CN203054660U - Rapid power-cut controlling circuit applied to power supply managing circuit - Google Patents

Rapid power-cut controlling circuit applied to power supply managing circuit Download PDF

Info

Publication number
CN203054660U
CN203054660U CN 201320034138 CN201320034138U CN203054660U CN 203054660 U CN203054660 U CN 203054660U CN 201320034138 CN201320034138 CN 201320034138 CN 201320034138 U CN201320034138 U CN 201320034138U CN 203054660 U CN203054660 U CN 203054660U
Authority
CN
China
Prior art keywords
por
falling edge
power
edge detection
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 201320034138
Other languages
Chinese (zh)
Inventor
周莉
潘芦苇
孙涛
陈鹏
高园园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN 201320034138 priority Critical patent/CN203054660U/en
Application granted granted Critical
Publication of CN203054660U publication Critical patent/CN203054660U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

本实用新型涉及一种应用于电源管理电路中的快速下电控制电路,包括POR下降沿检测电路和PMOS放电管Mp2,所述的POR下降沿检测电路包括延时模块、反相器和与非门,所述POR下降沿检测电路的输入端与延时模块的输入端和反相器的输入端相连,延时模块的输出端和反相器的输出端分别和与非门的两个输入端相连,POR下降沿检测电路的输出端和与非门的输出端相连;POR下降沿检测电路的输出端与PMOS放电管Mp2的栅极相连,PMOS放电管Mp2的源极接电源电压Vdd,PMOS放电管Mp2的漏极接地。将本实用新型应用于电源管理电路时,保证电源电压在下电的过程中,硬件系统及时断电,避免部分电路在低压情况下出现不稳定的状态,致使硬件系统发出错误的指令或者执行错误的操作。

The utility model relates to a fast power-off control circuit applied in a power management circuit, comprising a POR falling edge detection circuit and a PMOS discharge tube Mp2, and the POR falling edge detection circuit includes a delay module, an inverter and an NAND Gate, the input end of the POR falling edge detection circuit is connected with the input end of the delay module and the input end of the inverter, and the output end of the delay module and the output end of the inverter are respectively connected with the two inputs of the NAND gate The output terminal of the POR falling edge detection circuit is connected to the output terminal of the NAND gate; the output terminal of the POR falling edge detection circuit is connected to the gate of the PMOS discharge tube Mp2, and the source of the PMOS discharge tube Mp2 is connected to the power supply voltage Vdd. The drain of the PMOS discharge transistor Mp2 is grounded. When the utility model is applied to the power management circuit, it is ensured that the hardware system is powered off in time during the power-off process of the power supply voltage, so as to avoid the unstable state of some circuits under low voltage conditions, causing the hardware system to issue wrong instructions or execute wrong commands. operate.

Description

一种应用于电源管理电路中的快速下电控制电路A fast power-off control circuit applied in power management circuit

技术领域technical field

本实用新型涉及一种应用于电源管理电路中的快速下电控制电路,属于电源管理控制电路技术领域。The utility model relates to a fast power-off control circuit applied in a power management circuit, which belongs to the technical field of power management control circuits.

背景技术Background technique

随着电源管理电路在电子产品中的作用日益上升,电子产品中电源电路的性能越来越重要。电源管理电路几乎用于每个芯片上,这就要求电源管理电路有高的指标以延长电子产品的使用时间。例如,低压差线性稳压电路(Low Drop Voltage Regulator简称LDO)就是一种常用的电源管理电路,普通的LDO常常外接一个大小在几个微法的电容以保证电路稳定工作。但是,某些情况下,在芯片下电过程中,由于电路消耗的电流低,且电源电压端有较大的稳压电容,会使得电源电压下降变得非常缓慢,如图1中所示。由此可能导致在电源电压下电过程中,由于电源电压已经低于电路正常工作的电压,却又不为0,会使得部分电路出现不稳定状态,致使硬件系统可能会发出错误的指令或者执行错误的操作。特别是在非接触智能卡等应用环境中,电源电压靠存储在芯片内的电容上的电荷维持,其下电过程会非常缓慢,下电过程中容易造成芯片的逻辑功能或存储错误。With the increasing role of power management circuits in electronic products, the performance of power circuits in electronic products is becoming more and more important. The power management circuit is used in almost every chip, which requires the power management circuit to have a high index to prolong the use time of electronic products. For example, Low Drop Voltage Regulator (LDO for short) is a commonly used power management circuit. Ordinary LDOs are often connected with a capacitor of several microfarads to ensure stable operation of the circuit. However, in some cases, when the chip is powered off, the power supply voltage drops very slowly due to the low current consumption of the circuit and the large voltage stabilizing capacitor at the power supply voltage terminal, as shown in Figure 1. As a result, during the power-off process of the power supply voltage, because the power supply voltage is already lower than the normal working voltage of the circuit, but it is not 0, some circuits will appear unstable, causing the hardware system to issue wrong instructions or execute wrong operation. Especially in application environments such as contactless smart cards, the power supply voltage is maintained by the charge stored on the capacitor in the chip, and the power-off process will be very slow, which may easily cause logic function or storage errors of the chip during the power-off process.

发明内容Contents of the invention

术语解释Terminology Explanation

1.LDO:Low Drop Voltage Regulator的简称,即低压差线性稳压电路,是一种常用的电源管理电路。1. LDO: The abbreviation of Low Drop Voltage Regulator, that is, low dropout linear voltage regulator circuit, is a commonly used power management circuit.

2.POR:Power On Reset的简称,即上电复位电路。2. POR: The abbreviation of Power On Reset, that is, the power-on reset circuit.

针对现有技术的不足,本实用新型提供一种应用于电源管理电路中的快速下电控制电路,包括POR下降沿检测电路和PMOS放电管Mp2,所述的POR下降沿检测电路包括延时模块、反相器和与非门,所述POR下降沿检测电路的输入端与延时模块的输入端和反相器的输入端相连,延时模块的输出端(Delay_out)和反相器的输出端(INV_out)分别和与非门的两个输入端相连,POR下降沿检测电路的输出端(Vctrl)和与非门的输出端相连;POR下降沿检测电路的输出端(Vctrl)与PMOS放电管Mp2的栅极相连,PMOS放电管Mp2的源极接电源电压Vdd,PMOS放电管Mp2的漏极接地。Aiming at the deficiencies of the prior art, the utility model provides a fast power-off control circuit applied in a power management circuit, including a POR falling edge detection circuit and a PMOS discharge tube Mp2, and the POR falling edge detection circuit includes a delay module , an inverter and a NAND gate, the input terminal of the POR falling edge detection circuit is connected to the input terminal of the delay module and the input terminal of the inverter, and the output terminal (Delay_out) of the delay module is connected to the output of the inverter The terminal (INV_out) is respectively connected to the two input terminals of the NAND gate, the output terminal (Vctrl) of the POR falling edge detection circuit is connected to the output terminal of the NAND gate; the output terminal (Vctrl) of the POR falling edge detection circuit is connected to the PMOS discharge The gate of the transistor Mp2 is connected, the source of the PMOS discharge transistor Mp2 is connected to the power supply voltage Vdd, and the drain of the PMOS discharge transistor Mp2 is grounded.

将本实用新型应用于电源管理电路时,将电源管理电路中的上电复位电路的信号输出端(POR_out)与所述POR下降沿检测电路的输入端相连。When the utility model is applied to a power management circuit, the signal output terminal (POR_out) of the power-on reset circuit in the power management circuit is connected to the input terminal of the POR falling edge detection circuit.

本实用新型的优点在于:The utility model has the advantages of:

将本实用新型应用于电源管理电路时,保证电源电压在下电的过程中,硬件系统及时断电,避免部分电路在低压情况下出现不稳定的状态,致使硬件系统发出错误的指令或者执行错误的操作。也避免了芯片在下电过程中出现逻辑功能或存储错误等技术问题。When the utility model is applied to the power management circuit, it is ensured that the hardware system is powered off in time during the power-off process of the power supply voltage, so as to avoid the unstable state of some circuits under low voltage conditions, causing the hardware system to issue wrong instructions or execute wrong commands. operate. It also avoids technical problems such as logic function or storage errors during the power-off process of the chip.

附图说明Description of drawings

图1是现有电源管理电路中的波形图;Fig. 1 is a waveform diagram in an existing power management circuit;

图2是本实用新型所述快速下电控制电路中的POR下降沿检测电路的原理图;Fig. 2 is a schematic diagram of the POR falling edge detection circuit in the fast power-off control circuit of the present invention;

图3是快速下电控制电路中的POR下降沿检测电路(图2)的时序图;Figure 3 is a timing diagram of the POR falling edge detection circuit (Figure 2) in the fast power-off control circuit;

图4是一种电源管理电路中的快速下电控制电路的原理图;4 is a schematic diagram of a fast power-off control circuit in a power management circuit;

图5是本实用新型所述的一种电源管理电路中的快速下电控制电路(图4)的波形图;Fig. 5 is a waveform diagram of a fast power-off control circuit (Fig. 4) in a power management circuit described in the present invention;

图6是实施例1的电路原理图;Fig. 6 is the schematic circuit diagram of embodiment 1;

图中,11、延时模块,12、反相器,13、与非门,10、快速下电控制电路,20、快速下电控制电路中的POR下降沿检测电路,30、低压差线性稳压电路LDO。In the figure, 11. Delay module, 12. Inverter, 13. NAND gate, 10. Fast power-off control circuit, 20. POR falling edge detection circuit in the fast power-off control circuit, 30. Low dropout linear stable piezo circuit LDO.

具体实施方式Detailed ways

下面结合实施例和说明书附图对本实用新型做详细的说明,但不限于此。Below in conjunction with embodiment and accompanying drawing, the utility model is described in detail, but not limited thereto.

实施例1、Embodiment 1,

将本实用新型应用于低压差线性稳压电路LDO中,以实现快速下电。The utility model is applied to a low-dropout linear regulator circuit LDO to realize fast power-off.

如图2,4所示,一种应用于电源管理电路中的快速下电控制电路10,包括POR下降沿检测电路20和PMOS放电管Mp2,所述的POR下降沿检测电路20包括延时模块11、反相器12和与非门13,所述POR下降沿检测电路20的输入端与延时模块11的输入端和反相器12的输入端相连,延时模块11的输出端(Delay_out)和反相器12的输出端(INV_out)分别和与非门13的两个输入端相连,POR下降沿检测电路20的输出端(Vctrl)和与非门13的输出端相连;POR下降沿检测电路20的输出端(Vctrl)与PMOS放电管Mp2的栅极相连,PMOS放电管Mp2的源极接电源电压Vdd,PMOS放电管Mp2的漏极接地。As shown in Figures 2 and 4, a fast power-off control circuit 10 applied to a power management circuit includes a POR falling edge detection circuit 20 and a PMOS discharge tube Mp2, and the POR falling edge detection circuit 20 includes a delay module 11, inverter 12 and NAND gate 13, the input end of described POR falling edge detection circuit 20 is connected with the input end of delay module 11 and the input end of inverter 12, the output end of delay module 11 (Delay_out ) and the output terminal (INV_out) of the inverter 12 are respectively connected to the two input terminals of the NAND gate 13, and the output terminal (Vctrl) of the POR falling edge detection circuit 20 is connected to the output terminal of the NAND gate 13; the POR falling edge The output terminal (Vctrl) of the detection circuit 20 is connected to the gate of the PMOS discharge transistor Mp2, the source of the PMOS discharge transistor Mp2 is connected to the power supply voltage Vdd, and the drain of the PMOS discharge transistor Mp2 is grounded.

如图6所示,在低压差线性稳压电路LDO30中,参考电压接到运放的负输入端,运放的正输入端与电阻R1、R2的串联节点相连接,运放的输出端接PMOS管Mp1的栅极,Mp1源极接电源电压Vcc,Mp1漏极接电阻分压器R1、R2,其中R1和R2串联,R2接地,Mp1的漏极外接一个电容CL(大小为几个微法),该外接电容CL的另一端接地,该外接电容CL的端电压为Vdd。As shown in Figure 6, in the low-dropout linear regulator circuit LDO30, the reference voltage is connected to the negative input terminal of the operational amplifier, the positive input terminal of the operational amplifier is connected to the series node of resistors R1 and R2, and the output terminal of the operational amplifier is connected to The gate of the PMOS transistor Mp1, the source of Mp1 is connected to the power supply voltage Vcc, the drain of Mp1 is connected to the resistor divider R1, R2, where R1 and R2 are connected in series, R2 is grounded, and the drain of Mp1 is connected to a capacitor CL (a few microns in size) method), the other end of the external capacitor CL is grounded, and the terminal voltage of the external capacitor CL is Vdd.

快速下电控制电路10中,当Vdd为高电平时,则输出端POR_out信号为“1”;当Vdd低于正常工作电压时,则输出端POR_out信号为“0”。In the fast power-off control circuit 10, when Vdd is high level, the output POR_out signal is "1"; when Vdd is lower than the normal operating voltage, the output POR_out signal is "0".

对比例、Comparative example,

不在低压差线性稳压电路30中设置快速下电控制电路10,由于电容的电压不可突变将导致电压下电变得缓慢,如图1所示。If the fast power-off control circuit 10 is not provided in the low-dropout linear regulator circuit 30 , the voltage power-off will become slow because the voltage of the capacitor cannot be changed suddenly, as shown in FIG. 1 .

当在低压差线性稳压电路30中设置快速下电控制电路10后,如图6所示,当电源电压Vdd低于阈值电压(如图5中虚线所示)时,输出端POR_out输出由高电平变为低电平,快速下电控制电路10中的POR下降沿检测电路20相应的输出一个低电平脉冲将使PMOS放电管Mp2导通,电容上的电压将被快速拉至0,从而实现快速下电。所述低电平脉冲宽度(时间)保证在该时间内,电源电压被拉低到0。After the fast power-off control circuit 10 is set in the low-dropout linear regulator circuit 30, as shown in FIG. 6, when the power supply voltage Vdd is lower than the threshold voltage (as shown by the dotted line in FIG. The level becomes low level, and the POR falling edge detection circuit 20 in the fast power-off control circuit 10 correspondingly outputs a low level pulse to turn on the PMOS discharge tube Mp2, and the voltage on the capacitor will be quickly pulled to 0, So as to achieve fast power off. The low-level pulse width (time) ensures that the power supply voltage is pulled down to 0 within this time.

图2为快速下电控制电路中的上电复位电路(Power On Reset简称POR)的下降沿检测电路。所述延时模块11,对输入信号的上升沿或者下降沿产生一定时间的延时。POR的输出信号沿输出端POR_out输出:输出低电平时,则电路复位;输出高电平时,则电路正常工作。1)当输出端POR_out输出一个高电平“1”时,反相器12输出为低电平“0”,该低电平“0”输入到与非门13的一个输入端;同时延时模块11将该高电平“1”经过一定时间的延时后输出到与非门13的另一个输入端,则与非门13输出一个高电平“1”;2)当POR输出由高电平“1”跳变到低电平“0”时,反相器12输出为高电平“1”,而延时模块11因延时仍输出高电平“1”,这两个高电平“1”送至与非门13后输出为低电平“0”;3)当POR输出为低电平“0”时,反相器12输出为高电平“1”,延时模块11延时后也变为低电平“0”,这两个信号送至与非门13后输出一个高电平“1”;4)当POR由低电平“0”跳变为高电平“1”时,反相器12输出低电平“0”,而延时模块11因延时仍保持低电平“0”,两者送至与非门13后输出为高电平“1”。Figure 2 is the falling edge detection circuit of the power-on reset circuit (Power On Reset POR) in the fast power-off control circuit. The delay module 11 generates a certain time delay for the rising edge or falling edge of the input signal. The POR output signal is output along the output terminal POR_out: when the output is low, the circuit is reset; when the output is high, the circuit works normally. 1) When the output terminal POR_out outputs a high level "1", the output of the inverter 12 is a low level "0", and the low level "0" is input to an input terminal of the NAND gate 13; at the same time delay The module 11 outputs the high level "1" to the other input terminal of the NAND gate 13 after a certain time delay, and the NAND gate 13 outputs a high level "1"; 2) When the POR output is switched from high to When the level "1" jumps to a low level "0", the output of the inverter 12 is a high level "1", and the delay module 11 still outputs a high level "1" due to the delay. The level "1" is sent to the NAND gate 13 and the output is a low level "0"; 3) When the POR output is a low level "0", the output of the inverter 12 is a high level "1", and the delay Module 11 also changes to low level "0" after a delay, and the two signals are sent to NAND gate 13 to output a high level "1"; 4) When POR jumps from low level "0" to high When the level is "1", the inverter 12 outputs a low level "0", while the delay module 11 still maintains a low level "0" due to the delay, and the two are sent to the NAND gate 13 to output a high level "1".

由以上分析可知对于POR输出端POR_out输出的下降沿,与非门13会输出一个低电平脉冲实现POR下降沿检测。图3为快速下电控制电路中的POR下降沿检测电路(图2)的时序图。From the above analysis, it can be seen that for the falling edge of the POR output terminal POR_out, the NAND gate 13 will output a low level pulse to realize the POR falling edge detection. Figure 3 is a timing diagram of the POR falling edge detection circuit (Figure 2) in the fast power-off control circuit.

图4为一种电源管理电路中的快速下电控制电路。当POR输出端POR_out输出高电平时,由以上分析知快速下电控制电路中的POR下降沿检测电路20输出高电平,PMOS放电管Mp2截止,源极保持原电压不变;当POR输出端POR_out输出一个下降沿时,快速下电控制电路中的POR下降沿检测电路20输出一个低电平脉冲使PMOS放电管Mp2导通,源极电压被拉至0从而实现快速下电。该低电平脉冲的脉宽时间内必须使得电源电压可以被拉低为0。FIG. 4 is a fast power-off control circuit in a power management circuit. When the POR output terminal POR_out outputs a high level, it is known from the above analysis that the POR falling edge detection circuit 20 in the fast power-off control circuit outputs a high level, the PMOS discharge tube Mp2 is cut off, and the source keeps the original voltage; when the POR output terminal When POR_out outputs a falling edge, the POR falling edge detection circuit 20 in the fast power-off control circuit outputs a low-level pulse to turn on the PMOS discharge tube Mp2, and the source voltage is pulled to 0 to realize fast power-off. The power supply voltage must be pulled down to 0 within the pulse width of the low-level pulse.

图5是本实用新型所述的一种电源管理电路中的快速下电控制电路(图4)的波形图。当POR输出端POR_out为高电平时,电路正常工作,电压Vdd为高电平;当POR输出端POR_out输出一个下降沿并变为低电平,该实用新型电路将产生一个低电平脉冲,PMOS放电管Mp2导通,Vdd将被拉为0。图2中的快速下电控制电路中的下降沿检测电路产生的低电平脉冲宽度(时间)应保证在该时间内,电源电压被拉低到0。FIG. 5 is a waveform diagram of a fast power-off control circuit ( FIG. 4 ) in a power management circuit described in the present invention. When the POR output terminal POR_out is high level, the circuit works normally, and the voltage Vdd is high level; when the POR output terminal POR_out outputs a falling edge and becomes low level, the utility model circuit will generate a low level pulse, PMOS The discharge tube Mp2 is turned on, and Vdd will be pulled to 0. The low-level pulse width (time) generated by the falling edge detection circuit in the fast power-off control circuit in Figure 2 should ensure that the power supply voltage is pulled down to 0 within this time.

Claims (1)

1.一种应用于电源管理电路中的快速下电控制电路,其特征在于,所述快速下电控制电路包括POR下降沿检测电路和PMOS放电管Mp2,所述的POR下降沿检测电路包括延时模块、反相器和与非门,所述POR下降沿检测电路的输入端与延时模块的输入端和反相器的输入端相连,延时模块的输出端(Delay_out)和反相器的输出端(INV_out)分别和与非门的两个输入端相连,POR下降沿检测电路的输出端(Vctrl)和与非门的输出端相连;POR下降沿检测电路的输出端(Vctrl)与PMOS放电管Mp2的栅极相连,PMOS放电管Mp2的源极接电源电压Vdd,PMOS放电管Mp2的漏极接地。1. A fast power-off control circuit applied in a power management circuit, characterized in that, the fast power-off control circuit includes a POR falling edge detection circuit and a PMOS discharge tube Mp2, and the POR falling edge detection circuit includes a delay Time module, inverter and NAND gate, the input terminal of the POR falling edge detection circuit is connected with the input terminal of the delay module and the input terminal of the inverter, the output terminal (Delay_out) of the delay module and the inverter The output terminal (INV_out) of the NAND gate is respectively connected to the two input terminals of the NAND gate, and the output terminal (Vctrl) of the POR falling edge detection circuit is connected to the output terminal of the NAND gate; the output terminal (Vctrl) of the POR falling edge detection circuit is connected to the The gate of the PMOS discharge tube Mp2 is connected, the source of the PMOS discharge tube Mp2 is connected to the power supply voltage Vdd, and the drain of the PMOS discharge tube Mp2 is grounded.
CN 201320034138 2013-01-22 2013-01-22 Rapid power-cut controlling circuit applied to power supply managing circuit Expired - Lifetime CN203054660U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201320034138 CN203054660U (en) 2013-01-22 2013-01-22 Rapid power-cut controlling circuit applied to power supply managing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201320034138 CN203054660U (en) 2013-01-22 2013-01-22 Rapid power-cut controlling circuit applied to power supply managing circuit

Publications (1)

Publication Number Publication Date
CN203054660U true CN203054660U (en) 2013-07-10

Family

ID=48737592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201320034138 Expired - Lifetime CN203054660U (en) 2013-01-22 2013-01-22 Rapid power-cut controlling circuit applied to power supply managing circuit

Country Status (1)

Country Link
CN (1) CN203054660U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135645A (en) * 2013-01-22 2013-06-05 山东大学 Rapid disconnection control circuit applied to power management circuit
CN103240880A (en) * 2013-04-15 2013-08-14 福州昇立莱旅游制品有限公司 Extrusion equipment for connecting frame poles and plastic parts of tents and manufacturing method of tent connecting pieces
CN104518762A (en) * 2014-12-17 2015-04-15 天津大学 Time domain strengthened trigger resistant to single event effect and double-node upset
CN104575425A (en) * 2015-01-09 2015-04-29 深圳市华星光电技术有限公司 Scanning driving circuit and NAND logic operation circuit thereof
CN115050403A (en) * 2021-03-09 2022-09-13 中国科学院微电子研究所 Power supply control device and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135645A (en) * 2013-01-22 2013-06-05 山东大学 Rapid disconnection control circuit applied to power management circuit
CN103135645B (en) * 2013-01-22 2014-11-05 山东大学 Rapid disconnection control circuit applied to power management circuit
CN103240880A (en) * 2013-04-15 2013-08-14 福州昇立莱旅游制品有限公司 Extrusion equipment for connecting frame poles and plastic parts of tents and manufacturing method of tent connecting pieces
CN104518762A (en) * 2014-12-17 2015-04-15 天津大学 Time domain strengthened trigger resistant to single event effect and double-node upset
CN104575425A (en) * 2015-01-09 2015-04-29 深圳市华星光电技术有限公司 Scanning driving circuit and NAND logic operation circuit thereof
CN115050403A (en) * 2021-03-09 2022-09-13 中国科学院微电子研究所 Power supply control device and control method thereof

Similar Documents

Publication Publication Date Title
CN108649939B (en) Power supply detection circuit and method
CN203054660U (en) Rapid power-cut controlling circuit applied to power supply managing circuit
CN107272856B (en) Low power reset circuit
CN213585745U (en) High-efficiency and low-power circuits for power monitoring
CN112311383A (en) Circuit for realizing high-efficiency and low-power consumption of power supply monitoring and working method
CN104253459A (en) USB device with power supply mode switching function
CN102955491A (en) Voltage generation circuit
CN105718012B (en) Method and circuit for automatically switching Vbus voltage in master-slave mode of OTG (on-the-go) equipment
EP2947536A1 (en) Voltage regulator and voltage regulating method and chip using the same
TW201340603A (en) Power switch module, voltage generation circuit and power control method for electronic device
CN103135645B (en) Rapid disconnection control circuit applied to power management circuit
TW201416845A (en) Motherboard
CN106300248A (en) A kind of under-voltage protecting circuit of current control mode
CN109669524B (en) Power-on reset circuit of chip
CN112290923B (en) Low-power-consumption power-on reset circuit and method based on bias circuit
CN110827866B (en) EEPROM power-on read-write protection circuit
CN105591637B (en) The module that automatically resets in integrated circuit
CN101625588A (en) Supply circuit of PWM controller
US20150089266A1 (en) Switch circuit and computing device having same
CN103633973B (en) Power supply reset circuit with zero standby current consumption
CN108011502A (en) One kind prevents the non-monotonic circuit of reduction regulation circuit working state signal
CN116054797A (en) Low-power-consumption reset circuit with voltage return difference
US11108386B2 (en) Comparator circuit arrangement and method of forming the same
CN207868979U (en) One kind preventing the non-monotonic circuit of reduction regulation circuit working state signal
CN111426866A (en) Voltage monitoring system and method thereof

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20130710

Effective date of abandoning: 20141105

AV01 Patent right actively abandoned

Granted publication date: 20130710

Effective date of abandoning: 20141105

RGAV Abandon patent right to avoid regrant