CN201378188Y - Digitally controlled resistance measuring device - Google Patents
Digitally controlled resistance measuring device Download PDFInfo
- Publication number
- CN201378188Y CN201378188Y CN200920064173U CN200920064173U CN201378188Y CN 201378188 Y CN201378188 Y CN 201378188Y CN 200920064173 U CN200920064173 U CN 200920064173U CN 200920064173 U CN200920064173 U CN 200920064173U CN 201378188 Y CN201378188 Y CN 201378188Y
- Authority
- CN
- China
- Prior art keywords
- converter
- resistance
- constant current
- microprocessor
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 238000013461 design Methods 0.000 abstract description 11
- 238000005259 measurement Methods 0.000 abstract description 7
- 238000004458 analytical method Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 101000763890 Homo sapiens TIP41-like protein Proteins 0.000 description 1
- 102100026811 TIP41-like protein Human genes 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本实用新型公开了一种数控式电阻测量装置,其特征在于,包括微处理器、用于将被测电压放大的放大器、AD转换器、DA转换器、为被测电阻提供恒定电流的数控恒流源;所述的放大器的两个输入端接被测电阻的两端;所述的放大器的输出端经所述的AD转换器接微处理器;所述的微处理器通过DA转换器与所述的数控恒流源的输入端连接,所述的数控恒流源的输出端接被测电阻,用于给被测电子提供恒定的电流。本装置能独立的准确方便的测量毫欧级电阻,具有电路设计简单,功能完善、测量准确、成本低廉等特点。
The utility model discloses a numerically controlled resistance measuring device, which is characterized in that it comprises a microprocessor, an amplifier for amplifying the measured voltage, an AD converter, a DA converter, and a numerically controlled constant current for the measured resistance. flow source; the two input ends of the amplifier are connected to the two ends of the measured resistance; the output of the amplifier is connected to the microprocessor through the AD converter; the microprocessor is connected with the DA converter through the DA converter The input end of the digital control constant current source is connected, and the output end of the digital control constant current source is connected to the measured resistance, which is used to provide a constant current to the measured electronics. The device can independently, accurately and conveniently measure milliohm-level resistance, and has the characteristics of simple circuit design, perfect function, accurate measurement, low cost and the like.
Description
技术领域 technical field
本实用新型属于仪表与电子技术领域,涉及一种数控式电阻测量装置,尤其适合于测量毫欧级电阻。The utility model belongs to the technical field of instruments and electronics, and relates to a numerically controlled resistance measuring device, which is especially suitable for measuring milliohm level resistance.
背景技术 Background technique
在电路的分析与设计中,人们往往忽略开关电阻、变压器或电机线圈、PCB版中导线阻值,即认为它们的电阻阻值为零,当然在绝大多数时候这种分析与设计不会影响系统的设计。但当电路或系统的工作电流较大时,这样的分析往往带来很大的误差,甚至导致系统不能正常工作,在分析时发现,恰恰是因为我们忽视了的这些毫欧级电阻的存在导致上述的误差和电路的工作失常。因此在工程设计中,尤其是电路测定的实践中,经常需要测量开关、变压器或电机线圈、PCB版中导线等微小电阻阻值,以便于电路的设计与分析。目前,市场上专用的毫欧表价格比较昂贵,普通的万用表往往精度不够。In the analysis and design of the circuit, people often ignore the switch resistance, transformer or motor coil, and the resistance value of the wire in the PCB board, that is, they think that their resistance value is zero. Of course, in most cases, this analysis and design will not affect system design. However, when the operating current of the circuit or system is large, such analysis often brings large errors, and even causes the system to fail to work normally. During the analysis, it is found that it is precisely because of the existence of these milliohm-level resistors that we have ignored. The above-mentioned error and malfunction of the circuit. Therefore, in engineering design, especially in the practice of circuit measurement, it is often necessary to measure the small resistance values of switches, transformers or motor coils, and wires in PCB boards, so as to facilitate circuit design and analysis. At present, the special milliohmmeters on the market are relatively expensive, and ordinary multimeters are often not accurate enough.
实用新型内容Utility model content
本实用新型的要解决的技术问题是提供一种数控式电阻测量装置,能独立的准确方便的测量毫欧级电阻。The technical problem to be solved by the utility model is to provide a numerically controlled resistance measuring device, which can independently, accurately and conveniently measure milliohm level resistance.
本实用新型的技术方案如下:The technical scheme of the utility model is as follows:
一种数控式电阻测量装置,其特征在于,包括微处理器、用于将被测电压放大的放大器、AD转换器、DA转换器、为被测电阻提供恒定电流的数控恒流源;所述的放大器的两个输入端接被测电阻的两端;所述的放大器的输出端经所述的AD转换器接微处理器;所述的微处理器通过DA转换器与所述的数控恒流源的输入端连接,所述的数控恒流源的输出端接被测电阻,用于给被测电子提供恒定的电流。A numerically controlled resistance measuring device is characterized in that it includes a microprocessor, an amplifier for amplifying the measured voltage, an AD converter, a DA converter, and a numerically controlled constant current source that provides a constant current for the measured resistance; The two input terminals of the amplifier are connected to the two ends of the measured resistance; the output terminals of the amplifier are connected to the microprocessor through the AD converter; the microprocessor is connected to the numerical control constant through the DA converter The input end of the current source is connected, and the output end of the digitally controlled constant current source is connected to the measured resistance for providing constant current to the measured electrons.
所述的微处理器为单片机或DSP。Described microprocessor is single-chip microcomputer or DSP.
本实用新型的优点与效果:Advantage and effect of the present utility model:
本实用新型采用最基本的伏安测试法,由数模转换电路、运算放大电路及压控恒流源电路构成数控恒流源,由运算放大电路、模数转换电路采集电压,通过单片机控制电路进行数据处理与显示。本实用新型提供了一种高性能、实用型毫欧姆表电路设计方案,所设计的毫欧姆表(即本装置)具有电路设计简单,功能完善、测量准确、成本低廉等特点。The utility model adopts the most basic volt-ampere test method. The numerical control constant current source is composed of a digital-to-analog conversion circuit, an operational amplifier circuit and a voltage-controlled constant current source circuit. The voltage is collected by an operational amplifier circuit and an analog-to-digital conversion circuit. Data processing and display. The utility model provides a high-performance and practical milliohm meter circuit design scheme. The designed milliohm meter (that is, the device) has the characteristics of simple circuit design, perfect function, accurate measurement, and low cost.
附图说明 Description of drawings
图1本实用新型实施例1的结构框图;The structural block diagram of Fig. 1 utility model embodiment 1;
图2为实用新型实施例1中数控恒流源的电路原理图。(图中的RL是被测电阻。输入信号Vin为0~4V)Fig. 2 is a schematic circuit diagram of a digitally controlled constant current source in Embodiment 1 of the utility model. (RL in the figure is the measured resistance. The input signal Vin is 0~4V)
具体实施方式 Detailed ways
实施例1:Example 1:
如图1和2所示,一种数控式电阻测量装置,其特征在于,包括微处理器、用于将被测电压放大的放大器、AD转换器、DA转换器、为被测电阻提供恒定电流的数控恒流源;所述的放大器的两个输入端接被测电阻的两端;所述的放大器的输出端经所述的AD转换器接微处理器;所述的微处理器通过DA转换器与所述的数控恒流源的输入端连接,所述的数控恒流源的输出端接被测电阻,用于给被测电子提供恒定的电流。所述的微处理器为单片机。As shown in Figures 1 and 2, a numerically controlled resistance measuring device is characterized in that it includes a microprocessor, an amplifier for amplifying the measured voltage, an AD converter, a DA converter, and provides a constant current for the measured resistance The numerically controlled constant current source; The two input terminals of the amplifier are connected to the two ends of the measured resistance; the output terminals of the amplifier are connected to the microprocessor through the AD converter; the microprocessor passes the DA The converter is connected with the input end of the digital control constant current source, and the output end of the digital control constant current source is connected with the resistance under test for providing constant current to the electron under test. Described microprocessor is single-chip microcomputer.
本方案采用最基本伏安特性测试方法:在被测电阻中通以恒定的直流电流,通过测量装置得到电阻上的电压,通过单片机运算被测电阻的阻值。由欧姆定理U=R×I可知:由于电阻为毫欧,如果电流为毫安的话,则所得的电压值将很小,难以通过ADC芯片识别出来,当然可以采用大电流的方法采集到更大的电压从而使ADC转换芯片能够识别出来,然而采用大电流的话,由于很多小电阻无法承受较大的电流,或通过电流较大时,产生的热量过大,都将造成电路系统的破坏。因此,采用将采集到的电压信号进行放大,微小电压信号放大后经AD转换,送入单片机,由单片机计算并显示出电阻值。系统整体方案设计框图如图1。This program adopts the most basic volt-ampere characteristic test method: pass a constant DC current through the measured resistance, obtain the voltage on the resistance through the measuring device, and calculate the resistance value of the measured resistance through the single-chip microcomputer. According to Ohm's theorem U=R×I, it can be seen that since the resistance is milliohm, if the current is milliampere, the resulting voltage value will be very small and difficult to identify through the ADC chip. Of course, a large current method can be used to collect larger However, if a large current is used, many small resistors cannot withstand a large current, or when the current is large, the heat generated is too large, which will cause damage to the circuit system. Therefore, the collected voltage signal is amplified, the tiny voltage signal is amplified, converted by AD, sent to the single-chip microcomputer, and the resistance value is calculated and displayed by the single-chip microcomputer. The block diagram of the overall scheme design of the system is shown in Figure 1.
数控恒流源电路设计Design of Numerical Control Constant Current Source Circuit
数控恒流源为电阻测量提供恒定的电流。本系统由单片机根据被测电阻阻值范围,提供输出恒定电流的大小。实际电路中采用的三极管为TIP41,三极管本身在这里不具备控制电流大小的作用,但是起到驱动和扩流的作用。U2B是一个电压跟随,与三极管Q2构成一个负反馈电路。R9上的电压为输入的电压Vin。输入电压等于R9上的电压,所以负载RL电流为I=U/R9。A digitally controlled constant current source provides constant current for resistance measurements. In this system, the single-chip microcomputer provides the size of the output constant current according to the resistance range of the measured resistance. The triode used in the actual circuit is TIP41. The triode itself does not have the function of controlling the current, but it plays the role of driving and expanding the current. U2B is a voltage follower and forms a negative feedback circuit with transistor Q2. The voltage on R9 is the input voltage Vin. The input voltage is equal to the voltage on R9, so the load RL current is I=U/R9.
电压放大模块与数据处理模块Voltage amplification module and data processing module
需要把测量到的直流电压信号放大100倍后,即可传给AD芯片再由单片机处量。电压放大模块如图2所示:通过调节R2与R1的比值即可以改变电压放大倍数。After the measured DC voltage signal needs to be amplified 100 times, it can be transmitted to the AD chip and then processed by the single-chip microcomputer. The voltage amplification module is shown in Figure 2: the voltage amplification factor can be changed by adjusting the ratio of R2 to R1.
可以采用单个运算放大一百倍,也可以采用两个运算放大的级联,每个放大十倍。实际电路制作过程中,上面两种方法都进行测试,发现采用单个运算放大一百倍效果相对要好。所以本设计中是采用的单个运算放大100倍的方法。A single operational amplifier can be used to amplify one hundred times, or a cascade of two operational amplifiers can be used, each amplified by ten times. In the actual circuit production process, the above two methods are tested, and it is found that the effect of a single operation magnification of 100 times is relatively better. Therefore, in this design, a method of amplifying a single operation by 100 times is adopted.
电阻测量所取得的电压信号放大100倍后,通过AD-IN传入ADC转换芯片。再由单片机计算,用所得的电压除以测量时恒定的电流可得电阻的阻值大小,但此时的电阻阻值还不是实际所测得的电阻阻值,因为电压是放大一百倍后所得的。所以结果应缩小100倍即可得到真实的电阻阻值大小。After the voltage signal obtained by resistance measurement is amplified 100 times, it is transmitted to the ADC conversion chip through AD-IN. Calculated by the single-chip computer, the resistance value of the resistance can be obtained by dividing the obtained voltage by the constant current during measurement, but the resistance value at this time is not the actual resistance value measured, because the voltage is magnified one hundred times earned. Therefore, the result should be reduced by 100 times to get the real resistance value of the resistor.
由单片机控制DAC5615芯片分别产生40mV、400mV、4000mV的电压即可获得需要测量的电流分别为1mA(40mV/40Ω)、10mA(400mV/40Ω)、100mA(4000mV/40Ω)。实际电路中只需要选择好相应的电阻测量范围即可,由单片机控制压控电流源电路输出所需要的电流。The DAC5615 chip is controlled by the microcontroller to generate voltages of 40mV, 400mV, and 4000mV respectively, and the currents to be measured are 1mA (40mV/40Ω), 10mA (400mV/40Ω), and 100mA (4000mV/40Ω). In the actual circuit, it is only necessary to select the corresponding resistance measurement range, and the single-chip microcomputer controls the voltage-controlled current source circuit to output the required current.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200920064173U CN201378188Y (en) | 2009-04-23 | 2009-04-23 | Digitally controlled resistance measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200920064173U CN201378188Y (en) | 2009-04-23 | 2009-04-23 | Digitally controlled resistance measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201378188Y true CN201378188Y (en) | 2010-01-06 |
Family
ID=41518305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200920064173U Expired - Fee Related CN201378188Y (en) | 2009-04-23 | 2009-04-23 | Digitally controlled resistance measuring device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201378188Y (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102012461A (en) * | 2010-10-27 | 2011-04-13 | 峨嵋半导体材料研究所 | Method for testing electrical resistivity of high-resistivity silicon |
CN102323483A (en) * | 2011-08-09 | 2012-01-18 | 田业善 | Method for measuring resistance temperature coefficient by relative method |
CN102843138A (en) * | 2012-08-15 | 2012-12-26 | 上海新时达电气股份有限公司 | AD (Analog/Digital) sampling circuit |
CN102866325A (en) * | 2012-09-20 | 2013-01-09 | 南京全信传输科技股份有限公司 | Portable testing instrument for switching-on resistance record and testing method thereof |
CN103235011A (en) * | 2013-05-06 | 2013-08-07 | 海南大学 | Semiconductor ozone sensor measuring circuit |
CN103472307A (en) * | 2013-09-10 | 2013-12-25 | 中国工程物理研究院化工材料研究所 | Computer micro-resistor high-precision testing device based on CPCI |
CN103759631A (en) * | 2014-01-07 | 2014-04-30 | 江西省高新超越精密电子有限公司 | Wire diameter detecting equipment |
CN104360165A (en) * | 2014-11-26 | 2015-02-18 | 上海斐讯数据通信技术有限公司 | Multichannel resistance measuring device |
CN104460496A (en) * | 2014-12-31 | 2015-03-25 | 桂林铭瑶电子科技有限公司 | Numerical control constant current source circuit based on PLC |
CN105242114A (en) * | 2015-10-14 | 2016-01-13 | 上海斐讯数据通信技术有限公司 | Resistance measuring method, resistance measuring system and resistance acquisition apparatus based on MEMS device |
CN104267262B (en) * | 2014-07-22 | 2017-07-04 | 国家电网公司 | A kind of high-precision loop resistance intelligent tester |
CN107219402A (en) * | 2017-06-07 | 2017-09-29 | 中国电子科技集团公司第二十四研究所 | A kind of circuit for quick measurement of DC resistance for power module port |
CN107727697A (en) * | 2017-10-26 | 2018-02-23 | 北京科技大学 | A kind of probe in-situ resistivity-measuring devices of high flux material chip four |
CN108169568A (en) * | 2018-01-31 | 2018-06-15 | 淮安信息职业技术学院 | Milliohm resistance measuring circuit |
CN108318740A (en) * | 2018-03-01 | 2018-07-24 | 昆明创培知识产权服务有限公司 | A kind of device measuring load electric leakage or aging using piezoelectrics |
CN109696939A (en) * | 2017-10-23 | 2019-04-30 | 四川农业大学 | A kind of digital-control constant-flow source control loop |
CN110189790A (en) * | 2019-06-18 | 2019-08-30 | 北京控制与电子技术研究所 | A kind of resistance measurement method based on nonvolatile storage |
CN117849591A (en) * | 2024-02-19 | 2024-04-09 | 芯洲科技(北京)股份有限公司 | Automatic chip testing equipment and automatic chip internal small resistance testing method |
-
2009
- 2009-04-23 CN CN200920064173U patent/CN201378188Y/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102012461A (en) * | 2010-10-27 | 2011-04-13 | 峨嵋半导体材料研究所 | Method for testing electrical resistivity of high-resistivity silicon |
CN102323483A (en) * | 2011-08-09 | 2012-01-18 | 田业善 | Method for measuring resistance temperature coefficient by relative method |
CN102843138A (en) * | 2012-08-15 | 2012-12-26 | 上海新时达电气股份有限公司 | AD (Analog/Digital) sampling circuit |
CN102866325A (en) * | 2012-09-20 | 2013-01-09 | 南京全信传输科技股份有限公司 | Portable testing instrument for switching-on resistance record and testing method thereof |
CN103235011A (en) * | 2013-05-06 | 2013-08-07 | 海南大学 | Semiconductor ozone sensor measuring circuit |
CN103472307A (en) * | 2013-09-10 | 2013-12-25 | 中国工程物理研究院化工材料研究所 | Computer micro-resistor high-precision testing device based on CPCI |
CN103759631A (en) * | 2014-01-07 | 2014-04-30 | 江西省高新超越精密电子有限公司 | Wire diameter detecting equipment |
CN104267262B (en) * | 2014-07-22 | 2017-07-04 | 国家电网公司 | A kind of high-precision loop resistance intelligent tester |
CN104360165A (en) * | 2014-11-26 | 2015-02-18 | 上海斐讯数据通信技术有限公司 | Multichannel resistance measuring device |
CN104460496A (en) * | 2014-12-31 | 2015-03-25 | 桂林铭瑶电子科技有限公司 | Numerical control constant current source circuit based on PLC |
CN105242114A (en) * | 2015-10-14 | 2016-01-13 | 上海斐讯数据通信技术有限公司 | Resistance measuring method, resistance measuring system and resistance acquisition apparatus based on MEMS device |
CN107219402A (en) * | 2017-06-07 | 2017-09-29 | 中国电子科技集团公司第二十四研究所 | A kind of circuit for quick measurement of DC resistance for power module port |
CN107219402B (en) * | 2017-06-07 | 2019-06-21 | 中国电子科技集团公司第二十四研究所 | A kind of circuit for quick measurement of DC resistance for power module port |
CN109696939A (en) * | 2017-10-23 | 2019-04-30 | 四川农业大学 | A kind of digital-control constant-flow source control loop |
CN107727697A (en) * | 2017-10-26 | 2018-02-23 | 北京科技大学 | A kind of probe in-situ resistivity-measuring devices of high flux material chip four |
CN107727697B (en) * | 2017-10-26 | 2023-12-12 | 北京科技大学 | Four-probe in-situ resistance measurement equipment for high-flux material chip |
CN108169568A (en) * | 2018-01-31 | 2018-06-15 | 淮安信息职业技术学院 | Milliohm resistance measuring circuit |
CN108318740A (en) * | 2018-03-01 | 2018-07-24 | 昆明创培知识产权服务有限公司 | A kind of device measuring load electric leakage or aging using piezoelectrics |
CN110189790A (en) * | 2019-06-18 | 2019-08-30 | 北京控制与电子技术研究所 | A kind of resistance measurement method based on nonvolatile storage |
CN117849591A (en) * | 2024-02-19 | 2024-04-09 | 芯洲科技(北京)股份有限公司 | Automatic chip testing equipment and automatic chip internal small resistance testing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201378188Y (en) | Digitally controlled resistance measuring device | |
CN101498749B (en) | Accurate resistor measuring apparatus and method thereof | |
CN204101635U (en) | A kind of microresistivity survey instrument and electronic product process units | |
CN102854373B (en) | PWM (Pulse-Width Modulation) three-level digital controller of zero-flux Hall large-current sensor | |
CN109975616B (en) | A wide-range high-precision resistance tester | |
CN103529297A (en) | Impedance testing device | |
CN205665316U (en) | Novel resistance automatic measure device | |
CN201159760Y (en) | Adjustable DC Electronic Load Device | |
CN201788222U (en) | AC-DC (alternating current-direct current) compatible isolated voltage sampling circuit | |
CN206710527U (en) | A kind of PCB layout short circuit tester | |
CN206339316U (en) | Multi-channel temperature measurement device | |
CN112187050A (en) | Precise low-cost programmable power supply module for test equipment | |
CN104166035A (en) | Negative voltage detection device | |
CN217278623U (en) | A line load network detection and fault location device | |
CN217404394U (en) | Protection and measurement dual-purpose high-precision large-dynamic-range alternating current sampling circuit | |
CN116545393A (en) | Precise output amplifying circuit, load detection circuit and device using circuit | |
CN214041542U (en) | Constant current circuit for direct current resistance tester | |
CN212364537U (en) | Test system for testing power supply IC efficiency | |
US20110175596A1 (en) | Current measuring apparatus for power supply | |
CN103219962B (en) | Programmable-gain isolating amplifier circuit and its implementation | |
CN100495847C (en) | Countercurrent measurement and control system | |
CN206489220U (en) | One kind is based on single-chip microcomputer microresistivity survey system | |
CN207036946U (en) | A kind of current measuring device | |
CN209946259U (en) | A high-precision current sampling and control circuit | |
CN102478874B (en) | Digitally adjustable constant voltage source and method for digitally controlling the constant voltage source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100106 Termination date: 20100423 |