,按照一定的时间间隔对所述电路通路的极性进行反转,且在某些实例中,按照伪随机的时间间隔对所述极性进行反转或斩波。 In some instances, certain time intervals the polarity inverting circuit path of, and in some instances, a pseudo random time interval or the polarity inverting chopper. 在方框415,通过差分sigma-delta ADC电路对斩波后的MEMS传感器输出信号进行米样,以产生表不所述MEMS传感器中电容变化的数字信号。 In block 415, a sample of the rice after the MEMS sensor output signal by the differential chopper circuit is sigma-delta ADC, a digital signal to generate a table is not the MEMS sensor capacitance changes.

[0031] 对从MEMS传感器采样得到的输出进行斩波,降低了1/f噪声和热噪声,使得一阶sigma-delta ADC电路具有大于IOOdB的动态范围。 [0031] obtained from the output of the MEMS sensor samples chopping, reducing the 1 / f noise and thermal noise, so that a first-order sigma-delta ADC circuit having a dynamic range greater than IOOdB. 为了完全利用所述动态范围,可按照伪随机的时间间隔进行信号斩波以最小化sigma-delta ADC电路的输出中死带的出现,并且可向差分sigma-delta ADC电路施加抖动噪声以移除空闲音。 In order to fully utilize the dynamic range, the signal may be spaced pseudorandom chopping to minimize the occurrence time sigma-delta ADC circuit output dead band, and may be applied to a differential jitter noise sigma-delta ADC circuit to remove idle tone.

[0032] 补充注释及实例 [0032] Supplementary Notes and examples

[0033] 实例I可包括或使用包含电容-电压转换电路的主题(如装置),所述电容-电压转换电路被配置为电连接到MEMS传感器电路。 [0033] Examples I can comprise or comprises a capacitor - relating to voltage converting circuit (e.g., devices), the capacitance - voltage conversion circuit is configured to be electrically connected to the MEMS sensor circuit. 所述电容-电压转换电路可包括差分斩波电路通路和差分sigma-delta模数转换器(ADC)电路,其中,所述差分斩波电路通路被配置为接收差分MEMS传感器输出信号并对所述差分斩波电路通路的极性进行反转;所述差分sigma-deIta模数转换器(ADC)电路被配置为对所述差分MEMS传感器输出信号进行米样并提供表示所述MEMS传感器中电容变化的数字信号。 The capacitance - voltage converter circuit may include a differential and differential chopper circuit paths sigma-delta analog to digital converter (ADC) circuit, wherein the differential chopper circuit path is configured to receive the differential output signal and said MEMS sensor difference polarity inverting chopper circuit paths; sigma-deIta the differential analog to digital converter (ADC) circuit is configured to change in capacitance in the MEMS sensor of the differential output signal of the MEMS sensor and providing a sample meters the digital signal.

[0034] 在实例2中,实例I的所述主题可选地包括:差分sigma-delta ADC电路和伪随机噪声发生电路,其中,差分sigma-delta ADC电路包括比较器电路,伪随机噪声发生电路电连接到所述比较器电路且被配置为将抖动噪声加至所述比较器电路的输入端。 [0034] In Example 2, Example I the subject matter optionally comprises: a differential sigma-delta ADC circuit and a pseudo-random noise generating circuit, wherein the differential circuit comprises a sigma-delta ADC comparator circuit, a pseudo random noise generating circuit electrically connected to said comparator circuit and configured to dither noise added to an input terminal of the comparator circuit.

[0035] 在实例3中,实例I和2中一个实例或任意实例组合的所述主题可选地包括斩波时钟电路,所述斩波时钟电路被配置为向差分斩波电路通路提供伪随机时钟信号。 [0035] In Example 3, Examples I and 2 in an example of the subject matter or any combination of Examples optionally include a chopper clock circuit, the clock chopper circuit is configured to provide a pseudo-random chopper circuit path difference the clock signal.

[0036] 在实例4中,实例I至3中一个实例或任意实例组合的所述主题可选地包括:差分sigma-delta ADC电路、第一斩波开关矩阵电路和第二斩波开关矩阵电路,其中,所述差分sigma-delta ADC电路包括opamp电路,所述第一斩波开关矩阵电路被配置为在opamp电路的输入端对所述差分斩波电路通路的极性进行反转,所述第二斩波开关矩阵电路被配置为在opamp电路的输出端对所述差分斩波电路通路的极性进行反转。 [0036] In Example 4, Examples I to 3. One example of the subject matter or any combination of Examples optionally comprising: a sigma-delta ADC differential circuit, a first and a second chopper switch matrix circuit chopper circuit switch matrix wherein said differential circuit comprises a sigma-delta ADC opamp circuit, the first chopper switch matrix circuit is configured to reverse the polarity of the differential chopper circuit path at the input of opamp circuit, the the second chopper switch matrix circuit is configured to reverse the polarity of the differential chopper circuit path at the output of opamp circuit.

[0037] 在实例5中,实例4的所述主题可选地包括第三斩波开关矩阵电路,所述第三斩波开关矩阵电路被配置为转换所述差分sigma-delta ADC电路中差分反馈电路通路的极性。 [0037] In Example 5, examples of the subject 4 can optionally include a third chopper switch matrix circuit, said third chopper switch matrix circuit configured to convert the differential sigma-delta ADC differential feedback circuit the polarity of the circuit path. 所述差分反馈电路通路可选地从所述第二斩波开关矩阵电路的输出端延伸到所述第三斩波开关矩阵电路的输入端。 Alternatively the differential feedback circuit path extending from an output of the second chopper circuit switch matrix to an input of the third chopper circuit switch matrix.

[0038] 在实例6中,实例4的所述主题可选地包括差分反馈电路通路,所述差分反馈电路通路从所述第二斩波开关矩阵电路的输出端延伸到所述第一斩波开关矩阵电路的输入端。 [0038] In Example 6, Example 4 of the subject matter can optionally include differential feedback circuit path, the differential feedback circuit path extending from the output of the second chopper switch matrix circuit to said first chopper input of the switch matrix circuit.

[0039] 在实例7中,实例I至6中一个实例或任意实例组合的所述主题可选地包括相位时钟电路,所述相位时钟电路被配置为产生第一运算时钟相位和第二运算时钟相位。 The subject [0039] In Example 7, Example I to Example 6 or any combination of one example of a phase optionally comprises a clock circuit, said phase clock circuit configured to generate a first clock phase and a second arithmetic operation clock phase. 在所述第一运算时钟相位期间,所述第一斩波开关矩阵电路可选地被配置为将所述MEMS传感器电路与差分sigma-delta ADC电路电隔离;在所述第二运算时钟相位期间,所述第一斩波开关矩阵电路和第二斩波开关矩阵电路可选地被配置为将所述差分斩波电路通路的极性进行反转。 During the first clock phase of operation, the first chopper circuit switch matrix optionally be configured to a differential circuit and the MEMS sensor sigma-delta ADC circuit is electrically isolated; during the second operational phase clock said first and second chopper switching matrix circuit chopper circuit switch matrix configured to alternatively polarity of the differential chopper circuit path is reversed.

[0040] 在实例8中,实例I至7中一个实例或任意实例组合的所述主题可选地包括电连接于所述MEMS传感器的驱动电路。 [0040] In Example 8, Examples I to 7, one example of the subject matter or any combination of Examples optionally includes a driving circuit electrically connected to the MEMS sensor. 所述驱动电路可选地被配置为将方波激励信号加至所述MEMS传感器的驱动输入端,且所述第一运算时钟相位和第二运算时钟相位具有与所述方波激励信号相同的频率和占空比。 Alternatively, the drive circuit configured to square wave excitation signal is applied to drive the MEMS sensor input, and the first and second arithmetic operation clock phase of the clock phase square wave having the same excitation signal frequency and duty cycle.

[0041] 在实例9中,实例I至8中一个实例或任意实例组合的所述主题可选地包括MEMS传感器电路。 [0041] In Example 9, Examples I to 8, one example of the subject matter or any combination of Examples optionally includes a MEMS sensor circuit. 所述MEMS传感器电路可选地被配置为响应于第一方向上的线性加速度而改变电容。 Alternatively, the MEMS sensor circuit is configured to respond to linear acceleration in a first direction and a change in capacitance.

[0042] 实例10可包括下述主题(如装置)或可选地与实例I至9中一个实例或任意实例组合的所述主题相结合以包括下述主题:包括:被配置为电连接到MEMS传感器电路的电容-电压转换电路。 [0042] Example 10 may include the subject matter of the following topics (e.g., device) or alternatively in Example I to Example 9, or any combination of one example of the combination to include the following topics: comprising: a connector configured to electrically MEMS capacitive sensor circuit - voltage converting circuit. 所述电容-电压转换电路可包括差分电路通路和差分sigma-deltaADC电路,其中,所述差分电路通路被配置为接收差分MEMS传感器输出信号,所述差分sigma-delta ADC电路被配置为对所述差分MEMS传感器输出信号进行米样并提供表不所述MEMS传感器中电容变化的数字信号。 The capacitance - voltage converter circuit may comprise a differential circuit path and a sigma-deltaADC differential circuit, wherein the differential circuit path is configured to receive a differential MEMS sensor output signal, said differential sigma-delta ADC circuit is configured to the differential MEMS sensor output signal and provides samples meters table is not the digital signal in the MEMS sensor capacitance changes. 所述差分sigma-delta ADC电路可包括比较器电路,所述电容-电压转换电路可包括伪随机噪声发生电路,其中,所述伪随机噪声发生电路电连接到所述比较器电路且被配置为将抖动噪声加至所述比较器电路的输入端。 The sigma-delta ADC differential circuit may comprise a comparator circuit, the capacitance - voltage converter circuit may comprise a pseudo random noise generating circuit, wherein said pseudorandom noise comparator circuit coupled to the generation circuit and is configured to electrically the dithering noise added to an input terminal of the comparator circuit.

[0043] 在实例11中,实例10的所述主题可选地包括MEMS传感器电路。 [0043] In Example 11, the subject of Example 10 optionally includes a MEMS sensor circuit. 所述MEMS传感器电路可选地被配置为响应于第一方向上的线性加速度而改变电容。 Alternatively, the MEMS sensor circuit is configured to respond to linear acceleration in a first direction and a change in capacitance.

[0044] 在实例12中,实例11的所述主题可选地包括:开关电路、驱动电路和相位时钟电路,其中,所述开关电路电连接到所述MEMS传感器,所述驱动电路电连接到所述MEMS传感器且被配置为将方波激励信号加至所述MEMS传感器的驱动输入端,所述相位时钟电路电连接到所述开关电路且被配置为产生第一运算时钟相位和第二运算时钟相位。 [0044] In Example 12, the subject of Example 11 optionally comprises: a switching circuit, a driving circuit and a phase clock circuit, wherein the switching circuit is electrically connected to the MEMS sensor, the driving circuit is electrically connected to the the MEMS sensor and configured to square wave excitation signal is applied to drive the MEMS sensor input, said phase clock circuit electrically connected to the switching circuit and configured to generate a first clock phase and a second arithmetic operation clock phase. 所述第一运算时钟相位和第二运算时钟相位可选地具有与所述方波激励信号相同的频率和占空比。 Said first operation and the second operation clock phase clock phase optionally have the same frequency and duty cycle of the square wave excitation signal. 在所述第一运算时钟相位期间,所述开关电路可选地被配置为将所述MEMS传感器电路与所述差分sigma-delta ADC电路电隔离,且所述MEMS传感器电路被配置为对线性加速度进行采样。 During the first clock phase operation, the switching circuit optionally be configured to convert the differential circuit and the MEMS sensor sigma-delta ADC circuit is electrically isolated from the MEMS sensor and the circuitry is configured to linear acceleration sampled.

[0045] 在实例13中,实例11和12中一个实例或任意实例组合的所述主题可选地包括:MEMS传感器电路、第一电容-电压转换电路和第二电容-电压转换电路,其中,所述MEMS传感器电路被配置为响应于第一方向上的线性加速度而改变第一电容,且响应于第二方向上的线性加速度而改变第二电容;,所述第一电容-电压转换电路产生表示所述第一电容的变化的第一数字信号;所述第二电容-电压转换电路产生表示所述第二电容的变化的第二数字信号。 [0045] In Example 13, Example 11 and Example 12 or a combination of any instance of the subject matter optionally comprises: MEMS sensor circuit, a first capacitance - voltage converting circuit and the second capacitance - voltage converting circuit, wherein the MEMS sensor circuit is configured to respond to linear acceleration in a first direction, a first capacitor is changed, and in response to linear acceleration in the second direction to change a second capacitor; the first capacitance - voltage converting circuit generating It represents the first change in the capacitance of the first digital signal; the second capacitor - a second voltage converter circuit generates a digital signal representative of the change in the second capacitor.

[0046] 实例14可包括下述主题(如执行动作的方法、手段或包含指令的机器可读介质,当所述指令通过机器执行时,可使所述机器执行动作)或可选地与实例I至13中一个实例或任意实例组合的所述主题相结合以包括下述主题:包括:对MEMS传感器的输出进行感应以产生差分传感器输出信号;将所述MEMS传感器的输出加至差分斩波电路通路,其中,按照时间间隔对所述差分斩波电路通路的极性进行反转;以及对斩波后的MEMS传感器输出信号进行采样以产生表示所述MEMS传感器中电容变化的数字信号。 [0046] Example 14 may include the subject matter (e.g., a method of performing an action, means, or machine-readable medium comprising instructions, the instructions when executed by a machine, enable the machine to perform the operation), or alternatively Example examples I to 13 or a combination of any instance of the subject combined to include the following topics: comprising: sensing the output of the MEMS sensor is a differential sensor to generate an output signal; chopping differential output of the MEMS sensor is added to circuit path, wherein a time interval for the difference of the polarity inverting chopper circuit path; and the MEMS sensor output signal is sampled to produce a digital chopper signal representing the MEMS sensor capacitance changes. 这些主题可包括对MEMS传感器的输出进行感应以产生差分传感器输出信号的方法,该方法的说明性实例可包括电荷-电压转换电路。 These topics may include the output of the MEMS sensor induction method to produce a differential output signal of the sensor, illustrative examples of the method may include a charge - voltage conversion circuit. 这些主题可包括将所述MEMS传感器的输出加至差分斩波电路通路的方法,该方法的说明性实例可包括电荷-电压转换电路。 These themes may include an output of the MEMS sensor is added to the chopper circuit path difference method, illustrative examples of the method may include a charge - voltage conversion circuit. 这些主题可包括对斩波后的MEMS传感器输出信号进行米样以产生表不所述MEMS传感器中电容变化的数字信号的方法,该方法的说明性实例可包括差分ADC电路和sigma-delta ADC电路。 These topics may include the MEMS sensor output signal chopping method to produce said digital signal table does not change in capacitance of the MEMS sensor in the meter like, illustrative examples of the method may include a differential circuit and an ADC circuit sigma-delta ADC .

[0047] 在实例15中,实例14的所述主题可选地包括:使用差分sigma-delta ADC电路对斩波后的MEMS传感器输出信号进行米样,且将抖动噪声加至所述差分sigma-delta ADC电路。 [0047] In Example 15, Example 14, the subject matter optionally comprises: using a differential sigma-delta ADC circuit MEMS sensor output signal for the chopped rice samples, and the dithering noise added to the differential sigma- delta ADC circuit.

[0048] 在实例16中,实例14和15中一个实例或任意实例组合的所述主题可选地包括:向差分斩波电路通路提供随机时钟信号。 [0048] In Example 16, Examples 14 and 15, one example of the subject matter or any combination of Examples optionally comprising: providing a random chopper clock signal to the differential circuit path.

[0049] 在实例17中,实例14至16中一个实例或任意实例组合的所述主题可选地包括:使用差分sigma-delta ADC电路对斩波后的MEMS传感器输出信号进行米样,在所述差分sigma-delta ADC电路的opamp电路的输入端对所述差分斩波电路通路的极性进行反转,以及在所述opamp电路的输出端对所述差分斩波电路通路的极性进行反转。 [0049] In Example 17, Examples 14 to 16 in one example or any instance of the subject combination can optionally include: using a differential sigma-delta ADC circuit MEMS sensor output signal for the chopped rice samples in the opamp input terminal of said differential circuit is sigma-delta ADC circuit of the differential chopper circuit path polarity is inverted, and the inverse polarity of the output of the differential opamp circuit of the chopper circuit path turn.

[0050] 在实例18中,实例14至17中一个实例或任意实例组合的所述主题可选地包括:将所述opamp电路的差分输出反馈至所述opamp电路的差分输入,以及按照时间间隔对所述差分反馈电路通路的极性进行反转。 [0050] In Example 18, the subject matter described in Example 14 to 17, one example or any combination of Examples optionally comprises: the differential output of the opamp feedback circuit to the differential input of the opamp circuit, and the time intervals the differential feedback circuit path polarity is inverted.

[0051] 在实例19中,实例14至18中一个实例或任意实例组合的所述主题可选地包括:在第一运算时钟相位期间,将所述MEMS传感器电路与所述差分sigma-delta ADC电路电隔离;以及在第二运算时钟相位期间,对所述差分斩波电路通路的极性进行反转。 [0051] In Example 19, the subject matter described in Example 14 to 18 or a combination of any of Examples instance optionally comprising: during a first clock phase operation, the differential circuit and the MEMS sensor sigma-delta ADC electrically isolated circuit; and during a second clock phase operation, the polarity of the differential chopper circuit path is reversed.

[0052] 在实例20中,实例14至18中一个实例或任意实例组合的所述主题可选地包括:将方波激励信号加至所述MEMS传感器的驱动输入端,这样,所述第一运算时钟相位和第二运算时钟相位具有与所述方波激励信号相同的频率和占空比;以及在所述第一运算时钟相位期间,使用所述MEMS传感器对所述线性加速度进行采样。 [0052] In Example 20, the subject matter described in Example 14 to 18 or a combination of any instance of Examples optionally comprises: square wave excitation signal is applied to drive the MEMS sensor input, such that said first calculating a second clock phase and clock phase calculation have the same frequency and duty cycle of the square wave excitation signal; and during the first clock phase calculation using the linear acceleration of the MEMS sensor is sampled.

[0053] 在实例21中,实例14至20中一个实例或任意实例组合的所述主题可选地包括对响应于第一方向上的线性加速度的所述MEMS传感器的电容变化进行感应。 [0053] In the example 21, examples 14 to 20 of the subject in an instance or instances of any combination can optionally include a capacitance change in response to linear acceleration in the first direction of the MEMS sensor is sensing.

[0054] 在实例22中,实例14至21中一个实例或任意实例组合的所述主题可选地包括:感应所述MEMS传感器的第一输出,以对响应于第一方向上的线性加速度的MEMS传感器的电容变化进行感应;以及感应所述MEMS传感器的第二输出,以对响应于第二方向上的线性加速度的MEMS传感器的电容变化进行感应。 [0054] In Example 22, Example 14 to 21 Examples of an example, or any combination of the subject matter optionally comprises: sensing the first output of the MEMS sensor to acceleration in the linear direction in response to the first MEMS sensor is a capacitance change sensing; and a second output of said sensing MEMS sensor to capacitance changes in response to linear acceleration of the MEMS sensor in the second direction is induced.

[0055] 实例23可包括下述主题或视情况可与实例I至22中任意一个或多个实例的任意部分或任意部分的组合相结合以包括下述主题:可包括执行实例I至22中任意一个或多个功能的手段,或包含指令的机器可读介质,当所述指令通过机器执行时,所述指令可使所述机器执行实例I至22中任意一个或多个功能。 [0055] Example 23 may include the subject matter or, as the case may be any of Examples I to 22 or a combination of any portion or more instances of any portion of the combined to include the following topics: Examples may include performing I to 22 any one or more of the functions of the means, or machine-readable medium comprising instructions, the instructions when executed by a machine, the instructions may cause the machine to perform any of examples I to 22 with one or more functions.

[0056] 每个非限制性的实例可独立存在,或者可与一个或多个其他实例以多种排列或组合形式相结合出现。 [0056] Non-limiting examples of each may be independently present or may be arranged in various combinations or in combination with one or more other occurrence instances.

[0057] 上述具体实施方式包括对附图的参考,附图形成具体实施方式的一部分。 [0057] The detailed description includes references to the accompanying drawings, which form part of the detailed embodiment. 附图以举例说明的方式示出了本实用新型能够用以实践的具体实施例。 Way of illustration in the drawings illustrate specific embodiments of the present invention can be used in practice. 于此,这些实施例也称为“实例”。 Herein, these embodiments are also referred to as "instance." 本申请所涉及到的所有出版物、专利以及专利文件全部作为本实用新型的参考内容,尽管它们是分别加以参考的。 All publications, patents, and patent documents The present application relates to the present invention all references, although they are to be referred to, respectively. 如果本申请与参考文件之间存在使用差别,则参考文件的使用应视为本申请使用的补充;若二者之间存在不可调和的差异,则以本申请的使用为准。 If there is a difference between the present application using the reference file, a reference file is used to supplement the application should be considered for use; if irreconcilable differences exist between the two places is used in this application shall prevail.

[0058] 在本申请中,与专利文件通常使用的一样,术语“一”或“某一”表示包括一个或两个以上,不同于“至少一个”或“一个或更多”的其它例子或用法。 [0058] In the present application, and as commonly used patent document, the term "a" or "an" means comprise one or more than two, different from the "at least one" or other examples of the "one or more" or usage. 在本申请中,除非另外指明,否则使用术语“或”指无排他性的或者是,“A或B”包括:“A但不是B”、“B但不是A”以及“A和B”。 In the present application, unless otherwise indicated, the term "or" refers to a nonexclusive or, "A or B" includes: "A but not B", "B but not A" and "A and B". 在所附的权利要求中,术语“包含”和“在其中”等同于各个术语“包括”和“其中”的通俗英语而使用。 In the appended claims, the term "comprising" and "wherein" equivalents of the respective terms "comprising" and "wherein." Plain-English used. 而且,在下述权利要求中,术语“包含”和“包括”是开放性的,即,包括除了权利要求中这样的术语之后所列出的那些要素以外的要素的系统、装置、物品或步骤,依然视为落在该项权利要求的范围之内。 Further, in the following claims, the terms "comprises" and "comprising" are open-ended, i.e., including elements of the system, device, article, or after the step in addition to those elements in the claims such terms listed, still considered to fall within the scope of the claims. 而且,在下述权利要求中,术语“第一”、“第二”和“第三”等仅仅用作标识,并非对其对象有数量要求。 Further, in the following claims, the terms "first", "second" and "third," etc. are used merely as identification, not the numerical requirements on their objects.

[0059] 以上实施方式旨在解释说明而非限制。 [0059] The above embodiments are intended to explain illustrative and not restrictive. 在其它实施例中,以上实施方式的示例(或其一个或多个方面)可以相互结合使用。 In other embodiments, exemplary embodiment (one or more aspects thereof) may be used in the above embodiments in combination with each other. 例如,本领域普通技术人员通过回顾以上实施方式可以使用其他实施例。 For example, those skilled in the art may be used by other embodiments reviewing the above embodiment. 摘要被提供以符合37C.FR§ 1.72(b),从而使得读者能够快速确定技术实用新型的类型。 Abstract is provided to comply with 37C.FR§ 1.72 (b), so that the reader to quickly ascertain the type of technical disclosure. 应当理解的是,该摘要将不用于解释或限制权利要求的范围或意义。 It will be appreciated that this will not be used to interpret or limit the scope or meaning of the claims. 而且,在以上的具体实施方式中,各种特征可组合在一起以简化本实用新型。 Further, in the above embodiments, the various features may be grouped together to simplify the present disclosure. 这不应理解为未要求的公开特征对任何权利要求来说是必不可少的。 This should not be construed to an unclaimed disclosed feature is essential to any claim of. 相反,创造性的主题可以以比特定公开实施例的所有特征更少的特征而存在。 In contrast, inventive subject matter may be less than all features of a particular embodiment of the disclosed embodiments feature exists. 因而,下述的权利要求以每个权利要求作为单独实施例的方式并入具体实施方式中。 Thus, the following claims to each embodiment as claimed in claim separate embodiments incorporating embodiments. 本实用新型的范围应当参照所附的权利要求以及与这些权利要求的所属相当的整个范围来确定。 The scope of the present invention should be determined with reference to the appended claims, along with the full scope equivalent to those ordinary claims.

Claims (13)

1.一种电子电路,包括: 电容-电压转换电路,被配置为电连接到微机电系统MEMS传感器电路,所述电容-电压转换电路包括: 差分斩波电路通路,被配置为接收差分MEMS传感器输出信号并对所述差分斩波电路通路的极性进行反转;以及差分sigma-delta模数转换器ADC电路,被配置为对所述差分MEMS传感器输出信号进行采样并提供表示所述MEMS传感器电路中电容变化的数字信号。 1. An electronic circuit comprising: a capacitance - voltage converting circuit configured to be electrically connected to the microelectromechanical system (MEMS) sensor circuit, the capacitance - voltage converting circuit comprising: a differential chopper circuit path configured to receive a differential MEMS sensors and the differential output signal of the chopper circuit of the polarity inverting passage; sigma-delta analog to digital converter and a differential ADC circuit is configured to output the differential signal is sampled MEMS sensor and providing a sensor the MEMS digital circuit capacitance change signal.
2.根据权利要求1所述的电子电路,其中, 所述差分sigma-delta ADC电路包括比较器电路;以及所述电子电路进一步包括伪随机噪声发生电路,所述伪随机噪声发生电路电连接到所述比较器电路且被配置为将抖动噪声加至所述比较器电路的输入端。 The electronic circuit according to claim 1, wherein the differential circuit is sigma-delta ADC includes a comparator circuit; and the electronic circuit further comprises a pseudo-random noise generating circuit, connected to said pseudo-random noise generating circuit to electrically and said comparator circuit is configured to dither noise added to the input terminal of the comparator circuit.
3.根据权利要求1所述的电子电路,该电子电路进一步包括斩波时钟电路,所述斩波时钟电路被配置为向所述差分斩波电路通路提供伪随机时钟信号。 The electronic circuit according to claim 1, the electronic circuit further comprises a chopper clock circuit, the clock chopper circuit is configured to provide a pseudo-random chopper clock signal to the differential circuit path.
4.根据权利要求1所述的电子电路,其中, 所述差分sigma-delta ADC电路包括运算放大器opamp电路;以及所述电子电路进一步包括: 第一斩波开关矩阵电路,被配置为在所述opamp电路的输入端对所述差分斩波电路通路的极性进行反转;以及第二斩波开关矩阵电路,被配置为在所述opamp电路的输出端对所述差分斩波电路通路的极性进行反转。 The electronic circuit according to claim 1, wherein the differential sigma-delta ADC circuit includes an operational amplifier opamp circuit; and the electronic circuit further comprises: a first chopper switch matrix circuit configured to, in the opamp input terminal of the differential circuit of the polarity inverting chopper circuit path; and a second chopping switch matrix circuit configured to pole of the differential chopper circuit path at the output of the opamp circuit sex reversed.
5.根据权利要求4所述的电子电路,该电子电路进一步包括: 第三斩波开关矩阵电路,被配置为转换所述差分sigma-delta ADC电路中差分反馈电路通路的极性,以及其中,所述差分反馈电路通路从所述第二斩波开关矩阵电路的输出端延伸到所述第三斩波开关矩阵电路的输入端。 The electronic circuit as claimed in claim 4, the electronic circuit further comprises: a third chopper switch matrix circuit configured to convert the differential circuit is sigma-delta ADC differential feedback circuit path polarity, and wherein, the differential feedback circuit path extending from the output of the second chopper circuit switch matrix to an input of the third chopper circuit switch matrix.
6.根据权利要求4所述的电子电路,该电子电路进一步包括差分反馈电路通路,所述差分反馈电路通路从所述第二斩波开关矩阵电路的输出端延伸到所述第一斩波开关矩阵电路的输入端。 6. The electronic circuit as claimed in claim 4, the electronic circuit further comprises a differential feedback circuit path, the differential feedback circuit path extending from the output of the second chopper switch matrix circuit to said first chopper switch input of the matrix circuit.
7.根据权利要求4所述的电子电路,该电子电路进一步包括: 相位时钟电路,被配置为产生第一运算时钟相位和第二运算时钟相位, 其中,在所述第一运算时钟相位期间,所述第一斩波开关矩阵电路被配置为将所述MEMS传感器电路与所述差分sigma-delta ADC电路电隔离;以及其中,在所述第二运算时钟相位期间,所述第一斩波开关矩阵电路和所述第二斩波开关矩阵电路被配置为将所述差分斩波电路通路的极性进行反转。 The electronic circuit as claimed in claim 4, the electronic circuit further comprises: phase clock circuit configured to generate a first clock phase and a second arithmetic operation clock phase, wherein during the first operational phase clock, the first chopper circuit switch matrix is ​​configured to convert the differential circuit and the MEMS sensor sigma-delta ADC circuit is electrically isolated; and wherein, during the second clock phase of operation, the first chopper switch said second matrix circuit and a chopper circuit is configured to switch matrix polarity of the differential chopper circuit path is reversed.
8.根据权利要求7所述的电子电路,该电子电路进一步包括: 电连接于所述MEMS传感器电路的驱动电路, 其中,所述驱动电路被配置为将方波激励信号加至所述MEMS传感器电路的驱动输入端;以及其中,所述第一运算时钟相位和所述第二运算时钟相位具有与所述方波激励信号相同的频率和占空比。 8. The electronic circuit of claim 7, wherein the electronic circuit further comprising: a driver circuit electrically connected to the MEMS sensor circuit, wherein the drive circuit is configured to square wave excitation signal is applied to the MEMS sensor the drive input circuit; and wherein said first and said second clock phase arithmetic operation having the clock phase square wave excitation signals having the same frequency and duty cycle.
9.根据权利要求1至8中任一项所述的电子电路,该电子电路进一步包括所述MEMS传感器电路,其中,所述MEMS传感器电路被配置为响应于第一方向上的线性加速度而改变电容。 According to claim 1 to the electronic circuit of any one of claims 8, further comprising the electronic circuit of the MEMS sensor circuit, wherein the MEMS sensor circuit is configured to respond to linear acceleration in a first direction is changed capacitance.
10.一种电子电路,包括: 电容-电压转换电路,被配置为电连接到MEMS传感器电路,所述电容-电压转换电路包括: 差分电路通路,被配置为接收差分MEMS传感器输出信号; 差分sigma-delta ADC电路,被配置为对所述差分MEMS传感器输出信号进行米样并提供表示所述MEMS传感器电路中电容变化的数字信号,其中,所述差分sigma-delta ADC电路包括比较器电路;以及伪随机噪声发生电路,电连接到所述比较器电路且被配置为将抖动噪声加至所述比较器电路的输入端。 An electronic circuit comprising: a capacitance - voltage converting circuit configured to be electrically connected to the MEMS sensor circuit, the capacitance - voltage converting circuit comprising: a differential circuit path configured to receive the differential output signal of the MEMS sensor; differential sigma -delta ADC circuit is configured to output the differential signal meters MEMS sensor and providing a digital sample signal of the change in capacitance in the MEMS sensor circuit, wherein the differential circuit is sigma-delta ADC includes a comparator circuit; and pseudo-random noise generating circuit electrically connected to said comparator circuit and configured to dither noise added to an input terminal of the comparator circuit.
11.根据权利要求10所述的电子电路,该电子电路进一步包括MEMS传感器电路,其中,所述MEMS传感器电路被配置为响应于第一方向上的线性加速度而改变电容。 11. The electronic circuit of claim 10, the electronic circuit further comprises a MEMS sensor circuit, wherein the MEMS sensor circuit is configured to respond to linear acceleration in a first direction and a change in capacitance.
12.根据权利要求11所述的电子电路,该电子电路进一步包括: 开关电路,电连接到所述MEMS传感器电路; 驱动电路,电连接到所述MEMS传感器电路且被配置为将方波激励信号加至所述MEMS传感器电路的驱动输入端; 相位时钟电路,电连接到所述开关电路且被配置为产生第一运算时钟相位和第二运算时钟相位,其中,所述第一运算时钟相位和所述第二运算时钟相位具有与所述方波激励信号相同的频率和占空比,以及其中,在所述第一运算时钟相位期间,所述开关电路被配置为将所述MEMS传感器电路与所述差分sigma-delta ADC电路电隔离,且所述MEMS传感器电路被配置为对线性加速度进行采样。 12. The electronic circuit as claimed in claim 11, the electronic circuit further comprises: a switch circuit electrically connected to the MEMS sensor circuit; driving circuit electrically connected to the MEMS sensor circuit and configured to square wave excitation signal added to the input terminal of the drive circuit of the MEMS sensor; phase clock circuit electrically connected to the switching circuitry and configured to generate a first clock phase and a second arithmetic operation clock phase, wherein said first clock phase and operational the second operational phase clock signals having the same frequency and duty cycle of the square wave excitation, and wherein, during the first clock phase of operation, the switching circuit is configured with the MEMS sensor circuit the sigma-delta ADC differential circuit is electrically isolated from the MEMS sensor and the circuitry is configured to sample the linear acceleration.
13.根据权利要求11或12所述的电子电路,其中, 所述MEMS传感器电路被配置为响应于第一方向上的线性加速度而改变第一电容,且响应于第二方向上的线性加速度而改变第二电容; 所述电子电路进一步包括: 第一电容-电压转换电路,被配置为产生表示所述第一电容的变化的第一数字信号;以及第二电容-电压转换电路,被配置为产生表示所述第二电容的变化的第二数字信号。 13. The electronic circuit according to claim 11 or claim 12, wherein the MEMS sensor circuit is configured to respond to linear acceleration in a first direction, a first capacitor is changed, and in response to linear acceleration in the second direction changing the second capacitor; said electronic circuit further comprises: a first capacitance - voltage conversion circuit configured to generate a first digital signal representative of the change of the first capacitance; and a second capacitance - voltage converting circuit configured to generating a second digital signal represents a change of the second capacitance.
CN 201320171757 2012-04-04 2013-04-08 Electronic circuit based on chopping for merged MEMS accelerometer sensor CN203261317U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201261620019P true 2012-04-04 2012-04-04
US61/620,019 2012-04-04

Publications (1)

Publication Number Publication Date
CN203261317U true CN203261317U (en) 2013-10-30

Family

ID=49369232

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201710561498.2A CN107508601A (en) 2012-04-04 2013-04-08 Noise reduction method and electronic cirucit based on merged MEMS accelerometer sensor chopping
CN201310120172.8A CN103368577B (en) 2012-04-04 2013-04-08 Based on an electronic circuit and a noise reduction method of a merged mems accelerometer sensor chopped
CN 201320171757 CN203261317U (en) 2012-04-04 2013-04-08 Electronic circuit based on chopping for merged MEMS accelerometer sensor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201710561498.2A CN107508601A (en) 2012-04-04 2013-04-08 Noise reduction method and electronic cirucit based on merged MEMS accelerometer sensor chopping
CN201310120172.8A CN103368577B (en) 2012-04-04 2013-04-08 Based on an electronic circuit and a noise reduction method of a merged mems accelerometer sensor chopped

Country Status (2)

Country Link
KR (1) KR20130112792A (en)
CN (3) CN107508601A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368577A (en) * 2012-04-04 2013-10-23 快捷半导体(苏州)有限公司 Noise reduction method and electronic cirucit based on merged MEMS accelerometer sensor chopping
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
US9599472B2 (en) 2012-02-01 2017-03-21 Fairchild Semiconductor Corporation MEMS proof mass with split Z-axis portions
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9802814B2 (en) 2012-09-12 2017-10-31 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
US9835647B2 (en) 2014-03-18 2017-12-05 Fairchild Semiconductor Corporation Apparatus and method for extending analog front end sense range of a high-Q MEMS sensor
US9856132B2 (en) 2010-09-18 2018-01-02 Fairchild Semiconductor Corporation Sealed packaging for microelectromechanical systems
US10050155B2 (en) 2010-09-18 2018-08-14 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710599B2 (en) 2009-08-04 2014-04-29 Fairchild Semiconductor Corporation Micromachined devices and fabricating the same
DE112011103124T5 (en) 2010-09-18 2013-12-19 Fairchild Semiconductor Corporation Flexure bearings for reducing quadrature for resonating micromechanical devices
KR101871865B1 (en) 2010-09-18 2018-08-02 페어차일드 세미컨덕터 코포레이션 Multi-die mems package
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US8813564B2 (en) 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
KR101311966B1 (en) 2010-09-20 2013-10-14 페어차일드 세미컨덕터 코포레이션 Through silicon via with reduced shunt capacitance
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
KR20130116189A (en) 2012-04-12 2013-10-23 페어차일드 세미컨덕터 코포레이션 Micro-electro-mechanical-system(mems) driver
CN104535796A (en) * 2014-12-18 2015-04-22 清华大学 Three-electrode micromechanical accelerometer digital close-loop control circuit and interface circuit thereof and three-electrode micromechanical accelerometer system
CN106067823A (en) * 2015-04-20 2016-11-02 英飞凌科技股份有限公司 System and Method for a MEMS Sensor
US9897504B2 (en) 2015-04-20 2018-02-20 Infineon Technologies Ag System and method for a MEMS sensor
US9976924B2 (en) 2015-04-20 2018-05-22 Infineon Technologies Ag System and method for a MEMS sensor
CN105915219A (en) * 2016-04-08 2016-08-31 中国科学院微电子研究所 Analog to digital conversion circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101044684B (en) * 2004-09-17 2012-11-14 美国亚德诺半导体公司 Multi-bit continuous-time front-end sigma-delta adc using chopper stabilization
CN101213461B (en) * 2005-06-03 2013-01-02 辛纳普蒂克斯公司 Methods and systems for detecting a capacitance using SIGMA-DELTA measurement techniques
US7538705B2 (en) * 2006-07-25 2009-05-26 Microchip Technology Incorporated Offset cancellation and reduced source induced 1/f noise of voltage reference by using bit stream from over-sampling analog-to-digital converter
JP2011259293A (en) * 2010-06-10 2011-12-22 Alps Electric Co Ltd Digital filter
KR20130112792A (en) * 2012-04-04 2013-10-14 페어차일드 세미컨덕터 코포레이션 Noise reduction method with chopping for a merged mems accelerometer sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050155B2 (en) 2010-09-18 2018-08-14 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9856132B2 (en) 2010-09-18 2018-01-02 Fairchild Semiconductor Corporation Sealed packaging for microelectromechanical systems
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US9599472B2 (en) 2012-02-01 2017-03-21 Fairchild Semiconductor Corporation MEMS proof mass with split Z-axis portions
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
CN103368577B (en) * 2012-04-04 2017-08-08 快捷半导体(苏州)有限公司 Based on an electronic circuit and a noise reduction method of a merged mems accelerometer sensor chopped
CN103368577A (en) * 2012-04-04 2013-10-23 快捷半导体(苏州)有限公司 Noise reduction method and electronic cirucit based on merged MEMS accelerometer sensor chopping
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9802814B2 (en) 2012-09-12 2017-10-31 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
US9835647B2 (en) 2014-03-18 2017-12-05 Fairchild Semiconductor Corporation Apparatus and method for extending analog front end sense range of a high-Q MEMS sensor

Also Published As

Publication number Publication date
CN103368577A (en) 2013-10-23
CN103368577B (en) 2017-08-08
KR20130112792A (en) 2013-10-14
CN107508601A (en) 2017-12-22

Similar Documents

Publication Publication Date Title
Yazdi et al. Precision readout circuits for capacitive microaccelerometers
Liu et al. A MEMS-based piezoelectric power generator array for vibration energy harvesting
CN1991313B (en) Detection circuit using a differential capacitive sensor
JP3861652B2 (en) Capacitive physical quantity sensor
JP4178658B2 (en) Capacitive physical quantity detecting device
JP3125675B2 (en) Capacitive sensor interface circuit
Kunz et al. Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors
US8860437B2 (en) Readout system for MEMS-based capacitive accelerometers and strain sensors, and method for reading
Ezekwe et al. A Mode-Matching $\Sigma\Delta $ Closed-Loop Vibratory Gyroscope Readout Interface With a 0.004$^{\circ} $/s/$\surd {\hbox {Hz}} $ Noise Floor Over a 50 Hz Band
JP3262013B2 (en) Capacitive sensor interface circuit
JP4805798B2 (en) In particular the apparatus and method for reading a capacitive sensor microelectromechanical format
EP2647954B1 (en) Self test of mems gyroscope with asics integrated capacitors
EP2648003B1 (en) Self test of mems accelerometer with asics integrated capacitors
JP2016510156A5 (en)
CN201688848U (en) Interface circuit of dual mass vibration type silicon micromechanical gyroscope
CN103364593B (en) Sensor circuit and method for testing MEMS (micro electro mechanical system) sensor
JP5148120B2 (en) Free-fall detector device and a free-fall detection method
CN101663564A (en) Magnetic rotating angle detector
CN101038299A (en) Uniaxle integrated inertia measurement device based on single mass-block
Yucetas et al. A high-resolution accelerometer with electrostatic damping and improved supply sensitivity
KR20130112804A (en) Self test of mems accelerometer with asics integrated capacitors
CN100567993C (en) Dual-axis resonance type micromechanical accelerometer
Kulah et al. A multi-step electromechanical/spl Sigma//spl Delta/converter for micro-g capacitive accelerometers
US8742964B2 (en) Noise reduction method with chopping for a merged MEMS accelerometer sensor
Zou et al. A seismic-grade resonant MEMS accelerometer

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
TR01