CN201111704Y - 输电线路雷击跳闸事故性质识别系统 - Google Patents

输电线路雷击跳闸事故性质识别系统 Download PDF

Info

Publication number
CN201111704Y
CN201111704Y CNU2007200863425U CN200720086342U CN201111704Y CN 201111704 Y CN201111704 Y CN 201111704Y CN U2007200863425 U CNU2007200863425 U CN U2007200863425U CN 200720086342 U CN200720086342 U CN 200720086342U CN 201111704 Y CN201111704 Y CN 201111704Y
Authority
CN
China
Prior art keywords
unit
lightning
transmission line
current sensor
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU2007200863425U
Other languages
English (en)
Inventor
刘熠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNU2007200863425U priority Critical patent/CN201111704Y/zh
Application granted granted Critical
Publication of CN201111704Y publication Critical patent/CN201111704Y/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本实用新型涉及输电线路雷击跳闸事故性质识别,提供了一种输电线路雷击跳闸事故性质识别系统。该系统包括现场监测装置和上位机,现场监测装置包括电源单元、电流传感器单元、数据采集与处理单元以及通信单元,电流传感器单元、数据采集与处理单元、通信单元均与电源单元相连,电流传感器的输出端接至数据采集与处理单元的输入端,数据采集与处理单元的输出端接至通信单元的输入端;现场监测装置通过无线通信技术与上位机建立通信连接。该系统工程量和维护量小,监测自动化程度高。

Description

输电线路雷击跳闸事故性质识别系统
技术领域
本实用新型涉及电力系统雷电监测领域,特别是涉及输电线路雷击跳闸事故性质识别领域。
背景技术
在输电线路电压等级向超高压和特高压发展的今天,雷击事故仍然是引起输电线路故障开断的重要原因之一。绕击跳闸事故(雷电击中输电线路导线引起的跳闸)和反击跳闸事故(雷电击中输电线路的避雷线或杆塔)是输电线路雷击跳闸事故的两种不同类型。对两种类型雷击事故的防护措施也是有所不同的,除增强绝缘以及加装线路避雷器等共同思路外,对于绕击跳闸事故一般采取从加强输电线路屏蔽体系的屏蔽能力方面着手防护,而对于反击跳闸事故一般采取降低杆塔接地电阻的角度来加强防护。由于输电线路不同区段的微地理和微气象条件的差异,不同区段往往会呈现以某种雷击事故为主导的情况。因此有必要了解特定区段是容易遭受绕击跳闸还是反击跳闸,以便采取有针对性的防护措施。
雷电定位系统(见参考文献1)是大面积、全自动、实时监测雷电活动的计算机在线系统,能大面积实时探测并显示每次云对地雷击的位置、时间及雷电流幅值极性、回击次数等多项雷电参数。但由于雷电定位系统是针对二维地理平面而设计的,其原理是利用雷击对地闪络的空间场信号,而不是直接监测输电线路遭受雷击后沿线路传递的线路信号,因此在监测输电线路雷击信息时会出现一些失误或遗漏。在判断输电线路雷击跳闸事故类型时一般根据雷击电流的大小进行初步判断,但由于绕击事故的分散性和局部地形特征,如山坡地段较大雷电流的雷击也可能绕击导线而跳闸,这种判断只是一种粗略判断,存在较大误判可能。
“寻迹器技术”是目前国内外监测输电线路绕击与反击事故的常见方法。这种方法依靠在输电线路杆塔、避雷线上装设大量的磁钢棒记录输电线路遭受雷击时的雷电流幅值和方向,从而判断事故类型和位置。参考文献2对这种方法进行了总结。在对输电线路全线段监测时,这种方法需要装设大量的记录传感器,工程量和维护量大,同时无法实现监测的自动化,不具备实用性。
发明内容
本实用新型所要解决的技术问题是:提供一种输电线路雷击跳闸事故性质识别系统,该系统能够准确判断雷击输电线路跳闸的方式(绕击跳闸与反击跳闸),工程量和维护量较小,监测自动化程度高。
本实用新型所采用的技术方案是:该输电线路雷击跳闸事故性质识别系统包括现场监测装置和上位机,现场监测装置包括电源单元、电流传感器单元、数据采集与处理单元以及通信单元,电流传感器单元、数据采集与处理单元、通信单元均与电源单元相连,电流传感器的输出端接至数据采集与处理单元的输入端,数据采集与处理单元的输出端接至通信单元的输入端;现场监测装置通过无线通信技术与上位机建立通信连接。
相对于现有技术,本系统具有以下优点:
1)直接监测输电线路本体雷电波信号,识别故障类型准确;
2)不用每基杆塔安装监测装置,每隔10公里左右安装一个点,可以实现少量装置对输电线路全线段的雷电特性监测;
3)可以分区段实现输电线路雷击事故规律的统计,为雷电防护提供依据;
4)实现了输电线路雷击事故监测统计的自动化、智能化和信息化。
附图说明
图1是绕击暂态波形典型特征图。
图2是反击暂态波形典型特征示意图。
图3是系统结构图。
图4是现场监测装置原理框图。
图5是现场监测装置的立体结构图。
图6是剖切面示意图。
图7是现场监测装置的轴向剖面图。
图8是耦合变压器结构图。
图9是电源模块变换电路的原理图。
图10是电流传感器的原理图。
图11是现场采集与处理单元的原理图。
图12是通信单元的原理图。
图13是上位机管理系统框图。
图14是上位机管理系统软件的流程图。
图15是具体实施例的示意图。
具体实施方式
大量的现场观测数据表明,虽然每一次雷击的雷电流波形都是不同的,但绝大多数雷电流波形都满足较短的波头时间和较长的波尾时间这一特征。绕击跳闸时,雷电流击中输电线路的导线引起闪络,该导线被击穿后雷电流经过较短的杆塔入地,由于杆塔波阻抗和地面反射波的作用,会使沿线路传输的雷电流波形有很陡峭的下降沿和随后较低的幅值,如图1所示;而反击跳闸时,雷电流击中避雷线或杆塔引起绝缘子串闪络跳闸,绝缘子串被击穿后,较长的雷电流波尾会分流进入输电线路的导线传播,该雷电流波形具有很陡的上升沿和相对缓慢下降的波尾,如图2所示。绕击跳闸和反击跳闸所形成的两种不同特性的雷电流沿输电线路导线传输时,雷电流波形虽然会受到衰减、畸变和反射波因素的影响,但该波形的特征在一定传输距离内仍然能够充分呈现。
按照以上方法原理,设计了输电线路雷击跳闸事故性质识别系统。
该系统的结构图如图3所示,其包括变电站甲、乙之间布设的现场监测装置(A1、A2…Ai…An)和上位机(包括上位机管理系统、WEB客户端)。
现场监测装置原理框图如图4所示,其包括电源单元、电流传感器单元、数据采集与处理单元以及通信单元,电流传感器单元、数据采集与处理单元、通信单元均与电源单元相连,电流传感器的输出端接至数据采集与处理单元的输入端,数据采集与处理单元的输出端接至通信单元的输入端;现场监测装置通过无线通信技术与上位机建立通信连接。
现场监测装置的立体结构如图5所示,剖切面如图6所示,剖切面延轴向,其剖面图如图7所示:现场终端外壳6由金属制成,其上半部与下半部通过卡槽连接,现场终端外壳6的下半部支架7、电流传感器2、主板盒3。耦合变压器1在现场终端外壳6的内部,耦合变压器1安装在支架7上。输电线路导线通过现场终端外壳6端部的导线穿孔4穿过耦合变压器1的耦合线圈和电流传感器2的线圈。电源单元包括耦合变压器1和变换电路,电流传感器单元包括电流传感器2。电源单元的变换电路、数据采集与处理单元、通信单元安装在主板盒3中。通信单元配置的专用天线通过主板盒3和现场终端外壳6端部的天线穿孔5伸出该外壳壳体,以保障通信信号的良好。
耦合变压器1结构图如图8所示。其由截面积相同的两个半环形的硅钢片铁芯材料组成,并在其中一个半环形铁芯上缠绕30~60匝导线,硅钢片铁芯的中间穿过输电线路导线。硅钢片铁芯的截面为长40mm、宽20mm的长方形。
电源单元通过耦合输电线路导线中的输入电流而变换出整个现场监测装置工作所需的电源。电源单元的变换电路框图如图9所示,输入电流先进入共模滤波电路,共模滤波电路的输出端接至全波整流电路的输入端,全波整流电路的输出端接至差模滤波电路的输入端,差模滤波电路的输出端通过过压保护电路接至输出电源。共模滤波电路主要消除系统共模高频干扰,其采用铁氧体芯的绕线电感,电感大小8mH左右。全波整流电路主要将输入电流整流成脉动的直流电源,其采用KRB206整流模块。差模滤波电路主要消除系统差模干扰,其使用差模电感。过压保护电路在系统过压时,保护输出电源不受损害。
电流传感器单元的原理如图10所示,其采用了罗柯夫斯基线圈,罗柯夫斯基电流传感器与传统的电磁式互感器相比,它没有铁心饱和问题,具有传输频带宽、抗干扰性能优异、尺寸小、质量轻等优点。电流传感器单元具有高达几十兆的频率响应特性,它将输电线路导线上传播的雷电流和工频故障电流转换为数据采集与处理单元能采集的信号。罗柯夫斯基线圈是将导线均匀地绕在一个非铁磁性环形骨架上,一次母线置于线圈中央,因此绕组线圈与母线之间的电位是隔离的。设磁感应密度为Ф(t),母线电流为I(t),线圈匝数N,线圈横截面积S,线圈半径r,时间为t,则在线圈上的感应电动势e(t)为:
e ( t ) = - dφ ( t ) dt = - μNS 2 πr · dI ( t ) dt
式中μ是空气(或真空)磁导率。
数据采集与处理单元再将输入模拟信号的雷电流和工频电流转换为数字信号,其电路图如图11所示。该单元主要包括微处理器MSP430F169、FPGA EP1C144C8(EP1系列)、高速AD采集器AD9280和大容量的SRAM存贮器。晶振、看门狗及复位电路、信号调整电路I的输入端、FPGA的一个输入端、SRAM存贮器的一个输入端均与MSP430F169的相应引脚相连。信号调整电路II输出端接至AD9280的输入端,AD9280的输出端接至FPGA的另一个输入端。输入模拟信号的一路通过信号调整电路I进入内嵌AD转换器的MSP430F169采集,另一路通过信号调整电路II送入AD9280采集,输入模拟信号经过采集后,进入FPGA并由其来控制,然后存储在大容量的外部SRAM里,以供传输。两路信号可根据需要实时可靠传输。
通信单元可采用GPRS通信系统或CDMA通信系统。以GPRS通信系统为例,如图12所示,通信单元主要包括微处理器MSP430F169的串口接口、西门子GPRS通信模块MC35i、SIM卡电路和SRAM存储器。微处理器MSP430F169的串口接口接至MC35i的输入端,MC35i还与SIM卡电路和SRAM存贮器相连。经过数据采集与处理单元采集到的数据通过串口接口进入MC35i传送,MC35i和微处理器MSP430F169间通过串口操作,使用各种AT指令来互相通信,同时在GPRS模块的软件中嵌入TCP/IP协议,以实现数据的网络传输。SIM卡电路主要由目前移动运营商所提供的SIM卡、6个引脚的抽屉式卡座等组成。SIM卡是带有微处理器的芯片,它是一张符合GSM规范的智能卡,其内部包含了运营商提供的与用户有关的、被存储在用户这一方的信息,以提供GSM系统鉴别SIM的合法性,是基于GPRS通信的必要条件。SIM卡的6个引脚通过抽屉式卡座与通信模块MC35i相连,完成数据交换。SRAM存贮器主要存储微处理器MSP430F169处理过程中的临时变量和大量各种采集波形数据,以供传输。通信单元将数字化的波形信号上传到上位机管理系统。考虑到冲击电晕对雷电流波形的衰减影响,每隔约10公里左右安装现场监测装置于各相导线上,并通过GPRS或CDMA无线通信技术与上位机建立通信连接。
上位机安装于相关管理办公室,上位机上安有上位机管理系统。管理部门可通过局域网在WEB客户端上查询上位机管理系统的相关雷电故障信息。
上位机管理系统框图如图13所示。上位机管理系统包含前置通信模块、输电线路雷击跳闸数据库管理模块、智能诊断模块和统计分析模块。各模块以数据库管理模块为连接的纽带,前置通信模块完成输电线路雷击故障波形的上传接收,并将其存放于由数据库管理模块所管理的数据库中中;智能化诊断模块从该数据库中提取故障波形,一方面根据绕击和反击跳闸事故的不同特征,应用小波分析的方法识别雷击闪络事故类型,另一方面根据现场监测装置监测到的闪络后故障工频电流方向判断雷击事故发生的区间,这些诊断分析的结果又存储到数据库中。统计分析模块从数据库中提取智能诊断模块的分析结果,统计各区段发生雷击事故的情况。
该上位机管理系统软件的流程如图14示。当输电线路发生雷击跳闸事故时,现场监测装置会主动上报导线上传播的雷电流波形和随后的工频故障电流波形,前置通信模块将这些上报信息接收并存储于数据库中;智能诊断模块首先根据工频故障电流在故障点两侧相位相反的逻辑,分析本次故障所在区间,同时,采用dbl作为小波基函数,根据对应下降沿的模值大于规定阈值为绕击的原理,对频率在20~100兆区段的小波分解模值进行分析,确定雷击事故为绕击或反击。智能诊断模块将故障区段及雷击故障信息存储到数据库中;统计分析模块根据一段时间的雷击跳闸事故诊断结果,可对某条输电线路的雷电跳闸特征进行分析,分析各区段是否为雷击易闪段、绕击事故和反击事故所占比例以及应该加强绕击防护还是反击防护等有利于系统安全运行的建议。
按照本专利提出的雷击事故识别方法和监测系统,可以实现输电线路雷击跳闸事故类型的准确识别,并且统计输电线路特定区段的雷击事故规律。
实施例:
如图15所示,某地区电力公司有一条长50公里的220kv输电线路,该线路的雷击跳闸事故较多,可以安装一套输电线路雷击跳闸事故性质识别系统以掌握雷击事故的情况,以便针对性地采取防护措施。为此,在线路专责办公室安装有上位机,上位机上装有上位机管理系统一套,并配置WEB客户端与该管理系统相连,使关心系统运行情况的公司相关领导和相关部门能通过局域网浏览到相关信息。在输电线路的各相导线上安装现场监测装置四套,分别为离甲变电站10公里处的A1、20公里处的A2、30公里处的A3和40公里处的A4。
该系统主要功能性能指标如下:
故障区间识别准确率≥98%
雷击性质识别准确率≥90%
可监测输电线路条数≥1000条
故障诊断时间≤60秒
在当前乃至今后相当长的一段时间,雷电事故都是高压、超高压乃至特高压线路安全运行中最主要的破坏因素,本系统的应用将对统计输电线路雷击跳闸事故的分布规律、针对性地采取雷电防护措施,提高系统运行的安全性发挥巨大的作用。
参考文献
1、张文亮等,雷电定位系统时差定位精确确定方法,专利号申请号02115709.X
2、侯仁保,雷击故障性质的鉴别,供用电,1999,Vol.16,No.2,P38-39.

Claims (4)

1、一种输电线路雷击跳闸事故性质识别系统,其特征在于:其包括现场监测装置和上位机,现场监测装置包括电源单元、电流传感器单元、数据采集与处理单元以及通信单元,电流传感器单元、数据采集与处理单元、通信单元均与电源单元相连,电流传感器单元的输出端接至数据采集与处理单元的输入端,数据采集与处理单元的输出端接至通信单元的输入端;现场监测装置通过无线通信技术与上位机建立通信连接。
2、如权利要求1所述的输电线路雷击跳闸事故性质识别系统,其特征在于:所述电源单元包括耦合变压器(1)和变换电路。
3、如权利要求1所述的输电线路雷击跳闸事故性质识别系统,其特征在于:所述电流传感器单元包括罗柯夫斯基线圈。
4、如权利要求1所述的输电线路雷击跳闸事故性质识别系统,其特征在于:所述通信单元采用GPRS通信系统或CDMA通信系统。
CNU2007200863425U 2007-08-07 2007-08-07 输电线路雷击跳闸事故性质识别系统 Expired - Fee Related CN201111704Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2007200863425U CN201111704Y (zh) 2007-08-07 2007-08-07 输电线路雷击跳闸事故性质识别系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2007200863425U CN201111704Y (zh) 2007-08-07 2007-08-07 输电线路雷击跳闸事故性质识别系统

Publications (1)

Publication Number Publication Date
CN201111704Y true CN201111704Y (zh) 2008-09-10

Family

ID=39963447

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2007200863425U Expired - Fee Related CN201111704Y (zh) 2007-08-07 2007-08-07 输电线路雷击跳闸事故性质识别系统

Country Status (1)

Country Link
CN (1) CN201111704Y (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446619B (zh) * 2008-12-05 2011-03-30 上海艾晋电力科技有限公司 用于检测配网架空线故障的报警器
CN101446618B (zh) * 2008-12-05 2011-08-03 上海市电力公司 配网架空线故障实时监测系统
CN102193050A (zh) * 2011-04-19 2011-09-21 嘉兴电力局 一种直流输电线路故障的定位系统
CN102735960A (zh) * 2008-11-07 2012-10-17 上海凯华电源成套设备有限公司 交流屏智能故障监测报警方法
CN102890207A (zh) * 2012-06-20 2013-01-23 武汉三相电力科技有限公司 一种雷击输电线路避雷线或杆塔的辨识方法
CN101738570B (zh) * 2008-11-07 2013-01-30 上海凯华电源成套设备有限公司 直流屏智能故障监测报警装置和故障监测报警方法
CN103135032A (zh) * 2013-01-30 2013-06-05 福建省电力有限公司 一种引起输电线路单相接地故障的外力因素诊断方法
CN103278736A (zh) * 2013-04-12 2013-09-04 南方电网科学研究院有限责任公司 一种跳闸线路雷电自动查询诊断及诊断结果发布方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735960A (zh) * 2008-11-07 2012-10-17 上海凯华电源成套设备有限公司 交流屏智能故障监测报警方法
CN101738570B (zh) * 2008-11-07 2013-01-30 上海凯华电源成套设备有限公司 直流屏智能故障监测报警装置和故障监测报警方法
CN101446619B (zh) * 2008-12-05 2011-03-30 上海艾晋电力科技有限公司 用于检测配网架空线故障的报警器
CN101446618B (zh) * 2008-12-05 2011-08-03 上海市电力公司 配网架空线故障实时监测系统
CN102193050A (zh) * 2011-04-19 2011-09-21 嘉兴电力局 一种直流输电线路故障的定位系统
CN102890207A (zh) * 2012-06-20 2013-01-23 武汉三相电力科技有限公司 一种雷击输电线路避雷线或杆塔的辨识方法
CN102890207B (zh) * 2012-06-20 2015-02-18 武汉三相电力科技有限公司 一种雷击输电线路避雷线或杆塔的辨识方法
CN103135032A (zh) * 2013-01-30 2013-06-05 福建省电力有限公司 一种引起输电线路单相接地故障的外力因素诊断方法
CN103135032B (zh) * 2013-01-30 2015-03-04 福建省电力有限公司 一种引起输电线路单相接地故障的外力因素诊断方法
CN103278736A (zh) * 2013-04-12 2013-09-04 南方电网科学研究院有限责任公司 一种跳闸线路雷电自动查询诊断及诊断结果发布方法
CN103278736B (zh) * 2013-04-12 2016-04-27 南方电网科学研究院有限责任公司 一种跳闸线路雷电自动查询诊断及诊断结果发布方法

Similar Documents

Publication Publication Date Title
CN201111704Y (zh) 输电线路雷击跳闸事故性质识别系统
CN101162833A (zh) 输电线路雷击跳闸事故性质识别系统
CN102565628B (zh) 基于雷电流幅值区间分布的架空线路雷击故障性质识别方法
CN203350392U (zh) 一种高压输电线路故障测距系统
CN101261304A (zh) 小电流接地系统配电线路单相接地故障自动定位方法
CN106569089A (zh) 一种基于配电线路动态信息的配电网故障监测方法
CN108666992B (zh) 电网故障综合分析平台及工作方法
CN106972628A (zh) 低压台区反窃电及线损分析与监控系统
CN202189112U (zh) 基于海底电缆和架空线故障定位系统
CN101907437A (zh) 一种基于小波差分算法的电缆故障测距方法
CN106033096A (zh) 变电站雷电侵入波在线监测系统及方法
CN103558448B (zh) 一种输电线路多通道雷电流监测装置
CN102184625A (zh) 基于3g通讯网络的输电线路故障区域定位系统
CN102497030A (zh) 基于高压电能表的线损实测和定位方法及系统
CN107270970A (zh) 高耸电力设备振动监测装置及其进行故障诊断的方法
CN205880119U (zh) 基于零序电流检测技术的配电网故障定位系统
CN207051383U (zh) 一种智能防窃电装置
CN105353200A (zh) 一种变压器直流偏磁电流在线监测系统
CN104155568A (zh) 一种雷击输电线路避雷线精确定位方法
CN202794300U (zh) 输电线路避雷器在线监测装置
CN112904147B (zh) 一种输电线路故障及预放电监测装置及信号处理方法
CN205103292U (zh) 基于双霍尔元件对特高压直流避雷器泄露电流的采集单元
CN105548820A (zh) 基于暂态行波模极大值法的电缆线路故障识别与定位方法
CN205229290U (zh) 一种变压器直流偏磁电流在线监测系统
Silva et al. Detection and location of direct lightning strokes to overhead power transmission lines by measuring currents from shield wires

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080910

Termination date: 20100807