CN201348401Y - Absorption type refrigerating device with energy compensation - Google Patents
Absorption type refrigerating device with energy compensation Download PDFInfo
- Publication number
- CN201348401Y CN201348401Y CNU200820241154XU CN200820241154U CN201348401Y CN 201348401 Y CN201348401 Y CN 201348401Y CN U200820241154X U CNU200820241154X U CN U200820241154XU CN 200820241154 U CN200820241154 U CN 200820241154U CN 201348401 Y CN201348401 Y CN 201348401Y
- Authority
- CN
- China
- Prior art keywords
- pump
- hydraulic motor
- liquid
- absorber
- liquid outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 30
- 239000007788 liquid Substances 0.000 claims abstract description 150
- 239000006096 absorbing agent Substances 0.000 claims abstract description 43
- 239000012530 fluid Substances 0.000 claims description 17
- 238000005057 refrigeration Methods 0.000 abstract description 27
- 238000001816 cooling Methods 0.000 abstract description 7
- 230000009977 dual effect Effects 0.000 abstract description 6
- 238000005265 energy consumption Methods 0.000 abstract description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 9
- 229910021529 ammonia Inorganic materials 0.000 description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- IPLONMMJNGTUAI-UHFFFAOYSA-M lithium;bromide;hydrate Chemical compound [Li+].O.[Br-] IPLONMMJNGTUAI-UHFFFAOYSA-M 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NHLDHLCQPCMSCS-UHFFFAOYSA-N [Li+].N.[O-][N+]([O-])=O Chemical compound [Li+].N.[O-][N+]([O-])=O NHLDHLCQPCMSCS-UHFFFAOYSA-N 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- HAAFARYZKVVJHG-UHFFFAOYSA-M sodium azane thiocyanate Chemical compound N.[Na]SC#N HAAFARYZKVVJHG-UHFFFAOYSA-M 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
一种带能量补偿的吸收式制冷装置,属于制冷技术领域。所述的磁力泵采用带有液压马达的双动力磁力驱动泵,双动力磁力驱动泵上液压马达的进液口(5)与来自发生器出液口的管道连通,液压马达的出液口(13)与流向吸收器的回液管道连通。利用发生器至吸收器之间的回液压差,驱动与磁力泵共用一轴的液压马达作能量补偿,降低了磁力泵的能耗,提高了供液泵工作的可靠性及耐用性,能耗较小,制冷效率(COP)较高,结构简单,体积及重量小,适于在各种制冷系统中运用。
An absorption refrigeration device with energy compensation belongs to the technical field of refrigeration. Described magnetic pump adopts the dual power magnetic drive pump with hydraulic motor, the liquid inlet (5) of hydraulic motor on the double power magnetic drive pump is communicated with the pipeline from generator liquid outlet, and the liquid outlet of hydraulic motor ( 13) Connect with the liquid return pipe flowing to the absorber. Using the return hydraulic pressure difference between the generator and the absorber, the hydraulic motor that shares the same axis with the magnetic pump is driven for energy compensation, which reduces the energy consumption of the magnetic pump, improves the reliability and durability of the liquid supply pump, and reduces energy consumption. Small, high cooling efficiency (COP), simple structure, small volume and weight, suitable for use in various refrigeration systems.
Description
技术领域 technical field
本实用新型涉及一种吸收式制冷装置,具体来说涉及一种带能量补偿的吸收式制冷装置。属于制冷技术领域。The utility model relates to an absorption refrigeration device, in particular to an absorption refrigeration device with energy compensation. It belongs to the technical field of refrigeration.
背景技术 Background technique
吸收式制冷系统是解决由于使用氟利昂而引起的一系列环境问题的有效途径之一,同时吸收式制冷系统还具有可使用低温热源作为动力等优点。The absorption refrigeration system is one of the effective ways to solve a series of environmental problems caused by the use of freon. At the same time, the absorption refrigeration system also has the advantages of using low-temperature heat sources as power.
目前吸收式制冷机有氨-水吸收式、溴化锂-水吸收式和氨-氢-水扩散吸收式。氨-水吸收式制冷机以氨为制冷剂,以水为吸收剂,可以实现0℃以下的温度,但氨水溶液对有色金属材料(除磷青铜外)有腐蚀作用,且由于氨和水在相同压力下的气化温度比较接近(例如在一个标准大气压力,氨与水的沸点分别为-33℃和100℃,两者仅相差133.4℃)因而必须使用精馏设备。溴化锂-水吸式制冷机以溴化锂为吸水剂,水为制冷剂,一般只能制取5℃以上的温度,且需保持真空状态,其结晶问题以及腐蚀问题也为制冷系统的运行与维护带来很大的问题。扩散吸收式制冷机的工质对是氨-氢-水,其三个组分中氨是制冷剂,氢是扩散剂,水是吸收剂,制冷循环由氨的蒸发和冷凝过程,以及氨水吸收和解析氨气过程组成,氢的扩散能力很强,在循环中,由于氢气在蒸发器内的扩散作用,使其中氨分压降低,由于在冷凝器和蒸发器之间没有节流阀件,蒸发器中的总压力等于冷凝压力,蒸发器中的氨液可在较低的氨分压下产生蒸发制冷效应。同时,由于溶液被加热到沸腾时的密度差所产生的热虹吸作用,使溶液在没有机械泵推动的情况下,在吸收器和发生器之间循环流动。此系统中工质对如采用氨-水,必须设有精馏系统,而利用热虹吸泵推动循环,其制冷量较小,制冷效率较低。At present, absorption refrigerators include ammonia-water absorption type, lithium bromide-water absorption type and ammonia-hydrogen-water diffusion absorption type. The ammonia-water absorption refrigerator uses ammonia as the refrigerant and water as the absorbent, and can achieve a temperature below 0°C, but the ammonia solution has a corrosive effect on non-ferrous metal materials (except phosphor bronze), and because ammonia and water are in The gasification temperature under the same pressure is relatively close (for example, at a standard atmospheric pressure, the boiling points of ammonia and water are -33°C and 100°C, respectively, and the difference between the two is only 133.4°C), so rectification equipment must be used. The lithium bromide-water suction refrigerator uses lithium bromide as the water absorbent and water as the refrigerant. Generally, it can only produce a temperature above 5°C, and it needs to be kept in a vacuum state. Its crystallization and corrosion problems also pose a threat to the operation and maintenance of the refrigeration system. Here comes the big question. The working fluid pair of the diffusion absorption refrigerator is ammonia-hydrogen-water. Among the three components, ammonia is the refrigerant, hydrogen is the diffusing agent, and water is the absorbent. The refrigeration cycle consists of the evaporation and condensation of ammonia and the absorption of ammonia water. Combining with the process of analyzing ammonia gas, the diffusion ability of hydrogen is very strong. In the cycle, due to the diffusion of hydrogen gas in the evaporator, the partial pressure of ammonia is reduced. Since there is no throttle valve between the condenser and the evaporator, The total pressure in the evaporator is equal to the condensing pressure, and the ammonia liquid in the evaporator can produce evaporative cooling effect at a lower ammonia partial pressure. At the same time, due to the thermosiphon effect generated by the density difference when the solution is heated to boiling, the solution circulates between the absorber and the generator without a mechanical pump. If ammonia-water is used as the working fluid in this system, a rectification system must be installed, and the use of a thermosiphon pump to promote circulation has a small cooling capacity and low cooling efficiency.
中国专利公开号:CN101029783,公开日:2007年9月5日,发明名称:《硫氰酸钠-氨扩散吸收式制冷装置》,提出了将发生器一端与气液分离器相连,气液分离器顶部经过冷凝器与扩散罐相连,气液分离器底部通过溶液热交换器与泵相连,扩散罐底部通过泵与蒸发器形成封闭的环路,而扩散罐与吸收器上下端分别连通,吸收器一端与冷却器形成循环的环路,吸收器同时又经过泵与溶液热交换器连接的技术方案。该方案省略了精馏装置,采用磁力泵,较低的热源温度就可满足驱动系统的要求,提高了制冷效率。但该方案中因为存在氢的扩散作用,使得制冷剂的气化速率下降,制约了系统热力系数的进一步提高。Chinese Patent Publication No.: CN101029783, Publication Date: September 5, 2007, Invention Name: "Sodium Thiocyanate-Ammonia Diffusion and Absorption Refrigeration Device", which proposes to connect one end of the generator with a gas-liquid separator for gas-liquid separation The top of the condenser is connected to the diffusion tank through the condenser, the bottom of the gas-liquid separator is connected to the pump through the solution heat exchanger, the bottom of the diffusion tank is connected to the evaporator through the pump to form a closed loop, and the diffusion tank is connected to the upper and lower ends of the absorber respectively. One end of the absorber forms a circulating loop with the cooler, and the absorber is connected to the solution heat exchanger through a pump at the same time. This scheme omits the rectification device, adopts the magnetic pump, the lower heat source temperature can meet the requirements of the drive system, and improves the refrigeration efficiency. However, in this solution, due to the diffusion of hydrogen, the vaporization rate of the refrigerant decreases, which restricts the further improvement of the thermal coefficient of the system.
发明内容 Contents of the invention
本实用新型的目的是针对现有吸收式制冷装置体积大,维护成本高,能耗高,热力系数低,可靠性和耐用性较差的缺陷和不足,提出一种系统能耗较低,溶液泵输出扭矩较高,可靠性和耐用性较好,并可使吸收式制冷系统小型化的带能量补偿的吸收式制冷装置。The purpose of this utility model is to propose a system with low energy consumption, solution The pump output torque is high, the reliability and durability are good, and the absorption refrigeration device with energy compensation can make the absorption refrigeration system miniaturized.
本实用新型的目的是通过以下方式实现的:一种带能量补偿的吸收式制冷装置,包括发生器、冷凝器、吸收器、蒸发器和磁力泵,所述的磁力泵采用带有液压马达的双动力磁力驱动泵,双动力磁力驱动泵上液压马达的进液口与来自发生器的液体管道连通,液压马达的出液口与流向吸收器的回液管道连通。The purpose of this utility model is achieved by the following methods: an absorption refrigeration device with energy compensation, including a generator, a condenser, an absorber, an evaporator and a magnetic pump, and the magnetic pump adopts a hydraulic motor The dual-power magnetic drive pump, the liquid inlet of the hydraulic motor on the dual-power magnetic drive pump is connected with the liquid pipeline from the generator, and the liquid outlet of the hydraulic motor is connected with the liquid return pipeline flowing to the absorber.
所述双动力磁力驱动泵上液压马达的进液口与溶液热交换器的热液出液管道连通,溶液热交换器的热液进液管道与发生器连通,或者通过气液分离器与发生器连通,液压马达的出液口与冷却器的进液管道连通,冷却器的出液口与吸收器的回液管道连通。The liquid inlet of the hydraulic motor on the dual-power magnetic drive pump is connected with the hot liquid outlet pipe of the solution heat exchanger, and the hot liquid inlet pipe of the solution heat exchanger is connected with the generator, or connected with the generator through the gas-liquid separator. The liquid outlet of the hydraulic motor is connected with the liquid inlet pipe of the cooler, and the liquid outlet of the cooler is connected with the liquid return pipe of the absorber.
所述双动力磁力驱动泵上的供液泵是齿轮泵或螺杆泵或离心泵。The liquid supply pump on the dual-power magnetic drive pump is a gear pump or a screw pump or a centrifugal pump.
所述双动力磁力驱动泵上的液压马达为齿轮式液压马达。The hydraulic motor on the dual-power magnetic drive pump is a gear hydraulic motor.
本实用新型所述的双动力磁力驱动泵,已由本申请人于同日向国家知识产权局专利局申请了发明和实用新型专利。The dual power magnetic drive pump described in the utility model has applied for invention and utility model patents to the Patent Office of the State Intellectual Property Office by the applicant on the same day.
与现有技术相比本实用新型具有以下明显的优点:Compared with the prior art, the utility model has the following obvious advantages:
1.本实用新型采用带能量补偿的双动力磁力泵作为动力源,利用发生器至吸收器之间的回液压差,驱动与磁力泵共用一轴的液压马达作能量补偿,降低了供液泵的能耗,提高了供液泵工作的可靠性及耐用性。1. The utility model uses a dual-power magnetic pump with energy compensation as the power source, and uses the return hydraulic pressure difference between the generator and the absorber to drive the hydraulic motor that shares the same axis with the magnetic pump for energy compensation, reducing the pressure on the liquid supply pump. Low energy consumption improves the reliability and durability of the liquid supply pump.
2.本实用新型装置与溴化锂-水,氨-氢-水和氨-水制冷装置相比,在同等功率下,其体积及重量远小于它们。2. Compared with lithium bromide-water, ammonia-hydrogen-water and ammonia-water refrigeration devices, the utility model has a much smaller volume and weight than them under the same power.
3.本实用新型装置设置了一套由供液泵驱动的工质对溶液强制循环散热回路,对吸收器内的工质对溶液降温降压,使吸收器的吸收能力比传统吸收器有显著的提升。3. The device of this utility model is equipped with a set of cooling loops driven by the liquid supply pump for forced circulation of the working fluid to the solution, to cool down the temperature and pressure of the working fluid in the absorber, so that the absorption capacity of the absorber is significantly higher than that of the traditional absorber. improvement.
4.与目前的吸收式制冷装置相比较,本实用新型具有结构简单、运行高效、无泄露的优点,且制作成本及运行费用可以大幅降低。4. Compared with the current absorption refrigeration device, the utility model has the advantages of simple structure, efficient operation and no leakage, and the production cost and operation cost can be greatly reduced.
附图说明 Description of drawings
图1是本实用新型第一种结构的原理框图;Fig. 1 is the functional block diagram of the first structure of the utility model;
图2是本实用新型第二种结构的原理框图;Fig. 2 is the functional block diagram of the second structure of the utility model;
图3是本实用新型中一种双动力磁力驱动泵的结构示意图;Fig. 3 is a structural representation of a dual-power magnetic drive pump in the utility model;
图4是本实用新型第三种结构的原理框图。Fig. 4 is a functional block diagram of the third structure of the utility model.
图中,从动齿轮轴1,供液泵进液口2,从动齿轮3,液压马达输入齿轮4,液压马达进液口5,后端盖6,密封端盖7,驱动磁环8,电机9,从动磁芯10,液压马达输出齿轮11,主动齿轮12,液压马达出液口13,中心端盘14,供液泵出液口15,前端盖16,主动轴17,液压马达输入齿轮轴18。In the figure, the driven
具体实施方式 Detailed ways
以下结合附图说明和具体实施方式对本实用新型作进一步的详细描述:Below in conjunction with accompanying drawing description and specific embodiment, the utility model is described in further detail:
参见图1,本实用新型的一种带能量补偿的吸收式制冷装置,包括发生器、冷凝器、吸收器、蒸发器和磁力泵,所述的磁力泵采用带有液压马达的双动力磁力驱动泵,双动力磁力驱动泵上液压马达的进液口5与来自发生器出液口的管道连通,液压马达的出液口13与流向吸收器的回液管道连通。Referring to Fig. 1, an absorption refrigeration device with energy compensation of the present utility model includes a generator, a condenser, an absorber, an evaporator and a magnetic pump, and the magnetic pump adopts a dual-power magnetic drive with a hydraulic motor Pump, the
在现有的吸收式制冷系统中,由吸收器内的液体工质经过泵输出到发生器,进入发生器的液体工质,在温度和压力的作用下,一部分成为制冷剂蒸气,制冷剂蒸气经过冷凝器、蒸发器制冷做功后回流到吸收器;发生器内部的另一部分液体工质如稀氨溶液,在压力作用下直接回流至吸收器。对于吸收式制冷系统而言,一般情况下,发生器与吸收器内的液体压差可以达到1.5-2.5Mpa,采用双动力磁力驱动泵就可以充分利用该液体压差驱动其供液泵做功。如图1中所示的双动力泵即为本实用新型中的双动力磁力驱动泵,将双动力泵上的供液泵进液口2经管道与吸收器出液口连接,供液泵出液口15经管道与发生器的进液口连接,将液压马达进液口5经管道与与发生器出液口连接,将液压马达出液口13经管道与吸收器上的回液口连接。工作时,本实用新型双动力泵的电机转动,吸收器内的液体工质,经双动力磁力驱动泵上的供液泵进入发生器,发生器内的高压液体工质又推动双动力泵上的液压马达转动,并向供液泵提供额外的动力,通过液压马达的动力补偿作用,可以克服磁力驱动泵在提供过高输出扭矩时,因驱动磁环8与从动磁芯10之间的转矩增加和转速不同步的磁滞作用,产生高温导致磁力驱动泵输出流量的减小,停车,甚至损坏,可靠性及耐用性大幅提高。可以进一步减小磁力泵的输出扭矩和体积,能耗小。因此,本实用新型装置可以促使吸收式制冷机小型化的商业转化应用,为满足不同的制冷需求提供了有效的解决方案。In the existing absorption refrigeration system, the liquid working medium in the absorber is output to the generator through a pump, and part of the liquid working medium entering the generator becomes refrigerant vapor under the action of temperature and pressure. After being cooled by the condenser and evaporator, it flows back to the absorber; another part of the liquid working medium inside the generator, such as dilute ammonia solution, directly flows back to the absorber under pressure. For the absorption refrigeration system, under normal circumstances, the liquid pressure difference between the generator and the absorber can reach 1.5-2.5Mpa, and the dual-power magnetic drive pump can make full use of the liquid pressure difference to drive the liquid supply pump to do work. The dual-power pump shown in Figure 1 is the dual-power magnetic drive pump in the utility model. The liquid supply
参见图2,现有吸收式制冷装置的另一种结构是将发生器的一端与气液分离器相连,气液分离器上的出液口经管道与溶液热交换器的热液进液口相连,或者发生器的一端经管道直接与溶液热交换器的热液进液口连通,溶液热交换器的冷液进液口与吸收器的出液管道连通,溶液热交换器的冷液出液口与发生器的进液管道连通。而在吸收器的回液管路上串联有冷却器,在这种情况下,可以使所述双动力磁力驱动泵上液压马达的进液口5与溶液热交换器的热液出液管道连通,溶液热交换器的热液进液管道与发生器的出液口或通过气液分离器与发生器的出液口连通,液压马达的出液口13与冷却器的进液管道连通,冷却器的出液口与吸收器的回液管道连通。Referring to Fig. 2, another structure of the existing absorption refrigeration device is to connect one end of the generator to the gas-liquid separator, and the liquid outlet on the gas-liquid separator is connected to the hot liquid inlet of the solution heat exchanger through a pipeline. or one end of the generator is directly connected to the hot liquid inlet of the solution heat exchanger through a pipe, the cold liquid inlet of the solution heat exchanger is connected to the liquid outlet pipe of the absorber, and the cold liquid outlet of the solution heat exchanger The liquid port communicates with the liquid inlet pipe of the generator. A cooler is connected in series on the liquid return line of the absorber. In this case, the
参见图3,现有磁力驱动齿轮泵上的主动回转件是主动齿轮12,电机9的一端或两端固定有驱动磁环8,在驱动磁环8的内部对应设置有从动磁芯10,从动磁芯10与驱动磁环8之间留有间隙,在磁力线的作用下构成无接触连接。在电机9壳体的一端或两端上固定有后端盖6,为保证密封效果,在电机9和后端盖6之间还设置有密封端盖7。从动磁芯10的中心固定有主动轴17,主动轴17穿过后端盖6与主动齿轮12固定连接,主动轴17的另一端支撑前端盖16上。齿轮供液泵泵体包容在主动齿轮12与从动齿轮3的外部,并与后端盖、前端盖16一起构成齿轮供液泵的外部壳体,齿轮供液泵泵体上设置有供液泵进液口2和供液泵出液口15。在齿轮供液泵泵体内部主动齿轮12与从动齿轮3相啮合,供液泵从动齿轮轴1的两端分别支撑在后端盖6和前端盖16上。当磁力泵运行时,电机9带动驱动磁环8转动,在驱动磁环8磁场的作用下,从动磁芯10随之转动,并通过主动轴17带动主动齿轮12和从动齿轮3运转,将供液泵进液口2处的液体压向供液泵出液口15,从而达到输送流体的目的。Referring to Fig. 3 , the active rotary part on the existing magnetic drive gear pump is a
本实用新型在齿轮供液泵的泵体一侧增加了一个液压马达。液压马达可以设置在齿轮供液泵的外侧,即齿轮供液泵设置在液压马达和从动磁芯10之间。也可以使所述的液压马达设置在供液泵与从动磁芯10之间,液压马达一侧的后端盖7固定在磁力驱动泵电机9的壳体上,液压马达另一侧的中心端盘14与供液泵连接。在后端盖6和前端盖16之间增加了中心端盘14,在前端盖16和中心端盘14之间的壳体上设置有供液泵进液口2和供液泵出液口15,在壳体内部装有主动齿轮12和从动齿轮3,主动齿轮12固定在主动轴17上,从动齿轮3固定在从动齿轮轴1上,从动齿轮轴1的两端分别安装在前端盖16和中心端盘14上。在中心端盘14和后端盖6之间的壳体上设置有液压马达进液口5和液压马达出液口13,并对应设置安装有液压马达输出齿轮11和液压马达输入齿轮4。主动轴17一端固定在从动磁芯10上,另一端穿过后端盖6后与液压马达输出齿轮11固定连接,再穿过中心端盘14后与主动齿轮12固定连接,最后将其端部支撑在前端盖16上。液压马达输入齿轮轴18的两端分别支撑在中心端盘14和后端盖6上,液压马达输入齿轮轴18的中部与液压马达输入齿轮4固定连接。在本实用新型中液压马达进液口5和供液泵进液口2的设置方向相同,液压马达出液口13和供液泵出液口15的设置方向相同。由于液压马达输出齿轮11固定在主动轴17上,并靠近液压马达出液口13,当液压马达进液口5流入的是压力较高的流体时,便可推动液压马达输入齿轮4转动,并带动液压马达输出齿轮11转动,向主动轴17输出动力,高压流体做功后再经液压马达出液口13流出。The utility model adds a hydraulic motor on the side of the pump body of the gear liquid supply pump. The hydraulic motor can be arranged outside the gear liquid supply pump, that is, the gear liquid supply pump is arranged between the hydraulic motor and the driven
在图1,图2中,所述的双动力磁力泵上设置有一台供液泵和一台液压马达,根据需要也可以设置两台供液泵和一台液压马达,或设置两台供液泵和两台液压马达。In Fig. 1 and Fig. 2, a liquid supply pump and a hydraulic motor are provided on the dual-power magnetic pump, and two liquid supply pumps and a hydraulic motor can also be provided as required, or two liquid supply pumps can be provided. pump and two hydraulic motors.
参见图3,图4,所述的双动力磁力泵上设置有两台供液泵,一台用于工质对溶液的输送,一台用于吸收器内工质对溶液的循环。两台泵上的供液泵进液口2均连接在吸收器的出液管道上,一台供液泵上的供液泵出液口15与发生器或通过溶液热交换器与发生的进液管道连通,另一台供液泵上的供液泵出液口15与吸收器的回液管道、或经冷却器与吸收器的回液管道连通。由于通过供液泵在吸收器的出液口和回液口之间建立了强制循环的工质对溶液流动回路,可辅以强制风冷或水冷措施,降低了吸收器内的温度和压力。使吸收器的吸收能力与传统吸收器相比较可大幅提升。而且本实用新型的吸收器工质对溶液强制循环方案在图1,图2中一台供液泵和一台液压马达的双动力磁力驱动泵上也可以通过在供液泵出液口15上并联通向吸收器的回流管道来实现。同时,还可根据制冷系统中工质对循环流动的平衡原则,分别调整供液泵和液压马达的流量,以保证吸收器和发生器内的液体在正常范围内波动,而无需设置调节阀门。Referring to Fig. 3 and Fig. 4, the dual-power magnetic pump is provided with two liquid supply pumps, one is used for the delivery of the working fluid to the solution, and the other is used for the circulation of the working fluid to the solution in the absorber. The
本实用新型中所述双动力磁力驱动泵上的供液泵是齿轮泵或螺杆泵或离心泵。所述双动力磁力驱动泵上的液压马达为齿轮式液压马达。The liquid supply pump on the dual-power magnetic drive pump described in the utility model is a gear pump or a screw pump or a centrifugal pump. The hydraulic motor on the dual-power magnetic drive pump is a gear hydraulic motor.
当本实用新型双动力泵的电机转动时,由电机9输出的动力传递到主动轴17上,同时带动主动齿轮12和从动齿轮3运转,将供液泵进液口2处的液体压向供液泵出液口15,从而达到输送流体的目的。当向双动力泵的液压马达进液口5注入高压流体时,高压流体推动液压马达输入齿轮4转动,并带动液压马达输出齿轮11转动,由液压马达输出齿轮11将动力传递到主动轴17上,由主动轴17带动主动齿轮12和从动齿轮3转动,将供液泵进液口2处的液体压向供液泵出液口15,从而达到输送流体的目的。在本实用新型装置中双动力泵上的电机9和液压马达同时转动,同时向主动轴17提供动力,则可较大幅度地提高本实用新型双动力泵输出的扭矩,可以较好地避免因磁力泵输出扭矩增加所导致磁性偶合件产生的高温。从而可缩小磁力泵的体积,提高磁力泵的可靠性和耐用度。本实用新型装置利用制冷系统中剩余或无用的高压流体来驱动液压马达,节能和绿色环保作用明显,经济效益显著。When the motor of the dual-power pump of the present invention rotates, the power output by the motor 9 is transmitted to the driving
本实用新型装置使用硫氰酸钠-氨或硝酸锂-氨为工质对,经运行实测:当热源温度在75℃时,蒸发(制冷)温度达到-6℃,当热源温度在90-100℃时,蒸发(制冷)可以达到-33℃。制冷装置中,磁力泵的需用功率减少。The utility model device uses sodium thiocyanate-ammonia or lithium nitrate-ammonia as the working medium pair, and it is measured through operation: when the temperature of the heat source is at 75°C, the evaporation (refrigeration) temperature reaches -6°C, and when the temperature of the heat source is at 90-100°C ℃, evaporation (refrigeration) can reach -33 ℃. In the refrigeration unit, the required power of the magnetic pump is reduced.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU200820241154XU CN201348401Y (en) | 2008-12-30 | 2008-12-30 | Absorption type refrigerating device with energy compensation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU200820241154XU CN201348401Y (en) | 2008-12-30 | 2008-12-30 | Absorption type refrigerating device with energy compensation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201348401Y true CN201348401Y (en) | 2009-11-18 |
Family
ID=41367867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU200820241154XU Expired - Fee Related CN201348401Y (en) | 2008-12-30 | 2008-12-30 | Absorption type refrigerating device with energy compensation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201348401Y (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108027269A (en) * | 2015-09-15 | 2018-05-11 | Avl列表有限责任公司 | Coolable device for the through-flow process for measuring fluid |
CN110926052A (en) * | 2019-11-26 | 2020-03-27 | 上海交通大学 | Absorption refrigeration system based on differential pressure driving and circulation method thereof |
-
2008
- 2008-12-30 CN CNU200820241154XU patent/CN201348401Y/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108027269A (en) * | 2015-09-15 | 2018-05-11 | Avl列表有限责任公司 | Coolable device for the through-flow process for measuring fluid |
US10816379B2 (en) | 2015-09-15 | 2020-10-27 | Avl List Gmbh | Coolable device for measuring through-flow processes of fluids |
CN110926052A (en) * | 2019-11-26 | 2020-03-27 | 上海交通大学 | Absorption refrigeration system based on differential pressure driving and circulation method thereof |
CN110926052B (en) * | 2019-11-26 | 2021-08-24 | 上海交通大学 | Absorption refrigeration system driven by differential pressure and its circulation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN200958820Y (en) | High-temperature dynamic cold-storage air conditioner | |
CN100498128C (en) | Low grade energy driven and mechanical power driven composite heat pump, refrigeration system | |
CN101403540A (en) | Heat pump type heating and ice production method and apparatus | |
CN201740300U (en) | Secondary compression heat pump system with intermediate cooler | |
CN102563947B (en) | A kind of heat pipe hot pump combination type refrigerating plant | |
CN201463387U (en) | Bi-circulating industrial water chiller | |
CN111981555A (en) | Geothermal cascade utilization heating system based on absorption type and vapor compression type heat pumps | |
CN201706772U (en) | Solar single/double effect lithium bromide absorption type refrigerating unit formed by effective heat exchanger | |
CN109269143B (en) | Novel absorption heat pump and application method thereof | |
CN102003830B (en) | Adsorption type refrigerator and compression type air-conditioner combined system | |
CN106969452A (en) | A kind of air conditioner water cold accumulation system | |
CN204202062U (en) | With the water-cooled cooling water air conditioner unit of ice-reserving function | |
CN201348401Y (en) | Absorption type refrigerating device with energy compensation | |
CN212409111U (en) | Gas-liquid mixing cooling device | |
CN201392047Y (en) | Multi-machine parallel partial pressure evaporative cooling (hot) water unit | |
CN202885331U (en) | Absorption refrigeration system with internally installed generating device | |
CN103423912B (en) | A kind of Miniature wind cold type Absorption Refrigerator | |
CN206683135U (en) | A kind of ice-chilling air conditioning system | |
CN202521940U (en) | Solar secondary lithium bromide absorption type refrigeration device | |
CN110500688B (en) | Dilution type refrigeration heat pump system for air conditioning by utilizing dilution heat | |
CN201340135Y (en) | Hot water direct combustion single/double effect composite type lithium bromide absorption cold water/hot and cold water set | |
CN100485287C (en) | Vacuum refrigerating machine for pure water | |
CN202993422U (en) | Energy-saving and air-cooled air conditioner | |
CN101498523A (en) | Absorption type refrigerator with energy compensation | |
CN212132593U (en) | Cold and hot dual-purpose integral type heat pump cooling and heating machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Date of cancellation: 20110617 Granted publication date: 20091118 Pledgee: Wuhan Huachuang City Jiang'an District microfinance Ltd. Pledgor: Hubei Shiji Haibo Refrigeration Technology Co., Ltd. Registration number: 2010420000683 |
|
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091118 Termination date: 20121230 |