CN202324443U - Thermal-bridge-resisting composite anti-radiation rock wool energy-saving decorative system - Google Patents
Thermal-bridge-resisting composite anti-radiation rock wool energy-saving decorative system Download PDFInfo
- Publication number
- CN202324443U CN202324443U CN2011204272134U CN201120427213U CN202324443U CN 202324443 U CN202324443 U CN 202324443U CN 2011204272134 U CN2011204272134 U CN 2011204272134U CN 201120427213 U CN201120427213 U CN 201120427213U CN 202324443 U CN202324443 U CN 202324443U
- Authority
- CN
- China
- Prior art keywords
- radiation
- layer
- rock wool
- heat
- mesh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
- 230000003471 anti-radiation Effects 0.000 title claims abstract description 98
- 239000011490 mineral wool Substances 0.000 title claims abstract description 85
- 239000002131 composite material Substances 0.000 title claims abstract description 13
- 239000010410 layer Substances 0.000 claims abstract description 123
- 238000009413 insulation Methods 0.000 claims abstract description 81
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 76
- 239000010959 steel Substances 0.000 claims abstract description 76
- 239000012790 adhesive layer Substances 0.000 claims abstract description 21
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000005034 decoration Methods 0.000 claims abstract description 16
- 239000011888 foil Substances 0.000 claims abstract description 11
- 239000003365 glass fiber Substances 0.000 claims abstract description 11
- 239000011435 rock Substances 0.000 claims abstract description 3
- 210000002268 wool Anatomy 0.000 claims abstract description 3
- 239000004570 mortar (masonry) Substances 0.000 claims description 62
- 239000002998 adhesive polymer Substances 0.000 claims description 30
- 229920000642 polymer Polymers 0.000 claims description 29
- 239000004033 plastic Substances 0.000 claims description 27
- 229920003023 plastic Polymers 0.000 claims description 27
- 239000000565 sealant Substances 0.000 claims description 14
- 239000000853 adhesive Substances 0.000 claims description 12
- 239000004744 fabric Substances 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 11
- 239000003973 paint Substances 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000004814 polyurethane Substances 0.000 claims description 7
- 229920002635 polyurethane Polymers 0.000 claims description 7
- 239000004576 sand Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000004575 stone Substances 0.000 claims description 5
- 230000009970 fire resistant effect Effects 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- -1 wallpaper Substances 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 30
- 238000010276 construction Methods 0.000 description 18
- 238000004321 preservation Methods 0.000 description 7
- 229910001335 Galvanized steel Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 239000008397 galvanized steel Substances 0.000 description 4
- 238000010257 thawing Methods 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000011489 building insulation material Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009422 external insulation Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/244—Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires
Landscapes
- Building Environments (AREA)
Abstract
一种阻热桥复合反辐射岩棉节能装饰系统,包括贴在建筑墙体上的反辐射隔热层,所述反辐射隔热层包括贴在建筑墙体侧壁上的一片一片的反辐射岩棉和连接在相邻两反辐射岩棉缝隙之间的防火玻纤铝箔胶带,所述反辐射隔热层的外侧设有粘接层,粘接层的外侧涂有界面养护剂,界面养护剂的外侧又设有装饰层。本装饰系统摒弃了先铺一层岩棉再铺一层辐射隔热膜的结构,而是采用了反辐射岩棉,所以具有更好的保温隔热效果,同时采用了特制的阻热桥保温锚栓来直接固定反辐射岩棉和粘接层中的钢板扩张网,所以不会产生热桥,并且与建筑墙体锚固连接的更牢固。
An energy-saving decoration system for heat-resisting bridge composite anti-radiation rock wool, which includes an anti-radiation heat insulation layer attached to the building wall, and the anti-radiation heat insulation layer includes pieces of anti-radiation heat insulation layer attached to the side wall of the building wall. Rock wool and the fireproof glass fiber aluminum foil tape connected between the gaps between two adjacent anti-radiation rock wools, the outer side of the anti-radiation heat insulation layer is provided with an adhesive layer, and the outer side of the adhesive layer is coated with an interface curing agent. The outside of the agent is provided with a decorative layer. This decoration system abandons the structure of first laying a layer of rock wool and then laying a layer of radiation insulation film, but uses anti-radiation rock wool, so it has better thermal insulation effect, and adopts a special heat-resistant bridge insulation Anchor bolts are used to directly fix the anti-radiation rock wool and the steel plate expansion mesh in the adhesive layer, so no thermal bridges will be generated, and the anchored connection with the building wall is more firm.
Description
技术领域 technical field
本实用新型涉及一种建筑物的节能装饰系统。 The utility model relates to an energy-saving decoration system for buildings.
背景技术 Background technique
外界环境对建筑室内热环境的影响主要通过热辐射、热对流和热传导。夏季室外热环境对室内的影响约93%来自于热辐射,约7%来自于热传导和热对流。冬季室内热量的流失其中约50%-75%通过热辐射,45%来通过热对流,约5%来通过热传导。目前所采用的外墙外保温主要针对阻隔热传导,而没有针对于阻隔热辐射的措施。传统的建筑物的节能装饰系统,包括保温隔热层和装饰面层,其缺陷是各层之间的结合和与墙体结合的牢固性差,在冻融后易脱落;整体厚度大约为80-150毫米,占用空间较大,在节约建筑物能耗方面也需要进一步探索研究。 The influence of the external environment on the indoor thermal environment of a building is mainly through thermal radiation, thermal convection and thermal conduction. About 93% of the influence of the outdoor thermal environment on the room in summer comes from heat radiation, and about 7% comes from heat conduction and heat convection. About 50%-75% of the indoor heat loss in winter is through heat radiation, 45% is through heat convection, and about 5% is through heat conduction. The external insulation of external walls currently used is mainly aimed at blocking heat conduction, but there are no measures for blocking heat radiation. The traditional energy-saving decoration system for buildings, including the thermal insulation layer and the decorative surface layer, has the disadvantage that the combination between the layers and the combination with the wall are poor, and it is easy to fall off after freezing and thawing; the overall thickness is about 80- 150 mm, it takes up a lot of space, and further exploration and research are needed in terms of saving building energy consumption.
实用新型内容 Utility model content
本实用新型的目的是提供一种阻热桥复合反辐射岩棉节能装饰系统,要解决隔热装饰系统各层结合欠牢固、占用空间较大、节能效率较低的技术问题;并解决隔热装饰系统与建筑墙体之间的热桥问题。 The purpose of this utility model is to provide an energy-saving decorative system of heat-resisting bridge composite anti-radiation rock wool, to solve the technical problems of insufficient bonding of the layers of the heat-insulating decoration system, large space occupation, and low energy-saving efficiency; and to solve the problem of heat insulation Thermal bridge problem between decorative system and building wall.
为实现上述目的,本实用新型采用如下技术方案:一种阻热桥复合反辐射岩棉节能装饰系统,包括贴在建筑墙体上的反辐射隔热层,其特征在于:所述反辐射隔热层包括贴在建筑墙体侧壁上的一片一片的反辐射岩棉和连接在相邻两反辐射岩棉缝隙之间的防火玻纤铝箔胶带,所述反辐射岩棉两面材料为防火反辐射铝膜,中间夹持固定有岩棉板。防火反辐射铝膜起到反射热辐射的作用,岩棉板起到阻隔热传导热对流的作用。 In order to achieve the above purpose, the utility model adopts the following technical scheme: an energy-saving decorative system for heat-resistant bridge composite anti-radiation rock wool, which includes an anti-radiation heat insulation layer attached to the building wall, and is characterized in that: the anti-radiation insulation The heat layer consists of pieces of anti-radiation rock wool attached to the side wall of the building wall and a fireproof glass fiber aluminum foil tape connected between the gaps between two adjacent anti-radiation rock wools. The radiant aluminum film is clamped and fixed with a rock wool board in the middle. The fire-proof and anti-radiation aluminum film can reflect heat radiation, and the rock wool board can block heat conduction and convection.
所述反辐射隔热层的外侧设有粘接层,粘接层的外侧涂有界面养护剂,界面养护剂的外侧又设有装饰层,所述粘接层由贴在反辐射隔热层外侧的钢板扩张网、与钢板扩张网固化在一起的第一层粘结性聚合物砂浆、以及贴在第一层粘结性聚合物砂浆外侧的第二层粘结性聚合物砂浆组成,所述钢板扩张网是钢板经设备冲压扩张而成的,钢板扩张网上具有均匀间隔排列的六角形网孔,六角形网孔向板体外斜向凸出,网眼丝梗呈波浪形凹凸于板体表面,所述第一层粘结性聚合物砂浆填满在钢板扩张网的六角形网孔中并填满反辐射岩棉与钢板扩张网之间的间隙并完全覆盖住钢板扩张网。 The outside of the anti-radiation heat insulation layer is provided with an adhesive layer, the outside of the adhesive layer is coated with an interface curing agent, and the outside of the interface curing agent is provided with a decorative layer, and the adhesive layer is attached to the anti-radiation heat insulation layer. The outer steel plate expansion mesh, the first layer of adhesive polymer mortar solidified with the steel plate expansion mesh, and the second layer of adhesive polymer mortar attached to the outside of the first layer of adhesive polymer mortar, so The expanded steel mesh is formed by punching and expanding the steel plate through equipment. The expanded steel mesh has hexagonal meshes arranged at even intervals. The hexagonal meshes protrude obliquely to the outside of the plate, and the mesh wire stems are wavy on the surface of the plate. , the first layer of cohesive polymer mortar fills the hexagonal mesh of the expanded steel mesh and fills the gap between the anti-radiation rock wool and the expanded steel mesh and completely covers the expanded steel mesh.
所述钢板扩张网和反辐射岩棉由阻热桥保温锚栓固定在建筑墙体上,阻热桥保温锚栓包括塑制胀管、金属螺钉和塑制隔热端帽,其中塑制胀管的一端穿过钢板扩张网和反辐射岩棉并插在建筑墙体中,塑制胀管的另一端设有可压住钢板扩张网和反辐射岩棉的塑制锚固盘,所述金属螺钉插在塑制胀管的锚栓孔中,所述隔热端帽又堵在锚栓孔上。 The steel plate expansion mesh and anti-radiation rock wool are fixed on the building wall by heat-resisting bridge insulation anchor bolts. The heat-resistance bridge insulation anchor bolts include plastic expansion tubes, metal screws and plastic heat-insulation end caps. One end of the pipe passes through the expanded steel mesh and anti-radiation rock wool and is inserted into the building wall, and the other end of the plastic expansion pipe is provided with a plastic anchor plate that can press the expanded steel mesh and anti-radiation rock wool. The screw is inserted into the anchor bolt hole of the plastic expansion tube, and the heat insulation end cap is blocked on the anchor bolt hole again.
所述建筑墙体上开有门窗洞口,门窗洞口侧壁上依次贴有反辐射隔热层、粘接层、界面养护剂、聚氨酯防水涂料、中砂、第三层粘结性聚合物砂浆、耐碱自粘纤维网格布、第四层粘结性聚合物砂浆和装饰层,所述门窗洞口侧壁上的反辐射岩棉与建筑墙体侧壁上的反辐射岩棉之间也设有防火玻纤铝箔胶带,门窗洞口侧壁上的钢板扩张网与建筑墙体侧壁上的钢板扩张网之间设有转角钢网,门窗洞口侧壁上的钢板扩张网和反辐射岩棉也由阻热桥保温锚栓固定在建筑墙体上,所述第三层粘结性聚合物砂浆、耐碱自粘纤维网格布、第四层粘结性聚合物砂浆和装饰层与门窗框之间设有伸缩缝,伸缩缝中填充有伸缩缝密封胶。 There are door and window openings on the building wall, and anti-radiation heat insulation layer, adhesive layer, interface curing agent, polyurethane waterproof coating, medium sand, third layer of cohesive polymer mortar, Alkali-resistant self-adhesive fiber mesh cloth, the fourth layer of cohesive polymer mortar and decorative layer, and the anti-radiation rock wool on the side wall of the door and window opening and the anti-radiation rock wool on the side wall of the building wall are also provided There is a fireproof glass fiber aluminum foil tape. There is a corner steel mesh between the steel plate expansion net on the side wall of the door and window opening and the steel plate expansion net on the side wall of the building wall. The steel plate expansion net and anti-radiation rock wool on the side wall of the door and window opening are also It is fixed on the building wall by heat-resisting bridge insulation anchor bolts, the third layer of adhesive polymer mortar, alkali-resistant self-adhesive fiber mesh cloth, the fourth layer of adhesive polymer mortar and decorative layer and door and window frames There are expansion joints between them, and the expansion joints are filled with expansion joint sealant.
所述粘接层上可以设有伸缩缝,伸缩缝中填充有伸缩缝密封胶,所述伸缩缝两侧相邻的阻热桥保温锚栓的替代物是镀锌或不锈钢材质的防火锚栓。 Expansion joints can be provided on the bonding layer, and the expansion joints are filled with expansion joint sealant, and the substitutes for the heat-resistance bridge insulation anchor bolts adjacent to both sides of the expansion joints are fireproof anchor bolts made of galvanized or stainless steel .
所述装饰层可以是涂料、墙纸、瓷砖、玻璃或石材。 The decorative layer can be paint, wallpaper, ceramic tile, glass or stone.
与现有技术相比本实用新型具有以下特点和有益效果:本实用新型既可安装于建筑外墙表面,也适用于建筑内保温,具有防火、保温、隔热、隔声、隔震、抗裂、防水、防潮的优点,适用于多层建筑,特别是中高层和高层建筑以及防火等级比较高的民用建筑,可减少建筑外部热环境对建筑室内热环境的影响,减少建筑物能耗。 Compared with the prior art, the utility model has the following characteristics and beneficial effects: the utility model can be installed on the surface of the outer wall of the building, and is also suitable for heat preservation in the building. It is suitable for multi-storey buildings, especially middle-rise and high-rise buildings and civil buildings with relatively high fire resistance. It can reduce the impact of the external thermal environment of the building on the indoor thermal environment of the building and reduce the energy consumption of the building.
本实用新型与墙体结合牢固,结构强度高、抗裂性能好,适用于建筑内、外保温,尤其是外保温。当用作建筑外墙保温时,可以有效避免建筑物外墙保温层的冻融、脱落问题,当用作建筑内保温时,可以在装饰面层垂直表面直接悬挂装饰构件、橱柜、窗帘杆、灯具等荷重部件。 The utility model is firmly combined with the wall body, has high structural strength and good crack resistance, and is suitable for building interior and exterior heat preservation, especially for exterior heat preservation. When used for building exterior wall insulation, it can effectively avoid the problems of freezing and thawing and falling off of the building's exterior wall insulation layer. When used for building interior insulation, it can directly hang decorative components, cabinets, curtain rods, etc. on the vertical surface of the decorative surface layer. Lighting and other load-bearing components.
本实用新型中的反辐射隔热层不受力,粘结层和装饰层整体结构受力,通过阻热桥保温锚栓与建筑墙体牢固连接,无热桥,有效解决了传统建筑物外墙保温层的冻融、脱落、无法安装固定荷重构件等问题。 The anti-radiation heat insulation layer in the utility model is not stressed, and the overall structure of the bonding layer and the decorative layer is stressed, and the thermal insulation anchor bolts are firmly connected with the building wall through the heat-resisting bridge, and there is no thermal bridge, which effectively solves the problem of traditional building exterior. Freezing and thawing of the wall insulation layer, falling off, failure to install and fix load-bearing components and other problems.
本实用新型的保温隔热性能得到了非常大的提高,这是因为本实用新型没有采用先铺一层岩棉再铺一层辐射隔热膜的结构,而是采用了一种特制的反辐射岩棉,反辐射岩棉既能有效阻隔热传导和热对流,又能反射热辐射,具有更好的保温隔热效果。并且反辐射岩棉的生产过程在工厂完成,作为成品送至施工工地,可提高工地现场的施工速度。 The thermal insulation performance of the utility model has been greatly improved. This is because the utility model does not adopt the structure of first laying a layer of rock wool and then laying a layer of radiation insulation film, but adopts a special anti-radiation Rock wool, anti-radiation rock wool can not only effectively block heat conduction and heat convection, but also reflect heat radiation, and has better thermal insulation effect. In addition, the production process of anti-radiation rock wool is completed in the factory and sent to the construction site as a finished product, which can improve the construction speed on the site.
与先铺一层岩棉再铺一层辐射隔热膜的结构相比,反辐射岩棉不但厚度小,而且同时具有岩棉产品的轻质、保温隔热、不燃、耐高温、吸声隔音的特性和辐射隔热膜的反射热辐射、隔热保温的特性,此外,反辐射岩棉还具有重量轻、保温节能效果好、防火性能高,施工速度快,结构强度高,抗裂性能好等优点。 Compared with the structure of laying a layer of rock wool first and then laying a layer of radiation insulation film, the anti-radiation rock wool is not only small in thickness, but also has the light weight, thermal insulation, non-combustibility, high temperature resistance, sound absorption and sound insulation of rock wool products. In addition, anti-radiation rock wool also has the characteristics of light weight, good heat preservation and energy saving effect, high fire performance, fast construction speed, high structural strength and good crack resistance. Etc.
本实用新型中的钢板扩张网表面比较平整,有利于粘结性聚合物砂浆的粉刷,有利于控制粘结性聚合物砂浆的用量。钢板扩张网上的网孔为六角形网孔,可以保证钢板扩张网与反辐射岩棉、钢板扩张网与第一层粘结性聚合物砂浆连接的更牢固。 The surface of the steel expanded net in the utility model is relatively smooth, which is beneficial to the painting of the cohesive polymer mortar and the control of the dosage of the cohesive polymer mortar. The mesh on the expanded steel mesh is a hexagonal mesh, which can ensure a firmer connection between the expanded steel mesh and the anti-radiation rock wool, and the expanded steel mesh and the first layer of cohesive polymer mortar.
传统的固定方式为保温锚栓直接固定岩棉板,或者使用聚合物粘结砂浆粘贴岩棉板,保温板外侧表面粉刷聚合物砂浆,粘贴纤维网格布,再粉刷聚合物砂浆,聚合物砂浆层依靠与保温板之间的粘结力固定,因为是不同材质之间粘结,所以容易产生融冻脱落等问题。而本实用新型的特点在于使用阻热桥保温锚栓固定钢板扩张网和辐射隔热膜,两层粘结砂浆与钢板扩张网、阻热桥保温锚栓固化成一体,所以粘结层和阻热桥保温锚栓形成整理受力体,通过阻热桥保温锚栓固定到墙体上。本实用新型本身产生的重力或者因悬挂重物产生的力通过阻热桥保温锚栓传递至建筑墙体。粘结层和阻热桥保温锚栓已经形成整体受力体了,反辐射隔热层没有受力要求,如图11所示。 The traditional fixing method is to directly fix the rock wool board with thermal insulation anchor bolts, or use polymer bonding mortar to paste the rock wool board. The outer surface of the thermal insulation board is painted with polymer mortar, pasted with fiber mesh cloth, and then painted with polymer mortar. Polymer mortar The layer is fixed by the adhesive force with the insulation board. Because it is bonded between different materials, it is easy to cause problems such as thawing and falling off. And the feature of this utility model is to use heat-resistance bridge thermal insulation anchor bolt to fix steel plate expansion mesh and radiation heat insulation film, two layers of bonding mortar and steel plate expansion mesh, heat-resistance bridge thermal insulation anchor bolt are solidified into one, so bonding layer and heat-resistance The thermal bridge thermal insulation anchor bolt forms a finishing force receiving body, and is fixed to the wall through the thermal resistance bridge thermal insulation anchor bolt. The gravity generated by the utility model itself or the force generated by hanging heavy objects is transmitted to the building wall through the thermal insulation anchor bolt of the heat-resisting bridge. The adhesive layer and thermal insulation anchors of the heat-resisting bridge have formed an integral force bearing body, and the anti-radiation heat insulation layer has no force requirements, as shown in Figure 11.
本实用新型也没有采用射钉或保温钉加钢带网的固定方式,而是采用了特制的带有塑制隔热端帽和塑制锚固盘的阻热桥保温锚栓来直接固定辐射隔热膜和钢板扩张网,使得与墙体连接不会产生热桥,并且锚固连接的更牢固。并且由于不再采用钢带网,所以施工方法变得更加简单,施工作业速度更快。 The utility model does not adopt the fixing method of shooting nails or heat preservation nails plus steel belt mesh, but uses a special heat-resistant bridge heat-insulation anchor bolt with a plastic heat-insulation end cap and a plastic anchor plate to directly fix the radiation insulation. Thermal film and steel plate expansion mesh, so that there will be no thermal bridge when connecting with the wall, and the anchoring connection is stronger. And because the steel belt mesh is no longer used, the construction method becomes simpler and the construction work is faster.
由于采用了带有六角形网孔的钢板扩张网和特制的带有塑制隔热端帽和塑制锚固盘的阻热桥保温锚栓,并取消了钢带网,所以粘结层的总厚度也大大减少,当加上反辐射隔热层以后,本实用新型的整体厚度变得更薄更节省材料。 Due to the use of steel plate expansion mesh with hexagonal mesh and special heat-resisting bridge insulation anchor bolts with plastic heat-insulating end caps and plastic anchor plates, and canceling the steel belt mesh, the total cost of the bonding layer Thickness also reduces greatly, after adding anti-radiation heat insulation layer, the whole thickness of the utility model becomes thinner and saves material more.
本实用新型具有憎水性,吸水率低,无毛细渗透,不吸湿,耐老化等优势,性能稳定,表面可负重,适合涂刷安装涂料、墙纸、瓷砖、石材等各种装饰材料,可承载安装荷重部件。适用于多层建筑,特别是中高层和高层建筑以及防火等级比较高的民用建筑。 The utility model has the advantages of hydrophobicity, low water absorption, no capillary penetration, no moisture absorption, aging resistance, etc., stable performance, load-bearing surface, suitable for painting and installing various decorative materials such as paint, wallpaper, tiles, stones, etc., and can be loaded and installed load bearing parts. It is suitable for multi-storey buildings, especially middle-rise and high-rise buildings and civil buildings with relatively high fire protection rating.
所述伸缩缝两侧相邻的固定锚栓还可采用镀锌或者不锈钢材质的防火锚栓代替尼龙材质的阻热桥保温锚栓,起到防火阻隔效果。 The fixed anchor bolts adjacent to both sides of the expansion joint can also use galvanized or stainless steel fireproof anchor bolts instead of nylon heat-resistant bridge insulation anchor bolts to achieve a fireproof barrier effect.
附图说明 Description of drawings
下面结合附图对本实用新型做进一步详细的说明。 Below in conjunction with accompanying drawing, the utility model is described in further detail.
图1是本实用新型的结构示意图。 Fig. 1 is the structural representation of the utility model.
图2是本实用新型的纵剖面示意图。 Fig. 2 is a schematic longitudinal section of the utility model.
图3是反辐射岩棉的立体示意图。 Fig. 3 is a three-dimensional schematic diagram of anti-radiation rock wool.
图4是反辐射岩棉的断面示意图。 Figure 4 is a schematic cross-sectional view of anti-radiation rock wool.
图5是反辐射岩棉的工作原理示意图。 Figure 5 is a schematic diagram of the working principle of anti-radiation rock wool.
图6是保温锚栓的示意图。 Fig. 6 is a schematic diagram of the thermal insulation anchor bolt.
图7是金属螺钉的示意图。 Fig. 7 is a schematic diagram of a metal screw.
图8是隔热端帽的示意图。 Figure 8 is a schematic diagram of an insulating end cap.
图9是钢板扩张网的立体示意图。 Fig. 9 is a three-dimensional schematic diagram of expanded steel mesh.
图10是钢板扩张网的局部放大示意图。 Fig. 10 is a partially enlarged schematic diagram of the steel expanded mesh.
图11是本实用新型的受力特征示意图。 Figure 11 is a schematic diagram of the force characteristics of the utility model.
图12是本实用新型施工步骤一的示意图。 Fig. 12 is a schematic diagram of the first construction step of the utility model.
图13是本实用新型施工步骤二的示意图。 Fig. 13 is a schematic diagram of the second construction step of the utility model.
图14是本实用新型施工步骤三的示意图。 Fig. 14 is a schematic diagram of the third construction step of the utility model.
图15是本实用新型施工步骤四的示意图。 Fig. 15 is a schematic diagram of the fourth construction step of the utility model.
图16是本实用新型施工步骤五和六的示意图。 Fig. 16 is a schematic diagram of construction steps five and six of the utility model.
图17是本实用新型施工步骤七的示意图。 Fig. 17 is a schematic diagram of the seventh construction step of the utility model.
图18是伸缩缝嵌条的示意图。 Fig. 18 is a schematic diagram of an expansion joint fillet.
图19是将伸缩缝嵌条粘贴在反辐射岩棉上的示意图。 Fig. 19 is a schematic diagram of pasting expansion joint strips on anti-radiation rock wool.
图20是在伸缩缝嵌条两侧设置粘结层和装饰层的示意图。 Fig. 20 is a schematic diagram of setting an adhesive layer and a decorative layer on both sides of the expansion joint fillet.
图21是取出伸缩缝嵌条的示意图。 Figure 21 is a schematic diagram of taking out the expansion joint fillet.
图22是在伸缩缝中填入伸缩缝密封胶的示意图。 Fig. 22 is a schematic diagram of filling the expansion joint with sealant.
图23是本实用新型在门窗洞口处的示意图。 Fig. 23 is a schematic diagram of the utility model at the opening of the door and window.
图24是在门窗洞口处设置门窗框的示意图。 Fig. 24 is a schematic diagram of setting door and window frames at the openings of doors and windows.
图25是在门窗洞口处设置反辐射岩棉的示意图。 Fig. 25 is a schematic diagram of setting anti-radiation rock wool at the openings of doors and windows.
图26是在门窗洞口处设置防火玻纤铝箔胶带的示意图。 Fig. 26 is a schematic diagram of setting the fireproof glass fiber aluminum foil tape at the opening of the door and window.
图27是在门窗洞口处设置钢板扩张网和转角钢网的示意图。 Fig. 27 is a schematic diagram of setting expanded steel nets and corner steel nets at the openings of doors and windows.
图28是在门窗洞口处设置第一层粘结性聚合物砂浆、第二层粘结性聚合物砂浆和界面养护剂的示意图。 Fig. 28 is a schematic diagram of setting the first layer of adhesive polymer mortar, the second layer of adhesive polymer mortar and the interface curing agent at the openings of doors and windows.
图29是在门窗洞口处设置聚氨酯防水涂料和中砂的示意图。 Fig. 29 is a schematic diagram of setting polyurethane waterproof paint and medium sand at the door and window openings.
图30是本实用新型在门窗洞口处设置伸缩缝嵌条的示意图。 Fig. 30 is a schematic diagram of the utility model setting expansion joint fillets at the openings of doors and windows.
图31是本实用新型在门窗洞口处设置第三层粘结性聚合物砂浆、耐碱自粘纤维网格布和第四层粘结性聚合物砂浆的示意图。 Fig. 31 is a schematic diagram of setting the third layer of cohesive polymer mortar, alkali-resistant self-adhesive fiber mesh cloth and the fourth layer of cohesive polymer mortar at the door and window openings of the present invention.
图32是本实用新型在门窗洞口处设置装饰层的示意图。 Fig. 32 is a schematic diagram of the utility model setting a decorative layer at the opening of a door and window.
附图说明:1-建筑墙体、2-反辐射岩棉、2.1-防火反辐射铝膜、2.2-岩棉板、3-防火玻纤铝箔胶带、4-钢板扩张网、4.1-钢板扩张网孔、4.2-网孔边棱、5-阻热桥保温锚栓、5.1-塑制胀管、5.2-金属螺钉、5.3-塑制隔热端帽、5.4-锚栓孔、5.5-塑制锚固盘、6-第一层粘结性聚合物砂浆、7-第二层粘结性聚合物砂浆、8-界面养护剂、9-装饰层、10-反辐射隔热层、11-粘结层、12-伸缩缝嵌条、12.1-型材、12.2-粘胶、13-伸缩缝密封胶、14-门窗框、15-聚氨酯发泡填缝剂、16-转角钢网、17-聚氨酯防水涂料、18-中砂、19-第三层粘结性聚合物砂浆、20-耐碱自粘纤维网格布、21-第四层粘结性聚合物砂浆。 Description of drawings: 1-building wall, 2-anti-radiation rock wool, 2.1-fireproof anti-radiation aluminum film, 2.2-rock wool board, 3-fireproof glass fiber aluminum foil tape, 4-steel expanded mesh, 4.1-steel expanded mesh Hole, 4.2-mesh edge, 5-heat-resistant bridge insulation anchor, 5.1-plastic expansion tube, 5.2-metal screw, 5.3-plastic heat insulation end cap, 5.4-anchor hole, 5.5-plastic anchor Plate, 6-first layer of adhesive polymer mortar, 7-second layer of adhesive polymer mortar, 8-interface curing agent, 9-decorative layer, 10-anti-radiation heat insulation layer, 11-adhesive layer , 12-expansion joint fillet, 12.1-profile, 12.2-viscose, 13-expansion joint sealant, 14-door and window frame, 15-polyurethane foam sealant, 16-corner steel mesh, 17-polyurethane waterproof coating, 18-medium sand, 19-the third layer of cohesive polymer mortar, 20-alkali-resistant self-adhesive fiber mesh cloth, 21-the fourth layer of cohesive polymer mortar.
具体实施方式 Detailed ways
实施例参见图1、图2所示,这种阻热桥复合反辐射岩棉节能装饰系统为外保温,包括贴在建筑墙体1上的反辐射隔热层10,所述反辐射隔热层包括贴在建筑墙体侧壁上的一片一片的反辐射岩棉2和连接在相邻两反辐射岩棉缝隙之间的防火玻纤铝箔胶带3,
The embodiment is shown in Fig. 1 and Fig. 2. This heat-resisting bridge composite anti-radiation rock wool energy-saving decoration system is external heat preservation, including anti-radiation
所述反辐射隔热层10的外侧设有粘接层11,粘接层11的外侧涂有界面养护剂8,界面养护剂8的外侧又设有装饰层9,所述粘接层由贴在反辐射隔热层外侧的钢板扩张网4、与钢板扩张网固化在一起的第一层粘结性聚合物砂浆6、以及贴在第一层粘结性聚合物砂浆6外侧的第二层粘结性聚合物砂浆7组成,所述第一层粘结性聚合物砂浆6和第二层粘结性聚合物砂浆7的总厚度为8mm左右。所述装饰层9可以是涂料、墙纸、瓷砖、玻璃或石材等。
The outside of the anti-radiation
参见图3-5,所述反辐射岩棉两面材料为防火反辐射铝膜2.1,中间夹持固定有岩棉板2.2,所述防火反辐射铝膜为热辐射反射层,能反射100%的热辐射,起到很好的反射热辐射的功能;岩棉板2.2为隔热层,具有优良的防火(A级不燃)、保温和吸音性能,起到阻隔热传导的作用。反辐射岩棉起到阻隔热传导的作用,反辐射岩棉中的岩棉板2.2是以玄武岩为主要原料,经高温熔融,由高速离心设备制成无机纤维,加入适量粘结剂,固化加工而制成的,是达到燃烧性能A级的建筑用保温材料。 Referring to Figure 3-5, the material on both sides of the anti-radiation rock wool is a fire-resistant anti-radiation aluminum film 2.1, and a rock wool board 2.2 is clamped and fixed in the middle. The fire-resistant anti-radiation aluminum film is a heat radiation reflection layer that can reflect 100% Thermal radiation plays a good role in reflecting thermal radiation; rock wool board 2.2 is a thermal insulation layer, which has excellent fire prevention (Class A non-combustible), heat preservation and sound absorption performance, and plays a role in blocking heat conduction. The anti-radiation rock wool plays the role of blocking heat conduction. The rock wool board 2.2 in the anti-radiation rock wool is made of basalt as the main raw material. It is a building insulation material that reaches Class A in combustion performance.
参见图9、图10,所述钢板扩张网4是钢板经设备冲压扩张而成的,钢板扩张网4上具有均匀间隔排列的六角形网孔4.1,六角形网孔4.1向板体外斜向凸出,网眼丝梗4.2呈波浪形凹凸于板体表面,所述第一层粘结性聚合物砂浆6填满在钢板扩张网4的六角形网孔4.1中并填满反辐射岩棉2与钢板扩张网4之间的间隙并完全覆盖住钢板扩张网4,本实施例中,钢板采用薄型镀锌带钢,经设备冲压扩张而成钢板扩张网4,此钢板扩张网4有别于传统菱形网,钢板扩张网4的六角形网孔长节距,纵向规则排列,网眼丝梗侧立,六角形立体结构,具有较好的刚性骨力,钢板扩张网无接点且整体结实牢固,钢板扩张网抗压抗拉抗变形能力强,与砂浆粘结力强。
Referring to Fig. 9 and Fig. 10, the expanded
参见图2、图6-8,所述钢板扩张网4和反辐射岩棉2由阻热桥保温锚栓5固定在建筑墙体1上,阻热桥保温锚栓5包括塑制胀管5.1、金属螺钉5.2和塑制隔热端帽5.3,其中塑制胀管5.1的一端穿过钢板扩张网4和反辐射岩棉2并插在建筑墙体1中,塑制胀管5.1的另一端设有可压住钢板扩张网4和反辐射岩棉2的塑制锚固盘5.5,所述金属螺钉5.2插在塑制胀管5.1的锚栓孔5.4中,所述隔热端帽5.3又堵在锚栓孔5.4上;本实施例中,塑制胀管5.1、塑制锚固盘5.5和塑制隔热端帽5.3采用纯尼龙材料,具有稳定的高承载性能。金属螺钉拧入锚栓孔后,盖上隔热端帽,可形成封闭的空气柱,阻断热桥。
Referring to Fig. 2 and Fig. 6-8, the expanded
参见图11所示,反辐射隔热层不受力,粘结层和阻热桥保温锚栓构成整体受力层,通过阻热桥保温锚栓与建筑墙体牢固连接,与传统施工工艺中的依靠胶浆与岩棉的粘结力相比,抗压和抗拉有显著的优势。图中R表示建筑墙体对整体受力层的拉力,N表示整体受力层受到的外力(既本实用新型本身的重力,以及安装在本实用新型表面上的一些构件的重力)。 As shown in Figure 11, the anti-radiation heat insulation layer is not stressed, and the bonding layer and the heat-resisting bridge insulation anchor bolt constitute the overall stress layer, which is firmly connected with the building wall through the heat-resisting bridge insulation anchor bolt, which is different from the traditional construction technology. Compared with the bonding force of mortar and rock wool, it has significant advantages in compressive and tensile strength. In the figure, R represents the pulling force of the building wall on the overall stressed layer, and N represents the external force received by the overall stressed layer (both the gravity of the utility model itself and the gravity of some components installed on the surface of the utility model).
参见图12-17,这种阻热桥复合反辐射岩棉节能装饰系统的施工方法,其步骤如下(以下内容是为以平面墙体为例的施工步骤示意):参见图12,步骤一,将一块一块的反辐射岩棉2铺设在建筑墙体侧壁表面;参见图13,步骤二,反辐射岩棉2与反辐射岩棉2之间的缝隙使用防火玻纤铝箔胶带3封闭;参见图14,步骤三,横向交错铺设钢板扩张网4,搭接宽度50mm左右,全面覆盖反辐射岩棉2,使用阻热桥保温锚栓5将钢板扩张网4和反辐射岩棉2固定至建筑墙体1;参见图15,步骤四,粉刷第一层粘结性聚合物砂浆6,第一层粘结性聚合物砂浆6压入钢板扩张网4的六角形网孔4.1中,填满反辐射岩棉2与钢板扩张网4之间的间隙,并完全覆盖住钢板扩张网4,第一层粘结性聚合物砂浆6的厚度控制在6mm左右;参见图16,步骤五,第一层粘结性聚合物砂浆6施工24小时后,抹第二层粘结性聚合物砂浆7并找平,第二层粘结性聚合物砂浆7表面凝固后涂界面养护剂8,两层粘结性聚合物砂浆的总厚度控制在8mm左右;参见图17,步骤六,养护七天后,在界面养护剂8外侧进行装饰层9施工,例如涂层、墙砖、石材装饰等。
See Figure 12-17, the construction method of this heat-resistant bridge composite anti-radiation rock wool energy-saving decoration system, the steps are as follows (the following content is a schematic diagram of the construction steps taking the flat wall as an example): see Figure 12,
参见图23-32,所述建筑墙体1上可开有门窗洞口,门窗洞口侧壁上依次贴有反辐射隔热层、粘接层、界面养护剂、聚氨酯防水涂料17、中砂18、第三层粘结性聚合物砂浆19、耐碱自粘纤维网格布20、第四层粘结性聚合物砂浆21和装饰层9,所述门窗洞口侧壁上的反辐射岩棉2与建筑墙体侧壁上的反辐射岩棉2之间也设有防火玻纤铝箔胶带3,门窗洞口侧壁上的钢板扩张网4与建筑墙体侧壁上的钢板扩张网4之间设有转角钢网16,门窗洞口侧壁上的钢板扩张网4和反辐射岩棉2也由阻热桥保温锚栓5固定在建筑墙体1上,所述第三层粘结性聚合物砂浆19、耐碱自粘纤维网格布20、第四层粘结性聚合物砂浆21和装饰层9与门窗框14之间设有伸缩缝,伸缩缝中填充有伸缩缝密封胶13。
Referring to Figures 23-32, the
当建筑墙体1上开有门窗洞口时,这种阻热桥复合反辐射岩棉节能装饰系统的施工方法还包括以下内容:参见图24,在进行步骤一之前,先在门窗洞口上安装门窗框14,并在门窗框14与建筑墙体之间填充聚氨酯发泡填缝剂15;参见图25,在进行步骤一时,在门窗洞口侧壁上也铺设反辐射岩棉2;参见图26,在进行步骤二时,在门窗洞口侧壁上的反辐射岩棉2与建筑墙体侧壁上的反辐射岩棉2之间的缝隙处也粘贴防火玻纤铝箔胶带3;参见图27,在进行步骤三时,在门窗洞口侧壁上的反辐射岩棉2上也铺设钢板扩张网4,在转角处设置转角钢网16,使用阻热桥保温锚栓5将转角钢网16、门窗洞口侧壁上的钢板扩张网4和门窗洞口侧壁上的反辐射岩棉2固定至建筑墙体1;参见图28,在进行步骤四时,在门窗洞口侧壁上的钢板扩张网4上也粉刷第一层粘结性聚合物砂浆6;在进行步骤五时,在门窗洞口侧壁上的第一层粘结性聚合物砂浆6上也粉刷第二层粘结性聚合物砂浆7并找平,并在第二层粘结性聚合物砂浆7表面凝固后也涂界面养护剂8;参见图29,在步骤五完成后,在进行步骤六前,先在门窗洞口侧壁上的界面养护剂8上涂刷聚氨酯防水涂料17,并即刻撒上中砂18,然后参见图30,沿门窗框14四圈粘贴伸缩缝嵌条12,然后参见图31,在中砂18上粉刷3mm左右的第三层粘结性聚合物砂浆19,第三层粘结性聚合物砂浆19固化后粘贴耐碱自粘纤维网格布20,并再次粉刷2mm左右的第四层粘结性聚合物砂浆21,所述第三层粘结性聚合物砂浆19、耐碱自粘纤维网格布20和第四层粘结性聚合物砂浆21均不覆盖伸缩缝嵌条12;然后参见图32,在进行步骤六时,在门窗洞口侧壁的第四层粘结性聚合物砂浆21上也进行装饰层9施工,并且装饰层9不覆盖伸缩缝嵌条12,当装饰层9固化后,取出伸缩缝嵌条12,填入伸缩缝密封胶13,施工完成。
When there are door and window openings on the
参见图18-22,所述粘接层11上设有伸缩缝,伸缩缝中填充有伸缩缝密封胶13。所述伸缩缝两侧相邻的尼龙材质的阻热桥保温锚栓可以用镀锌或不锈钢材质的防火锚栓来代替,这样可以起到防火阻隔效果。
Referring to Figures 18-22, the
当粘接层11上需要设有伸缩缝、伸缩缝中需要填充伸缩缝密封胶13的时候,这种阻热桥复合反辐射岩棉节能装饰系统的施工方法还包括以下内容:参见图19,在所述步骤二结束后,在需要设置伸缩缝的位置,将伸缩缝嵌条12粘贴在反辐射岩棉2表面,接着参见图20,依次进行步骤三、步骤四、步骤五和步骤六,并且保证钢板扩张网4、第一层粘结性聚合物砂浆6、第二层粘结性聚合物砂浆7、界面养护剂8和装饰层9均不覆盖伸缩缝嵌条12,然后参见图21,在装饰层9固化后,取出伸缩缝嵌条12,最后参见图22,在伸缩缝内填入伸缩缝密封胶13。伸缩缝密封胶13能对伸缩缝形成耐久、柔韧及防水的粘结密封效果。
When the
参见图18,伸缩缝嵌条12为根据伸缩缝尺寸要求制作的型材12.1,一面附有粘胶12.2,可以粘贴在反辐射岩棉2表面。
Referring to Figure 18, the expansion
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011204272134U CN202324443U (en) | 2011-11-02 | 2011-11-02 | Thermal-bridge-resisting composite anti-radiation rock wool energy-saving decorative system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011204272134U CN202324443U (en) | 2011-11-02 | 2011-11-02 | Thermal-bridge-resisting composite anti-radiation rock wool energy-saving decorative system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202324443U true CN202324443U (en) | 2012-07-11 |
Family
ID=46436425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011204272134U Withdrawn - After Issue CN202324443U (en) | 2011-11-02 | 2011-11-02 | Thermal-bridge-resisting composite anti-radiation rock wool energy-saving decorative system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202324443U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102359235A (en) * | 2011-11-02 | 2012-02-22 | 航天海鹰安全技术工程有限公司 | Heat resisting bridge composite counter radiation rock wool energy-saving decoration system and construction method thereof |
CN104453137A (en) * | 2013-09-18 | 2015-03-25 | 天津开发区福林发展有限公司 | Cold-bridge-free composite ceramic plate and manufacturing and using method thereof |
CN104631739A (en) * | 2014-12-31 | 2015-05-20 | 深圳市嘉达高科产业发展有限公司 | Novel heat insulation and decoration integrated plate and manufacturing method thereof |
CN106760342A (en) * | 2016-12-30 | 2017-05-31 | 王德占 | A kind of thermal-insulating waterproof integrated board |
CN113089860A (en) * | 2021-04-12 | 2021-07-09 | 朱秦江 | Assembled leveling composite radiation energy-saving concrete wall and construction method thereof |
-
2011
- 2011-11-02 CN CN2011204272134U patent/CN202324443U/en not_active Withdrawn - After Issue
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102359235A (en) * | 2011-11-02 | 2012-02-22 | 航天海鹰安全技术工程有限公司 | Heat resisting bridge composite counter radiation rock wool energy-saving decoration system and construction method thereof |
CN102359235B (en) * | 2011-11-02 | 2013-05-08 | 航天海鹰安全技术工程有限公司 | Heat resisting bridge composite counter radiation rock wool energy-saving decoration system and construction method thereof |
CN104453137A (en) * | 2013-09-18 | 2015-03-25 | 天津开发区福林发展有限公司 | Cold-bridge-free composite ceramic plate and manufacturing and using method thereof |
CN104631739A (en) * | 2014-12-31 | 2015-05-20 | 深圳市嘉达高科产业发展有限公司 | Novel heat insulation and decoration integrated plate and manufacturing method thereof |
CN106760342A (en) * | 2016-12-30 | 2017-05-31 | 王德占 | A kind of thermal-insulating waterproof integrated board |
CN113089860A (en) * | 2021-04-12 | 2021-07-09 | 朱秦江 | Assembled leveling composite radiation energy-saving concrete wall and construction method thereof |
CN113089860B (en) * | 2021-04-12 | 2022-02-22 | 朱秦江 | Assembled leveling composite radiation energy-saving concrete wall and construction method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100464043C (en) | Bound-type composite heat-insulation wall with support body | |
WO2010105496A1 (en) | External heat preservation composite wall of exterior wall with support | |
CN103122663B (en) | Independent enclosure body and manufacturing and installing method thereof | |
WO2011116622A1 (en) | Composite thermal insulation wall with mesh and plaster at both sides | |
CN1827937A (en) | Binding type thermal-insulation composite wall with support | |
CN203684460U (en) | Assembled wall | |
CN202324443U (en) | Thermal-bridge-resisting composite anti-radiation rock wool energy-saving decorative system | |
CN111270821B (en) | A ceramic thin plate aluminum honeycomb composite panel system and construction method thereof | |
CN111270823A (en) | Ceramic sheet heat-insulation composite board system and construction method thereof | |
CN202099896U (en) | Heat insulation composite wall body with plaster meshes on two sides | |
CN104420549A (en) | Prefabricated heat insulation board | |
CN104420556A (en) | Assembly type energy-saving wall | |
CN102359235B (en) | Heat resisting bridge composite counter radiation rock wool energy-saving decoration system and construction method thereof | |
CN206957099U (en) | A kind of insulation and decoration acoustic wall board | |
CN210562717U (en) | Rock wool heat preservation fire prevention composite sheet thin plastering external wall insulation system | |
CN103343578A (en) | STP ultra-thin vacuum heat insulation heat preservation board and application of STP ultra-thin vacuum heat insulation heat preservation board in outer wall construction | |
WO2012119479A1 (en) | Outer insulating composite wall of outer wall | |
CN204401814U (en) | Light polyurethane heat preservation and decoration of outer wall system | |
CN212358693U (en) | An enclosure system based on prefabricated double steel plate shear wall | |
CN102011435B (en) | Integrated heat preservation and decoration system of radiation heat insulation rock wool fixedly connected by steel mesh and construction method thereof | |
WO2013155869A1 (en) | Assemblable wall | |
RU90813U1 (en) | ENERGY-SAVING HEAT-INSULATING AND DECORATIVE PANEL | |
CN1811088A (en) | Heat insulating system outside external wall | |
CN218437565U (en) | Low-energy-consumption heat insulation structure for outer wall plate gap under building roof plate | |
CN102071759B (en) | Energy-saving decoration system of composite radiated heat-insulation film and construction method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20120711 Effective date of abandoning: 20130508 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20120711 Effective date of abandoning: 20130508 |
|
RGAV | Abandon patent right to avoid regrant |