CN201177664Y - 距离测量系统 - Google Patents

距离测量系统 Download PDF

Info

Publication number
CN201177664Y
CN201177664Y CNU2007201556778U CN200720155677U CN201177664Y CN 201177664 Y CN201177664 Y CN 201177664Y CN U2007201556778 U CNU2007201556778 U CN U2007201556778U CN 200720155677 U CN200720155677 U CN 200720155677U CN 201177664 Y CN201177664 Y CN 201177664Y
Authority
CN
China
Prior art keywords
time
arrival
received signal
signal intensity
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU2007201556778U
Other languages
English (en)
Inventor
大浦启二
铃木健二
小林博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp NEC Display Solutions Ltd
Original Assignee
NEC Display Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Display Solutions Ltd filed Critical NEC Display Solutions Ltd
Application granted granted Critical
Publication of CN201177664Y publication Critical patent/CN201177664Y/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/16Systems for determining distance or velocity not using reflection or reradiation using difference in transit time between electrical and acoustic signals

Abstract

一种距离测量系统,包括:发射器,同时发射红外线和超声波;以及接收器,包括表,其示出了当直接接收超声波时的到达时间和对应于该到达时间的所需的接收超声波信号的强度之间的关系,其中该到达时间表示从所接收红外线的检测到所接收超声波的检测的时间段,将所接收超声波信号的强度与对应于从表中所检索到的到达时间的所需接收信号强度进行比较,并且当所接收超声波信号的强度高于对应于从表中所检索到的到达时间的所需接收信号强度时,根据到达时间来计算到所述发射器的距离。

Description

距离测量系统
本申请基于并且申明拥有2006年8月4日提交的日本专利申请第2006-213254号的优先权,其内容因而以参考的形式在此将其全部内容并入到本申请中。
技术领域
本实用新型涉及用于通过使用超声波来测量两点之间距离的距离测量系统和方法。
背景技术
作为用于测量两点之间距离的系统,日本专利未决公开申请第2006-64504号(下面称之为“专利文献1”)讲述了一种超声距离测量设备,用于根据从发射器同步发射的红外射线和超声波在接收器端的到达时间之差来测量发射器和接收器之间的距离。
专利文献1中讲述的超声距离测量设备根据以声速传播的超声波从发射器发射到接收器所需的时间来计算距离,并假定红外射线基本上同时被发射和接收。接收器使用半波整流电路对超声波接收信号进行整流,其输出电压通过电容器进行平滑。然后当电容器的输出电压超出事先设置的阈值时,接收器判断接收到超声波。接收器将从红外射线接收信号被检测到的时间到电容器的输出电压超出阈值电压的时间的时间段,判断为超声波从发射器发射到接收器所需的时间。
不过,如果在可测量区域(其中该系统可以测量发射器和接收器之间距离的区域)之外存在障碍物的话,并且如图1所述,除了直接从发射器到达接收器的超声波(下面称之为“直接波”)之外,还有来自发射器的另一超声波在被障碍物反射后到达接收器(下面称之为“反射波”),则如上所述的现有距离测量系统将错误地判断了发射器和接收器之间的距离。
例如,当在每一个预定的时间测量发射器和接收器之间的距离以检测发射器(或接收器)的移动时,发射器以固定的周期T重复地发射红外射线和超声波。在这种情况下,如果在下一个周期的红外射线接收信号和所接收的直接波信号之间检测到以一定周期T从发射器发射的超声波的反射波,并且如果所接收的反射波信号超出阈值电压,如图2所示,则接收器根据反射波的到达时间tb,而不是根据直接波的到达时间ta来计算距离。这就导致存在在发射器和接收器之间的距离测量精度下降的问题。
发明内容
因此,本实用新型的目标是提出一种距离测量系统和方法,能够防止在发射器和接收器之间距离的测量精度的下降。
为了实现上述目标,在本实用新型中,事先为接收器提供表,该表示出了当超声波被直接接收时,到达时间和对应于该到达时间的所需接收超声波信号的强度之间的关系,其中该到达时间表示从接收红外线的检测到接收超声波的检测的时段。发射器同时发射红外线和超声波。当接收到红外线和超声波时,接收器将所接收超声波信号的强度与对应于从表中所检索到的到达时间的所需的接收信号强度进行比较,并且当所接收超声波信号的强度高于与从表中检索到的到达时间相对应的所需接收信号强度时,该接收器根据到达时间来计算到发射器的距离。
另一方面,与上面类似,事先为接收器提供表,该表示出了当超声波被直接接收时,到达时间和对应于该到达时间的所需接收超声波信号的强度之间的关系,其中该到达时间表示从接收红外线的检测到接收超声波的检测的时段。发射器同时发射红外线和超声波。当接收到红外线和超声波时,接收器根据如下时段来测量超声波的到达时间,所述时段是从接收红外线的检测到超声波接收信号超出阈值的检测的时段,其中所述阈值用于判断是否接收到了超声波,并将阈值更新为与从表中所检索的到达时间相对应的所需接收信号强度的值,并且根据所计算的到达时间来计算到发射器的距离。
在如上所述的距离测量系统中,接收器将接收的超声波强度与对应于从表中所检索的到达时间的所需的接收信号强度进行比较,并且当所接收超声波的接收信号强度低于所需值时,尽管到达时间较短,判断所接收超声波是由障碍物所反射的反射波。
另外,由于在判断是否接收到超声波时所使用的阈值被更新为对应于通过参考该表所检索的到达时间的所需接收信号强度的值,因此所更新的阈值不被反射波所超出,该反射波的接收信号强度低于到达时间的所需值。因此,将不会从这种反射波中生成接收信号。
因此,该距离测量系统可以防止由于反射波而错误地计算距离,并且因此防止发射器和接收器之间距离的测量准确度的下降。
下面参考示出了本实用新型的例子的附图进行讲述,将使本实用新型的上述和其他目标、特征和优势更加明显。
附图说明
图1为结构图,示出了其中现有距离测量系统错误地测量发射器和接收器之间距离的例子;
图2为波形图,示出了距离是如何通过图1所示的接收器被错误地计算的;
图3为框图,示出了根据本实用新型的距离测量系统的第一示例性实施例的结构;
图4为波形图,示出了图3所示的时间测量单元、正向峰值检测器和负向峰值检测器的示例性操作;
图5为结构图,示出了存储在图3所示的峰值参考单元中的示例性正向峰值参考表和负向峰值参考表;
图6为曲线,示出了超声波到达时间和由图5所示正向峰值参考表与负向峰值参考表所生成的所需接收信号强度(峰值)之间的关系;
图7为流程图,示出了在第一示例性实施例的距离测量系统中所包括的接收器的处理程序;
图8为框图,示出了根据本实用新型的距离测量系统的第二示例性实施例的结构;以及
图9为流程图,示出了在第二示例性实施例的距离测量系统中所包括的接收器的处理程序。
具体实施方式
(第一实施例)
本实用新型的距离测量系统与现有的距离测量系统相似的地方在于,红外线和超声波同时从发射器发射一段固定的时间,并且发射器和接收器之间的距离是根据红外线到达接收器的时间和超声波到达接收器的时间之差来测量的。
一般地,在距离测量中所使用的超声波的频率为几十kHz,并且在接收器处接收的超声波的强度随着超声波的传播距离,也就是从接收器接收到红外线的时间到接收器接收到超声波的时间而衰减。因此,当所接收的超声波的强度小于所需值时,尽管到达时间短,也可以认为所接收的超声波是来自障碍物的反射波。
在第一示例性实施例中,接收器事先具有一个表,示出了当直接接收到超声波时的超声波到达时间和与其对应的所需的接收信号强度(期望的最小接收信号强度),并且将所接收的超声波的强度与对应于从表中检索到的到达时间的所需接收信号强度进行比较。然后,当所接收的超声波信号的强度高于所需的接收信号强度时,接收器判断超声波是直接波,并且根据到达时间来计算距离,其中所需的接收信号强度对应于从表中检索到的到达时间。
图3为框图,示出了根据本实用新型的距离测量系统的第一示例性实施例的结构,并且图4为波形图,示出了图3所示的时间测量单元、正向峰值检测器和负向峰值检测器的示例性操作。
如图3所示,在第一示例性实施例的距离测量系统中,发射器1包括超声发射器11和红外发射器12,而接收器2包括超声接收器21、红外接收器22、A/D转换器23、阈值设置单元24、正向峰值检测器25、负向峰值检测器26、时间测量单元27、峰值参考单元28、接收确认单元29和处理器30。
超声发射器11包括超声发射元件,并且红外发射器12包括红外发射元件。如上所述,该示例性实施例的发射器1在一段固定时间内从超声发射器11和红外发射器12分别同时发射超声波和红外线。
超声接收器21包括超声接收元件,该超声接收器接收从超声发射器11发射的超声波,并生成与所接收的超声强度成比例的正弦接收信号,如图4所示。红外接收器22包括红外接收元件,接收从红外发射器12发射的红外线,并且生成脉冲接收信号,如图4所示。
A/D转换器23将从超声接收器21提供的超声接收信号(模拟信号)转换成数字信号。
阈值设置单元24生成阈值th,用于判断是否接收到超声波,并且,当A/D转换器23生成的超声接收信号(数字信号)超过阈值th时,分别将该阈值设置单元24的输出信号提供给正向峰值检测器25、负向峰值检测器26和时间测量单元27。
时间测量单元27测量时间(到达时间)t1,该时间为从红外接收信号被检测到的时间到超出阈值th的超声接收信号被检测到的时间,如图4所示。
正向峰值检测器25在紧接着到达时间t1之后的第一周期内检测超声波接收信号的正向峰值At1(第一峰值),如图4所示。负向峰值检测器26在紧接着到达时间t1之后的第一周期内接着检测超声波接收信号的负向峰值Bt1(第二峰值)。正向峰值检测器25和负向峰值检测器26可以例如使用已知的采样/保持电路来实现。
峰值参考单元28是存储了正向峰值参考表和负向峰值参考表的存储设备,其中前者示出了当超声波在正域中被直接接收时超声波的到达时间和与其对应的所需接收信号强度之间的关系,并且后者示出了当超声波在负域中被直接接收时超声波的到达时间和与其对应的所需接收信号强度之间的关系。
图5为结构图,示出了存储在峰值参考单元28中的示例性正向峰值参考表和负向峰值参考表。图6为曲线图,示出了超声波到达时间和由图5所示正向峰值参考表与负向峰值参考表所生成的所需接收信号强度(峰值)之间的关系。需要指出的是,由于图5示意性地示出了直接波的到达时间与其相对应的所需接收信号强度之间的关系,因此在叙述中省去了到达时间t、Ath(t)和Bth(t)的单位。
考虑到包括在超声发射器11中的超声发射元件的输出强度,包括在超声接收器21中的超声接收元件的接收灵敏度等,针对可能的到达时间t,为期望的直接波分别计算了最小接收信号强度(第一周期中的正向峰值和负向峰值)。正向峰值参考表和负向峰值参考表关联地存储到达时间t和对应于到达时间t的正向所需接收信号强度Ath(t)和负向所需接收信号强度Bth(t)。
接收确认单元29参考存储在峰值参考单元28中的正向峰值参考表和负向峰值参考表,在正向峰值检测器25所检测的峰值At1大于与时间测量单元27所测量的到达时间t1相对应的表值Ath(t1)[第一所需接收信号强度]时,确定直接波的存在,并且在负向峰值检测器26所检测的峰值Bt1大于与时间测量单元27所测量的到达时间t1相对应的表值Bth(t1)[第二所需接收信号强度]时,确定直接波的存在。另一方面,当峰值At1小于表值Ath(t1)[第一所需接收信号强度]或当峰值Bt1小于表值Bth(t1)[第二所需接收信号强度]时,接收确认单元29确认反射波的存在。
当接收确认单元29判断直接波的存在时,处理器30使用由时间测量单元27所测量的相应到达时间t1的值来计算发射器1和接收器2之间的距离。例如,可以通过s=c×t1来计算距离s,其中c表示声速(大约为340m/s)。图中未示出的一种处理设备将所计算的距离s作为例如处理参数来使用。另外,所计算的距离s可以显示在图中未示出的显示设备上。这样,使用反射波,可以防止处理器30错误地计算发射器1和接收器2之间的距离。
尽管图3示出的接收器2包括彼此独立的阈值设置单元24、时间测量单元27、接收确认单元29和处理器30,但是这些组件的功能可以通过包括有各种逻辑电路的组合的LSI,或者根据程序执行处理的CPU或DSP来实现。
发射器1包括控制器,图中未示出,它具有CPU或DSP,用于根据程序来执行处理,或者LSI,其包括有各种逻辑电路的组合,并且在控制器的控制下同时从超声发射器11和红外发射器12发射超声波和红外线。
图7为流程图,示出了在第一示例性实施例的距离测量系统中所包括的接收器的处理程序。
如图7所示,在第一示例性实施例的接收器2中,红外接收器22首先接收从红外发射器12发射出的红外线,并且生成脉冲接收信号,如图4所示。超声接收器21依次接收从超声发射器11发射出的超声波,并且生成与接收信号强度成比例的正弦接收信号,如图4所示[步骤S1]。
接下来,在接收器2中,A/D转换器23将由超声接收器21提供的接收信号转换成数字形式,并且阈值设置单元24传递超出阈值th的A/D转换后的接收信号[步骤S2]。
接着,在接收器2中,时间测量单元27测量时间(到达时间)t1,该时间为从红外线接收信号被检测到的时间到超出阈值th的超声波接收信号被检测到的时间。另外,正向峰值检测器25在紧接着到达时间t1之后的第一周期内检测正向峰值At1,而负向峰值检测器26在紧接着到达时间t1之后的第一周期内检测负向峰值Bt1[步骤S3]。
接着,在接收器2中,接收确认单元29参考存储在峰值参考单元28中的正向峰值参考表和负向峰值参考表,以分别检索与时间测量单元27测量的到达时间t1相对应的表值Ath(t1)和Bth(t1)[步骤S4]。然后,接收确认单元29确认接收信号的峰值At1、Bt1是否大于表值Ath(t1)、Bth(t1)[步骤S5],并且当峰值At1、Bt1等于或小于表值Ath(t1)、Bth(t1)时,判断相应的接收信号表示反射波。流程返回到步骤S2,以重复步骤S2~S5的处理。
另一方面,当峰值At1、Bt1大于表值Ath(t1)、Bth(t1)时,接收确认单元29判断相应的接收信号表示直接波,并且将到达时间t1的值传给处理器30。处理器30根据到达时间t1来计算距离s[步骤S6],并且将所计算的距离s提供给外部显示设备和处理设备等。
根据前述示例性实施例的距离测量系统,接收器2事先具有表,其示出了当接收到超声波时,超声波的到达时间和与其对应的直接波的所需接收信号强度之间的关系,并且仅当所接收的超声波信号强度大于所需接收信号强度时,其中该所需接收信号强度与从表中所检索到的到达时间相对应,才根据到达时间来计算距离,从而防止处理器30利用反射波计算距离,其中该反射波表现出:接收信号强度低于到达时间的所需值。因此,距离测量系统防止了发射器1和接收器2之间距离的测量精确度的下降。
(第二示例性实施例)
在第二示例性实施例中,与第一示例性实施例相类似,接收器事先具有一个表,示出了当直接接收到超声波时,超声波的到达时间和对应于到达时间的所需接收信号强度(期望的最小接收信号强度)之间的关系。然后,将用于判断是否接收到超声波的阈值更新为所需接收信号强度的值,该值对应于从表中检索的到达时间,由于反射波接收信号表现出低于到达时间的所需值的接收信号强度,并且因此不会超出阈值,因此在距离测量中将不会使用反射波。
图8为框图,示出了根据本实用新型的距离测量系统的第二示例性实施例的结构。
如图所示,第二示例性实施例的距离测量系统在接收器3中包括超声接收器31、红外接收器32、A/D转换器33、阈值设置单元34、时间测量单元37、峰值参考单元38和处理器40。
在第二示例性实施例的距离测量系统中,根据由时间测量单元37所测量的到达时间t1的值,接收器3的阈值设置单元34对用于判断是否接收到超声波的阈值th进行更新。与第一示例性实施例一样,峰值参考单元38存储了正向峰值参考表,它示出了当在正域中直接接收到超声波时超声波的到达时间和与该到达时间对应的所需接收信号强度之间的关系(参见图5)。
阈值设置单元34将阈值th初始地设置为期望的直接波的所需接收信号强度的值,对应于可测量区域内部的最远位置(最长到达时间)。然后,随着时间测量单元37传递到达时间t1,阈值设置单元34参考存储在峰值参考单元38中的正向峰值参考表,以检索出对应于到达时间t1的表值Ath(t1),并且将阈值th更新为所检索的表值Ath(t1)。在这种情况下,超出所更新阈值th(Ath(t1))的超声波接收信号在下一个周期中被单独从阈值设置单元34传递过来。
正像在第一示例性实施例中的那样,时间测量单元37测量时间(到达时间)t1,该时间为从红外线接收信号被检测到的时间到超出阈值th的超声波接收信号被检测到的时间。当时间测量单元37提供到达时间t1时,处理器40根据该到达时间t1来计算发射器和接收器3之间的距离s,并且将所计算的距离s提供给外部显示设备和处理设备等。
其他组件,也就是超声接收器31、红外接收器32和A/D转换器33与第一示例性实施例中所示的超声接收器21、红外接收器22和A/D转换器23的结构分别类似,因此省略了对它们的讲述。另外,由于发射器在结构上与第一示例性实施例中的结构类似,因此省略了对它的讲述。
图9为流程图,示出了在第二示例性实施例的距离测量系统中所包括的接收器的处理程序。
如图9所示,在第二示例性实施例的接收器3中,红外接收器32首先接收从红外发射器发射的红外线,并且生成脉冲接收信号。超声接收器31依次接收从超声发射器发射出的超声波,并且生成与所接收超声波的信号强度成比例的正弦接收信号[步骤S11]。
接下来,在接收器3中,A/D转换器33对来自超声接收器32的超声波接收信号进行A/D转换,并且阈值设置单元34将超出阈值th的A/D转换后的接收信号提供给时间测量单元37[步骤S12]。时间测量单元37测量时间(到达时间)t1,该时间为从红外接收信号被检测到的时间到超出阈值th的超声波接收信号被检测到的时间[步骤S13]。
接下来,在接收器3中,阈值设置单元34参考存储在峰值参考单元38中的正向峰值参考表,以检索出对应于时间测量单元37测量的到达时间t1的表值Ath(t1),并且将阈值th的值更新为表值Ath(t1)[步骤S14]。然后,流程回到步骤S12,以重复步骤S12~S14的处理。
随着阈值设置单元34提供超出阈值th的超声波接收信号,时间测量单元37测量到达时间t1,并且仅当时间测量单元37提供到达时间t1时,处理器40才根据到达时间t1来计算发射器和接收器3之间的距离s[步骤S15]。
尽管前面讲述中已经给出了其中阈值设置单元34参考存储在峰值参考单元38中的正向峰值参考表来更新阈值th的例子,但是阈值设置单元34还可以参考负向峰值参考表来更新阈值th,或者可以同时参考正向峰值参考表和负向峰值参考来更新阈值th。为了参考负向峰值参考表来更新阈值th,阈值设置单元34可以将对应于到达时间t1的表值Bth(t1)设置为用于负域中的超声波接收信号的阈值th。另一方面,为了参考正向峰值参考表和负向峰值参考表来更新阈值th,阈值设置单元34可以将对应于到达时间t1的表值Ath(t1)设置为用于正域中的超声波接收信号的阈值th,并且将对应于到达时间t1的表值Bth(t1)设置为用于负域中的超声波接收信号的阈值th。
根据第二示例性实施例的距离测量系统,由于用于判断是否接收到超声波的阈值被更新为对应于所测量的到达时间的所需接收信号强度,因此防止了阈值设置单元24向时间测量单元37提供反射波接收信号,该反射波接收信号具有的接收信号强度低于到达时间所需值。因此,正向第一示例性实施例中的那样,距离测量系统可以防止利用反射波而错误地计算距离,并且防止发射器和接收器3之间距离的测量准确度的下降。
尽管已经使用专业术语讲述了本实用新型的优选示例性实施例,但是这种讲述仅用于解释性目的,并且可以理解,只要不偏离本实用新型的精神或保护范围,可以对其进行更改和修订。

Claims (2)

1.一种距离测量系统,其特征在于包括:
发射器,同时发射红外线和超声波;以及
接收器,包括表,该表示出了当直接接收该超声波时的到达时间和对应于该到达时间所需的接收超声波的信号强度之间的关系,其中该到达时间表示从所接收的红外线的检测到所接收的超声波的检测的时间段,该接收器将所接收的超声波的信号强度与所需的接收信号强度进行比较,该所需接收的信号强度对应于从表中所检索到的到达时间,并且当所接收的超声波信号的强度高于与从该表中所检索到的到达时间相对应的所需的接收信号强度时,该接收器根据到达时间来计算到所述发射器的距离,其中所述接收器包括:
红外接收器,用于接收从所述发射器发射的红外线;
超声接收器,用于接收从所述发射器发射的超声波;
正向峰值检测器,用于检测第一峰值,该第一峰值表示由所述超声接收器生成的超声波接收信号的正向峰值;
负向峰值检测器,用于检测第二峰值,该第二峰值表示由所述超声接收器生成的超声波接收信号的负向峰值;
峰值参考单元,用于存储正向峰值参考表和负向峰值参考表,其中正向峰值参考表示出了当超声波被直接接收时,对应于到达时间的第一所需接收信号强度、表示正向所需接收信号强度的所述第一所需接收信号强度的关系,并且负向峰值参考表示出了当超声波被直接接收时,对应于到达时间的第二所需接收信号强度、表示负向所需接收信号强度的所述第二所需接收信号强度的关系;
时间测量单元,用于测量到达时间;
接收确认单元,用于参考正向峰值参考表和负向峰值参考表,以检索与由所述时间测量单元测量的到达时间相对应的第一所需接收信号强度和第二所需接收信号强度,并且在当第一峰值大于第一所需接收信号强度并且当第二峰值大于第二所需接收信号强度时,用于判断所接收超声波是直接波;以及
处理器,当所述接收确认单元判断所接收的超声波是直接波时,用于根据相应的到达时间来计算到所述发射器的距离。
2.一种距离测量系统,其特征在于包括:
发射器,同时发射红外线和超声波;以及
接收器,包括表,该表示出了当超声波被直接接收时,到达时间和对应于该到达时间的所需接收超声波信号的强度之间的关系,其中该到达时间表示从所接收的红外线的检测到所接收的超声波的检测的时段,该接收器将用于判断是否接收到超声波的阈值更新为与从表中检索的到达时间相对应的所需的接收信号强度的值,该接收器根据从所接收的红外线的检测到超出该阈值的超声波接收信号的检测的时间段来测量到达时间,并且该接收器根据所获得的到达时间来计算到所述发射器的距离,其中所述接收器包括:
红外接收器,用于接收从所述发射器发射的红外线;
超声接收器,用于接收从所述发射器发射的超声波;
峰值参考单元,用于存储至少一个表,该表表明当超声波被直接接收时对应于到达时间的正向的所需接收信号强度的关系,或者存储一个表,该表表明当超声波被直接接收时对应于到达时间的负向的所需接收信号强度的关系;
时间测量单元,用于测量从所接收的红外线的检测到超出该阈值的超声波接收信号的检测的时间段作为到达时间;
阈值设置单元,用于将该阈值初始地设置为与可测量区域内的最远位置相对应的所需接收信号强度,并且响应于所述时间测量单元所提供的到达时间,检索出对应于该到达时间的所需接收信号强度,其中该时间测量单元用于参考存储在所述峰值参考单元中的表,将该阈值更新为所检索的所需接收信号强度的值,并且用于传递超出阈值的超声波接收信号;以及
处理器,用于通过使用所述时间测量单元所测量的到达时间来计算到所述发射器的距离。
CNU2007201556778U 2006-08-04 2007-08-02 距离测量系统 Expired - Fee Related CN201177664Y (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006213254 2006-08-04
JP2006213254A JP4199785B2 (ja) 2006-08-04 2006-08-04 距離測定システム及び距離測定方法

Publications (1)

Publication Number Publication Date
CN201177664Y true CN201177664Y (zh) 2009-01-07

Family

ID=38658175

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200710138399XA Expired - Fee Related CN101118282B (zh) 2006-08-04 2007-08-01 距离测量系统和方法
CNU2007201556778U Expired - Fee Related CN201177664Y (zh) 2006-08-04 2007-08-02 距离测量系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200710138399XA Expired - Fee Related CN101118282B (zh) 2006-08-04 2007-08-01 距离测量系统和方法

Country Status (4)

Country Link
US (1) US7649808B2 (zh)
EP (1) EP1884799B1 (zh)
JP (1) JP4199785B2 (zh)
CN (2) CN101118282B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118282B (zh) * 2006-08-04 2011-05-04 Nec显示器解决方案株式会社 距离测量系统和方法
CN102323585A (zh) * 2011-08-30 2012-01-18 广州优创电子有限公司 一种超声波的处理方法
CN102636252A (zh) * 2012-04-10 2012-08-15 吉林大学 一种超声波到达精确时刻检测的方法及装置
WO2014101440A1 (zh) * 2012-12-25 2014-07-03 江西三川水表股份有限公司 一种换能器断线检测方法及系统
CN107991667A (zh) * 2017-12-28 2018-05-04 成都逐飞智能设备有限公司 一种分体式超声波精准测距装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427905B2 (en) * 2007-08-30 2013-04-23 Nec Corporation Optimum pseudo random sequence determining method, position detection system, position detection method, transmission device and reception device
US8867313B1 (en) * 2011-07-11 2014-10-21 Google Inc. Audio based localization
CN102360078B (zh) * 2011-07-19 2013-05-15 深圳市豪恩电子科技股份有限公司 一种测试倒车距离的方法、装置及倒车雷达
US20130215721A1 (en) * 2012-02-21 2013-08-22 Gary Li Positioning system for detecting position of cleansing device
US8949012B2 (en) * 2012-04-05 2015-02-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Automated multi-vehicle position, orientation and identification system and method
CN103713290A (zh) * 2012-10-05 2014-04-09 福特全球技术公司 降低驾驶辅助特征中物体报告错误的方法、系统及装置
CN105491590B (zh) * 2014-09-15 2020-02-21 联想(北京)有限公司 一种信息处理方法及电子设备
CN106385597A (zh) * 2016-10-08 2017-02-08 广东欧珀移动通信有限公司 时钟调节方法、装置、终端及多媒体同步播放系统
DE102017209092A1 (de) * 2017-05-31 2018-12-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Lokalisierung eines Fahrzeugs für eine induktive Energieübertragung
CN109387829B (zh) * 2017-08-03 2022-12-06 宏碁股份有限公司 距离检测装置及其距离检测方法
CN109375199B (zh) * 2017-08-09 2022-12-06 宏碁股份有限公司 距离检测装置及其距离检测方法
CN108205139B (zh) * 2017-12-22 2020-10-13 北京凌宇智控科技有限公司 用于超声波测距系统的控制方法及装置
US11500089B2 (en) 2017-12-22 2022-11-15 Nolo Co., Ltd. Control method and device for ultrasonic receiving device
CN108692864B (zh) * 2018-04-17 2020-05-19 北京汽车集团有限公司 停车空间封闭度检测方法、系统、停车预警方法及车辆

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315325A (en) * 1980-07-02 1982-02-09 Purecycle Corporation Echo ranging pulse discrimination circuit
JPS6078375A (ja) 1983-10-05 1985-05-04 Koito Ind Co Ltd 超音波・赤外光線複合式物体検知装置
DE3727837A1 (de) * 1987-08-20 1989-03-02 Brunner Wolfgang Verfahren und vorrichtung zur fehlerverminderung bei der messung raeumlicher bewegung von messpunkten mittels ultraschallsignalen
US5298905A (en) * 1992-06-12 1994-03-29 Motorola, Inc. Visible light detection and ranging apparatus and method
JP3159869B2 (ja) 1994-05-09 2001-04-23 松下電器産業株式会社 熱物体検出装置および測定法
JPH09160721A (ja) 1995-12-13 1997-06-20 Fuji Xerox Co Ltd ペン入力装置
US6553013B1 (en) * 1997-04-12 2003-04-22 At&T Laboratories, Cambridge Limited Detection system for determining positional information about objects
JPH11212691A (ja) 1998-01-21 1999-08-06 Fuji Xerox Co Ltd ペン入力方法及び装置
JP2002358157A (ja) 2001-06-01 2002-12-13 Canon Inc 座標入力装置、座標入力装置の制御方法、および座標入力装置の制御プログラム
JP2003216335A (ja) 2002-01-22 2003-07-31 Canon Inc 座標入力装置及びその制御方法、プログラム
JP3586246B2 (ja) 2002-01-31 2004-11-10 三菱電機株式会社 パルスレーダ装置
JP4139671B2 (ja) 2002-10-28 2008-08-27 シャープ株式会社 ペン入力表示装置
JP4337421B2 (ja) 2003-06-19 2009-09-30 パナソニック株式会社 移動する物体の位置計測方法及び位置計測システム
KR100480144B1 (ko) * 2003-07-23 2005-04-07 엘지전자 주식회사 이동로봇의 위치검출장치 및 방법
EP1759268A2 (en) 2004-05-17 2007-03-07 Epos Technologies Limited Acoustic robust synchronization signaling for acoustic positioning system
CN100492393C (zh) * 2004-06-28 2009-05-27 王树勋 基于超声和红外的手写签名识别输入设备
JP4382611B2 (ja) 2004-08-26 2009-12-16 Necディスプレイソリューションズ株式会社 超音波距離測定装置
JP4101791B2 (ja) 2004-09-17 2008-06-18 シャープ株式会社 座標値入力システム、座標値入力方法、座標値入力プログラム、コンピュータ読み取り可能な記録媒体
JP2006125985A (ja) 2004-10-28 2006-05-18 Nippon Telegr & Teleph Corp <Ntt> 到来方向推定方法および到来方向推定装置
CN1841084B (zh) * 2005-03-29 2011-12-07 松下电器产业株式会社 混合测距方法
KR101090435B1 (ko) * 2005-04-21 2011-12-06 삼성전자주식회사 초음파를 이용한 위치 추정 방법 및 시스템
JP2007179507A (ja) 2005-12-28 2007-07-12 Pentel Corp 超音波ペン誤座標入力防止システム
JP4199785B2 (ja) * 2006-08-04 2008-12-17 Necディスプレイソリューションズ株式会社 距離測定システム及び距離測定方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118282B (zh) * 2006-08-04 2011-05-04 Nec显示器解决方案株式会社 距离测量系统和方法
CN102323585A (zh) * 2011-08-30 2012-01-18 广州优创电子有限公司 一种超声波的处理方法
CN102636252A (zh) * 2012-04-10 2012-08-15 吉林大学 一种超声波到达精确时刻检测的方法及装置
CN102636252B (zh) * 2012-04-10 2013-11-27 吉林大学 一种超声波到达精确时刻检测的方法及装置
WO2014101440A1 (zh) * 2012-12-25 2014-07-03 江西三川水表股份有限公司 一种换能器断线检测方法及系统
CN107991667A (zh) * 2017-12-28 2018-05-04 成都逐飞智能设备有限公司 一种分体式超声波精准测距装置

Also Published As

Publication number Publication date
EP1884799B1 (en) 2012-07-11
EP1884799A1 (en) 2008-02-06
US7649808B2 (en) 2010-01-19
US20080031093A1 (en) 2008-02-07
CN101118282B (zh) 2011-05-04
CN101118282A (zh) 2008-02-06
JP4199785B2 (ja) 2008-12-17
JP2008039553A (ja) 2008-02-21

Similar Documents

Publication Publication Date Title
CN201177664Y (zh) 距离测量系统
US8483012B2 (en) Controlling method for ultra-sound sensor
US6198470B1 (en) Computer input device
CN107390203B (zh) 一种超声波测距方法、装置及系统
RU2007145206A (ru) Радиочастотная система для слежения за объектами
CN100470258C (zh) 超声波测量距离的方法及装置
GB2456773A (en) Sensing the position of a mobile object relative to a fixed object via ultrasound and infrared
CN106133550A (zh) 物体探测装置以及物体探测方法
EP2037423A3 (en) Apparatus and Method for Calibrating an Acoustic Detection System
JP2002296349A (ja) 超音波位置評定システム
GB2279746A (en) Ultrasonic distance measurement
JP2008128974A (ja) 物体探知装置
TWI646345B (zh) 超音波測距裝置、系統和方法
CN208872874U (zh) 一种坐姿检测装置及台灯
Wobschall et al. An ultrasonic/optical pulse sensor for precise distance measurements
JP2002131426A (ja) 超音波センサ装置
WO2009022089A1 (en) Wireless position sensing in three dimensions using ultrasound
CN1103714A (zh) 一种减小超声波测距装置盲区的方法
JP2001133549A (ja) 障害物判定方法
TWI646344B (zh) 電子裝置、超音波測距裝置和方法
EP1785701A1 (en) Apparatus and method for determining a temperature of a volume of gas
CN109239713A (zh) 一种坐姿检测装置、台灯、以及坐姿检测方法
KR20000056486A (ko) 물체감지장치 및 그 방법
JP3388660B2 (ja) 水中位置測定方法および装置
JP2006184062A (ja) 距離測定装置とプログラムおよび記録媒体

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090107

Termination date: 20160802