CN201561759U - Inertial attitude and azimuth measuring device - Google Patents

Inertial attitude and azimuth measuring device Download PDF

Info

Publication number
CN201561759U
CN201561759U CN2009201647403U CN200920164740U CN201561759U CN 201561759 U CN201561759 U CN 201561759U CN 2009201647403 U CN2009201647403 U CN 2009201647403U CN 200920164740 U CN200920164740 U CN 200920164740U CN 201561759 U CN201561759 U CN 201561759U
Authority
CN
China
Prior art keywords
central microprocessor
sensor
measuring device
attitude
characterized
Prior art date
Application number
CN2009201647403U
Other languages
Chinese (zh)
Inventor
尹雄师
李全
殷严刚
魏承赟
Original Assignee
魏承赟;尹雄师
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 魏承赟;尹雄师 filed Critical 魏承赟;尹雄师
Priority to CN2009201647403U priority Critical patent/CN201561759U/en
Application granted granted Critical
Publication of CN201561759U publication Critical patent/CN201561759U/en

Links

Abstract

The utility model discloses an inertial attitude and azimuth measuring device. The device is characterized in that a circuit board comprises a central microprocessor unit, an attitude sensor, an azimuth sensor and a user interface; and the attitude sensor, the azimuth sensor and the user interface are all connected with the central microprocessor unit, and the circuit board is fixed inside a case through a damping rubber ring. The inertial attitude and azimuth measuring device has the advantages of simple structure, low cost, complete signals, high measurement accuracy, good damping effect, and wide application range.

Description

惯性姿态方位测量装置 Azimuth measuring means inertial pose

技术领域 FIELD

[0001] 本实用新型涉及测量装置,特别是惯性姿态方位测量装置。 [0001] The present invention relates to a measuring device, in particular the inertial pose azimuth measuring means. 背景技术 Background technique

[0002] 姿态测量对于飞机、车辆等运动载体具有重要意义。 [0002] attitude measurement is important for movement carrier aircraft, vehicles and so on. 针对微型飞行器等微小型系统,目前主要有两种基于微机电传感器技术的简单惯性姿态测量方法。 MAV for micro systems etc., there are two main methods of measurement based on the inertial pose simple MEMS sensor technology.

[0003] 一是使用三轴正交陀螺仪/组,对测出的角速率进行积分运算,理论上能获取微小型系统在任意运动状态下的三维姿态信息,但此时需要初始姿态基准作为递推运算中的积分初值,同时因存在零点漂移而随时间增长不断积累误差,不能持续长时间工作。 [0003] First, a three-axis orthogonal gyroscopes / group, of the measured angular rate integration operation, the three-dimensional posture information acquired theoretically micro system in any state of motion, but as the case requires an initial attitude reference recursive integral in the initial operation, but because there is zero drift and increase the accumulation of errors, can not be sustained for a long time to work over time. 第二种方法利用加速度计或倾角传感器,能测出微小型系统的横滚角和俯仰角,但它们无法区别运动加速度和重力加速度,只适用于静止和勻速直线运动等平稳状态;在横滚角和俯仰角已知的前提下,能确定三维磁传感器测量方向与当地水平面之间的坐标换算关系,从而求出航向角。 The second method using an accelerometer or tilt sensor, can measure the micro system roll and pitch angles, but they can not distinguish the acceleration of gravity and motion acceleration, steady state only applies to stationary and uniform motion; in the roll and pitch angles are known under the premise, the three-dimensional magnetic sensor can determine the direction of the measurement plane coordinate conversion relationship between local, thereby obtaining the heading angle.

[0004] 以上两种方法存在各自的使用缺陷,单独使用时应用面非常狭窄。 Each defect exists using two methods [0004] or more, when used alone face very narrow.

[0005] 对运动载体进行精确控制,除了精确的姿态信息外,还需要精确的定位信息。 [0005] The precise control of the motion vector, in addition to the accurate posture information, but also accurate positioning information. 目前运动物体的定位主要依靠GPS定位系统,该系统能精确测量经度和纬度,但其高度测量易受GPS接收机观测卫星数的影响,波动较大。 Positioning the moving object is currently rely mainly on GPS positioning system that can accurately measure the latitude and longitude, but the height measurement of the number of susceptible observation satellites a GPS receiver, fluctuations.

实用新型内容 SUMMARY

[0006] 本实用新型的目的是提供一种结构简单、成本低、信号完备、测量精度高的惯性姿态方位测量装置。 [0006] The object of the present invention to provide a simple, low cost, complete signal, high accuracy inertial attitude azimuth measuring means. 它集成三轴速率陀螺、三轴加速度计和三轴磁强计,利用传感器数据融合技术来补偿简单惯性姿态测量系统的使用缺陷,同时提供重要的定位信息。 It integrates three-axis rate gyro, triaxial accelerometer and triaxial magnetometer by using the defect sensor data fusion techniques to compensate for the inertial attitude measurement system is simple, while providing an important positioning information. 在定位方面,利用气压高度计来提供相对稳定的高度信息。 In the positioning, using barometric altimeter to provide a relatively high degree of stability information.

[0007] 本实用新型电路板由中央微处理器、姿态传感器、位置传感器、用户接口组成,姿态传感器、位置传感器、用户接口分别与中央微处理器连接,电路板由减振胶圈固定在盒体内。 [0007] The present invention is a circuit board by a central microprocessor, a posture sensor, a position sensor, the user interface composition, a posture sensor, a position sensor, the user interface are connected to the central microprocessor, the circuit board is fixed by a damping cartridge apron in vivo.

[0008] 所述的姿态传感器由三轴速率陀螺、三轴加速度计和三轴磁强计组成。 Attitude sensor according to [0008] a three-axis rate gyro, triaxial accelerometer and triaxial magnetometer composition.

[0009] 所述的位置传感器由气压高度计、GPS接收机和GPS天线组成。 A position sensor [0009] according to a pressure altimeter, GPS receiver and a GPS antenna.

[0010] 所述的中央微处理器自身带有模数转换器。 [0010] said central microprocessor with its own ADC.

[0011] 三轴速率陀螺、三轴加速度计、三轴磁强计以及气压高度计分别与中央微处理器自带的模数转换器连接。 [0011] The three-axis rate gyroscope, three-axis accelerometer, magnetometer and triaxial barometer respectively connected to the central microprocessor own ADC.

[0012] GPS接收机与中央微处理器相连。 [0012] GPS receiver is connected to the central microprocessor.

[0013] 所述的中央微处理器型号为ARM Cortex-M30 [0013] said central microprocessor model ARM Cortex-M30

[0014] 本实用新型的优点是结构简单、成本低、信号完备、测量精度高,减振作用好,应用范围广。 [0014] The advantages of the present invention is of simple structure, low cost, complete signal, high accuracy, good damping effect, a wide range of applications. 附图说明 BRIEF DESCRIPTION

[0015] 图1为本实用新型测量装置的系统组成框图; [0015] Figure 1 is a system block diagram of the invention the measuring device;

[0016] 图2为本实用新型电路板的结构示意图。 [0016] The structure of the present invention FIG. 2 is a schematic view of the circuit board.

[0017] 图中:1.姿态传感器1-1.三轴速率陀螺1-2.三轴加速度计1-3.三轴磁强计2.位置传感器2-1.气压高度计2-2.GPS接收机2-3.GPS天线3.中央微处理器3-1.模数转换器4.用户接口(RS232串口) [0017] FIG.:..... A three-axis rate gyro attitude sensor 1-1 1-2 1-3 triaxial accelerometer triaxial magnetometer position sensor 2. 2-1 barometric altimeter 2-2.GPS 3. The receiver antenna 2-3.GPS central microprocessor 3-1. 4. The analog-user interface (RS232 serial port)

具体实施方式 detailed description

[0018] 本实用新型电路板由中央微处理器3、姿态传感器1、位置传感器2、用户接口4组成,姿态传感器1、位置传感器2、用户接口4分别与中央微处理器3连接,电路板由减振胶圈固定在盒体内。 [0018] The circuit board according to the present invention by the central microprocessor 3, a posture sensor, the position sensor 2, consisting of a user interface 4, a posture sensor, the position sensor 2, the user interface 4 is connected to the central microprocessor 3, respectively, the circuit board a damping rubber ring fixed to the case body.

[0019] 所述的姿态传感器1由三轴速率陀螺1-1、三轴加速度计1-2、三轴磁强计1-3组成。 [0019] The attitude of three-axis rate gyro sensor 1 by a 1-1, 1-2 triaxial accelerometer and triaxial magnetometer composed of 1-3.

[0020] 所述的位置传感器2由气压高度计2-1和GPS接收机2-2、GPS天线2_3组成。 A position sensor [0020] 2 according to the barometric altimeter 21 and the GPS receiver 2-2, GPS antenna 2_3 composition.

[0021] 所述的中央微处理器3自身带有模数转换器3-1。 [0021] said central microprocessor 3 with its own analog to digital converter 3-1.

[0022] 三轴速率陀螺1-1、三轴加速度计1-2、三轴磁强计1-3以及气压高度计2-1分别与中央微处理器3自带的模数转换器3-1连接。 [0022] The three-axis rate gyro 1-1, 1-2 triaxial accelerometer and triaxial magnetometer 1-3 and 2-1 respectively barometer central microprocessor 3 comes ADC 3-1 connection.

[0023] GPS接收机2-2与中央微处理器3相连。 [0023] GPS receiver connected to the central microprocessor 3 2-2.

[0024] 所述的中央微处理器3型号为ARM Cortex-M30 [0024] said central microprocessor 3 model ARM Cortex-M30

[0025] 以本实用新型在固定翼航模上的应用为例,描述其工作过程如下: [0025] In applications of the present invention in model aircraft wing for example, operation is described as follows:

[0026] 1、系统安装:根据本实用新型中的三轴速率陀螺1-1的安装位置标记x、y和z轴, 固定翼航模以其重心位置0为坐标原点建立三维坐标系,机头方向为X轴,右机翼方向为Y 轴,Z轴则垂直于X0Y平面,指向下方,与本实用新型配装。 [0026] 1, system installation: 1-1 Gyro mounting position mark x, y and z axes according to the present invention, the three-axis rate, its center of gravity position of the model aircraft wing dimensional coordinate system 0 is a coordinate origin, the nose the X-axis direction, a Y-axis direction is the right wing, Z-axis perpendicular to the plane X0Y, pointing downward, and the present invention is fitted.

[0027] 2、系统初始化: [0027] 2, system initialization:

[0028] 1)设定三轴陀螺仪1-1的基准:把本实用新型静置5秒钟,中央微处理器3读取x、y和z三个轴向上的陀螺角速率数据,取其平均值作为相应轴向上的陀螺角速率基准; [0028] 1) setting a reference axis gyroscope 1-1: The present invention was allowed to stand for 5 seconds, the microprocessor 3 reads the center x, the three angular rate gyro axis y and z data, the average value as the reference angular rate gyro respective axial;

[0029] 2)计算初始姿态:在本实用新型静置的5秒钟内,中央微处理器3读取三轴加速度计1-2的数据,取其三个轴向上的读数均值来计算固定翼航模的初始姿态; [0029] 2) calculation of the initial attitude: In the present invention was allowed to stand for 5 seconds, the microprocessor 3 reads the central axis accelerometer data 1-2, whichever is the mean reading of the three axes calculated initial posture of the model aircraft wing;

[0030] 3) GPS首次定位:GPS接收机2-2分析GPS天线2_3接收到的信号,得到经纬度、航向、时间等信息,再把这些信息传送到中央微处理器3 ;中央微处理器3根据GPS接收机2-2 传来的数据进行相应处理,当接收机观测卫星数超过3颗星时,开始记录定位信息。 [0030] 3) positioning the first GPS: GPS receiver 2-2 analyzes the signal received by the GPS antenna 2_3, have latitude and longitude, heading, time and other information, and then transmits the information to the central processing unit 3; central microprocessor 3 the corresponding processing data from the GPS receiver 2-2, the receiver when the number of observation satellites over three stars, recording start position information.

[0031] 3、正常工作: [0031] 3, work:

[0032] 1)三轴速率陀螺1-1测量三个正交轴向上的角速率,传给中央微处理器3,中央微处理器3按四元数法求解出第一组三维姿态数据; [0032] 1) 1-1 three-axis rate gyro angular rate measurements on the three orthogonal axis, to a central microprocessor 3, by the central microprocessor 3 quaternion solved first set of three-dimensional pose data ;

[0033] 2)同时,三轴加速度计1-2和三轴磁强计1-3分别测量三个正交轴向上的线加速度和磁场强度数据,传给中央微处理器3,中央微处理器3按照这六个量相互之间的矩阵关系,解算出第二组三维姿态数据; [0033] 2) At the same time, triaxial accelerometer and triaxial magnetometer 1-2 1-3 were measured in three orthogonal axial line acceleration data and magnetic field strength, to a central microprocessor 3, central microchannels 3 matrix processor according to this mutual relationship between six amount, calculates the second set of three-dimensional solutions pose data;

[0034] 3)把两组三维姿态数据放进一个卡尔曼滤波器内进行数据融合,得出一组精确的三维姿态数据;[0035] 4)把得到的精确的三维姿态数据作为下一次姿态解算的初始数据。 [0034] 3) The two-dimensional gesture data into a data fusion the Kalman filter, obtain a set of precise three-dimensional attitude data; [0035] 4) The precise three-dimensional attitude data obtained as the next gesture solving the initial data.

[0036] 4、加减速或转弯运动: [0036] 4, deceleration or a turning motion:

[0037] 改变卡曼滤波器噪声矩阵的参数,尽可能抑制加速度计测量数据的不良影响,按照3的步骤来递推解算姿态。 [0037] changing the parameters of the Kalman filter noise matrix, as much as possible to suppress the adverse effects of the accelerometer measurements, in Step 3 to recursive resolver posture.

Claims (6)

  1. 惯性姿态方位测量装置,其特征是:电路板由中央微处理器、姿态传感器、位置传感器和用户接口组成,姿态传感器、位置传感器、用户接口分别与中央微处理器连接,电路板由减振胶圈固定在盒体之中。 Inertial pose azimuth measuring means, wherein: a circuit board by a central microprocessor, a posture sensor, and a user interface consisting of a position sensor, a posture sensor, a position sensor, the user interface are connected to the central microprocessor, the circuit board by the vibration damping rubber ring is fixed in the cartridge body.
  2. 2.根据权利要求1所述的测量装置,其特征是:所述的姿态传感器由三轴速率陀螺、三轴加速度计和三轴磁强计组成。 2. A measuring device according to claim 1, characterized in that: said attitude sensor by the three-axis rate gyro, triaxial accelerometer and triaxial magnetometer composition.
  3. 3.根据权利要求1所述的确定装置,其特征是:所述的位置传感器由气压高度计、GPS 接收机和GPS天线组成。 3. determining apparatus according to claim 1, wherein: said position sensor by a barometric altimeter, GPS receiver and a GPS antenna.
  4. 4.根据权利要求1所述的测量装置,其特征是:所述的中央微处理器自身带有模数转换器,模数转换器分别与三轴速率陀螺、三轴加速度计、三轴磁强计以及气压高度计连接。 4. The measuring apparatus according to claim 1, characterized in that: said central microprocessor with its own analog-to-digital converter respectively and three-axis rate gyro, triaxial accelerometer, three-axis magnetic and a barometric altimeter intensity meter is connected.
  5. 5.根据权利要求1所述的测量装置,其特征是:所述的GPS接收机与所述的中央微处理器相连。 The measuring device according to claim 1, characterized in that: said central microprocessor connected with said GPS receiver.
  6. 6.根据权利要求1所述的测量装置,其特征是:所述的中央微处理器型号为ARMCortex-M3。 6. A measuring device according to claim 1, characterized in that: said central microprocessor model ARMCortex-M3.
CN2009201647403U 2009-10-18 2009-10-18 Inertial attitude and azimuth measuring device CN201561759U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009201647403U CN201561759U (en) 2009-10-18 2009-10-18 Inertial attitude and azimuth measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009201647403U CN201561759U (en) 2009-10-18 2009-10-18 Inertial attitude and azimuth measuring device

Publications (1)

Publication Number Publication Date
CN201561759U true CN201561759U (en) 2010-08-25

Family

ID=42626905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009201647403U CN201561759U (en) 2009-10-18 2009-10-18 Inertial attitude and azimuth measuring device

Country Status (1)

Country Link
CN (1) CN201561759U (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435167A (en) * 2011-09-15 2012-05-02 北京自动化控制设备研究所 Method for pre-processing control information of imaging load stabilizing system based on complementary filter
CN102707725A (en) * 2012-06-12 2012-10-03 桂林飞宇电子科技有限公司 Fixed-wing automatic navigation flight control system and using method thereof
CN103020598A (en) * 2012-12-11 2013-04-03 杭州电子科技大学 Method for identifying attitude variation when people performing specific actions
CN103092200A (en) * 2011-11-08 2013-05-08 上海新世纪机器人有限公司 Direction controlling device and direction controlling method using the same direction controlling device
CN103383260A (en) * 2013-07-12 2013-11-06 美新半导体(无锡)有限公司 Unmanned aerial vehicle navigation system and cooperative navigation system thereof
CN103490163A (en) * 2013-09-29 2014-01-01 星动通讯科技(苏州)有限公司 High-precision directional tracking device of mobile satellite antenna servo system
CN103721422A (en) * 2013-12-19 2014-04-16 桂林飞宇电子科技有限公司 Model airplane remote control handle with automatic attitude control function
CN103776448A (en) * 2014-02-17 2014-05-07 刘超军 Posture course reference system
CN104316080A (en) * 2014-10-13 2015-01-28 许志修 Device for resolving tilt compensation quaternion of attitude gyroscope
CN106840088A (en) * 2017-02-27 2017-06-13 武汉理工大学 A kind of onboard combined navigation roadbed subsidence method for fast measuring
CN107004945A (en) * 2016-10-18 2017-08-01 深圳市大疆创新科技有限公司 Antenna module and unmanned plane

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435167A (en) * 2011-09-15 2012-05-02 北京自动化控制设备研究所 Method for pre-processing control information of imaging load stabilizing system based on complementary filter
CN103092200B (en) * 2011-11-08 2015-11-18 上海新世纪机器人有限公司 Direction-control apparatus and the method utilizing this device travel direction to control
CN103092200A (en) * 2011-11-08 2013-05-08 上海新世纪机器人有限公司 Direction controlling device and direction controlling method using the same direction controlling device
CN102707725B (en) * 2012-06-12 2014-10-29 桂林飞宇电子科技有限公司 Fixed-wing automatic navigation flight control system and using method thereof
CN102707725A (en) * 2012-06-12 2012-10-03 桂林飞宇电子科技有限公司 Fixed-wing automatic navigation flight control system and using method thereof
CN103020598B (en) * 2012-12-11 2015-08-19 杭州电子科技大学 A kind ofly carry out knowledge method for distinguishing for attitude variation when people being completed to specific action
CN103020598A (en) * 2012-12-11 2013-04-03 杭州电子科技大学 Method for identifying attitude variation when people performing specific actions
CN103383260A (en) * 2013-07-12 2013-11-06 美新半导体(无锡)有限公司 Unmanned aerial vehicle navigation system and cooperative navigation system thereof
CN103490163A (en) * 2013-09-29 2014-01-01 星动通讯科技(苏州)有限公司 High-precision directional tracking device of mobile satellite antenna servo system
CN103721422B (en) * 2013-12-19 2016-03-09 桂林飞宇电子科技有限公司 A kind of model airplane remote control handle that can realize attitude and automatically control
CN103721422A (en) * 2013-12-19 2014-04-16 桂林飞宇电子科技有限公司 Model airplane remote control handle with automatic attitude control function
CN103776448A (en) * 2014-02-17 2014-05-07 刘超军 Posture course reference system
CN103776448B (en) * 2014-02-17 2016-08-31 武汉元生创新科技有限公司 A kind of attitude heading reference system
CN104316080A (en) * 2014-10-13 2015-01-28 许志修 Device for resolving tilt compensation quaternion of attitude gyroscope
CN104316080B (en) * 2014-10-13 2017-06-13 许志修 A kind of attitude gyroscope slope compensation quaternary number resolver
CN107004945A (en) * 2016-10-18 2017-08-01 深圳市大疆创新科技有限公司 Antenna module and unmanned plane
CN107004945B (en) * 2016-10-18 2019-07-23 深圳市大疆创新科技有限公司 Antenna module and unmanned plane
CN106840088A (en) * 2017-02-27 2017-06-13 武汉理工大学 A kind of onboard combined navigation roadbed subsidence method for fast measuring

Similar Documents

Publication Publication Date Title
US9541392B2 (en) Surveying system and method
CN1152237C (en) Miniature navigation system based on micro electromechanical technology
EP1558895B1 (en) Mobile electronic three-dimensional compass
CN101413800B (en) Navigating and steady aiming method of navigation / steady aiming integrated system
KR101123338B1 (en) A Movement Sensing Apparatus of an Object
KR100533106B1 (en) Attitude error compensation system of fluxgate and method thereof
US7463953B1 (en) Method for determining a tilt angle of a vehicle
KR101168100B1 (en) Systems and methods for estimating position, attitude and/or heading of a vehicle
KR101320035B1 (en) Location and path-map generation data acquisition and analysis systems
EP2259023B1 (en) Inertial navigation system error correction
US20130317741A1 (en) System on a chip inertial navigation system
DE102006029148B4 (en) Method for checking an inertial measuring unit of vehicles, in particular of aircraft, in the stationary state
CN100356139C (en) Miniature assembled gesture measuring system for mini-satellite
CN1740746B (en) Micro-dynamic carrier attitude measuring apparatus and measuring method thereof
EP1649247A2 (en) System for using a 2-axis magnetic sensor for a 3-axis compass solution
WO2011015939A2 (en) Inertial sensor kinematic coupling
CN201266089Y (en) INS/GPS combined navigation system
CN100593689C (en) Gasture estimation and interfusion method based on strapdown inertial nevigation system
CN100390503C (en) Laser tracking inertia combined measuring system and its measuring method
CN100516775C (en) Method for determining initial status of strapdown inertial navigation system
CN100419380C (en) High integral navigation device combined by MIMU/GPS/micromagnetic compass/barometric altimeter
CN102289306B (en) Attitude sensing equipment and positioning method thereof as well as method and device for controlling mouse pointer
CN101858748B (en) Fault-tolerance autonomous navigation method of multi-sensor of high-altitude long-endurance unmanned plane
WO2006104552A1 (en) Method and apparatus for high accuracy relative motion determinatation using inertial sensors
CN102445200A (en) Microminiature personal combined navigation system as well as navigating and positioning method thereof

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
C17 Cessation of patent right