CN201839095U - Intelligent transformer substation testing and simulation system - Google Patents
Intelligent transformer substation testing and simulation system Download PDFInfo
- Publication number
- CN201839095U CN201839095U CN2010205998026U CN201020599802U CN201839095U CN 201839095 U CN201839095 U CN 201839095U CN 2010205998026 U CN2010205998026 U CN 2010205998026U CN 201020599802 U CN201020599802 U CN 201020599802U CN 201839095 U CN201839095 U CN 201839095U
- Authority
- CN
- China
- Prior art keywords
- test
- substation
- goose
- digital
- protection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 55
- 238000004088 simulation Methods 0.000 title abstract description 16
- 238000004891 communication Methods 0.000 claims abstract description 32
- 241000272814 Anser sp. Species 0.000 claims abstract description 18
- 239000013307 optical fiber Substances 0.000 claims abstract description 14
- 230000001681 protective effect Effects 0.000 claims description 3
- 230000004224 protection Effects 0.000 abstract description 41
- 238000000034 method Methods 0.000 abstract description 12
- 230000008569 process Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 18
- 238000011160 research Methods 0.000 description 10
- 238000011161 development Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000013142 basic testing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Emergency Protection Circuit Devices (AREA)
Abstract
智能变电站测试仿真装置,其特征在于,包括多CPU计算机,61850通信卡,保护装置设备,GOOSE交换机,其中多CPU计算机通过PCI总线和61850通信卡相连接,61850通信卡通过光纤和保护装置设备相连接,GOOSE交换机用于连接计算机以太网和GOOSE以太网。本实用新型除了对各种电压电流保护进行单元测试外,还可以模拟电力系统各种故障发生及切除的过程,特别适用于变电站现场和实验室的调试,应用效果良好,继承性强。
The intelligent substation test simulation device is characterized in that it includes a multi-CPU computer, a 61850 communication card, a protection device, and a GOOSE switch, wherein the multi-CPU computer is connected to the 61850 communication card through a PCI bus, and the 61850 communication card is connected to the protection device through an optical fiber. Connection, GOOSE switch is used to connect computer Ethernet and GOOSE Ethernet. In addition to the unit test of various voltage and current protections, the utility model can also simulate the occurrence and removal process of various faults in the power system, and is especially suitable for commissioning of substation sites and laboratories, with good application effect and strong inheritance.
Description
技术领域technical field
本实用新型涉及一种仿真装置,尤其是涉及一种智能变电站测试仿真装置。The utility model relates to a simulation device, in particular to an intelligent substation test simulation device.
背景技术Background technique
随着通信网络技术、光电互感器技术、数字化保护技术的快速发展,各个制造厂家、科研单位在智能电网数字化变电站技术上作了大量的创新研究工作,取得了智能电网数字化变电站研究的经验和一批成果。数字化变电站是建设统一坚强智能电网的重要组成部分,数字化变电站将变革传统变电站的一、二次设备,以变电站一、二次设备为数字化对象,以高速网络通讯平台为基础,对应每套一次设备的保护和测控装置均需运行于网络,二次设备所需的电流、电压和控制信号,以及保护和测控装置在运行中产生的所有数据,又都以统一的通讯规约与网络进行交换,通过对数字化信息进行标准化,实现信息共享和互操作,并以网络数据为基础,实现数据测量监视、控制保护、信息管理等自动化功能的变电站。With the rapid development of communication network technology, photoelectric transformer technology, and digital protection technology, various manufacturers and research institutes have done a lot of innovative research work on smart grid digital substation technology, and have obtained smart grid digital substation research experience and a Batch results. The digital substation is an important part of building a unified and strong smart grid. The digital substation will change the primary and secondary equipment of the traditional substation, with the primary and secondary equipment of the substation as the digital object, based on the high-speed network communication platform, corresponding to each set of primary equipment All protection and measurement and control devices need to run on the network. The current, voltage and control signals required by the secondary equipment, as well as all the data generated by the protection and measurement and control devices during operation, are exchanged with the network through a unified communication protocol. It is a substation that standardizes digital information, realizes information sharing and interoperability, and realizes automation functions such as data measurement and monitoring, control and protection, and information management based on network data.
由于历史原因,变电站内的系统和装置存在多种通信规约,比如CDT、1801、POLLING、IEC101、IEC103、LFP、ISA、DNP等等。系统和装置存在多种通信规约,尤其在以太网普遍应用情况下,在IEC61850协议出现以前,变电站内各设备和子系统缺少一个国际或国内标准的网络通信协议。由于规约的不统一,再加上缺乏一致性测试,从而导致IED设备之间、设备与系统之间、系统与系统之间的数据交换、互联互通显得十分困难,联调复杂,需要耗费大量的人力和时间。《IEC61850变电站通信网络和系统》国际标准采用面向对象的建模技术,面向未来通讯的可扩展架构,来实现“一个世界,一种技术,一个标准”的目标,该目标具体体现在三个方面,一是互操作性,即不同制造厂家提供的智能设备可交换信息和使用这些信息执行特定功能;二是灵活配置,可将功能自由分配到装置中,支持用户集中式和分散式系统的各种要求;三是长期稳定性,它是未来的标准,因为它可兼容主流通讯技术而发展,并可伴随系统需求而进化。从用户的角度讲,它可以节省工程时间,降低造价,降低风险,可提供用户易于使用,稳定可靠的系统,最终提高业主的商业竞争力。IEC61850标准的应用就是使变电站系统网络化和数字化的过程。Due to historical reasons, there are various communication protocols for systems and devices in substations, such as CDT, 1801, POLLING, IEC101, IEC103, LFP, ISA, DNP, etc. There are various communication protocols for systems and devices, especially in the case of widespread application of Ethernet. Before the appearance of IEC61850 protocol, each equipment and subsystem in the substation lacked an international or domestic standard network communication protocol. Due to the inconsistency of the regulations and the lack of conformance testing, the data exchange and interconnection between IED devices, between devices and systems, and between systems is very difficult, and the joint debugging is complicated and requires a lot of time. manpower and time. The international standard "IEC61850 Substation Communication Network and System" adopts object-oriented modeling technology and a scalable architecture for future communication to achieve the goal of "one world, one technology, one standard", which is embodied in three aspects , one is interoperability, that is, smart devices provided by different manufacturers can exchange information and use these information to perform specific functions; the other is flexible configuration, which can freely allocate functions to devices and support users in various centralized and decentralized systems. The third is long-term stability, which is a future standard, because it can be developed compatible with mainstream communication technologies, and can evolve with system requirements. From the user's point of view, it can save engineering time, reduce costs, reduce risks, provide users with an easy-to-use, stable and reliable system, and ultimately improve the owner's commercial competitiveness. The application of the IEC61850 standard is the process of making the substation system networked and digitized.
数字化变电站技术不断发展的同时,对智能电网数字化变电站的测试手段的研究也在不断深入。国家电网公司在“十一五”科技发展规划所涉及的“关键技术研究框架”中,提出了数字化变电站的试验方案及技术研究框架:“结合数字化变电站技术的相关要求,兼顾系统级与装置级的测试要求,对测试验证环境进行全面、系统研究,研制具数字化特征的新型测试手段和方法,对数字化变电站各功能层设备及数据的有效性和一致性进行测试验证。采用虚拟仪器仪表技术,通过完全虚拟仿真模式测试途径及实际静态模式测试途径实现对数字化变电站的计算机辅助测试。研究虚拟原型实验仿真方法和实现途径及开发相关工具,并建立测试例程库。建立各种仿真模型,包括数据源模型、数据分析模型、被测试、对象即数字化变电站元件线路模型。这些模型都需要充分考虑数字化变电站所涉及的相关技术,完整分析现场状态,真实模拟运行状况;研究基于虚拟仪器仪表技术的完全数字化的测试仿真环境;研究符合数字化变电站的网络化测试软硬件平台;研制适合数字化变电站测试设备。针对准确性、可靠性、数据安全性要求,对测试设备原理、构成、准确性要求全面和系统地研究”。并提出了“以发展的眼光,结合数字化变电站技术的相关要求,充分考虑数字化变电站所涉及的相关技术,完整分析现场状态,真实模拟运行状况,兼顾系统级与装置级的实验要求,建设支撑数字化变电站技术研究、应用的实验验证环境”的预期发展目标。With the continuous development of digital substation technology, the research on the testing methods of smart grid digital substation is also deepening. In the "Key Technology Research Framework" involved in the "Eleventh Five-Year" science and technology development plan, the State Grid Corporation of China proposed a test plan and technical research framework for digital substations: "Combining the relevant requirements of digital substation technology, taking into account the According to the test requirements, conduct comprehensive and systematic research on the test and verification environment, develop new test means and methods with digital characteristics, and test and verify the validity and consistency of the equipment and data at each functional layer of the digital substation. Using virtual instrumentation technology, Realize the computer-aided testing of digital substations through the complete virtual simulation mode test approach and the actual static mode test approach. Study the virtual prototype experiment simulation method and implementation approach and develop related tools, and establish a test routine library. Establish various simulation models, including The data source model, the data analysis model, the tested object and the digital substation component circuit model. These models need to fully consider the relevant technologies involved in the digital substation, completely analyze the site status, and simulate the actual operation status; research based on virtual instrumentation technology Completely digital test simulation environment; study networked test software and hardware platforms that meet digital substations; develop test equipment suitable for digital substations. For accuracy, reliability, and data security requirements, the principle, composition, and accuracy of test equipment are comprehensive and comprehensive. systematic research". And put forward "from the perspective of development, combined with the relevant requirements of digital substation technology, fully consider the relevant technologies involved in digital substation, complete analysis of site status, real simulation operation status, taking into account the experimental requirements of system level and device level, construction support digitalization The expected development goal of the experimental verification environment for substation technology research and application.
发明内容Contents of the invention
发明目的purpose of invention
常规的变电站中的一次和二次设备间的电压和电流信号转换都是用常规电磁型电压和电流互感器,传统的保护装置处理的都是系统中的低电平模拟量信号,由于常规互感器的特性限制,数据采集的精度和稳定性影响了保护装置的性能。智能变电站中的数字化保护装置与传统保护装置相比,与外部的接口发生了巨大变化,保护装置的A/D变换、隔离器件均作为智能一次设备的一部分,实现数字化保护装置的所谓“近过程化”,这种数字化保护装置与过程层的连接介质全由光纤取代,电压电流通过SV格式的采样值传输。采用SV采样值报文传输电压和电流信号、GOOSE传输开关量信号的数字化保护装置已经研发出来,因此需要研发基于IEC61850标准的电力系统智能变电站测试仿真装置和测试环境,实现对数字化保护装置及数字化变电站的测试。Conventional electromagnetic voltage and current transformers are used for the conversion of voltage and current signals between primary and secondary equipment in conventional substations. Traditional protection devices deal with low-level analog signals in the system. Due to conventional mutual inductance Due to the characteristic limitation of the device, the accuracy and stability of data acquisition affect the performance of the protection device. Compared with the traditional protection device, the digital protection device in the smart substation has a great change with the external interface. The A/D conversion and isolation devices of the protection device are all part of the intelligent primary equipment to realize the so-called "near process" of the digital protection device. The connection medium between this digital protection device and the process layer is replaced by optical fiber, and the voltage and current are transmitted through the sampled value in SV format. A digital protection device that uses SV sampling value messages to transmit voltage and current signals, and GOOSE to transmit switching signals has been developed. Therefore, it is necessary to develop a power system smart substation test simulation device and test environment based on the IEC61850 standard to realize the digital protection device and digitalization. Substation testing.
技术方案Technical solutions
为了实现上述发明目的,本实用新型采用如下技术方案:In order to achieve the above-mentioned purpose of the invention, the utility model adopts the following technical solutions:
智能变电站测试仿真装置,其特征在于,包括多CPU计算机,61850通信卡,保护装置设备,GOOSE交换机,其中多CPU计算机通过PCI总线和61850通信卡相连接,61850通信卡通过光纤和保护装置设备相连接,GOOSE交换机用于连接计算机以太网和GOOSE以太网。The intelligent substation test simulation device is characterized in that it includes a multi-CPU computer, a 61850 communication card, a protection device, and a GOOSE switch, wherein the multi-CPU computer is connected to the 61850 communication card through a PCI bus, and the 61850 communication card is connected to the protection device through an optical fiber. Connection, GOOSE switch is used to connect computer Ethernet and GOOSE Ethernet.
有益效果Beneficial effect
智能数字化变电站中的继电保护装置的巨大变化,带来了继电保护测试装置的变革。新研制的智能变电站测试仿真装置对测试装置电压电流源的要求不再存在,测试装置无需再考虑功率放大技术这一关键问题,取而代之的是网络数据传输、61850标准建模等问题。本测试仿真装置除了对各种电压电流保护进行单元测试外,还可以模拟电力系统各种故障发生及切除的过程,特别适用于变电站现场和实验室的调试,应用效果良好,继承性强,测试人员很快就可以掌握其使用方法,装置使用方便,性能可靠,输出数据的实时性和抗干扰性得到了显著的提升。装置的协议是开放的,所有数字信息均可配置,能够与任意厂家的保护装置实现无缝通讯,是真正意义上的适用于数字化智能变电站的测试仿真装置。The great change of the relay protection device in the intelligent digital substation has brought about the revolution of the relay protection test device. The newly developed intelligent substation test simulation device no longer requires the voltage and current source of the test device, and the test device no longer needs to consider the key issue of power amplification technology, but is replaced by network data transmission, 61850 standard modeling and other issues. In addition to unit testing of various voltage and current protections, this test simulation device can also simulate the occurrence and removal of various faults in the power system. It is especially suitable for the commissioning of substation sites and laboratories. Personnel can quickly master its use method, the device is easy to use, reliable in performance, and the real-time and anti-interference performance of output data have been significantly improved. The protocol of the device is open, all digital information can be configured, and it can realize seamless communication with any manufacturer's protection device. It is a test simulation device suitable for digital intelligent substations in the true sense.
附图说明Description of drawings
图1 是本实用新型总体结构框图。Fig. 1 is a block diagram of the overall structure of the utility model.
具体实施方式Detailed ways
装置的组成The composition of the device
装置硬件平台主要组成部分有多CPU便携式计算机、基于PCI总线的IEC61850通信卡、保护装置及其它设备。总体框架结构如图1所示,其中:The main components of the device hardware platform are multi-CPU portable computers, IEC61850 communication cards based on PCI bus, protection devices and other equipment. The overall frame structure is shown in Figure 1, where:
1)多CPU计算机运行实时数字仿真系统(RTDS)软件的平台,进行绘图、仿真计算、人机交互等处理,其功能相当于变电站过程层中的智能开关及ECT/EVT等,提供电压、电流采集信号;1) The multi-CPU computer runs the real-time digital simulation system (RTDS) software platform to perform drawing, simulation calculation, human-computer interaction and other processing. Its function is equivalent to the intelligent switch and ECT/EVT in the process layer of the substation, providing voltage and current Acquire the Signal;
2)多CPU计算机将计算出的电压、电流等数字量信号按照IEC61850-9-1协议打包;2) The multi-CPU computer packs the calculated digital signals such as voltage and current according to the IEC61850-9-1 protocol;
3)通过多个PCI总线插槽将IEC61850-9-1协议报文送至通信卡;3) Send the IEC61850-9-1 protocol message to the communication card through multiple PCI bus slots;
4)基于PCI总线的通信卡提供多个光纤以太网端口与多个保护装置及控制设备相连。一个光纤以太网端口能完成7个电压量,5个电流量的信号传输。其功能相当于变电站过程层中的合并单元(MU),一个通信卡集合了3个合并单元的功能。4) The PCI bus-based communication card provides multiple optical fiber Ethernet ports to connect with multiple protection devices and control equipment. One optical fiber Ethernet port can complete signal transmission of 7 voltage quantities and 5 current quantities. Its function is equivalent to the merging unit (MU) in the substation process layer, and one communication card integrates the functions of 3 merging units.
61850通信卡提供3个发送光纤端口,传输率为100Mb/s。每一发送口能实时完成7个电压量,5个电流量的传输,满足一个保护装置所需的数据采集量。The 61850 communication card provides 3 sending optical fiber ports with a transmission rate of 100Mb/s. Each sending port can complete the transmission of 7 voltage quantities and 5 current quantities in real time, meeting the data collection required by a protection device.
61850通信卡内部多路光纤以太网端口之间的同步由板上DSP处理器控制,61850通信卡与61850通信卡之间的同步,统一由一个外部硬件同步信号控制,实现同步功能, 各卡之间的同步转换命令时间误差小于lus。保护装置产生的开关变位等信息通过GOOSE网、并经网卡返回台式机,参与电网的拓扑分析及电磁暂态计算。The synchronization between the multiple optical fiber Ethernet ports inside the 61850 communication card is controlled by the DSP processor on the board, and the synchronization between the 61850 communication card and the 61850 communication card is uniformly controlled by an external hardware synchronization signal to realize the synchronization function. The time error between synchronous conversion commands is less than lus. The switch displacement and other information generated by the protection device passes through the GOOSE network and returns to the desktop computer through the network card to participate in the topology analysis and electromagnetic transient calculation of the power grid.
装置的功能device function
1)装置能够向被测保护装置提供数字信号形式的电压电流量,基于IEC 61850-9-1或IEC 61850-9-2LE传输的SV报文,可以模拟现场多台合并单元,支持多组SV报文输出,用于多侧差动等保护的测试。具有中断控制的SV发送模块,使测试装置发出的采样值报文均匀、可靠、稳定。1) The device can provide voltage and current in the form of digital signals to the protection device under test. Based on the SV message transmitted by IEC 61850-9-1 or IEC 61850-9-2LE, it can simulate multiple merging units on site and support multiple groups of SVs Message output, used for testing of protections such as multi-side differential. The SV sending module with interrupt control makes the sampling value message sent by the test device uniform, reliable and stable.
2)装置能够接收并解析处理被测保护装置发出的动作信号,目前主要有:GOOSE传输的跳合闸信号和硬接点输出信号两种。2) The device can receive and analyze and process the action signals sent by the protection device under test. At present, there are mainly two types: tripping and closing signals transmitted by GOOSE and hard contact output signals.
3)装置的光纤以太网接口可以接收和发送GOOSE报文,能够模拟间隔的闭锁信息,以GOOSE报文发送给被测保护装置,能够实现和被测装置之间的开关量信息交互。3) The optical fiber Ethernet interface of the device can receive and send GOOSE messages, which can simulate interval blocking information and send them to the protection device under test with GOOSE messages, which can realize the exchange of switching information with the device under test.
4) 装置接收和发送的GOOSE信息均可以根据实际工程需要进行灵活配置,标准的GOOSE模型使测试仪可以和任意数据格式的GOOSE报文实现无缝通讯。4) The GOOSE information received and sent by the device can be flexibly configured according to actual engineering needs. The standard GOOSE model enables the tester to realize seamless communication with GOOSE messages in any data format.
5)装置具有功能强大的控制软件,能够实现保护装置的单元测试和整组测试,界面友好,人机交互性强。控制软件提供手动测试、状态序列、递变测试等基础测试模块,还可以提供整组测试模块、差动保护测试等专用保护功能测试模块。装置还具有采样值报文监视分析和GOOSE开关量监视功能。5) The device has powerful control software, which can realize the unit test and the whole group test of the protection device, with a friendly interface and strong human-computer interaction. The control software provides basic test modules such as manual test, state sequence, and gradient test, and can also provide a whole set of test modules, differential protection test and other special protection function test modules. The device also has the monitoring and analysis of sampling value messages and the monitoring function of GOOSE switching value.
装置的技术指标Device Specifications
装置的电气、机械性能符合相关的国家标准,符合电力系统继电保护专业及远动专业的使用要求。The electrical and mechanical properties of the device meet the relevant national standards, and meet the requirements for the use of power system relay protection and telecontrol.
总体overall
交流电源:220VAC 15AAC power supply: 220VAC 15A
正常工作温度:0℃-35℃ Normal working temperature: 0°C-35°C
湿度:≤90℅ 无凝结 Humidity: ≤90℅ non-condensing
气压:86-108KpaAir pressure: 86-108Kpa
极限工作温度:-10℃-45℃Limit working temperature: -10℃-45℃
运输及储存温度:-25℃-70℃Transport and storage temperature: -25°C-70°C
电源power supply
电源电压:交流220 V±10%Power supply voltage: AC 220 V±10%
电源频率:(50±2%)HzPower frequency: (50±2%) Hz
主机保险丝:8AHost fuse: 8A
仿真装置内部的连接方式Connection method inside the emulation device
装置内部的61850通信卡与多CPU计算机通信采用的是PCI总线接口,PCI总线可以提供极高的数据传送速率(132MB/s)。PCI总线与CPU无关,与时钟频率亦无关,可适用于各种平台,支持多处理器和并发工作。PCI总线还具有良好的扩展性,通过PCI-PCI桥路,可允许扩展。只要计算机能提供足够的PCI总线插槽,61850通信卡就可以扩展。每个通信卡输出有12组光纤接口,6组用于发送,6组用于接收,用FC多模光纤线连接通讯。The 61850 communication card inside the device communicates with the multi-CPU computer using the PCI bus interface, and the PCI bus can provide a very high data transfer rate (132MB/s). The PCI bus has nothing to do with the CPU, nor has it to do with the clock frequency. It can be applied to various platforms and supports multi-processors and concurrent work. The PCI bus also has good scalability, allowing expansion through the PCI-PCI bridge. As long as the computer can provide enough PCI bus slots, the 61850 communication card can be expanded. Each communication card output has 12 groups of optical fiber interfaces, 6 groups are used for sending, and 6 groups are used for receiving, and the communication is connected with FC multimode optical fiber lines.
测试步骤test steps
1)首先根据被测保护装置的定义,在测试装置应用软件中对采样率、通用数据集的数目、通道、最大输出电压和输出电流的倍数等参数进行正确的配置。1) First, according to the definition of the protection device under test, correctly configure parameters such as sampling rate, number of general data sets, channels, maximum output voltage and multiple of output current in the application software of the test device.
2)将测试仿真装置上的光纤接口通过光纤线与保护装置的光纤接口相连,测试装置的输出信号可传输至保护装置,使用测试线将保护动作信号连接到测试装置的开入端子上。2) Connect the optical fiber interface on the test simulation device to the optical fiber interface of the protection device through the optical fiber cable, the output signal of the test device can be transmitted to the protection device, and use the test line to connect the protection action signal to the input terminal of the test device.
3)启动多CPU计算机中的上位机软件开始保护装置的测试。以差动保护的测试为例,软件中差动测试模块根据保护装置有关高中低三侧电流的定义对通用数据集进行配置,测试结束后得到比例制动系数、启动电流、速断电流和动作时间等结果,将实验结果记录在实验报告中,完成保护装置的测试。3) Start the upper computer software in the multi-CPU computer to start the test of the protection device. Taking the test of differential protection as an example, the differential test module in the software configures the general data set according to the definition of the current of the protection device on the three sides of high, medium and low. After the test, the proportional braking coefficient, starting current, quick breaking current and operating time Wait for the results, record the experimental results in the experimental report, and complete the test of the protective device.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010205998026U CN201839095U (en) | 2010-11-10 | 2010-11-10 | Intelligent transformer substation testing and simulation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010205998026U CN201839095U (en) | 2010-11-10 | 2010-11-10 | Intelligent transformer substation testing and simulation system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201839095U true CN201839095U (en) | 2011-05-18 |
Family
ID=44009194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010205998026U Expired - Lifetime CN201839095U (en) | 2010-11-10 | 2010-11-10 | Intelligent transformer substation testing and simulation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201839095U (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102623953A (en) * | 2012-03-27 | 2012-08-01 | 许继集团有限公司 | A method of improving the sensitivity of main transformer longitudinal differential protection by using GOOSE network |
CN102624089A (en) * | 2012-03-18 | 2012-08-01 | 山西省电力公司电力科学研究院 | Full-digital substation closed-loop dynamic real-time simulation test system |
CN102902840A (en) * | 2012-08-21 | 2013-01-30 | 中国电力科学研究院 | Method for sharing simulation data of power system |
CN103176084A (en) * | 2013-03-07 | 2013-06-26 | 江苏省电力公司电力科学研究院 | Intelligent substation simulation system in panoramic replace mode and integration testing method for intelligent substation simulation system |
CN103293412A (en) * | 2013-05-17 | 2013-09-11 | 国电南瑞科技股份有限公司 | Compatible component-based extended tester for power devices |
CN106781910A (en) * | 2016-12-09 | 2017-05-31 | 南京理工大学 | A kind of intelligent substation virtual reality emulation training system based on hardware in loop |
CN109596925A (en) * | 2018-12-28 | 2019-04-09 | 上海科梁信息工程股份有限公司 | Protective relaying device emulation test system |
CN113945792A (en) * | 2021-10-29 | 2022-01-18 | 许继集团有限公司 | RTDS-based automatic restart test system and method for relay protection device |
-
2010
- 2010-11-10 CN CN2010205998026U patent/CN201839095U/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102624089A (en) * | 2012-03-18 | 2012-08-01 | 山西省电力公司电力科学研究院 | Full-digital substation closed-loop dynamic real-time simulation test system |
CN102623953A (en) * | 2012-03-27 | 2012-08-01 | 许继集团有限公司 | A method of improving the sensitivity of main transformer longitudinal differential protection by using GOOSE network |
CN102623953B (en) * | 2012-03-27 | 2014-04-23 | 国网山东省电力公司 | A Method of Using GOOSE Network to Improve the Sensitivity of the Main Transformer's Longitudinal Difference Protection |
CN102902840A (en) * | 2012-08-21 | 2013-01-30 | 中国电力科学研究院 | Method for sharing simulation data of power system |
CN103176084A (en) * | 2013-03-07 | 2013-06-26 | 江苏省电力公司电力科学研究院 | Intelligent substation simulation system in panoramic replace mode and integration testing method for intelligent substation simulation system |
CN103293412A (en) * | 2013-05-17 | 2013-09-11 | 国电南瑞科技股份有限公司 | Compatible component-based extended tester for power devices |
CN106781910A (en) * | 2016-12-09 | 2017-05-31 | 南京理工大学 | A kind of intelligent substation virtual reality emulation training system based on hardware in loop |
CN109596925A (en) * | 2018-12-28 | 2019-04-09 | 上海科梁信息工程股份有限公司 | Protective relaying device emulation test system |
CN113945792A (en) * | 2021-10-29 | 2022-01-18 | 许继集团有限公司 | RTDS-based automatic restart test system and method for relay protection device |
CN113945792B (en) * | 2021-10-29 | 2024-05-07 | 河南源网荷储电气研究院有限公司 | Automatic restarting test system and method for relay protection device based on RTDS |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201839095U (en) | Intelligent transformer substation testing and simulation system | |
CN103713214B (en) | A kind of intelligent substation relay protection closed loop test system | |
CN107346917B (en) | Secondary device based on virtual machine integrates joint debugging method | |
CN103414251B (en) | A kind of substation network communication analogue system based on IEC61850 | |
CN201518052U (en) | Portable all-digital relay protection transient closed-loop tester | |
CN101546472B (en) | Implementation method of a general simulation test system integrating power grid dispatching and power collection | |
CN103746882B (en) | The method of intelligent substation station control layer test | |
CN103076520A (en) | Dynamic analogue simulation detection platform and analogue simulation method for secondary system of intelligent substation | |
CN104133146B (en) | A kind of feeder automation fault handling logic on-the-spot test method | |
CN203117313U (en) | Dynamic simulation and emulation detecting platform for intelligent substation secondary system | |
CN105785199A (en) | Multifunctional power distribution terminal integrated test system and operating method thereof | |
CN203069709U (en) | Intelligent transformer station relay protection device detector based on DDRTS | |
CN102510131A (en) | Method and device for testing overall performance of intelligent transformer substation | |
CN103105550A (en) | Detection method and detection system of intelligent relay protection device | |
CN209545248U (en) | A kind of intelligent Substation System of visualized O&M | |
CN104570768A (en) | Information physics semi-physical simulation system based on Rt-Lab and OPNET | |
CN110865263A (en) | A virtual test method for smart substation based on minimum test system | |
CN208721998U (en) | Station-level acceptance system of intelligent substation based on panoramic simulation | |
CN111458586B (en) | Batch synchronization detection method and system for multi-interval localized line protection devices in smart substations | |
CN107167680A (en) | A kind of power distribution network distributed test system based on RTDS | |
CN104701979B (en) | One kind protection observing and controlling integrating device and protection investigating method | |
CN107818215A (en) | A kind of secondary system of intelligent substation common hardware simulator and method | |
CN107819647A (en) | Intelligent substation station level network tester | |
CN101980417A (en) | Simulation Method for Digital Substation Test | |
CN104638761B (en) | A method for verifying the connection of GOOSE virtual terminals based on message monitoring and message simulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20110518 |