CN201163224Y - Air-floating type multidimensional sensor - Google Patents

Air-floating type multidimensional sensor Download PDF

Info

Publication number
CN201163224Y
CN201163224Y CNU200820031374XU CN200820031374U CN201163224Y CN 201163224 Y CN201163224 Y CN 201163224Y CN U200820031374X U CNU200820031374X U CN U200820031374XU CN 200820031374 U CN200820031374 U CN 200820031374U CN 201163224 Y CN201163224 Y CN 201163224Y
Authority
CN
China
Prior art keywords
nozzle
floating plate
floating
nozzles
force sensor
Prior art date
Application number
CNU200820031374XU
Other languages
Chinese (zh)
Inventor
斌 黄
英 黄
王会生
峰 高
仇怀利
Original Assignee
合肥工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学 filed Critical 合肥工业大学
Priority to CNU200820031374XU priority Critical patent/CN201163224Y/en
Application granted granted Critical
Publication of CN201163224Y publication Critical patent/CN201163224Y/en

Links

Abstract

The utility model provides an air floating type multi-dimensional force sensor. The force sensor is characterized in that the force sensor is provided with a rectangular hexahedral floating plate, and nozzles are arranged corresponding to each face of the floating plate; the nozzles and faces of the floating plate corresponding to the nozzles form a nozzle baffle plate type pressure sensor, pressurized air blown out by the nozzles makes the rectangular hexahedral floating plate in a full suspension air floating state; and pressure signals of pressurization chambers of the nozzles are taken as testing output signals. The force sensor has the advantages of no inter-dimension coupling in the measurement of the multi-dimensional force, unnecessary complicated decoupling process and effective improvement of the measurement accuracy.

Description

气浮式多维力传感器技术领域 Air flotation multidimensional force sensor Field

本实用新型涉及一种多维力测量装置。 The present invention relates to a multi-axis force measurement device.

背景技术 Background technique

用于直接测量二维以上的力大多需要采用多维力传感器,如三维力传感器、六维力传感器等。 For direct measurement of force or more dimensional multidimensional force sensor is often required, three-dimensional force sensor six-axis force sensor. 现有的测量多维力或力矩的传感器根据力的检测方式不同可以分为:测应变或应力的应变片式;利用压电效应的压电元件式;用位移计测量负载产生的位移的差动变压器式;电容位移式等。 Multi-axis force sensor or a current measuring moment of the force depending on the detection can be divided into: measuring the strain or stress strain gauge; piezoelectric element using a piezoelectric effect; displacement measured by the displacement generated by the load of the differential transformer; a capacitive displacement type. 但是,基于以上原理的多维力传感器由于结构设计等方面的原因不可避免地都存在维间耦合等问题,即被测量的力不仅使传感器在力的方向上有输出,而且使传感器在与力垂直的方向上也有输出。 However, based on the above principle multidimensional force sensor due to the structural design aspects are inevitably present between coupling-dimensional problems, i.e. not only the force measuring sensor is output in the direction of the force, and a force sensor in a vertical there is also the output direction. 为了提高测量精度需要消除或减少耦合对测量结果输出的影响, 即对传感器进行解耦。 In order to improve the measurement accuracy required to eliminate or reduce the effects of coupling on the output of the measurement results, i.e. decoupling of the sensor. 耦合与传感器结构设计、加工精度、装配精度、应变片的粘贴工艺以及标定方法等诸多因数有关,不仅解耦复杂,而且迄今无法实现完全的解藕,各种解耦方法都只能在一定精度上减少耦合的影响。 Coupled with the sensor design, machining accuracy, assembling accuracy, the strain gauge is attached, and the process related to the calibration method, and many other factors, not only complicated decoupling, but have been unable to achieve complete decoupling, various methods can only be decoupled to a certain accuracy reduce the effects of coupling. 耦合现象造成的误差是现有多维力传感器精度进一步提高的主要障碍,完全不存在耦合的多维力传感器至今未有相关报导。 Error coupling phenomena is a major obstacle to the existing multi-axis force sensor accuracy is further improved, the complete absence of coupled multi-axis force sensor has yet to related stories.

实用新型内容 SUMMARY

本实用新型是为避免上述现有技术所存在的不足之处,提供一种不存在维间耦合,因而无需复杂的解耦过程,能有效提高测量精度的气浮式多维力传感器。 The present invention is to avoid the shortcomings of the above-described prior art exists to provide a coupling between the dimension does not exist, therefore no complex decoupling process can effectively improve air flotation multi-axis force sensor measurement accuracy. 本实用新型解决技术问题采用如下技术方案: The utility model solves technical problems following technical solution:

本实用新型气浮式多维力传感器的结构特点是设置矩形六面体浮板,对应于所述浮板的每一个面,分别设置喷嘴,所述各喷嘴与浮板相对应的面构成喷嘴挡板式压力传感器,以各喷嘴喷出的压力气体使矩形六面体浮板呈全悬气浮,以所述各喷嘴承压腔的压力信号为检测输出信号。 Structural features of the present invention an air flotation multidimensional force sensor is disposed rectangular hexahedron floating plate, each corresponding to one surface of the floating plate, nozzles are provided, each nozzle and the corresponding surface of the floating plate constituting the nozzle flapper a pressure sensor for gas pressure ejected from the nozzle of each of the rectangular hexahedral full floating plates are suspended flotation, the signal pressure bearing chamber for each nozzle detection output signal.

本实用新型气浮式多维力传感器的结构特点也在于: Structural features of the present invention an air flotation multidimensional force sensor also comprising:

所述喷嘴按每两只为一组相对布置在浮板的上下两侧、左右两侧和前后两侧,各喷嘴的轴线与作为其挡板的浮板板面垂直,相对设置的两只喷嘴处在同一轴线位置上,以处在同一 The nozzle is a group for each two oppositely disposed upper and lower sides of the floating plate, left and right sides and front and back sides, the axis of each nozzle with two nozzle surface as a floating vertical baffle plate board, disposed opposite at the same axial position, in order to at the same

轴线位置上的两个喷嘴的气腔压力差作为差动测量的检测信号。 Two pressure gas chamber on the axis of the nozzle position difference detection signal as a differential measurement.

所述各气浮喷嘴对称布置在浮板的各拐角处,上下两侧位于四个拐角位置处各有一组, 左右两侧和前后两侧位于两边各有一组。 Each of said flotation nozzles are arranged symmetrically in the corners of the floating plate, located at four corners of the upper and lower sides have a set position, the left and right sides of the front and rear sides and on each side of a group.

本实用新型气浮式多维力传感器的多维力测量方法是以所述各喷嘴的喷出的压力气体使矩形六面体浮板完全浮起,通过测量各喷嘴承压腔的压力变化,获得作用在浮板上的沿坐标轴X、 Y、 Z方向的外力或绕坐标轴X、 Y、 Z方向的外力矩。 Multi-axis force measurement method of the present invention an air flotation is based on the multi-axis force sensor of each nozzle discharge pressure gas to a rectangular hexahedron floating plate is completely lifted, by measuring the pressure chamber of each nozzle pressure change in the floating effect is obtained along the X axis of the plate, Y, or Z-direction force about the axis X, Y, Z direction external torque. 与己有技术相比,本实用新型的有益效果体现在: Been compared with the prior art, the beneficial effects of the present invention is embodied in:

本实用新型多维力传感器及多维力测量方法在测量过程中,当浮板受到外力作用时将产生微小的位移,从而改变相应位置处喷嘴与浮板之间的间隙大小,引起对应喷嘴承压腔的压力变化。 The present invention is a multi-dimensional force sensor, and multi-axis force measurement in the measurement process, when the external force is applied to the floating plate to produce a slight displacement, thereby changing the size of the gap between the nozzle and at a position corresponding to the floating plate, causing the corresponding pressure chamber nozzle the change in pressure. 通过测量各喷嘴承压腔内的压力,可以计算出作用在浮板上的沿坐标轴X、 Y、 Z 方向的外力和绕坐标轴X、 Y、 Z方向的外力矩。 By measuring the pressure in the chamber of each nozzle under pressure, can be calculated along the coordinate axis X acting in the floating plate, Y, and Z directions around the external coordinate axes X, Y, Z direction external torque. 显然,与喷嘴产生的浮力垂直方向的力不会引起该喷嘴承压腔内压力的变化,即不存在维间耦合现象,因而无须复杂的解耦过程,不存在耦合现象引起的误差。 Obviously, the buoyancy force generated by the nozzle in the vertical direction does not cause the change in the pressure of the nozzle chamber pressure, i.e. the coupling phenomenon between the dimension does not exist, and therefore without complex decoupling process, errors caused by coupling phenomenon does not exist. 附图说明 BRIEF DESCRIPTION

图1为本实用新型测量原理示意图。 Figure 1 is a schematic view of the principle of the new measurement utility. 图2为本实用新型立面结构示意图。 FIG 2 is a schematic perspective view illustrating the configuration utility facade. 图3为本实用新型平面结构示意图。 3 is a schematic perspective view illustrating the planar structure practical. 图4为本实用新型中喷嘴档板原理示意图。 FIG 4 is a schematic view of the principle of the new nozzle baffle practical. 以下通过具体实施方式,结合附图对本实用新型作进一步说明。 By the following detailed description, in conjunction with the accompanying drawings further illustrate the present invention for.

具体实施方式 Detailed ways

图中标号:l浮板、la浮板顶面、lb浮板底面、lc浮板左面、ld浮板右面、le浮板前侧、lf浮板后侧、2a顶面喷嘴、2b底面喷嘴、2c左侧喷嘴、2d右侧喷嘴、2e前侧喷嘴、2f 后侧喷嘴、3工作台、4喷嘴支架、5进气口、 6承压腔、7测压口。 FIG numeral: rear l kickboard, La floating plate top surface, LB floating plate bottom surface, lc floating plate left, LD floating plate right, front le floating plate, LF floating plate, 2a a top surface of the nozzle, 2b bottom surface of the nozzle, 2c left the nozzle, 2d on the right side of the nozzle, 2e front side of the nozzle, 2f rear nozzle, a table 3, a nozzle holder 4, the intake port 5, pressure chambers 6, 7 gauge port.

参见图1,为实现六维力的测量,本实施例中设置矩形六面体浮板1,对应于浮板1的每一个面,分别设置喷嘴,以各喷嘴与浮板相对应的面构成喷嘴挡板式压力传感器,并且, 作为挡板的浮板1在各喷嘴气压的作用下完全悬浮,以各喷嘴的气腔压力信号为检测输出信号。 Referring to Figure 1, in order to realize the measurement six-dimensional force, the present embodiment is provided a rectangular parallelepiped 1, each face corresponding to the floating plate body 1 floating plate embodiment, each nozzle is provided to each nozzle and the floating plate corresponding to a surface constituting the nozzle block a pressure sensor plate, and, as a floating baffle plate under the action of a complete suspension of each nozzle pressure, the pressure signal to the gas chamber for each nozzle detection output signal.

参见图2、图3和图4,具体实施中的相应设置为: 2, 3 and 4, the corresponding set of specific embodiments Referring to FIG:

在浮板顶面la和浮板底面lb的四角位置上,各有一只喷嘴,在浮板左面lc、浮板右面ld、浮板前侧le和浮板后侧lf的每个面上,位于两端各有一只喷嘴,即共有四只顶面喷嘴2a、四只底面喷嘴2b、两只左侧喷嘴2c、两只右侧喷嘴2d、两只前侧喷嘴2e和两只后侧喷嘴2f,所有各喷嘴的轴线与对应作为其挡板的浮板1的板面相垂直。 In the four corners of the floating plate top surface la and lb of the bottom surface of the floating plate, each with a nozzle, the left floating plate LC, LD right floating plate, each side face of the floating front plate le and lf the rear floating plate, located between two each one end of the nozzle, i.e., a total of four nozzles top surface 2a, the bottom surface of the nozzle four 2B, 2C nozzle two left, two right nozzles 2d, 2e two front and two rear side of the nozzle of the nozzle. 2F, all corresponding to each axis of the nozzle as a baffle plate perpendicular to the plane of the floating plate 1.

如图2和图3所示,设置浮板相对的两个面中对应位置上的两只喷嘴处在同一轴线位置 , The two positions on the two faces of the floating plate disposed opposite to the corresponding nozzle in Figures 2 and 3 at the same axial position

4上,以处在同一轴线位置上的两个喷嘴的气腔压力之差作为差动测量的检测信号。 4, to a difference in pressure in the gas chamber of the two nozzles on the same axial position as measured by differential detection signal. 测量方式如下- Measured using the following -

通过浮板1的中心0建立坐标系如图1所示。 Coordinate system is established through the center of the floating plate shown in Fig. 1 0. 顶面喷嘴2a和底面喷嘴2b的作用力与Z 轴平行,其它各喷嘴的作用力在XOY平面内,且分别与X轴和Y轴平行。 The top surface of the nozzle and the bottom nozzle 2a and 2b in parallel to Z axis force, other forces in each nozzle XOY plane, and are parallel to the X and Y axes.

设:作用在浮板上的外力分解为沿各坐标轴的分力Fx、 Fy、 Fz、及绕各坐标轴的力矩Mx、 My、 Mz;浮板每个拐角处与坐标轴平行的三个喷嘴作用于浮板上的浮力交汇于一点, 四个拐角处的交汇点分别为A、 B、 C、 D;在坐标系中,A、 B、 C、 D各点的坐标分别为A (1/2,-1/2,0)、 B (1/2,1/2,0)、 C (-1/2,-1/2,0)、 D (-1/2,1/2,0);作用在浮板上的外力引起的各喷嘴作用在浮板上的力的变化量分别为: Provided: floating force acting along the plate decompose each axis force component Fx, Fy, Fz, and moments around the respective axes Mx, My, Mz; floating plate at each corner with three parallel axes floating buoyancy acting on the nozzle plate converge at a point, the meeting point at the four corners, respectively a, B, C, D; in the coordinate system, the coordinates of a, B, C, D are the points a (1 / 2, -1 / 2,0), B (1 / 2,1 / 2,0), C (-1 / 2, -1 / 2,0), D (-1 / 2,1 / 2, 0); each nozzle plate floating force acting force due to a change in the amount of force the floating plate are:

A点:Fax (X轴方向)、Fay (Y轴方向)、Faz+ (Z轴正方向)、Faz— (Z轴负方向); B点:Fbx (X轴方向)、Fby (Y轴方向)、Fbz+ (Z轴正方向)、Fbz— (Z轴负方向); C点:Fcx (X轴方向)、Fey (Y轴方向)、Fcz+ (Z轴正方向)、Fez— (Z轴负方向); D点:Fdx (X轴方向)、Fdy (Y轴方向)、Fdz+ (Z轴正方向)、Fdz— (Z轴负方向); 则各组喷嘴浮力之差为: Fcax=Fcx — Fax Fdbx二Fdx —Fbx Faby=Fay — Fby Fcdy=Fcy — Fdy Faz二Faz+—Faz— Pbz= Fbz+ —Fbz— Fcz= Fcz+ — Fcz— Fdz= Fdz+ —Fdz— 于是: A point: Fax (X axis direction), Fay (Y-axis direction), Faz + (Z-axis positive direction), Faz- (Z-axis negative direction); B Point: Fbx (X axis direction), Fby (Y axis direction) , Fbz + (Z-axis positive direction), Fbz- (Z-axis negative direction); C point: Fcx (X axis direction), Fey (Y-axis direction), Fcz + (Z-axis positive direction), Fez- (Z axis negative direction ); D point: Fdx (X axis direction), Fdy (Y-axis direction), Fdz + (Z-axis positive direction), Fdz- (Z-axis negative direction); the difference between each set of nozzles the buoyancy of: Fcax = Fcx - Fax Fdbx two Fdx -Fbx Faby = Fay - Fby Fcdy = Fcy - Fdy Faz two Faz + -Faz- Pbz = Fbz + -Fbz- Fcz = Fcz + - Fcz- Fdz = Fdz + -Fdz- then:

Fx= — (Fcax + Fdbx) (1) Fx = - (Fcax + Fdbx) (1)

Fy= — (F勿+ Fcdy) (2) Fy = - (F Do + Fcdy) (2)

Fz= _(Faz + Fbz+Fcz+Fdz) (3) Fz = _ (Faz + Fbz + Fcz + Fdz) (3)

Mx=(Faz+Fcz_Fbz—Fdz) 1/2 (4) Mx = (Faz + Fcz_Fbz-Fdz) 1/2 (4)

My= (Faz+Fbz—Fcz—Fdz) 1/2 (5) My = (Faz + Fbz-Fcz-Fdz) 1/2 (5)

Mz= (Fdbx—Fcax+Fcdy—F勿)1/2 (6) Mz = (Fdbx-Fcax + Fcdy-F Do) 1/2 (6)

具体实施中,在工作台3上设置喷嘴支架4,四只底面喷嘴2b固定设置在工作台3的台面上,其它各喷嘴均设置在喷嘴支架4上。 In particular embodiments, the nozzle holder is provided on the table 34, four fixed to the bottom surface of the nozzle 2b provided on the table 3 of the table, each of the other nozzles are arranged on the nozzle holder 4. 图4所示是由喷嘴和浮板对应的板面所构成的压力传感器。 Figure 4 is a pressure sensor and by the nozzle plate surface corresponding to the floating plate constituted. 工作时,恒定压力的压縮空气通向各个喷嘴的进气口5,浮板l被完全浮起,在喷嘴与挡板之间形成承压腔6,通过承压腔的测压口7可以测量出承压腔6的气体压力。 In operation, a constant pressure of compressed air leading to each nozzle of intake port 5, the floating plate l is completely lifted, the pressure chamber 6 is formed between the nozzle and the baffle, the pressure chamber through the pressure taps 7 measuring the gas pressure in the pressure chamber 6. 如果在浮板1上作用一个外力,将会引起各个压力传感器的承压腔压力变化,根据每个承压腔气压变化量,即可按上式计算出作用在浮板上的沿各坐标轴的分力Fx、 Fy、 Fz、及绕各坐标轴的力矩Mx、 My、 Mz。 If a force will cause pressure changes in the respective chamber pressure acts on the pressure sensor 1 in the floating plate, each pressure chamber according to the pressure change amount, according to the above formula is calculated in the floating plate acting along each coordinate axis moment Mx component force Fx, Fy, Fz, and about a respective axis, My, Mz.

Claims (3)

1、气浮式多维力传感器,其特征是设置矩形六面体浮板(1),对应于所述浮板(1)的每一个面,分别设置喷嘴,所述各喷嘴与浮板相对应的面构成喷嘴挡板式压力传感器,以各喷嘴喷出的压力气体使矩形六面体浮板呈全悬气浮,以所述各喷嘴承压腔的压力信号为检测输出信号。 1, air flotation multidimensional force sensor, wherein is provided a rectangular hexahedron floating plate (1), each corresponding to one surface of the floating plate (1) are respectively provided with a nozzle, each nozzle and the corresponding surface of the floating plate constituting the nozzle flapper pressure sensor for gas pressure ejected from the nozzle of each of the rectangular hexahedral full floating plates are suspended flotation, the signal pressure bearing chamber for each nozzle detection output signal.
2、 根据权利要求1所述的气浮式多维力传感器,其特征是所述喷嘴按每两只为一组相对布置在浮板(1)的上下两侧、左右两侧和前后两侧,各喷嘴的轴线与作为其挡板的浮板板面垂直,相对设置的两只喷嘴处在同一轴线位置上,以处在同一轴线位置上的两个喷嘴的气腔压力差作为差动测量的检测信号。 2. The flotation-type multi-axis force sensor according to claim 1, wherein said nozzle is a group for each two oppositely disposed upper and lower sides of the floating plate (1), the right and left sides and front and rear sides, the axis of each nozzle with the surface as a floating vertical baffle plate board, two opposite nozzles arranged at the same axial position, the pressure in the gas chamber at the two nozzles on the same axial position as the difference between the measured differential detection signal.
3、 根据权利要求1所述的气浮式多维力传感器,其特征是所述各气浮喷嘴对称布置在浮板(1)的各拐角处,上下两侧位于四个拐角位置处各有一组,左右两侧和前后两侧位于两边各有一组。 3. The flotation-type multi-axis force sensor according to claim 1, wherein each of said flotation nozzles symmetrically disposed at each corner of the floating plate (1), located at upper and lower sides each have a set of four corner positions , the left and right sides of the front and rear sides and on each side of a group.
CNU200820031374XU 2008-01-24 2008-01-24 Air-floating type multidimensional sensor CN201163224Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU200820031374XU CN201163224Y (en) 2008-01-24 2008-01-24 Air-floating type multidimensional sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU200820031374XU CN201163224Y (en) 2008-01-24 2008-01-24 Air-floating type multidimensional sensor

Publications (1)

Publication Number Publication Date
CN201163224Y true CN201163224Y (en) 2008-12-10

Family

ID=40184159

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU200820031374XU CN201163224Y (en) 2008-01-24 2008-01-24 Air-floating type multidimensional sensor

Country Status (1)

Country Link
CN (1) CN201163224Y (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100595541C (en) 2008-03-07 2010-03-24 合肥工业大学 Force and displacement amount air-float type measurement method
CN102636295A (en) * 2012-04-25 2012-08-15 合肥工业大学 Anti-coupling air-flotation force measuring unit
CN105092142A (en) * 2015-05-15 2015-11-25 合肥工业大学 Apparatus for measuring unparallel nozzle and floating plate mechanisms

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100595541C (en) 2008-03-07 2010-03-24 合肥工业大学 Force and displacement amount air-float type measurement method
CN102636295A (en) * 2012-04-25 2012-08-15 合肥工业大学 Anti-coupling air-flotation force measuring unit
CN102636295B (en) 2012-04-25 2013-12-04 合肥工业大学 Anti-coupling air-flotation force measuring unit
CN105092142A (en) * 2015-05-15 2015-11-25 合肥工业大学 Apparatus for measuring unparallel nozzle and floating plate mechanisms
CN105092142B (en) * 2015-05-15 2018-05-11 合肥工业大学 For measuring the device of not parallel nozzle kickboard mechanism

Similar Documents

Publication Publication Date Title
CN101290227B (en) Three axis optical fibre gyroscope inertia measurement unit integral structure
CN101866378B (en) Method for solving rigidity of plate spring by using automatic dynamic analysis of mechanical system (ADAMS)
Bennetts et al. A multi-mode approximation to wave scattering by ice sheets of varying thickness
CN101487765B (en) Three-axial vibration composite testing apparatus
CN201600105U (en) A method of detecting the thickness of the part through regulations for
CN100567993C (en) Dual-axis resonance type micromechanical accelerometer
US20110107850A1 (en) 6-axis sensor structure using force sensor and method of measuring force and moment therewith
CN101726401B (en) Scale measuring device for pitching dynamic derivative experiment
CN100453972C (en) Gas pendulum inertia sensor
CN102798734B (en) MEMS triaxial accelerometer and manufacture method thereof
CN101672710B (en) Beam-film combined micro-pressure sensor
CN100549649C (en) Standardization method for six-dimension force sensor calibration device
CN100458388C (en) Two-dimension force transducer with small measuring range
CN1336538A (en) High-temperature pressure sensor
CN102680319B (en) Test fixture for compression shear of symmetric sandwich structure
CN103076131B (en) Six-dimensional force and torque sensor for measuring large force and small torque of large mechanical arm
CN101308051A (en) Three-dimensional micro- force silicon micro- sensor
CN201083760Y (en) Three axis integrated piezoresistance type acceleration sensor
CN102809508A (en) Load positioning device for structural test
CN102847961A (en) Intelligent cutter of integrated small three-way cutting force measurement system
CN101738154B (en) Flexible detection device for aircraft skin
CN101324248B (en) Elastic positioning pin without gas damp
CN103245409B (en) MEMS biomimetic features vector underwaster sensor based on piezoelectric effect
CN100425993C (en) Differential capacitance type acceleration transducer with frame structure
CN100476358C (en) MEMS gyroscope accurate installation reference component and installation method thereof

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
C17 Cessation of patent right