CN202034903U - Soft switching pressure rising direct current to direct current (DC-DC) convertor - Google Patents

Soft switching pressure rising direct current to direct current (DC-DC) convertor Download PDF

Info

Publication number
CN202034903U
CN202034903U CN 201120116600 CN201120116600U CN202034903U CN 202034903 U CN202034903 U CN 202034903U CN 201120116600 CN201120116600 CN 201120116600 CN 201120116600 U CN201120116600 U CN 201120116600U CN 202034903 U CN202034903 U CN 202034903U
Authority
CN
China
Prior art keywords
dc
connected
end
circuit
diode
Prior art date
Application number
CN 201120116600
Other languages
Chinese (zh)
Inventor
卜树坡
吴冬燕
曹建东
章雯
钱涛
Original Assignee
苏州工业职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州工业职业技术学院 filed Critical 苏州工业职业技术学院
Priority to CN 201120116600 priority Critical patent/CN202034903U/en
Application granted granted Critical
Publication of CN202034903U publication Critical patent/CN202034903U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
    • Y02B70/14Reduction of losses in power supplies
    • Y02B70/1491Other technologies for reduction of losses, e.g. non-dissipative snubbers, diode reverse recovery losses minimisation, zero voltage switching [ZVS], zero current switching [ZCS] or soft switching converters

Abstract

The utility model discloses a soft switching pressure rising direct current to direct current (DC-DC) convertor, which comprises filter capacitors C1, C2 and C3, filter inductors L1 and L2, switching elements S1 and S2, diodes D1, D2 and D3, a direct voltage detection circuit, a driving circuit and a controller. A buffer return circuit is formed by the filter inductor L2, the filter capacitor C2, the diode D2 and the switching element S2. During each sampling period, the switching element S1 is turned on firstly, and then soft switching of the switching element S1 of a main power return circuit is achieved by using the auxiliary buffer return circuit. No auxiliary elements are needed to be arranged on the main power return circuit when the soft switching pressure rising DC-DC convertor is applied, so that the convertor can effectively lower system loss, volume and cost.

Description

一种软开关升压型DC-DC变换器 A soft switching boost type DC-DC converter

技术领域 FIELD

[0001] 本实用新型涉及一种软开关升压型直流-直流变换器,属于电能变换领域。 [0001] The present invention relates to a soft-switched boost-type DC - DC converter, belonging to the field of power conversion. 背景技术 Background technique

[0002] 升压型直流-直流变换器采用高频斩波技术,将较低的直流电压提升到较高的直流电压,在燃料电池、光伏发电系统中获得了广泛应用。 [0002] The boost-type DC - DC converter using frequency chopper technology, the low DC voltage raised to a higher DC voltage has been applied widely in the fuel cell, a photovoltaic power generation system. 但是传统电路采用硬开关的工作方式,在功率开关器件以及功率二极管的导通和关断过程中,产生较大的开关损耗,由于开关频率很高,造成系统效率下降,不利于降低损耗、体积和成本。 However, the conventional circuit uses hard-switched mode of operation, the turn-on and turn-off power switch device and a power diode, a greater switching loss due to the high switching frequency, resulting in decreased system efficiency, is not conducive to reducing the loss, the volume of and costs.

[0003] 近几年提出的软开关技术,即通过附加有源或无源缓冲电路,使主电路的功率开关器件和功率二极管在零电压、零电流时导通或者关断,进而降低开关损耗,提高系统效率。 [0003] In recent years, soft-switching technology proposed, i.e., by additional active or passive snubber circuit, so that the power switching device and the main circuit power diode at zero voltage, zero current is turned on or off, thereby reducing switching loss improve system efficiency. 一种现有方案的原理如图1所示,是在主电路上附加一辅助电路来实现主开关的零电压开通。 The principle of a conventional embodiment as shown, is an additional auxiliary circuit on the main circuit of the main switch to achieve ZVS 1. 这种方案不能实现辅助电路中的功率开关器件的软开关,而且在主功率回路串联谐振电感,造成损耗加大,谐振电感的容量也要和主回路的滤波电感相一致,因此造成其效率低、成本和体积均有所增加。 This solution does not achieve soft switching circuit of the auxiliary power switching device, the main power circuit and the series resonant inductance, resulting in increased losses, but also the capacity of the resonant inductor and filter inductance of the main circuit is consistent, thus causing low efficiency , have increased cost and size. 专利“直流变换器功率开关管的软开关方法和软开关直流变换器(授权公告号CN1123962C)”公开了一种软开关方案(如图2所示),其原理是在直流变换器的基础上增加辅助功率开关管、谐振电容、谐振电感,三者与主功率开关管S构成谐振回路,在主、辅功率开关管上分别反向并联一个二极管,且在主功率开关管上并联一个充放电电容。 Patent "soft switching method DC converter and a power switch soft switching DC converter (authorized Publication No. CN1123962C)" discloses a soft-switching scheme (FIG. 2), which is based on the principle of the DC-DC converter adding auxiliary power switch, a resonant capacitor, a resonant inductor, and the three main power switch S constitute a resonance circuit, a diode in inverse parallel, respectively on the main and auxiliary power switch, and a charge and discharge in parallel on the main power switch capacitance. 利用上述谐振回路的谐振特性、谐振电感电流不能突变的特性以及充放电电容电压不能突变的特性,并通过脉宽调制电路控制主、辅助功率开关管周期性地开通和关断, 实现开关管的零电压电流开、零电压关。 Using the resonant characteristics of the resonant circuit, the resonant inductor current can not change suddenly, and the charge-discharge characteristics of the capacitor voltage characteristic can not be mutated, and control of the main, auxiliary power by pulse width modulation circuit periodically switch on and off, the switch is implemented zero-voltage current switching, zero-voltage turn. 辅助功率开关管的零电流开、零电压关,以及整流二极管的零电压关,进而有效提高了系统效率。 Zero current auxiliary power switch ON, zero-voltage turn, and the zero-voltage turn rectifier diode, and further improve the system efficiency. 但是这种方案同样存在功率回路中串联谐振电感的问题,同时其需要的辅助器件较多,上述因素造成其在体积和成本方面的劣势。 However, this solution also a problem in the power series resonant circuit inductance, while it needs more auxiliary devices, which causes disadvantages in terms of size and cost factors described above.

实用新型内容 SUMMARY

[0004] 鉴于上述现有技术存在的缺陷,本实用新型的目的是提出一种软开关升压型DC-DC变换器,以解决现有直流-直流变换器存在的主开关器件的开关损耗大、附加的软开关电路体积大、成本高的问题。 [0004] In view of the above-described defects of the prior art, the object of the present invention is to provide a soft-switched boost-type DC-DC converter, in order to solve the conventional DC - DC converter a large presence of the main switching device switching loss additional soft switching circuit bulky, high cost.

[0005] 本实用新型上述目的,一种软开关升压型DC-DC变换器,其特征在于:所述变换器的结构组成包括电容Ci、C2、C3,滤波电感Li、L2,开关器件Si、S2, 二极管Dp D2、D3,直流电压检测电路,驱动电路以及控制器; [0005] The above object of the present invention a soft switching DC-DC boost converter, wherein: said transducer configuration consists of a capacitance Ci, C2, C3, filter inductors Li, L2, switching element Si , S2, diode Dp D2, D3, the DC voltage detecting circuit, a driving circuit and a controller;

[0006] 其连接结构为:变换器输入端的滤波电容C1与直流电源正、负极相并联;滤波电感! [0006] connected structure: the inverter input DC power supply filtering capacitor C1 and the positive and negative electrode in parallel; filter inductor! ^的一端与直流电源正极、C1的一端以及开关器件&的功率输出端相连;滤波电感L1的另一端与二极管D1的正极、二极管D3的正极以及开关器件S1的功率输入端相连;二极管D1 的负极与变换器的输出端正极以及滤波电容C3的一端相连;二极管D3的负极与电容C2的一端、电感L2的一端相连;电感L2的另一端与二极管&的正极相连,二极管&的负极与开关器件&的功率输入端相连;变换器输入端的直流电源负极与输出端的电源负极和电容C2的另一端、开关器件S1的功率输出端以及电容C3的另一端相连;直流电压检测电路的输入端连接电容C3的两端,且直流电压检测电路的输出端连接控制器的模拟量输入接口,控制器的输出端连接驱动电路,驱动电路的一个输出端(¾连接开关器件S1的信号端,另一个输出端连接开关器件&的信号端。 One end of ^ the DC voltage source positive, a C1 end and a switching device & power output terminal connected; Ll other end of the filter inductor and the anode of the diode D1 is connected to the power input terminal of the positive electrode and the switching device S1 of the diode D3; diode D1 and correct the negative output of the inverter is connected to one pole and a filter capacitor C3; diode D3 is connected to one end of the negative electrode of the capacitor C2, and one end of inductor L2; L2 is connected to the positive electrode and the other end of the diode & inductor, switch and diode cathode & device & power input terminal; connected to the other end of the negative power converter input DC power supply negative output terminal and the capacitor C2, the power output terminal of the switching device S1 and the other end of the capacitor C3; input DC voltage detection circuit is connected across the capacitor C3, and the output terminal of the analog DC voltage detection circuit connected to an input interface of the controller, the controller is connected to the output terminal of the drive circuit, an output driver circuit (¾ signal terminal S1 is connected to the switching device, the other signal terminal connected to an output terminal of the switching device &.

[0007] 进一步地,上述开关器件S1A2为全控性功率器件,二极管Dp D2、D3为快恢复型功 [0007] Furthermore, the switching device S1A2 full controllability of the power device, the diode Dp D2, D3 for the fast recovery type work

率二极管。 Rate diode.

[0008] 本实用新型软开关升压型DC-DC变换器的应用实施,其突出效果为: [0008] The application of embodiments of the present invention, the soft switching boost type DC-DC converter, which protrudes effect:

[0009] 通过在原有的直流-直流变换器中引入软开关电路,实现了主开关器件在开关过程的零电压、零电流运行,有效减小了功率损耗,降低了发热,提高了系统效率,可以提高运行功率、提高其集成度,同时本方案无需在主功率回路串联谐振器件或附加开关电路,相应引入的附加损耗也小。 [0009] in the original by the DC - DC converter incorporated in a soft switching circuit, a main switching device to achieve zero-voltage switching in the process, zero current operation, effectively reducing the power loss, heat generation is reduced, improving the efficiency of the system, operating power can be increased to improve the degree of integration, while the program in the main power circuit without a series resonant circuit switching device, or in addition, the introduction of the corresponding additional loss is small.

[0010] 以下便结合实施例附图,对本实用新型的具体实施方式作进一步的详述,以使本实用新型技术方案更易于理解、掌握。 [0010] The following embodiments in conjunction with the accompanying drawings will embodiment, the present invention further particular embodiment described in detail, so that the technical solution of the present invention more readily understood, master.

附图说明 BRIEF DESCRIPTION

[0011] 图1是现有技术一种变换器的原理图; [0011] FIG. 1 is a schematic diagram of an inverter of the prior art;

[0012] 图2是现有技术另一种变换器的原理图; [0012] FIG. 2 is a schematic diagram of another prior art transducer;

[0013] 图3是本实用新型变换器的原理图; [0013] FIG. 3 is a principle of the present invention FIG converter;

[0014] 图4是直流电压检测电路的原理示意图; [0014] FIG. 4 is a schematic diagram of the principle of the DC voltage detecting circuit;

[0015] 图5是驱动电路的原理示意图; [0015] FIG. 5 is a schematic diagram of the principle of a driving circuit;

[0016] 图6是控制器的原理示意图; [0016] FIG. 6 is a simplified schematic of the controller;

[0017] 图7是本实用新型变换器在一个采样周期中实现控制的流程示意图; [0017] FIG. 7 is a flow diagram of the present invention to achieve control of the converter at a sampling period;

[0018] 图8是本实用新型变换器在一个采样周期内的工作波形示意图。 [0018] FIG. 8 is a waveform diagram of the present invention, the converter working in one sampling period.

具体实施方式 Detailed ways

[0019] 下面结合图3至图8所示的变换器原理图、一个采样周期中实现控制的流程示意图以及一个采样周期内的工作波形示意图,进一步说明本实用新型的一种软开关升压型DC-DC变换器及其控制方法。 [0019] below with reference to FIGS. 3 to 8 shown in FIG converter principle, a schematic flow diagram of the control and operation waveforms in a sampling period the sampling period achieved, a further description of the present invention a soft switching boost DC-DC converter and its control method. 图3是本实用新型实施例的结构示意图,其组成包括滤波电容Cp C2、C3,滤波电感Li、L2,开关器件Si、S2, 二极管Dp D2、D3,直流电压检测电路,驱动电路以及控制器; FIG 3 is a structural diagram of an embodiment of the present invention, the composition comprising a filter capacitor Cp C2, C3, filter inductors Li, L2, switching element Si, S2, diode Dp D2, D3, the DC voltage detection circuit, a driving circuit and a controller ;

[0020] 变换器输入端的滤波电容C1,与输入端的直流电源正、负极相并联;滤波电感L1的一端与变换器输入端的直流电源正极、C1的一端以及开关器件&的功率输出端相连,滤波电感L1的另一端与二极管D1的正极、二极管D3的正极以及开关器件S1的功率输入端相连; 二极管D1的负极与变换器的输出端以及滤波电容C3的一端相连;二极管D3的负极与电容C2的一端、电感L2的一端相连;电感L2的另一端与二极管A的正极相连,二极管A的负极与开关器件&的功率输入端相连;变换器输入端的直流电源负极与输出端的电源负极和电容(:2的另一端、开关器件S1的功率输出端以及电容仏的另一端相连;直流电压检测电路的输入端连接电容C3的两端,用于检测变换器的输出电压,直流电压检测电路的输出端连接控制器的模拟量输入接口,控制器的输出端连接驱动电路,驱动电 [0020] The filtering capacitor C1 the input transducer, the input terminal of the DC power supply positive and negative in parallel; connected to the filter inductor L1 DC power supply positive end of the converter input terminal, one end of C1 and the switching device & power output, the filter the positive electrode and the other end of the inductor L1 and the diode D1, a positive power input and the switching device S1 is connected to the diode D3; D1 is connected to the output terminal of the diode and the cathode of the inverter filter capacitor C3 to one end; the cathode of diode D3 and the capacitor C2 end, L2, end of the inductor is connected; positive inductor L2 and the other end of the diode a is connected, is connected to the negative electrode of the switching device & power input terminal of the diode a; a negative power and a capacitance converter input DC power supply negative output terminal ( : 2, the other end of the power output terminal and the other terminal of the capacitor Fo is connected to the switching device S1; DC input voltage detection circuit connected across the capacitor C3 for detecting the output voltage of the converter, the output of the DC voltage detecting circuit analog input terminal connected to the interface controller, the controller is connected to the output terminal of the driving circuit, the driving power 的一个输出端Gs,连接开关器件S1的信号端,另一个输出端Gs2连接开关器件&的信号端,分别用于控制开关器件S1和&的导通与关断。 An output of Gs, the signal terminal S1 is connected to the switching device, the other output signal terminal connected to the switching device & Gs2 respectively for controlling the switching devices S1 and & turned on and off.

[0021] 其中,电感L1是功率回路的滤波电感,和二极管D1、开关器件S1、电容C3构成直流升压变换器。 [0021] wherein, L1 is the inductance of inductive power filter circuit, and a diode D1, the switching devices Sl, capacitor C3 constituting a DC boost converter. 电感L2是辅助缓冲电路的滤波电感,和电容C2、二极管D2、开关器件&构成缓冲回路。 The buffer circuit is an auxiliary inductor L2 filter inductor, and capacitor C2, a diode D2, the switching device constituting the buffer circuit &. 二极管D3用于防止开关器件S1导通时电容C2的正负极短路。 Diode D3 for positive and negative terminal of the capacitor C2 is prevented when the switching device S1 is turned on. 其中开关器件S” S2为全控性功率器件,二极管D” D2、D3为快恢复型功率二极管。 Wherein the switching device S "S2 full control of the power device, the diode D" D2, D3 for the fast recovery type power diode.

[0022] 此外,其中直流电压检测电路由电阻RDCl和电阻RDC2串联组成,如图4所示。 [0022] Further, where the DC voltage detecting circuit of a resistor and a resistor RDC2 RDCl in series, as shown in FIG. RDCl的一端与直流电压输出端的正极(即变换器输出端的电源正极)相连,另一端与RDC2 的一端和控制器的输入端相连,RDC2的另一端与直流电压输出端的负极(即变换器输出端的电源负极)相连。 One end RDCl is connected to the positive (i.e., positive power converter output) DC voltage output terminal and the other end connected to the input terminal RDC2 end and controller, and the other end RDC2 to the DC voltage output terminal of the negative electrode (i.e., the inverter output terminal negative power supply) is connected. 该直流电压检测电路是利用电阻串联分压的原理,将直流电压转换为与其成正比的弱电信号。 The DC voltage detecting circuit using the principle of dividing the resistance in series, the DC voltage is converted to a weak signal proportional thereto.

[0023] 驱动电路包括电路1和电路2,如图5所示,电路1用于驱动开关管Si,电路2用于驱动开关管S2 ;电路1采用驱动芯片1,其型号为IR2110,驱动芯片1的输入端(12脚) 与控制器的第一输出端相连,驱动芯片1的输出端(1脚)与开关管Sl的信号端相连;电路2采用驱动芯片2,其型号为IR2110,驱动芯片2的输入端(12脚)与控制器的第二输出端相连,驱动芯片2的输出端(1脚)与开关管S2的信号端相连。 [0023] The driving circuit includes a circuit 1 and circuit 2, shown in Figure 5, a circuit for driving the switch Si, 2 for driving the switch circuit S2; driving circuit 1 using the chip 1, which is a model of IR2110, driving chip 1 is an input terminal (pin 12) and the controller is connected to a first output terminal, an output terminal (pin 1) connected to the signal terminal of the switch Sl driving chip 1; 2 employs a drive circuit chip 2, which is a model of IR2110, drive 2 chip input (pin 12) and the second output terminal of the controller is connected to the output terminal 2 of the driver chip (pin 1) connected to the signal terminal of the switch S2.

[0024] 控制器包括单片机1和外围电路,其原理图如图6所示。 [0024] The controller comprises a microcontroller and a peripheral circuit 1, the schematic diagram shown in Figure 6. 型号可选之一为PIC公司的单片机30F2010。 One of the company's models available for the PIC microcontroller 30F2010. 外围电路包括时钟电路和复位电路。 And a peripheral circuit reset circuit comprises a clock circuit. 时钟电路用于为单片机提供时钟信号,包括晶振Xl和电容CX1,CX2。 A clock circuit for supplying a clock signal to the microcontroller, and comprises a crystal Xl capacitors CX1, CX2. 电容CXl的一端和CX2的一端以及控制器的电源地相连,电容CXl的另一端与晶振Xl的一端以及单片机1的第一时钟输入端相连,电容CX2的另一端与晶振Xl的另一端以及单片机1的第二时钟输入端相连。 End of the capacitor CXl and CX2 power ground at one end and a controller is connected to the other terminal of the capacitor is connected to one end of the crystal Xl CXl microcontroller and a first clock input terminal 1, and the other ends of the capacitor CX2 crystal Xl and SCM It is connected to a second clock input terminal 1. 复位电路用于为单片机1在上电时提供复位信号,包括电阻RSl和电容CS1,电阻RSl的一端与控制器的电源正极相连,电阻RSl的另一端与电容CSl的一端以及单片机1的复位信号输入端相连,电容CSl 的另一端与控制器的电源地相连。 A reset circuit for providing power to the microcontroller when a reset signal, and a capacitor including a resistor RSl CS1, one end of the positive power supply controller is connected to the resistor RSl, the other end of the resistor RSl capacitor CSl microcontroller reset signal and the end of the 1 input terminal, the other end is connected to the power supply for the capacitor of CSl.

[0025] 上述软开关升压型直流-直流变换器的控制方法,其控制流程如图7所示,设置采样周期,在每个采样周期中,包括如下步骤: [0025] The soft switching boost-type DC - DC converter control method, which control flow shown in Figure 7, the sampling period is provided in each sampling period, comprising the steps of:

[0026] I、首先开通开关器件 [0026] I, first turning on the switching device

[0027] II、设定时间、,在&的导通时间等于、时,开通开关器件S1 ; [0027] II, equal to the set time ,, & conduction time of the time, turning on the switching devices Sl;

[0028] III、在控制器中,设置变换器的输出电压参考值,采集直流电压检测电路的输出信号,经过AD转换,获得与变换器输出电压成比例的数字量信号,再用变换器的输出电压参考值减去与变换器输出电压成比例的数字量信号,其结果经过比例-积分调节后,再乘以采样周期值,获得开关器件S1的开通时间; [0028] III, in the controller, the inverter output voltage reference set, collecting the output signal of the DC voltage detecting circuit, through an AD converter to obtain a digital signal proportional to the converter output voltage, then the converter subtracting the reference value of the output voltage of the inverter output voltage proportional to the digital signal, the result through proportional - integral after adjustment, the sampling period multiplied by the value obtained on-time of the switching device S1;

[0029] IV、在开关器件S1的开通时间与步骤三的结果相同时,关断开关器件S1和& ; [0029] IV, and the results of the opening time of the three steps of the switching device S1 is the same, and turns off the switch S1 & devices;

[0030] 在后续的每个采样周期到来时,重复步骤I至步骤IV。 [0030] In the subsequent arrival of each sampling period, the step of repeating steps I to IV.

[0031] 下面具体分析在一个采样周期内的工作过程。 [0031] The operation of a specific analysis procedure in one sampling period. 分为四个过程,图8给出了本实用新型所提出方案的工作波形原理图。 Is divided into four processes, Figure 8 shows the operating waveform diagram of the present invention proposed scheme. 第一个过程,在每个采样周期开始时刻,首先开通开关器件s2,对应的驱动信号(\变为高电平,由于此时电容C2两端的电压高于输入电源电压, 电容C2将经过电感L2、二极管D2、开关器件&向输入侧的电容C1反向充电,随着时间延长, 反向电流i2逐渐减小直至到零,此段时间对应为、;第二个过程,开通开关器件S1,对应的驱动信号&变为高电平,输入侧的直流电源、电感L1和开关器件S1构成回路,产生电流ilt) 流过开关器件S1的电流I1由于电感L1的存在,由零逐渐增加,实现开关器件S1的零电流开通,对应的S1的导通时间为直流电压闭环调节器输出的时间〖。 A first process, the start time of each sampling period, the first switching device to open s2, corresponding to the drive signal (\ goes high, since at this time the voltage across the capacitor C2 is higher than the input supply voltage, the capacitor C2 through the inductor L2, diode D2, switching device to reverse charge capacitor C1 & input side, with time, until the reverse current i2 gradually decreases to zero, this period corresponds to,; the second process, the opening of the switching device S1 , & drive signal corresponding to the high level, the input side of the DC power supply, the switching device S1 and the inductor L1 constitute a loop, generating a current ILT) flowing through the switching device S1 current I1 due to the presence of inductor L1 is increased gradually from zero, to achieve zero-current switching device S1 is opened, the corresponding S1-time is the time a DC voltage regulator loop 〖output. “第三个过程,流过电感L1和开关器件S1的电流I1持续增加;第四个过程,在S1的导通时间等于t。n时,关断开关器件S1,对应的驱动信号变为低电平,流过电感L1的电流一部分经过二极管D3为电容C2充电,开关器件S1两端的电压、逐渐升高,可近似开做零电压关断,有效降低了关断过程的电压变化应力,降低了关断损耗,此段时间对应为t2。最后一个过程为电容C3的充电过程,对应的时间为本采样周期的剩余时间t。ff,流过电感L1的电流另一部分经过二极管D1为输出侧的电容仏充电,实现升压控制,同时,关断开关器件&,对应的驱动信号巧2变为低电平,由于此时流过开关器件&的电流为零,因此实现了开关器件&的零电流关断。 [0032] 由图可知,在主功率开关器件的开关过程中,实现了零电压、零电流工作,进而提高了系统效率。而且本方案无需在主回路中 "The third process, flows through the inductor L1 and the switching device S1 of the current I1 continues to increase; the fourth process, the on-time is equal t.n S1, the switching device S1 is turned off, the driving signal corresponding to a low level, the current flowing through the inductor L1 through the diode portion D3 to charge the capacitor C2, the voltage across the switching devices Sl, gradually increased, the opening can be made approximately zero voltage turn-off, effectively reducing the stresses during turn-off voltage variations and reduce the turn-off loss, this period corresponds to t2. the last process is the charging process of the capacitor C3, the present time corresponding to the sampling period of the remaining time t.ff, a current flowing through another portion of the inductor L1 through the diode D1 to the output side Fo capacitor charging voltage boosting control, while turning off the switching device & drive signal corresponding to the coincidence 2 becomes low, since the current flowing through the switching device & case zero, thus achieving the switching device & zero-current turn-off. [0032] the figure shows, during switching the main power switch device, to achieve zero voltage, zero current work, thereby improving the system efficiency. Also this solution does not require the main circuit 串联谐振器件,所有辅助软开关电路的器件的容量都可以选的较低,这样大大降低了辅助软开关电路的损耗、体积和成本,进而提高了系统效率,并有利于系统的高集成化和高功率密度设计,使其适应于更加严格的应用场合。 Series resonance device, the capacity of all auxiliary soft switching circuit of the device can be selected from low, thereby greatly reducing the loss, the size and cost of auxiliary soft switching circuit, thereby improving the system efficiency, and to facilitate system integration and high high power density design, making it suitable for more demanding applications.

Claims (2)

1. 一种软开关升压型DC-DC变换器,其特征在于:所述变换器的结构组成包括电容C” C2、C3,滤波电感Li、L2,开关器件Si、S2,二极管Dp D2、D3,直流电压检测电路,驱动电路以及控制器;其连接结构为:变换器输入端的滤波电容C1与直流电源正、负极相并联;滤波电感L1 的一端与直流电源正极、C1的一端以及开关器件&的功率输出端相连;滤波电感L1的另一端与二极管D1的正极、二极管D3的正极以及开关器件S1的功率输入端相连;二极管D1的负极与变换器的输出端正极以及滤波电容C3的一端相连;二极管D3的负极与电容C2的一端、电感L2的一端相连;电感L2的另一端与二极管&的正极相连,二极管&的负极与开关器件&的功率输入端相连;变换器输入端的直流电源负极与输出端的电源负极和电容C2的另一端、开关器件S1的功率输出端以及电容C3的另一端相连;直流电 A soft-switched boost-type DC-DC converter, wherein: said transducer configuration consists of a capacitance C "C2, C3, filter inductors Li, L2, switching element Si, S2, diode Dp D2, D3, the DC voltage detecting circuit, a driving circuit and a controller; connected structure: the inverter input DC power supply filtering capacitor C1 and the positive and negative electrode in parallel; filter inductor L1 and the positive end of the DC power supply, a switching device and one end of C1 & power output connected; the filter is connected to the positive electrode and the other end of the inductor L1 and the diode D1, the cathode of the diode D3 and the power input terminal of the switching device S1; output diode D1 and the anode electrode and one end of the upright inverter filter capacitor C3, connected; end of the diode D3 is a negative electrode of the capacitor C2 is connected to L2 end of the inductor; coupled L2 is positive and the other end of the diode & inductance connected cathode of the diode and the switching device & power input & a; converter input DC power supply and the negative electrode output terminal of the power supply and the other end of the capacitor C2, the power output terminal of the switching device S1 and the other end of the capacitor C3 is connected; DC 检测电路的输入端连接电容C3的两端,且直流电压检测电路的输出端连接控制器的模拟量输入接口,控制器的输出端连接驱动电路,驱动电路的一个输出端连接开关器件S1的信号端,另一个输出端Gs2连接开关器件&的信号端。 Input of the detection circuit is connected to both ends of the capacitor C3, and the output terminal of the DC voltage detection circuit is connected to the analog input interface of the controller, the controller is connected to the output terminal of the drive circuit, a driver circuit is connected to the output terminal of the signal switching device S1 terminal, signal terminal connected to the switching device & Gs2 another output terminal.
2.根据权利要求1所述的一种软开关升压型DC-DC变换器,其特征在于:开关器件S” S2为全控性功率器件,二极管Di、D2、D3为快恢复型功率二极管。 A soft switch 2 according to a boost DC-DC converter as claimed in claim, wherein: the switching device S "S2 full control of the power device, the diode Di, D2, D3 for the fast recovery type power diode .
CN 201120116600 2011-04-19 2011-04-19 Soft switching pressure rising direct current to direct current (DC-DC) convertor CN202034903U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201120116600 CN202034903U (en) 2011-04-19 2011-04-19 Soft switching pressure rising direct current to direct current (DC-DC) convertor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201120116600 CN202034903U (en) 2011-04-19 2011-04-19 Soft switching pressure rising direct current to direct current (DC-DC) convertor

Publications (1)

Publication Number Publication Date
CN202034903U true CN202034903U (en) 2011-11-09

Family

ID=44897187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201120116600 CN202034903U (en) 2011-04-19 2011-04-19 Soft switching pressure rising direct current to direct current (DC-DC) convertor

Country Status (1)

Country Link
CN (1) CN202034903U (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170226A (en) * 2011-04-19 2011-08-31 苏州工业职业技术学院 A soft switching boost DC-DC converter and a control method thereof
CN103312151A (en) * 2012-03-05 2013-09-18 太阳能安吉科技有限公司 Direct current link circuit
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
CN102170226A (en) * 2011-04-19 2011-08-31 苏州工业职业技术学院 A soft switching boost DC-DC converter and a control method thereof
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
CN103312151A (en) * 2012-03-05 2013-09-18 太阳能安吉科技有限公司 Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems

Similar Documents

Publication Publication Date Title
CN100553398C (en) Solar energy high voltage sodium lamp controller based on single stage inverter
CN102005928B (en) Photovoltaic high-frequency isolation boost soft switch DC/DC converter and control method thereof
CN100433525C (en) Soft switch back exciting converter used for solar energy photovoltaic generation incorporate in power network
CN101814766A (en) Power supply topology structure of electric automobile bidirectional charger
CN101841252B (en) Photovoltaic grid-connected inverter for active energy decoupling
CN100596011C (en) Coupling inductance dual-buck full bridge inverter
CN103187879B (en) Bidirectional direct current converter based on immittance network, and digital control system and method of bidirectional direct current converter
CN1592061A (en) Push-pull converter and method for power supply device and uninterrupted power supply system
CN101259557A (en) Embedded system operated digitalization soft switch inversion arc welder
CN101610038A (en) Photovoltaic grid-connected inverter of Boost and Buck cascade and control method thereof
CN201682429U (en) Bridgeless PFC boost rectifier
CN201336757Y (en) Multi-way constant-current power supply used for high-power LED light source
CN202034903U (en) Soft switching pressure rising direct current to direct current (DC-DC) convertor
CN101197540B (en) DC converter
CN101388617B (en) Double step-down bridge type inverter controlling method for single current sensor
CN201365204Y (en) Single-stage and single-phase AC-DC converter based on LLC series resonance
CN104935063B (en) A battery positive and negative pulse charging converter
CN1278120A (en) Soft switch topology circuit for step-up/step-down voltage conversion
CN101980437A (en) Five-level grid-connected inverter
CN103944396A (en) LLC resonance type three-port DC-DC converter and control method thereof
CN203261235U (en) High-gain SEPIC converter
CN101976894B (en) Energy storage system realizing bidirectional electric energy flow and control method thereof
CN102832809A (en) Inductance regulating switch capacitor-type passive clamping soft switching high-gain boost-type converter
CN201869102U (en) DC/DC changer of photovoltaic high-frequency isolating boosting soft switch
CN101388612B (en) Soft switch circuit controlling method in switch power source

Legal Events

Date Code Title Description
C14 Granted
C17 Cessation of patent right