Connect public, paid and private patent data with Google Patents Public Datasets

Method for fabricating ferroelectric film and ferroelectric capacitor

Info

Publication number
CN1983462B
CN1983462B CN 200610172524 CN200610172524A CN1983462B CN 1983462 B CN1983462 B CN 1983462B CN 200610172524 CN200610172524 CN 200610172524 CN 200610172524 A CN200610172524 A CN 200610172524A CN 1983462 B CN1983462 B CN 1983462B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
solution
sol
gel
ferroelectric
film
Prior art date
Application number
CN 200610172524
Other languages
Chinese (zh)
Other versions
CN1983462A (en )
Inventor
名取荣治
大桥幸司
木岛健
滨田泰彰
Original Assignee
精工爱普生株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

A method of manufacturing a ferroelectric film comprises a step of forming a ferroelectric film by using a sol/gel solution, using a solution which mix at least a sol/gel solution for PBZrO3, a sol/gel solution for PBTiO3, with a sol/gel solution for PBNbO3 as the sol/gel solution.

Description

强电介质膜的制造方法、和强电介质电容器的制造方法 A method of manufacturing a ferroelectric film, and a method of manufacturing a ferroelectric capacitor

[0001] 本分案申请的母案为: [0001] This sub-case is the parent of the Application:

[0002] 发明名称:强电介质膜、电容器及它们的制造方法、强电介质存储器 [0002] Title: ferroelectric film, capacitor and a manufacturing method thereof, a ferroelectric memory

[0003] 国际申请日:2003年10月23日 [0003] International Filing Date: October 23, 2003

[0004] 国际申请号:PCT/JP03/13556 [0004] International application number: PCT / JP03 / 13556

[0005] 国家申请号:200380101906· 2 [0005] National application number: 200 380 101 906 * 2

技术领域 FIELD

[0006] 本发明涉及一种强电介质膜、强电介质电容器、强电介质存储器、压电元件、半导体元件、强电介质膜的制造方法、和强电介质电容器的制造方法。 [0006] relates to a ferroelectric film, a ferroelectric capacitor, a ferroelectric memory, a piezoelectric element, a semiconductor element, a method of manufacturing a ferroelectric film, and a method of manufacturing a ferroelectric capacitor according to the present invention.

背景技术 Background technique

[0007] 近年来,PZT、SBT等强电介质膜或使用其的强电介质电容器、强电介质存储器装置等的研究开发盛行。 Research and Development [0007] In recent years, PZT, SBT or the like using the ferroelectric film of the ferroelectric capacitor thereof, a ferroelectric memory device and the like prevails. 强电介质存储器装置的构成可大致分成IT型、ITlC型、2T2C型、单纯矩阵型。 Constituting the ferroelectric memory device can be roughly classified into type IT, ITLC type, 2T2C type, a simple matrix type. 其中,由于IT型在结构上在电容器中产生内部电场,所以保持力(数据保持)短至1个月,不能满足半导体一般要求的10年保证。 Wherein, since an internal electric field is generated in the IT type capacitor in structure, so that the holding force (holding data) as short as 1 month, can not meet the general requirements of the semiconductor guarantee 10 years. ITlC型、2T2C型与DRAM的构成大致相同, 为了具有选择用晶体管,可适用DRAM的制造技术。 ITlC type, 2T2C type configuration substantially the same as a DRAM, in order to have selection transistors, the DRAM manufacturing technology is applicable. 另外,ITlC型、2T2C型由于实现了SRAM 的写入速度,所以到目前为止256KB以下的小容量品被商品化。 Further, ITLC type, 2T2C type implement write speeds because the SRAM, so far below the small capacity of 256KB product is commercialized.

[0008] 迄今为止,作为强电介质材料,主要使用Pb (Zr、Ti) O3 (PZT)。 [0008] Heretofore, as a ferroelectric material mainly used Pb (Zr, Ti) O3 (PZT). 在PZT的情况下,使用&/Ti比为52/48或40/60的、棱面体晶和正方晶体的混合存在区域及其附近的组成。 In the case of PZT, mixed & / Ti ratio is 52/48 or 40/60, trigonal and tetragonal crystals present in a region near its composition. 另外,在PZT的情况下,还掺杂使用La、Sr、Ca等元素。 Further, in the case of PZT, it is also doped using La, Sr, Ca and other elements. 使用该区域是为了确保存储器元素最需要的可靠性。 This area is used to ensure the reliability of the memory element is most needed. 磁滞形状虽然丰富含有Ti的正方晶体区域很好,但产生离子性晶体结构引起的肖脱基缺陷。 Although a good hysteresis shape containing Ti rich tetragonal region, but produces Schottky defects caused by the ionic crystal structure. 因此,会产生泄漏电流特性或印象(imprint)特性(所谓的磁滞的变形程度)不好,难以确保可靠性。 Therefore, it will produce leakage current characteristics or impression (imprint) characteristics (degree of deformation so-called hysteresis) is not good, it is difficult to ensure reliability.

[0009] 另一方面,单纯矩阵型的单元尺寸比ITlC型、2T2C型小,另外,可多层化电容器, 所以期待高集成化、低成本化。 [0009] On the other hand, a simple matrix type cell size, smaller than the 2T2C type ITlC type, additionally, capacitors may be multilayered, the expected higher integration and cost reduction.

[0010] 另外,就以往的单纯矩阵型强电介质存储器装置而言,如日本特开平9-116107号公报等中公开的那样。 [0010] Further, in terms of the conventional simple matrix type ferroelectric memory device, as disclosed in Japanese Patent Publication Laid-Open No. 9-116107 and the like. 在该公开公报中,公开了当向存储器单元写入数据时,向非选择存储器单元施加写入电压的1/3电压的驱动方法。 In this Publication, there is disclosed a method of driving a third voltage when data is written to the memory cell, the write voltage is applied to the non-selected memory cell.

[0011] 但是,该技术中,未具体记载动作必需的强电介质电容器的磁滞环。 [0011] However, this technique is not specifically described the operation of the hysteresis of the ferroelectric capacitor required ring. 为了得到可实际动作的单纯矩阵型强电介质存储器装置,方型性的良好的磁滞环是不可或缺的。 In order to obtain the actual movement may be a simple matrix type ferroelectric memory device, a good squareness of hysteresis loop is essential. 作为可与之对应的强电介质材料,考虑富Ti的正方晶体PZT作为候补,但与已述的ITlC和2T2C 型强电介质存储器一样,可靠性的确保成为最重要的课题。 As a ferroelectric material therewith corresponding consider Ti-rich tetragonal PZT as a candidate, but ITlC and 2T2C type ferroelectric memory as already mentioned, to ensure the reliability of the most important issue.

[0012] 另外,虽然PZT正方晶体示出适于存储器用途的具有方型性的磁滞特性,但缺乏可靠性而未被实用化。 [0012] Further, although the PZT tetragonal crystal shows a hysteresis characteristic having a squareness suitable for memory applications, but the lack of reliability is not practical. 其理由如下。 The reason is as follows.

[0013] 首先,结晶后的PZT正方晶体薄膜具有如下倾向,即若Ti含有率越高,则泄漏电流强度越高。 [0013] First, the PZT tetragonal thin film after crystallization has a tendency that if the content of the higher Ti, the higher the leakage current intensity. 另外,当进行向+或-方向的任一方仅写入一次数据、在加热保持在100度后读出数据的、所谓静态印象试验时,在24小时(h)之后,基本上未剩余写入的数据。 Further, when performing the + or - direction either write data only once, upon heating maintained at 100 degrees for reading data, a so-called static imprint test, after 24 (h) hours, remaining substantially not write The data. 这些是作为离子性结晶的PZT和作为PZT构成元素的Pb与Ti自身具有的本质特征,成为构成元素的大部分为Pb和Ti构成的PZT正方晶体薄膜具有的最大问题。 As these are ionic crystals PZT and PZT essential characteristics of Pb as a constituent element and having its own Ti, the biggest problem tetragonal PZT film is mostly composed of Pb and Ti having constituent elements. 该问题在PZT钙钛矿是离子性结晶时大,是PZT具有的本质问题。 The problem in the PZT perovskite is an ionic crystal is large, the nature of the problem is having a PZT.

[0014] 图44是关联于PZT各构成元素的结合的主要能量的一览。 [0014] FIG. 44 is associated with a list of the main energy PZT constituent elements of the binding. 已知PZT在结晶后多含有氧空穴。 Known PZT containing more oxygen vacancies after crystallization. 即,根据图44,预测Pb-O在PZT构成元素中的结合能量最小,烧成加热时或极化反转时被简单切断。 That is, according to FIG. 44, the prediction Pb-O bond energy in PZT constituting the minimum elements, when fired heating or simply cut off the polarization reversal. 即,若逸出(逸出)Pb,则根据电荷中性原则,会逸出0。 That is, when the escape (escapes) Pb, the principle of charge neutrality, will escape 0.

[0015] 接着,在印象(imprint)试验等的加热保持时,PZT的各构成元素振动并反复冲击,但PZT构成元素中Ti最轻,容易由于高温保持时的振动冲击而逸出。 [0015] Next, upon heating impressions (Imprint) test or the like is held, the respective constituent elements of PZT vibrate and repeatedly impact, but the lightest Ti PZT constituent elements, since the shock and vibration easily maintained at a high temperature to escape. 因此,若逸出Ti, 则根据电荷中性原则,会逸出0。 Thus, if escape of Ti, the principle of charge neutrality, will escape 0. 另外,因为Pb:+2、Ti :4的最大价数有助于结合,所以在逸出0之外,电荷中性不成立。 In addition, since Pb: + 2, Ti: maximum number of 4 valence facilitate binding, so addition escape 0, charge neutrality is not established. 即,PZT容易形成对于Pb和Ti等1个阳离子容易逸出两个0 等阴离子的所谓肖脱基缺陷。 That is, PZT easily formed for Pb and Ti a cationic anions readily escape two 0-called Schottky defects.

[0016] 这里,说明PZT结晶中的氧缺损引起的泄漏电流产生的原理。 [0016] Here, the principle of the leakage current of the oxygen deficiency caused by the PZT crystal produced. 图45A〜图45C是说明具有用通式ΑΒ02.5表示的褐针镍矿(Brownmillerite)型晶体结构的氧化物结晶中的泄漏电流产生的图。 FIG 45A~ FIG. 45C is an explanatory view of a leakage current of the oxide crystal (Brownmillerite) crystal structure in the Brownmillerite generation represented by the general formula ΑΒ02.5. 如图45A所示,褐针镍矿型晶体结构是相对于具有用通式ABO3表示的PZT结晶等的钙钛矿型晶体结构具有氧缺损的晶体结构。 , The Brownmillerite type crystal structure is a crystal structure of FIG. 45A perovskite type crystal structure of PZT crystals having the general formula ABO3 represented by like having oxygen deficiency with respect to. 另外,如图45B所示,由于在褐针镍矿型晶体结构中阳离子附近是氧离子,所以阳离子缺损很难成为泄漏电流增大的原因。 Further, as shown in FIG. 45B, since the Brownmillerite type crystal structure is oxygen ions near the cation, it is difficult to cause defects cationic increased leak current. 但是,如图45C所示,氧离子在PZT结晶整体中串联连接,当由于氧缺损而晶体结构变为褐针镍矿型晶体结构时,泄漏电流也会因此增大。 However, as shown, oxygen ions 45C are connected in series in the entire PZT crystal, when the crystal structure due to the oxygen deficiency becomes a Brownmillerite type crystal structure, thus increasing the leakage current will be.

[0017] 另外,除上述泄漏电流的产生外,Pb和Ti的缺损或伴随其的0缺损也是所谓的晶格缺陷,构成图46所示的空间电荷极化的原因。 [0017] Further, in addition to generating the leakage current, Pb and Ti defect or defects in accompany it 0 is also called lattice defects, is a cause space charge polarization shown in FIG. 46. 此时,在PZT结晶中,由于强电介质的极化形成的电场,会产生晶格缺陷引起的反电场,变为所谓施加偏移电位的状态,结果,磁滞移位或减少极性。 At this time, a PZT crystal, the electric field polarization in the ferroelectric formed, an electric field is generated anti-induced lattice defects, it becomes a state applied to a so-called offset potential, as a result, a hysteresis shift or decrease polarity. 并且,温度越高,该现象越快产生。 Further, the higher the temperature, the faster this phenomenon is generated.

[0018] 以上是PZT具有的本质的问题,在纯粹的PZT中,认为难以解决上述问题,到目前为止,在使用正方晶体的PZT的存储器元件中,未实现具有充分特性的元件。 [0018] The above is the problem with the nature of PZT, in pure PZT, it is considered difficult to solve the above problem, so far, the use of a PZT tetragonal memory element, the element having sufficient properties is not achieved.

[0019] 另外,就强电介质存储器而言,含有于强电介质电容器中的强电介质膜的结晶状态是决定器件特性的重要因素之一。 [0019] Moreover, in the ferroelectric memory, the crystallization state of the ferroelectric film containing the ferroelectric capacitor is one of the important factors in determining device characteristics. 另外,在强电介质存储器的制造工序中,具有形成夹层绝缘膜或保护膜的工序,使用产生大量氢的工艺。 Further, in the process of manufacturing ferroelectric memory having an interlayer insulating film or a protective film step, a large number of processes used to produce hydrogen. 此时,由于强电介质膜主要由氧化物形成,所以由制造工序中产生的氢而还原氧化物,会对强电介质电容器的特性造成不期望的影响。 At this time, since the ferroelectric film is mainly formed of an oxide, the hydrogen produced by the manufacturing process and reduce the oxide, will cause undesirable effects characteristic of the ferroelectric capacitor.

[0020] 因此,在以往的强电介质存储器中,为了防止强电介质电容器的特性恶化,通过用氧化铝膜或氮化铝膜等阻挡膜覆盖强电介质电容器,担保电容的耐还原性。 [0020] Thus, in the conventional ferroelectric memory, in order to prevent characteristic deterioration of the ferroelectric capacitor, by treatment with an aluminum oxide film or an aluminum nitride barrier film covering the ferroelectric capacitor, the capacitance reduction resistance guarantee. 但是,这些阻挡膜在强电介质存储器的高集成化时需要多余的占有区域,另外,从生产性方面看,期望利用更简单的工艺来制造强电介质存储器的方法。 However, these barrier films need extra occupied region in the ferroelectric memory when the high integration, addition, from the standpoint of productivity, a method is desirable with a simpler process for manufacturing a ferroelectric memory.

发明内容 SUMMARY

[0021] 本发明的目的在于提供一种含有可对1T1C、2T2C和单纯矩阵型强电介质任一使用的具有磁滞特性的强电介质电容器的1T1C、2T2C和单纯矩阵型强电介质存储器。 [0021] The object of the present invention to provide 1T1C containing a ferroelectric capacitor having hysteresis characteristics can be any medium of 1T1C, 2T2C, and a simple matrix type of ferroelectric used, 2T2C and simple matrix type ferroelectric memory. 另外, 本发明的另一目的在于提供一种适于上述强电介质存储器的强电介质膜及其制造方法。 Further, another object of the present invention to provide a ferroelectric film and a method suitable for manufacturing the ferroelectric memory. 并且,本发明的又一目的在于提供一种使用上述强电介质膜的压电元件和半导体元件。 Further, still another object of the present invention to provide a piezoelectric element and a semiconductor element using the ferroelectric film. 另外, 本发明的又一目的在于提供一种可利用不需要阻挡膜的简便工艺来担保充分特性的强电介质电容器、其制造方法和使用强电介质电容器的强电介质存储器。 Further, still another object of the present invention to provide a ferroelectric capacitor that does not require an easy process to guarantee adequate barrier film properties, and a method of manufacturing a ferroelectric memory using a ferroelectric capacitor.

[0022] 一种强电介质电容器的制造方法,包括使用溶胶凝胶溶液形成强电介质膜的工序,使用至少混合Pb&03用溶胶凝胶溶液、PbTi03用溶胶凝胶溶液和PbNb03用溶胶凝胶溶液的溶液作为所述溶胶凝胶溶液所述强电介质膜,由ABgNbyC^表示,其中,A元素至少由Pb 构成,B元素由&、Ti、V、W、Hf以及Ta中的至少一种以上的组合构成,x在0. 1彡x彡0. 3 的范围内。 [0022] A method of manufacturing a ferroelectric capacitor, comprising a step of sol-gel solution for forming a ferroelectric film using a mixed solution of at least Pb & 03 sol-gel solution, PbTi03 sol-gel solution and a sol-gel solution PbNb03 the sol-gel solution as the ferroelectric film, represented by the ABgNbyC ^, wherein, a is constituted by at least the elements Pb, B consist of a combination of elements &, Ti, V, W, Hf and Ta and at least one inner, x x in 0.1 Piesan 0.3 range.

[0023] 附图说明 [0023] BRIEF DESCRIPTION OF DRAWINGS

[0024] 图1是模式地表示强电介质电容器的截面图。 [0024] FIG. 1 is a schematic cross-sectional view showing a ferroelectric capacitor.

[0025] 图2是表示用旋涂法形成PZTN膜用的流程图。 [0025] FIG 2 is a flowchart for forming a PZTN film by a spin coating method.

[0026] 图3是表示强电介质电容器的P (极化)-V (电压)磁滞曲线的图。 [0026] FIG. 3 shows a P (polarization) -V a ferroelectric capacitor (voltage) hysteresis curve.

[0027] 图4A〜图4C是表示实施例1的PZNT膜的表面组织的图。 [0027] FIG 4C is a view showing 4A~ surface of the tissue PZNT film of Example 1.

[0028] 图5A〜图5C是表示实施例1的PZNT膜的结晶性的图。 [0028] FIG 5C are 5A~ FIG PZNT crystalline film of Example 1.

[0029] 图6A〜图6C是表示实施例1的PZNT膜的膜厚与表面组织的关系的图。 [0029] FIG 6A~ FIG 6C is a graph showing the relationship between the film thickness and the surface of the tissue PZNT film of Example 1.

[0030] 图7A〜图7C是表示实施例1的PZNT膜的膜厚与结晶性的关系的图。 [0030] FIG 7A~ FIG 7C is a diagram showing relationship between the thickness of the film of Example 1 PZNT and crystallinity embodiment. [0031 ] 图8A〜图8C是表示实施例1的PZNT膜的膜厚与磁滞特性的图。 [0031] FIG. 8C is a diagram showing 8A~ film thickness and hysteresis characteristics PZNT film of Example 1.

[0032] 图9A〜图9C是表示实施例1的PZNT膜的膜厚与磁滞特性的图。 [0032] FIG. 9C is a 9A~ film thickness and hysteresis characteristics of FIG PZNT film of Example 1.

[0033] 图10A和图10B是表示实施例1的PZNT膜的泄漏电流特性的图。 [0033] FIGS. 10A and 10B are a diagram showing the leakage current characteristics PZNT film of Example 1.

[0034] 图11A是表示实施例1的PZTN膜的疲劳特性的图。 [0034] FIG. 11A is a graph showing the fatigue characteristics of the PZTN film of Example 1. 图11B是表示实施例1的PZTN 膜的静态印象特性的图。 FIG 11B is a graph showing static imprint characteristics of the PZTN film of Example 1.

[0035] 图12是表示实施例1的利用臭氧TE0S来形成Si02保护膜的强电介质电容器的结构图。 [0035] FIG. 12 is a structural view showing formed ferroelectric capacitor Si02 protective film with ozone TE0S Example 1 embodiment.

[0036] 图13是表示实施例1的利用臭氧TE0S来形成Si02保护膜之后的强电介质电容器的磁滞特性的图。 [0036] FIG 13 shows the hysteresis characteristics of FIG formed ferroelectric capacitors after the use of ozone TE0S Si02 protective film of Example 1.

[0037] 图14是表示实施例1的现有PZT膜的泄漏电流特性的图。 [0037] FIG. 14 is a graph showing leakage current characteristics of conventional PZT film of Example 1.

[0038] 图15是表示实施例1的使用现有PZT膜的强电介质电容器的疲劳特性的图。 [0038] FIG. 15 is a graph showing the fatigue characteristics of the ferroelectric capacitor using a conventional PZT film of Example 1.

[0039] 图16是表示实施例1的使用现有PZT膜的强电介质电容器的静态印象特性的图。 [0039] FIG. 16 shows the static imprint characteristic of the ferroelectric capacitor using a conventional PZT film of Example 1.

[0040] 图17A和图17B是表示实施例2的PZTN膜的磁滞特性的图。 [0040] FIGS. 17A and 17B show the hysteresis characteristics of the PZTN film of Example 2. [0041 ] 图18A和图18B是表示实施例2的PZTN膜的磁滞特性的图。 [0041] FIGS. 18A and 18B show the hysteresis characteristics of the PZTN film of Example 2.

[0042] 图19A和图19B是表示实施例2的PZTN膜的磁滞特性的图。 [0042] FIGS. 19A and 19B show the hysteresis characteristics of the PZTN film of Example 2.

[0043] 图20是表示实施例2的PZTN膜的X射线衍射图案的图。 [0043] FIG. 20 shows an X-ray diffraction pattern of the PZTN film of Example 2.

[0044] 图21是表示实施例2的PZTN结晶中的Pb缺损量与Nb的组成比的关系图。 [0044] FIG. 21 is a diagram showing the amount of Pb PZTN crystal defect in Example 2 and the composition ratio of Nb embodiment of FIG relationship.

[0045] 图22是说明作为钙钛矿结晶的W03的晶体结构的图。 [0045] FIG. 22 is a diagram showing the crystal structure of the perovskite crystal W03 FIG.

[0046] 图23A〜图23C是模式地表示实施例3中的PZTN膜的形成工序的截面图。 [0046] FIG 23A~ FIG. 23C is a schematic cross-sectional view showing a step of forming a PZTN film of Example 3.

[0047] 图24A和图24B是说明实施例3中的PZTN膜的晶格常数的变化的图。 [0047] FIGS. 24A and 24B are diagrams illustrating a change in lattice constant in a PZTN film of Example 3.

[0048] 图25是说明实施例3中的PZTN膜与Pt金属膜的晶格不匹配率的变化的图。 [0048] FIG. 25 is a diagram illustrating Example 3 PZTN crystal lattice film and the Pt metal film does not match the rate of change of the embodiment in FIG.

[0049] 图26是表示利用旋涂法形成参考例中的现有PZT膜用的流程图。 [0049] FIG. 26 is a flowchart showing the conventional embodiment with reference to the PZT film formed by the spin coating method.

[0050] 图27A〜图27E是表示参考例中的PZT膜的表面组织的图。 [0050] FIG 27A~ FIG. 27E is a diagram showing the surface tissue of the PZT film in the reference example. [0051] 图28A〜图28E是表示参考例中的PZT膜的结晶性的图。 [0051] FIG 28E is a diagram of FIG 28A~ FIG crystalline PZT film as a reference example.

[0052] 图29A和图29B是表示参考例中的正方晶体PZT膜的磁滞的图。 [0052] FIGS. 29A and 29B show the hysteresis of tetragonal PZT film, as a reference example.

[0053] 图30是表示参考例中的现有正方晶体PZT膜的磁滞的图。 [0053] FIG 30 is a reference example in FIG hysteresis conventional tetragonal PZT film.

[0054] 图31A和图31B是表示参考例中的正方晶体PZT膜的脱气分析结果的图。 [0054] FIGS. 31A and FIG. 31B is a graph showing the results of degassing analysis tetragonal PZT films of Reference Examples.

[0055] 图32A〜图32C是表示强电介质电容器的制造工序的图。 [0055] FIG 32A~ FIG. 32C is a view showing a manufacturing process of a ferroelectric capacitor.

[0056] 图33A和图33B是表示强电介质电容器的磁滞特性的图。 [0056] FIGS. 33A and 33B show the hysteresis characteristics of the ferroelectric capacitor.

[0057] 图34是表示强电介质电容器的电特性的图。 [0057] FIG. 34 is a graph showing electric characteristics of the ferroelectric capacitor.

[0058] 图35A是模式地表示单纯矩阵型的强电介质存储器装置的平面图。 [0058] FIG 35A is a plan view schematically showing a ferroelectric memory device of simple matrix type. 图35B是模式地表示单纯矩阵型的强电介质存储器装置的截面图。 FIG 35B is a schematic cross-sectional view showing a simple matrix type ferroelectric memory device.

[0059] 图36是表示将存储器单元阵列与外围电路共同集成在同一基板上的强电介质存储器装置的一例的截面图。 [0059] FIG. 36 shows a memory cell array and a peripheral circuit integrated together on the same substrate in a cross-sectional view showing an example of the ferroelectric memory device.

[0060] 图37A是模式地表示ITlC型强电介质存储器的截面图。 [0060] FIG 37A is a schematic cross-sectional view showing ITlC type of ferroelectric memory. 图37B是模式地表示ITlC 型强电介质存储器的等效电路图。 FIG 37B is a schematic equivalent circuit diagram showing ITlC type of ferroelectric memory.

[0061] 图38A〜图38C是表示强电介质存储器的制造工序的图。 [0061] FIG 38A~ FIG. 38C is a view showing a step of manufacturing a ferroelectric memory.

[0062] 图39是记录头的分解立体图。 [0062] FIG. 39 is an exploded perspective view of a recording head.

[0063] 图40A是记录头的平面图。 [0063] FIG 40A is a plan view of the recording head. 图40B是记录头的截面图。 FIG. 40B is a sectional view of the recording head.

[0064] 图41是模式地表示压电元件的层结构的截面图。 [0064] FIG. 41 is a schematic cross-sectional view showing a layer structure of a piezoelectric element.

[0065] 图42是表示喷墨式记录装置一例的示意图。 [0065] FIG. 42 is a schematic diagram showing an example of an ink jet recording apparatus.

[0066] 图43A是表示在PZT中添加Ta的强电介质膜的磁滞特性的图。 [0066] FIG 43A is a diagram of an hysteresis characteristic of the ferroelectric film of PZT in Ta. 图43B是表示在PZT中添加W的强电介质膜的磁滞特性的图。 43B is a diagram of an hysteresis characteristic of the ferroelectric film of W in the PZT.

[0067] 图44是表示关联于PZT类强电介质的构成元素的结合的各特性图。 [0067] FIG. 44 is a characteristic diagram showing each combination of the class associated with the ferroelectric PZT constituent elements.

[0068] 图45A〜图45C是说明褐针镍矿型晶体结构的肖脱基缺陷的图。 [0068] FIG 45C is a diagram illustrating FIG 45A~ Schottky defects FIG Brownmillerite type crystal structure.

[0069] 图46是说明强电介质的空间电荷极化的图。 [0069] FIG. 46 is a diagram illustrating the spatial charge polarization of the ferroelectric.

具体实施方式 detailed description

[0070] (1)本实施方式的强电介质膜由ABhNbxO3的通式表示,A元素至少由Pb构成,B 元素由&、Ti、V、W、HfjP Ta中的至少一种以上构成,在0. 05 ^ χ < 1的范围内含有Nb。 [0070] (1) A ferroelectric film according to the present embodiment is represented by the general formula ABhNbxO3, A element composed of at least Pb, B consists of at least one or more elements &, Ti, V, W, HfjP Ta is at 0 . 05 ^ χ <1 range containing Nb.

[0071]另夕卜,A 元素可由PtvyLny(C) < y 彡0. 2)构成。 [0071] Another Bu Xi, A element may PtvyLny (C) <y San 0.2) composed. 另外,Ln 可由La、Ce、Pr、Nd、Pm、 Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种以上构成。 Further, Ln by La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, at least one or more configuration.

[0072] (2)本实施方式的强电介质膜由(PlvyAy) (B1^xNbx)O3的通式表示,A元素由La、Ce、 Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb 和Lu 中的至少一种以上构成,B 元素由Zr、Ti、 V、W、Hf、和Ta中一种以上构成,在0. 05彡χ < 1 (最好是0. 1彡χ彡0. 3)的范围内含有Nb。 [0072] (2) A ferroelectric film according to the present embodiment is represented by (PlvyAy) (B1 ^ xNbx) Formula of O3, A element consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb and Lu, at least one of the above configuration, B elements, Ti, V, W, Hf, and Ta is constituted by one or more Zr, in 0.05 San χ <1 (preferably χ is in the range of San San 0.3) containing 0.1 of Nb.

[0073] (3)本实施方式的强电介质膜是如下PZT类强电介质膜,Ti组成比&组成多,并且,将Ti组成中2. 5摩尔%以上,40摩尔以下(最好是10摩尔%以上30摩尔以下)置换成Nb。 [0073] (3) A ferroelectric film according to the present embodiment is as follows PZT type ferroelectric film, Ti composition than & composition and the Ti composition above the 2.5 mol%, 40 mol (preferably 10 molar less than 30 mol%) replaced with Nb. 另外,该PZT类强电介质膜可具有正方晶系和棱面体晶系的至少一种晶体结构。 Further, the PZT-family ferroelectric film may have a tetragonal and trigonal crystal system of at least one crystalline structure. 并且,该PZT类强电介质膜可含有0. 5摩尔%以上(更好是0. 5摩尔%以上、不到5摩尔% ) 的Si或Si和Ge。 Then, the PZT-family ferroelectric film may contain more than 0.5 mol% (more preferably 0.5 mol% or more and less than 5 mole%) of Si or Si and Ge. 另外,该PZT类强电介质膜可使用溶胶凝胶溶液来形成。 Further, the PZT-family ferroelectric film may be formed using a sol-gel solution.

[0074] (4)本实施方式的强电介质膜是如下PZT类强电介质膜,由ABO3的通式表示,含有Pb来作为A侧的构成元素,至少含有ττ和Ti来作为B侧的构成元素。 [0074] (4) A ferroelectric film according to the present embodiment is as follows PZT type ferroelectric film, represented by the general formula ABO3 containing Pb as a constituent element of the A side, containing at least a constituent element ττ and Ti as a B-side . 该PZT类强电介质膜中A侧的Pb缺损量比所述ABO3的化学量理论组成最多也20摩尔%以下。 The PZT-family ferroelectric film, Pb defects in the A side than the stoichiometric composition of the ABO3 at most 20 mol% or less. 该强电介质膜以相当于所述A侧的Pb缺损量的2倍的组成比在B侧含有Nb。 The dielectric film strength equivalent to twice the Pb deficiency amount A side B side comprising the composition ratio of Nb. 该强电介质膜中,B侧的Ti组成比ττ组成高,并且可具有棱面体晶系的晶体结构。 The ferroelectric film, Ti B side composition than ττ composition, crystal structure and may have a trigonal crystal system. 另外,该强电介质膜可使用溶胶凝胶溶液来形成。 Further, the ferroelectric film may be formed using a sol-gel solution.

[0075] (5)本实施方式的强电介质膜的制造方法是PZT类强电介质膜的制造方法,使用混合Pb&03用溶胶凝胶溶液、PbTiO3用溶胶凝胶溶液、和PbNbO3用溶胶凝胶溶液的溶液作为所述溶胶凝胶溶液。 [0075] (5) The method of manufacturing a ferroelectric film according to the present embodiment is a method for manufacturing a ferroelectric film is PZT-based, mixed Pb & 03 sol-gel solution, of PbTiO3 sol-gel solution, and a PbNbO3 sol-gel solution solution as the sol-gel solution.

[0076] 在本实施方式的强电介质膜的制造方法中,可使用进一步混合PbSiO3用溶胶凝胶溶液的溶液作为所述溶胶凝胶溶液。 [0076] In the method of manufacturing a ferroelectric film according to the present embodiment may be used further mixed with a solution of PbSiO3 sol-gel solution as the sol-gel solution.

[0077] (6)本实施方式的强电介质膜的制造方法是PZT类强电介质膜的制造方法,在将作为A侧的构成元素的Pb的化学量理论组成设为1的情况下,使用在0. 9〜1. 2范围内含有Pb的溶胶凝胶溶液来形成。 [0077] (6) The method of manufacturing a ferroelectric film according to the present embodiment is a method for producing a PZT-family ferroelectric film in the Pb-stoichiometric as a constituent element A side composition to the case 1 using the sol-gel solution containing Pb in the range of 0.5 9~1. 2 is formed.

[0078] (7)本实施方式的强电介质膜的制造方法可含有在由钼类金属构成的金属膜上形成所述PZT类强电介质膜。 [0078] (7) The method of manufacturing a ferroelectric film according to the present embodiment may be formed comprising the PZT type ferroelectric film on the metal film made of molybdenum metal.

[0079] (8)在本实施方式的强电介质膜的制造方法中,所述钼类金属是Pt和Ir的至少任一种。 [0079] (8) In the method of manufacturing a ferroelectric film according to the present embodiment, the molybdenum-based metal is at least any one of Pt and Ir.

[0080] (9)本实施方式的强电介质存储器含有与事先形成于Si晶片上的CMOS晶体管的源极或漏极电极之一导通的第1电极、形成于所述第1电极上的强电介质膜、形成于所述强电介质膜上的第2电极,由所述第1电极、所述强电介质膜和所述第2电极构成的电容利用事先形成于Si晶片上的CMOS晶体管进行选择动作,其中,所述强电介质膜由Ti比率为50%以上的正方晶体PZT构成,Ti组成中5摩尔%以上40摩尔%以下由Nb置换,同时由含有1摩尔%以上的Si和Ge的强电介质膜构成。 [0080] (9) A ferroelectric memory according to the present embodiment and the prior embodiment containing a strong source of a CMOS transistor formed on an Si wafer or on the first electrode of one conductive drain electrode formed on the first electrode a dielectric film formed on said ferroelectric film a second electrode from said first electrode, said ferroelectric film and a capacitor using the electrodes of the second selection prior to forming a CMOS transistor on a Si wafer operation , wherein said ferroelectric film is made of Ti ratio of 50% or more of tetragonal PZT having, Ti composition more than 5 mol% 40 mol% substitution of Nb, while containing at least 1 mol% of Si and Ge ferroelectric film.

[0081] (10)本实施方式的强电介质存储器含有事先形成的第1电极、沿与所述第1电极交叉的方向排列的第2电极、和至少配置在所述第1电极与所述第2电极的交叉区域中的强电介质膜,由所述第1电极、所述强电介质膜和所述第2电极构成的电容被配置成矩阵状,其中,所述强电介质膜由Ti比率为50%以上的正方晶体PZT构成,Ti组成中5摩尔% 以上40摩尔%以下由Nb置换,同时由含有1摩尔%以上的Si和Ge的强电介质膜构成。 [0081] (10) A ferroelectric memory according to the present embodiment includes a first electrode formed in advance, the second electrode is arranged in a direction intersecting the first electrode, and disposed in at least the first electrode and the second ferroelectric film intersection region in the second electrode, the capacitance of the first electrode, the ferroelectric film and the second electrodes are arranged in a matrix, wherein the ferroelectric film 50 by the ratio of Ti % or more of tetragonal PZT having, Ti composition more than 5 mol% 40 mol% substitution of Nb, the ferroelectric film, while Si and Ge containing 1 mol% or more configuration.

[0082] (11)本实施方式的强电介质存储器的制造方法,包括:在涂布后结晶化作为第1 原料溶液的Pb&03形成用溶胶凝胶溶液、作为第2原料溶液的PbTiO3形成用溶胶凝胶溶液、作为第3原料溶液的PbNbO3形成用溶胶凝胶溶液与作为第4原料溶液的PbSiO3形成用溶胶凝胶溶液的工序,所述第1、第2和第3原料溶液是形成强电介质层用的原料液,第4原料溶液是生成具有将第1、第2和第3原料溶液形成为强电介质层时不可缺少的催化剂效应的常电介质层用的原料液。 [0082] (11) The method of manufacturing a ferroelectric memory according to the present embodiment, comprising: after coating crystallized as the first raw material solution of Pb & 03 is formed with a sol-gel solution, a PbTiO3 second raw material solution by a sol-condensate formed gum solution, a PbNbO3 third raw material solution for forming PbSiO3 sol-gel solution as a fourth raw material solution in the step of forming the sol-gel solution, the first, second, and third raw material solution is formed ferroelectric layer indispensable raw material was used, the raw material solution 4 having generated the first, second, and third raw material solution is formed as the ferroelectric layer of the dielectric layer material was often used in the catalyst effect.

[0083] (12)本实施方式的强电介质电容器的制造方法,包括:在所定的基体上形成下部电极的工序;在所述下部电极上形成由含有Pb、Zr、Ti和Nb作为构成元素的PZTN复合氧化物构成的强电介质膜的工序;在所述强电介质膜上形成上部电极的工序;形成保护膜, 以覆盖所述下部电极、强电介质膜和上部电极的工序;和至少在形成所述保护膜之后,进行用于结晶化所述PZTN复合氧化物用的热处理的工序。 [0083] (12) The method of manufacturing a ferroelectric capacitor according to the present embodiment, comprising: forming a lower electrode on a predetermined substrate; forming on the lower electrode containing Pb, Zr, Ti and Nb as constituent elements step PZTN ferroelectric film composite oxide; formed on said ferroelectric film, the step of an upper electrode; a protective film is formed to cover the lower electrode, ferroelectric film and an upper electrode, the step; and at least formation after said protective film, a step for crystallization of the PZTN complex oxide by the heat treatment. [0084] 根据本实施方式,作为强电介质膜的材料,使用含有Pb、Zr、Ti和Nb作为构成元素的PZTN复合氧化物,在形成保护膜之后进行这种PZTN复合氧化物的结晶化。 [0084] According to the present embodiment, as the material of the ferroelectric film containing Pb, Zr, Ti and Nb as constituent elements of the PZTN complex oxide, which crystallized PZTN complex oxide after the formation of the protective film. 因此,即便假设在形成保护膜时、强电介质膜受到加工中产生的氢的损害,也可通过此后进行结晶化用的热处理,在恢复这种损害的同时,结晶化PZTN复合氧化物。 Therefore, even when the protective film is formed is assumed, the ferroelectric film damage produced hydrogen processing, crystallization can also be used by the subsequent heat treatment, while the recovery of such damage, crystallization of the PZTN complex oxide. 因此,可省略以往那样形成保护强电介质膜不受还原反应用的阻挡膜的加工,可实现生产性的提高和生产成本的降低。 Thus, processing can be omitted formed as conventional protected ferroelectric film from reductive reaction barrier film can be achieved to improve productivity and reduce production costs.

[0085] (13)在本实施方式的强电介质电容器的制造方法中,所述强电介质膜在形成时在氧化气氛下实施临时热处理,在进行结晶化所述PZTN复合氧化物的热处理之前,变为非晶状态。 [0085] (13) In the method of manufacturing a ferroelectric capacitor according to the present embodiment, the ferroelectric film is formed when the preliminary thermal processing in an oxidizing atmosphere, heat treatment prior to performing the PZTN complex oxide is crystallized, becomes amorphous state. [0086] 根据该方式,在结晶化强电介质膜之前,变为非晶状态。 [0086] According to this embodiment, prior to the crystallization of the ferroelectric film becomes an amorphous state. 因此,该方式的强电介质膜中,可在形成保护膜之前,通过非晶状态来防止粒界扩散造成的结晶品质的恶化。 Accordingly, the ferroelectric film in this embodiment, the protective film may be formed prior to the amorphous state by preventing grain boundary diffusion due to deterioration of crystal quality. 另外, 非晶状态的强电介质膜由于在氧化气氛下实施临时热处理,所以向膜中导入氧。 Further, the ferroelectric film in the amorphous state because preliminary thermal processing in an oxidizing atmosphere, the oxygen introduced into the film. 因此,在结晶化用的热处理时,可不依赖于气氛中含有的气体种类来进行PZTN复合氧化物的结晶化。 Thus, when the heat treatment is crystallized, without depending on the type of gas contained in an atmosphere to crystallize the PZTN complex oxide.

[0087] (14)本实施方式的强电介质电容器的制造方法中,所述保护膜是氧化硅膜,可使用三甲硅烷来形成。 [0087] (14) The method of manufacturing a ferroelectric capacitor according to the present embodiment, the protective film is a silicon oxide film may be formed using trimethylsilane.

[0088] 根据该方式,与形成氧化硅膜中一般使用的四乙基原硅酸盐(TEOS)相比,由于使用加工中产生的氢量少的三甲硅烷(TMS)来形成由氧化硅膜构成的保护膜,所以可降低对强电介质膜的还原反应造成的损害。 [0088] According to this embodiment, compared with a tetraethylorthosilicate (TEOS) silicon oxide film generally used, the use of trimethylsilane (TMS) processing a small amount of hydrogen to produce a silicon oxide film is formed the protective film, it is possible to reduce the damage of the ferroelectric film reduction caused.

[0089] (15)在本实施方式的强电介质电容器的制造方法中,可在非氧化气氛中进行结晶化所述PZTN复合氧化物的热处理。 [0089] (15), the heat treatment can be a crystallization of the PZTN complex oxide in a non-oxidizing atmosphere in the method of manufacturing a ferroelectric capacitor according to the present embodiment.

[0090] 根据该方式,由于在非氧化气氛中进行结晶化用的热处理,所以例如即便在加工中的器件中含有电容之外的外围部件(例如金属配线)等的情况下,也可防止外围部件受到高温热处理引起的氧化损害。 According to this embodiment, since the heat treatment for crystallization in a non-oxidizing atmosphere, for example, so even in the processing device in the case of containing a peripheral member (e.g., metal wiring) other than the capacitances [0090], can be prevented the peripheral member by oxidative damage caused by high temperature heat treatment.

[0091 ] (16)本实施方式的强电介质电容器使用上述强电介质电容器的制造方法来形成。 [0091] (16) A ferroelectric capacitor of this embodiment is formed using the manufacturing method of the ferroelectric capacitor.

[0092] (17)另外,本实施方式的强电介质膜和强电介质电容器可适用于使用其的强电介质存储器、压电元件和半导体元件中。 [0092] (17) Further, the ferroelectric film of the present embodiment and may be applied to a ferroelectric capacitor using a ferroelectric memory in which the piezoelectric element and the semiconductor element.

[0093] 下面,参照附图来详细说明本发明的最佳实施方式。 Preferred embodiment of the present invention will be described in detail [0093] Next, with reference to the accompanying drawings.

[0094] 1、强电介质膜、强电介质电容器及其制造方法 [0094] 1, the ferroelectric film, the ferroelectric capacitor and manufacturing method

[0095] 图1是模式地表示使用本发明的实施方式的强电介质膜101的强电介质电容器100的截面图。 [0095] FIG. 1 is a schematic cross-sectional view showing a ferroelectric capacitor using the embodiment of the present invention to the ferroelectric film 101 100.

[0096] 如图1所示,强电介质电容器100由强电介质膜101、第1电极102和第2电极103构成。 [0096] 1, the ferroelectric capacitor 100 ferroelectric film 101, the first electrode 102 and the second electrode 103 is composed.

[0097] 第1电极102和第2电极103由Pt、Ir、Ru等贵金属的单体或以所述贵金属为主的复合材料构成。 [0097] The first electrode 102 and the second electrode 103 composed of Pt, Ir, Ru and other precious metals of the noble metal-based monomer, or a composite material. 当强电介质的元素向第1电极102和第2电极103扩散时,在电极与强电介质膜101的界面部产生组成波动(偏差),磁滞的方型性降低,所以要求第1电极102 和第2电极103具有强电介质膜的元素不扩散的致密性。 When the elements of the ferroelectric diffuse into the first electrode 102 and the second electrode 103, generating composition variation (deviation) at the interface portion of the electrode and the ferroelectric film 101, square reduced hysteresis, it is required of the first electrode 102 and the compactness of the second electrode element 103 having the ferroelectric film is not diffused. 为了提高第1电极102和第2电极103的致密性,例如采用由质量重的气体溅射成膜的方法、使Y、La等的氧化物分散到贵金属电极中的方法等。 In order to improve the compactness of the first electrode 102 and the second electrode 103, for example, using a high quality film formation method of a sputtering gas, so that Y, La or the like of the noble metal oxide dispersion to the method of the like.

[0098] 强电介质膜101使用由含有Pb、Zr、Ti作为构成元素的PZT类强电介质来形成。 [0098] 101 using the ferroelectric film containing Pb, Zr, Ti as PZT-family ferroelectric formed of the constituent elements. 尤其是在本实施方式中,该强电介质膜101的特征在于采用向Ti侧中掺杂Nb的Pb (Zr、Ti、Nb) O3 (PZTN)。 Especially in the present embodiment, wherein the ferroelectric film 101 is the use of Nb-doped Ti side to the Pb (Zr, Ti, Nb) O3 (PZTN).

[0099] Nb与Ti尺寸(离子半径相近,原子半径相同。)大致相同,重量是Ti的2倍,即便晶格振动引起的原子间冲击也难以从晶格中逸出原子。 [0099] Nb and Ti size (ionic radius close to, the same atomic radius) is substantially the same, twice the weight of Ti, between atoms due to lattice vibration shock even if it is difficult to escape from the lattice atoms. 另外,Nb的原子价在+5价时稳定,即便逸出Pb,也可利用Nb5+来补偿Pb逸出的价数。 Further, Nb is +5 valence when stable, even if Pb escape, can also be used to compensate Nb5 + valence of Pb escapes. 另外,结晶化时,即便产生Pb逸出, 也因为逸出尺寸大的0,所以尺寸小的Nb容易进入。 Further, when the crystallization, even if Pb escape generated, because escaping large size 0, size is small Nb to enter easily.

[0100] 另外,因为Nb的原子价还存在+4价,所以也可代替Ti4+来充分进行。 [0100] In addition, since Nb valence of +4 also exists, so it can replace Ti4 + to proceed sufficiently. 另外,实际上Nb的共有结合性非常强,认为Pb也难以逸出(H. Miyazawa, E. Natori,S. Miyashita Jpn. J. Appl. Phys. 39 (2000) 5679)。 Further, Nb is in fact very strong consensus binding that Pb is also difficult to escape (H. Miyazawa, E. Natori, S. Miyashita Jpn. J. Appl. Phys. 39 (2000) 5679).

[0101] 迄今为止,向PZT掺杂Nb主要在富τχ的棱面体晶区域中进行,但其量极少,为0. 2 〜0. 025mol% (J.Am. Ceram. Soc,84(200 1) 902 ;Phys. Rev. Let, 83 (1999) 1347)左右。 [0101] So far, mainly in the Nb-doped PZT bulk crystal facets τχ rich region, a very small amount but as a 0. 2 ~0. 025mol% (J.Am. Ceram. Soc, 84 (200 1) 902;. Phys left Rev. Let, 83 (1999) 1347). 这样,认为不能掺杂大量Nb的主要原因在于若例如添加10摩尔%的Nb,则结晶化温度会上升到800度以上。 Thus, the main reason for that is not doped with a large amount of Nb added that if, for example, 10 mol% of Nb, the crystallization temperature rises to 800 degrees.

[0102] 因此,在形成强电介质膜101时,最好还例如以1〜5摩尔%的比例添加PbSiO3 硅酸盐。 [0102] Accordingly, when forming the ferroelectric film 101, such as adding PbSiO3 silicate also preferably in a ratio of 1 ~ 5 mol%. 由此,可使PZTN的结晶化能量减轻。 Accordingly, the crystallization energy of PZTN can reduce. 即,在使用PZTN作为强电介质膜101的材料时,可通过在添加Nb的同时,添加PbSiO3硅酸盐,实现PZTN的结晶化温度的降低。 That is, when using PZTN as the material of the ferroelectric film 101, while by the addition of Nb, PbSiO3 silicate was added to achieve reduction of the crystallization temperature of the PZTN.

[0103] 下面,描述适用于本实施方式的强电介质电容器100的PZTN强电介质膜101的成膜方法的一例。 [0103] Next, the film forming method described in one case of PZTN ferroelectric film 101 of the ferroelectric capacitor according to the present embodiment is suitable for embodiment 100.

[0104] PZTN强电介质膜101,可以准备由含有Pb、Zr、Ti和Nb至少之一的第1〜第3原料溶液构成的混合溶液,通过热处理等使含有于这些混合液中的氧化物结晶化而得到。 [0104] PZTN ferroelectric film 101 can be prepared containing Pb, Zr, Ti and Nb in a mixed solution of 1 ~ 3 raw material solution composed of at least one, by heat treatment in the oxide crystal containing a mixture of these of give.

[0105] 作为第1原料溶液,可示例PZTN强电介质相的构成金属元素中,为了形成基于Pb 和ττ的Pb&03钙钛矿结晶,在无水状态下,在Π- 丁醇等溶剂中溶解了缩聚物的溶液。 [0105] As the first raw material solution, there can be exemplified PZTN ferroelectric phase constituent metal elements, in order to form the basis of Pb and Pb & 03 ττ perovskite crystals, in the anhydrous state, dissolved in a solvent such as butanol Π- solution polycondensates.

[0106] 作为第2原料溶液,可示例PZTN强电介质相的构成金属元素中,为了形成基于Pb 和Ti的PbTiO3钙钛矿结晶,在无水状态下在Π- 丁醇等溶剂中溶解了缩聚物的溶液。 [0106] As the second raw material solution, there can be exemplified PZTN ferroelectric phase constituent metal elements for forming PbTiO3 Perovskite crystals by Pb-based and Ti were dissolved in the anhydrous state polycondensation in a solvent such as butanol Π- solution thereof.

[0107] 作为第3原料溶液,可示例PZTN强电介质相的构成金属元素中,为了形成基于Pb 和Nb的PbNbO3钙钛矿结晶,在无水状态下在η- 丁醇等溶剂中溶解了缩聚物的溶液。 [0107] As the third raw material solution, there can be exemplified PZTN ferroelectric phase constituent metal elements for forming PbNbO3 Perovskite crystals by Pb-based and Nb, dissolved in the anhydrous state polycondensation in a solvent such as butanol, η- solution thereof.

[0108] 在使用上述第1、第2和第3原料溶液,形成例如由PWra2Tia8Nba2O3(PZTN)构成的强电介质膜101的情况下,可按(第1原料溶液):(第2原料溶液):(第3原料溶液)=2 : 6 : 2的比来进行混合。 [0108] In the case of using the first, second, and third raw material solution, for example, the case is formed by a PWra2Tia8Nba2O3 (PZTN) ferroelectric film 101, may (first raw material solution) :( second raw material solution): (the third raw material solution) = 2: 2 ratio to be mixed: 6.

[0109] 但是,即便使该混合溶液直接结晶化,在制作PZTN强电介质膜101时也必需高的结晶化温度。 [0109] However, even if the mixed solution is crystallized directly in the production of the PZTN ferroelectric film 101 must also be high crystallization temperature. 即,若混合Nb,则结晶化温度会急剧上升,在700度以下的可元件化的温度范围下由于不可能结晶化,所以以往不将5摩尔%以上的Nb用作Ti的置换元素,迄今为止不能得到添加剂的区域。 That is, when the mixed Nb, the crystallization temperature rises sharply at 700 ° C following elements may be impossible because of the crystallization temperature range, it is not the conventional 5 mol% or more of Nb and Ti is used as a substitution element, so far region can not be obtained until the additive. 另外,在含有Ti比&多的PZT正方晶体中,完全没有实例。 Further, a PZT tetragonal crystals containing Ti ratio & much in no instance. 这可从参考文献J. Am. Ceram. Soc, 84 (2001) 902 或Phys. Rev. Let, 83 (1999) 1347 等了解。 This is the reference J. Am. Ceram. Soc, 84 (2001) 902 or Phys. Rev. Let, 83 (1999) 1347. Learn.

[0110] 因此,在本实施方式中,可通过例如在1摩尔%以上、不足5摩尔%下向上述混合溶液中进一步添加作为第4原料溶液的、为形成PbSiO3结晶,在无水状态下在η- 丁醇等溶剂中溶解缩聚物的溶液来解决上述问题。 [0110] Accordingly, in the present embodiment, for example, by at least 1 mol% and less is further added to the mixed solution at 5 mol% as a fourth raw material solution for forming PbSiO3 crystals in the anhydrous state η- butanol and the like dissolved in a solvent solution of a polycondensate to solve the above problems.

[0111] 即,通过使用上述第1、第2、第3和第4溶液的混合溶液,可在PZTN的结晶化温度为700度以下的可元件化的温度范围下结晶化。 [0111] That is, by using the first, second, third and fourth mixed solution of the solution, can be crystallized at a temperature in the range of member crystallization temperature of PZTN is 700 degrees or less.

[0112] 具体而言,根据图2所示的流程图来成膜强电介质膜101。 [0112] Specifically, according to a flowchart forming the ferroelectric film 2101 shown in FIG. 进行混合溶液涂布工序(步骤ST11)、乙醇去除工序〜干燥热处理工序〜脱脂热处理工序(步骤ST12、步骤ST13)等一连串工序期望次数,之后,通过结晶化退火(步骤ST14)进行烧成,形成强电介质膜101。 Were mixed solution coating step (step ST11), the dry heat treatment step to the ethanol removed degreasing step to the heat treatment step (step ST12, the step ST13) like a series of steps a desired number of times, after baking by crystallization annealing (step ST14), forming the ferroelectric film 101.

[0113] 下面示出各工序中的条件实例。 [0113] The following example illustrates the conditions in each step.

[0114] 首先,在Si基板上覆盖Pt等电极用贵金属,成膜下部电极(步骤ST10)。 [0114] First, Pt, covered with a noble metal electrode, forming a lower electrode (step ST10) on a Si substrate. 接着,通过旋涂法等涂布法进行混合液的涂布(步骤ST11)。 Subsequently, the mixed solution coating (step ST11) by a spin coating method and the like. 具体而言,向Pt覆盖基板上滴下混合溶液。 Specifically, the mixed solution is dropped to cover the Pt on the substrate. 为了使滴下的溶液在基板的整个面中流动,以500rpm程度进行旋转后,使转速降低到50rpm以下,旋转约10秒。 In order to make the solution drop flow over the entire surface of the substrate, after rotate at 500rpm extent that the speed is reduced to 50rpm or less, about 10 seconds of rotation. 干燥热处理工序在150度〜180度下进行(步骤ST13)。 The dry heat treatment step is performed (step ST13) at 150 ° ~180 °. 干燥热处理在大气气氛下使用热板等来进行。 The dry heat treatment is performed using a hot plate or the like in the atmosphere. 同样,在脱脂热处理工序中,在保持在300度〜 350度的热板上,在大气气氛下进行(步骤ST13)。 Also, in the degreasing heat treatment step, a hot plate maintained at 300 degrees to 350 degrees, performed (step ST13) in the atmosphere. 结晶化用的烧成在氧气氛中使用热快速退火(RTA)等来进行(步骤ST14)。 Baking for crystallization rapid thermal annealing (RTA) in an oxygen atmosphere and the like is performed (step ST14).

[0115] 另外,烧成后的膜厚可为100〜200nm左右。 [0115] Further, the film thickness after sintering can be about 100~200nm. 接着,在通过溅射法等形成上部电极之后(步骤ST15),将形成第2电极与强电介质薄膜的界面、和改善强电介质薄膜的结晶性作为目的,与烧成时一样,在氧气氛中使用RTA等进行后期退火(步骤ST16),得到强电介质电容器100。 The crystallinity of the object Subsequently, after (step ST15) forming an upper electrode by a sputtering method or the like, forming the interface between the second electrode and the ferroelectric thin film, and improving the ferroelectric thin film, and during firing, as in an oxygen atmosphere post-annealing using RTA or the like (step ST16), a ferroelectric capacitor 100.

[0116] 下面,考察使用PZTN强电介质膜101对强电介质电容器100的磁滞特性的影响。 [0116] Next, the influences of the use of the PZTN ferroelectric film 101 pairs hysteresis characteristic of the ferroelectric capacitor 100.

[0117] 图3是模式地示出强电介质电容器100的P(极化)_V(电压)磁滞曲线的图。 [0117] FIG. 3 is a schematic illustrating a P (polarization) a ferroelectric capacitor 100 _V (voltage) hysteresis curve. 首先,当施加电压+Vs时,变为极化量P(+Vs),之后,当电压变为0时,变为极化量Pr。 First, when a voltage + Vs, the polarization magnitude becomes P (+ Vs), then when the voltage becomes 0, the polarization magnitude becomes Pr. 并且,当电压为-l/3Vs时,极化量变为P (〜l/3Vs)。 And, when the voltage of -l / 3Vs, the polarization magnitude becomes P (~l / 3Vs). 另外,当电压为-Vs时,极化量变为P (-Vs), 当再次变为电压0时,变为极化量-Pr。 Further, when the voltage of -Vs, the polarization magnitude becomes P (-Vs), when the voltage becomes 0 again, the polarization magnitude becomes -Pr. 另外,当电压为+l/3Vs时,极化量变为P(+l/3Vs) 当电压再次变为+Vs时,极化量再次返回P (+Vs)。 Further, when the voltage is + l / 3Vs, the polarization magnitude becomes P (+ l / 3Vs) again when the voltage becomes + Vs, the polarization magnitude returns again to P (+ Vs).

[0118] 另外,强电介质电容器100就磁滞特性而言还具有以下特性。 [0118] Further, the ferroelectric capacitor 100 in terms of a hysteresis characteristic has the following characteristics. 首先,在暂时施加电压Vs并变为极化量P (+Vs)之后,施加-l/3Vs的电压,并且在施加电压变为0时,磁滞环追踪图3中箭头A所示的轨迹,极化量具有稳定值P0(0)。 First track, after a temporary voltage Vs is applied and the polarization magnitude becomes P (+ Vs), a voltage is applied -l / 3Vs, and the applied voltage is 0, the hysteresis loop shown by arrow A in FIG. 3 Tracking , the amount of polarization has a stable value of P0 (0).

[0119] 另外,在暂时施加电压-Vs并将极化量变为P(-Vs)之后,施加+l/3Vs的电压,并且在施加电压变为0时,磁滞环追踪图3中箭头B所示的轨迹,极化量具有稳定值PO(I)。 [0119] Further, after the temporary application of a voltage -Vs and the polarization magnitude becomes P (-Vs), a voltage is applied + l / 3Vs, and the applied voltage is 0, the hysteresis loop track arrow B in FIG. 3 path shown, the amount of polarization has a stable value PO (I). 若该极化量PO(O)与极化量PO(I)的差足够大,则可利用所述特开平9-116107号公报等中公开的驱动法来使单纯矩阵型强电介质存储器装置动作。 If the difference between the amount of polarization PO (O) and the polarization magnitude PO (I) is large enough, you can use the driving method disclosed in Laid-Open Publication No. 9-116107 and the like to make a simple matrix type ferroelectric memory device operation .

[0120] 另外,根据本实施方式的强电介质电容器100,可实现结晶化温度的低温化、磁滞的方型性的提高、Pr的提高。 [0120] Further, according to the ferroelectric capacitor 100 of this embodiment, can achieve a low temperature crystallization temperature, and improve the squareness of the hysteresis, Pr is improved. 另外,基于强电介质电容器100的磁滞的方型性的提高对通过单纯矩阵型强电介质存储器装置的驱动而变得重要的扰动的 Further, based on the improved squareness of the hysteresis of the ferroelectric capacitor 100 through the simple matrix type ferroelectric memory device is driven becomes important disturbances

[0121] 稳定性具有显著的效果。 [0121] Stability of a significant effect. 就单纯矩阵型强电介质存储器装置而言,由于向未进行写入、读出的单元也施加士l/3Vs的电压,所以需要在该电压下极化不变化,即扰动特性稳定。 In terms of the simple matrix type ferroelectric memory device, since the unit is not to be written, the read voltage is also Shi Jiashi l / 3Vs, the polarization does not change is required in the voltage, i.e., a stable disturbance characteristic. 实际上,本申请发明人发现在一般的PZT中,当从极化的稳定状态开始沿使极化反转的方向提供IO8次l/3Vs脉冲时,极化量下降80%左右,但确认根据本实施方式的强电介质电容器100,则为10%以下的下降量。 Indeed, the present inventors found that in general the PZT, from the steady state when a direction to start polarized polarization inversion provides IO8 times l / 3Vs pulse polarization decreased approximately 80%, but according to confirm ferroelectric capacitor 100 according to the present embodiment, an amount of decrease was 10% or less. 因此,若将本实施方式的强电介质电容器100适用于强电介质存储器装置中,则可实用化单纯矩阵型存储器。 Thus, if the ferroelectric capacitor 100 according to the present embodiment is applied to a ferroelectric memory device may be a simple matrix type memory to practical use.

[0122] 下面,说明本实施方式的详细实施例。 [0122] Next, detailed embodiments of the present embodiment.

[0123][实施例1][0124] 在本实施例中,比较本发明的PZTN与以往的PZT。 PZTN [0123] [Example 1] [0124] In the present embodiment, the present invention was compared with the conventional PZT. 成膜流程全部使用所述的图2。 All the film formation process using the FIG.

[0125]设 Pb : Zr : Ti : Nb = 1 : 0. 2 : 0.6 : 0. 2、1 : 0. 2 : 0. 7 : 0. 1 和1 : 0.3 : 0.65 : 0.05。 [0125] provided Pb: Zr: Ti: Nb = 1: 0. 2: 0.6: 0. 2,1: 0. 2: 0. 7: 0. 1 and 1: 0.3: 0.65: 0.05. S卩,设Nb添加量为整体的5〜20摩尔%。 S Jie, provided 5~20 mol% of the total quantity of added Nb of. 这里添加0〜的PbSi03。 Here's add PbSi03 0~.

[0126] 图4A〜图4C示出此时的膜的表面组织。 [0126] FIG. 4C illustrates 4A~ surface of the tissue membrane at that time. 另外,当利用X射线衍射法测定该膜的结晶性时,如图5A〜图5C所示。 Further, when the crystallinity of the film was measured by X-ray diffractometry, as shown in FIG. 5C 5A~. 在图5A所示的0% (无)的情况下,即便结晶化温度上升到800度,也仅得到常电介质烧绿石(Pyrochlore)。 In the case shown in FIG. 5A 0% (none), even when the crystallization temperature rises to 800 degrees, is only obtained paraelectric pyrochlore (Pyrochlore). 另外,在图5B所示的0. 5%的情况下, PZT与烧绿石混合存在。 Further, in the case of 0.5% shown in FIG. 5B, PZT and the pyrochlore are mixed. 另外,在图5C所示的的情况下,得到PZT(lll)单一取向膜。 Further, in the case shown in 5C, the obtained PZT (lll) single orientation film. 另外,结晶性也是迄今为止没有得到的最好的。 Further, crystallinity is not obtained so far the best.

[0127] 接着,对添加PbSi03的PZTN薄膜,当设膜厚为120〜220nm后,如图6A〜图6C和图7A〜图7C所示,分别示出与膜厚成正比的结晶性。 [0127] Next, PZTN thin films PbSi03 is added, when the film thickness is set 120~220nm, as shown in FIG. 7A~ 6A~ 6C and 7C, respectively show crystallinity proportional to the film thickness. 另外,图6A〜图6C是表示膜厚120nm〜200nm下的表面组织的电子显微镜照片,图7A〜图7C是表示膜厚120nm〜200nm 下的PZTN薄膜的结晶性的基于X射线衍射法的测定结果。 Further, FIG. 6A~ 6C is an electron micrograph showing the surface of the tissue thickness 120nm~200nm FIG 7A~ FIG 7C is a measurement of the crystallinity of PZTN thin films of film thickness based 120nm~200nm under X-ray diffraction method result. 另外,如图8A〜图8C和图9A〜 图9C所示,在膜厚为120nm〜200nm的整个范围内,得到方型性好的磁滞特性。 Further, as shown in FIG. 8C and FIG 9A~ 8A~ 9C, in full thickness of 120nm~200nm obtain good square hysteresis characteristic. 另外,图9A〜图9C是图8A〜图8C的磁滞曲线的放大图。 Further, FIG. 9A~ 9C are an enlarged view of FIG 8A~ hysteresis curve in Fig. 8C. 尤其是如图9A〜图9C所示,在本例的PZTN薄膜中,确认在2V以下的低电压下,磁滞充分打开,并且饱和。 As shown particularly in FIG. 9C 9A~, PZTN thin films in the present embodiment, it is confirmed at a low voltage of 2V or less, the hysteresis fully open, and the saturation.

[0128] 另外,就泄漏特性而言,如图10A和图10B所示,无论膜组成或膜厚如何,在施加2V 时(饱和时),都为5X10—8〜7X10_9A/Cm2,非常好。 [0128] Moreover, in terms of leakage characteristics, as shown in FIG. 10A and 10B, the film composition and film thickness regardless of, when at 2V (saturated), are 5X10-8~7X10_9A / Cm2, very well be applied.

[0129] 接着,在测定Pba^Ti^Nb^C^薄膜的疲劳特性和静态印象时,如图11 A和图11B 所示,非常好。 When [0129] Next, measurement Pba ^ Ti ^ Nb ^ C ^ fatigue and static imprint characteristics of the film, as shown in FIG. 11 A and 11B, the very good. 尤其是图11A所示的疲劳特性无论在上下电极中是否使用Pt都非常好。 In particular, the fatigue characteristics shown in FIG. 11A regardless of whether the upper and lower Pt electrode is very good.

[0130] 并且,如图12所示,尝试在基板601上形成下部电极602、本实施例的PZTN强电介质膜603、上部电极604的强电介质电容器600上形成基于臭氧TE0S的Si02膜605。 [0130] Then, as shown in FIG. 12, an attempt to form a lower electrode 602 on the substrate 601, PZTN ferroelectric film 603 of the present embodiment, the Si02 film 605 formed of ozone based on 600 TE0S upper electrode 604 of the ferroelectric capacitor. 已知以往的PZT当进行基于臭氧TE0S的Si02膜形成时,从TE0S产生的氢通过上部Pt,还原PZT,完全未示出磁滞,损伤PZT结晶。 Conventionally known that when performing a PZT ozone TE0S Si02 film is formed on the hydrogen generated from the TE0S through the upper Pt, reduction PZT, are not completely shown hysteresis, PZT crystal damage.

[0131] 但是,本实施例的PZTN强电介质膜603如图13所示,基本未恶化,保持良好的磁滞。 [0131] However, a PZTN ferroelectric film 603 of this embodiment shown in Figure 13, substantially no deterioration, maintained good hysteresis. 即,可知本实施例的PZTN强电介质膜603的耐还原性强。 That is, the ferroelectric film 603 can be seen in the reducing resistance of the PZTN of the present embodiment is strong. 另外,在本发明的正方晶体PZTN强电介质膜603中,当Nb未超过40摩尔%的情况下,对应于Nb的添加量,得到好的磁滞。 Further, in the tetragonal PZTN ferroelectric film 603 of the present invention, in the case where Nb is not more than 40 mol%, corresponding to the amount of Nb added, to give a good hysteresis.

[0132] 接着,为了比较,进行以往的PZT强电介质膜的评价。 [0132] Next, for comparison, a conventional evaluation PZT ferroelectric film. 作为以往的PZT,分别设Pb : Zr : Ti = 1 : 0. 2 : 0. 8、1 : 0. 3 : 0. 7 禾口1 : 0. 6 : 0. 4。 As a conventional PZT, are provided Pb: Zr: Ti = 1: 0. 2: 0. 8,1: 0. 3: 0. 7 Wo port 1: 0.6: 0.4. 其泄漏特性如图14 所示,Ti含量越增加,则泄漏特性越恶化,在Ti :80%的情况下,当施加2V时,变为10_5A/cm2, 可知不适用于存储器应用。 Leakage characteristics thereof shown in Figure 14, Ti content is increased, the more the leakage characteristics deteriorated in Ti: 80% of the cases, upon the application of 2V, becomes 10_5A / cm2, it can be seen not available for memory applications. 同样,疲劳特性如图15所示,Ti含量越增加,则疲劳特性越恶化。 Similarly, the fatigue characteristics shown in FIG. 15, Ti content is increased, the more the fatigue characteristics deteriorate. 另外,在印象后,如图16所示,可知基本上不读出数据。 In addition, after the impression, as illustrated in FIG 16, the read data is not substantially found.

[0133] 从以上实施例可知,本实施例的PZTN强电介质膜除解决以往认为PZT的本质是原因的泄漏电流增大和印象特性恶化等问题外,还可无论存储器的种类、结构如何将由于上述理由而不可使用的正方晶体PZT用于存储器用途中。 [0133] Example From the above, a PZTN ferroelectric film according to the present embodiment in addition to resolving the past that the essence of the PZT leakage current causes increase and imprint characteristic deterioration problem, but also regardless of the type of memory structure how the above tetragonal crystal reasons for not using a PZT memory applications. 另外,在由于相同理由而不使用正方晶体PZT的压电元件用途中也可适用本材料。 Further, the use of the piezoelectric element without using the same reasons tetragonal PZT can also be applied in the present material.

[0134][实施例2] [0134] [Example 2]

[0135] 在本实施例中,就PZTN强电介质膜而言,使Nb添加量变化为0. 5、10、20、30、40摩尔%来比较强介电特性。 [0135] In the present embodiment, on the PZTN ferroelectric film, the addition amount of Nb is changed to 0.5 mol% compared 5,10,20,30,40 ferroelectric properties. 对于全部试件,添加5摩尔% WPbSiO3-酸盐。 For all test pieces, was added 5 mole% WPbSiO3- salt. 另外,向构成膜形成用原料的强电介质膜形成用溶胶凝胶溶液中添加琥珀酸甲酯,将PH设为6。 Further, the film constituting the sol-gel methyl succinate was added a solution of the ferroelectric material film is formed, the PH to 6. 成膜流程全部使用所述的图2。 All the film formation process using the FIG.

[0136] 图17〜图19中示出测定本实施例的PZTN强电介质膜的磁滞特性。 [0136] FIG. 17~ 19 shows hysteresis characteristics of PZTN assay of the ferroelectric film according to the embodiment.

[0137] 如图17A所示,在Nb添加量为0的情况下,得到漏泄的磁滞,但如图17B所示,当Nb添加量为5摩尔%时,得到绝缘性高的好的磁滞特性。 [0137] As shown in FIG. 17A, in the case where the quantity of added Nb is 0, leaky hysteresis obtained, but as shown in FIG. 17B, when the addition amount of 5 mol% Nb, high insulation and good magnetic hysteresis characteristics.

[0138] 另外,如图18A所示,强介电特性在Nb添加量为10摩尔%以往,基本上看不到变化。 [0138] Further, as shown in FIG. 18A, the ferroelectric characteristics of added Nb is 10 mol% in the past, substantially no change was. 在Nb添加量为0的情况下,虽也有漏泄,但强介电特性中看不到变化。 In the case where the quantity of added Nb is 0, although there are leakage, but it is not visible ferroelectric characteristics change. 另外,如图18B 所示,在Nb添加量为20摩尔%的情况下,得到方型性非常好的磁滞特性。 Further, as shown in FIG. 18B, 20 mol% of the quantity of added Nb to give a very good square hysteresis characteristic.

[0139] 但是,如图19A和图19B所示,当Nb添加量超过20摩尔%时,磁滞特性变化大,确认恶ο [0140] 因此,比较X射线衍射图案,如图20所示。 [0139] However, as shown in FIG 19A and FIG 19B, when the amount of Nb added exceeds 20 mol%, the hysteresis characteristic changes, confirmed evil ο [0140] Thus, comparing the X-ray diffraction pattern as shown in Fig. 在Nb添加量为5摩尔% (Zr/Ti/Nb = 20/75/5)的情况下,(111)峰值位置与以往未添加Nb的PZT膜时无变化,随着Nb添加量增加为20 摩尔% (Zr/Ti/Nb = 20/60/20)、40 摩尔% (Zr/Ti/Nb = 20/40/40),(111)峰值移位到低角侧。 In the case where the added Nb is 5 mol% (Zr / Ti / Nb = 20/75/5), the (111) peak position and the conventional PZT films and Nb not added unchanged, as the added amount of Nb 20 mol% (Zr / Ti / Nb = 20/60/20), 40 mol% (Zr / Ti / Nb = 20/40/40), (111) peak shifted to a low angle side. 即,可知,无论PZT的组成是否富Ti为正方晶体区域,实际的结晶都变为棱面体晶。 That is, it is found, regardless of whether the composition of a Ti-rich PZT is a tetragonal region, the actual crystal bulk crystal facets are changed. 另外,可知随着结晶系的变化,强介电特性变化。 Further, as seen in the crystal system changes, changes in characteristics of the ferroelectric.

[0141] 另外,在添加45摩尔% Nb后,磁滞未打开,不能确认强介电特性(省略图示)。 [0141] Further, after addition of 45 mol% Nb, hysteresis is not open, can not confirm the ferroelectric characteristics (not shown).

[0142] 另外,已叙述了本发明的PZTN膜绝缘性非常高,但这里求出PZTN为绝缘体的条件如图21所示。 [0142] Further, an insulating film has been described PZTN of the present invention is very high, but the conditions determined here PZTN insulator shown in Figure 21.

[0143] S卩,本发明的PZTN膜的绝缘性非常高,以相当于Pb缺损量的2倍的组成比,向Ti 侧添加Nb。 [0143] S Jie, insulating PZTN film of the present invention is very high, the composition ratio equivalent to twice the Pb deficiency amount of Nb is added to Ti side. 另外,钙钛矿结晶从如图22所示的WO3的晶体结构可知,即便A侧离子缺损100%也成立,并且WO3的结晶系易变化。 Further, from the crystal structure of the perovskite crystalline WO3 shown in FIG. 22 can be seen, even if the A side defect 100% ion is also true, and the crystal system of WO3 easily changes.

[0144] 因此,在PZTN的情况下,通过添加Nb,积极地控制Pb缺损量,并且控制结晶系。 [0144] Thus, in the case of PZTN, the addition of Nb, Pb actively control the amount of defects, and controls the crystal system.

[0145] 这点表示出本实施方式的PZTN膜在应用于压电元件中也非常有效。 [0145] PZTN film of this embodiment is shown in the present embodiment is applied to the piezoelectric element is also very effective. 一般在将PZT 应用于压电元件的情况下,使用富ττ组成的棱面体晶区域。 In the general case where PZT is applied to piezoelectric element using the composition ττ rich trigonal crystal regions. 此时,将ττ丰富的PZT称为软系ΡΖΤ。 In this case, ττ rich PZT is called soft line ΡΖΤ. 这如文字所示,意味着结晶软。 This is shown as mean crystal soft words. 例如,虽也在喷墨打印机的墨水喷出喷嘴中使用软系ΡΖΤ,但由于太软,所以在粘度过高的墨水中,不能施加墨水压力压出。 For example, although the inkjet printer also ink ejection nozzles based soft ΡΖΤ, but because it is too soft, the ink viscosity is too high, the pressure is not applied to the ink pushed out.

[0146] 另一方面,将富Ti的正方晶体PZT称为硬系ΡΖΤ,意味着牢固而脆。 [0146] On the other hand, the Ti-rich tetragonal PZT is called hard line ΡΖΤ, meaning strong and brittle. 但是,在本发明的PZTN膜中,在作为硬类的同时,可人工地使结晶系变化成棱面体晶。 However, in the PZTN film of the present invention, at the same time as the hard type, it is manually changed to the crystal-based bulk crystal facets. 其中,可通过Nb 的添加量来使结晶系任意变化,并且,由于富Ti的PZT系强电介质膜的比介电常数小,所以可用低电压来驱动元件。 Wherein, arbitrary changes may be crystallized by the addition amount of Nb-based, and because of the small PZT-based ferroelectric film of Ti-rich specific dielectric constant, so it can be a low voltage drive device.

[0147] 由此,例如可将迄今为止未使用的硬类PZT用于喷墨打印机的墨水喷出喷嘴中。 [0147] Thus, for example, may be of a hard PZT hitherto unused for an inkjet printer ink ejection nozzle. 另外,由于Nb使PZT变软,所以适度地硬,可提供不脆的ΡΖΤ。 Further, since Nb makes PZT becomes soft, so moderately hard, non-brittle provide ΡΖΤ.

[0148] 最后,如上所述,本实施例中,不仅添加Nb,也可在添加Nb的同时,添加硅酸盐,由此降低结晶化温度。 [0148] Finally, as described above, in this embodiment, not only the addition of Nb, Nb may be added at the same time, the silicate is added, thereby lowering the crystallization temperature.

[0149][实施例3] [0149] [Example 3]

[0150] 在本实施例中,例如从在由用作构成强电介质存储器的存储器单元部分的强电介质电容器、或例如构成喷墨打印机的墨水喷出喷嘴部分的压电执行元件的电极材料的Pt 或Ir等钼类金属构成的金属膜上、形成PZTN膜的情况下的晶格匹配性的观点,研究了使用PZTN膜的有效性。 Pt electrode material [0150] In the present embodiment, for example from a ferroelectric capacitor constituting the memory cell portion as a ferroelectric memory, an inkjet printer or ink constituting the discharge nozzle such as a piezoelectric actuator portion viewpoint of lattice matching in the case where a metal film or the like made of metal molybdenum, Ir, PZTN film is formed, studied the effectiveness of the use of the PZTN film. 钼类金属在元件应用PZT类强电介质膜的情况下,在变为确定强电介质膜的结晶取向性的底部膜的同时,还是作为电极材料也有用的材料。 Molybdenum metal in the case of applying a PZT-family ferroelectric film element, at the same time becomes a crystal orientation is determined in the base film of the ferroelectric film, it is also useful as an electrode material or materials. 但是,由于两者的晶格匹配性不充分,所以就元件应用而言,强电介质膜的疲劳特性成为问题。 However, since the lattice matching between the two is insufficient, so the elements in terms of application, the fatigue characteristics of the ferroelectric film becomes a problem.

[0151] 因此,本申请发明人通过使Nb含有于PZT类强电介质膜的构成元素中,开发出改善PZT类强电介质膜与钼类金属薄膜之间的晶格不匹配的技术。 [0151] Accordingly, the present inventors by making the Nb content in the constituent elements of the PZT type ferroelectric film, developed a technique for improving the crystal lattice between the PZT-family ferroelectric film and a molybdenum metal thin film does not match. 图23A〜图23C示出此时的PZT类强电介质膜的成膜工序。 FIG 23C shows 23A~ deposition step in this case PZT-family ferroelectric film.

[0152] 首先,如图23A所示,准备所定的基板11。 [0152] First, as shown in FIG. 23A, a predetermined substrate 11 prepared. 作为基板11,使用在SOI基板上形成TiOx层的基板。 As the substrate 11, is formed on the SOI substrate used in the TiOx layer of the substrate. 另外,作为基板11,可从公知的材料构成的基板中选择适当的基板来使用。 Further, used as the substrate 11, the substrate may be selected from known materials consisting of suitable substrate.

[0153] 之后,如图23B所示,在基板11上,例如使用溅射法,形成由Pt构成的金属膜(第1电极)102,之后,如图23C所示,在金属膜102上形成PZTN膜,作为强电介质膜101。 After [0153], shown in Figure 23B, on the substrate 11, for example, a sputtering method, a metal film (first electrode) 102 composed of Pt, then, as shown in FIG 23C, is formed on the metal film 102 PZTN film, as the ferroelectric film 101. 用作形成PZTN膜的材料,例如可使用溶胶凝胶溶液。 PZTN film forming material is used, for example using a sol-gel solution. 更具体而言,使用在混合Pb&03用溶胶凝胶溶液、PbTiO3用溶胶凝胶溶液、和PbNbO3用溶胶凝胶溶液的溶液中进一步添加PbNbO3 用溶胶凝胶溶液的溶液。 More specifically, the use of Pb & 03 in a mixed sol-gel solution, of PbTiO3 sol-gel solution, and a PbNbO3 sol-gel solution further PbNbO3 solution was added with a solution of the sol-gel solution. 另外,PZTN膜,由于在构成元素中含有Nb,所以结晶化温度高。 Further, a PZTN film, because it contains Nb as constituent elements, so that a high crystallization temperature. 因此,为了使结晶化温度降低,最好使用进一步添加了PbSiO3用溶胶凝胶溶液的溶液。 Accordingly, in order to reduce the crystallization temperature, the solution was further added preferably used PbSiO3 sol-gel solution. 在本实施例中,利用旋涂法将上述溶胶凝胶溶液涂布在Pt金属膜102上,进行所定的热处理之后, 进行结晶化。 After the present embodiment, a spin coating method using the above-described sol-gel solution was coated on the Pt metal film 102, for a predetermined heat treatment, crystallization. 成膜工序的流程与图2所示的一样。 As the film forming process flow shown in FIG. 2.

[0154] 在本实施例中,就将Nb的添加量设为0摩尔%〜30摩尔%的范围的PZTN膜而言, 使用X射线衍射法测定结晶的晶格常数如图24A和图24B所示。 [0154] In the present embodiment, the amount of addition of Nb will be set to 0 mol% ~ 30 mol% of the PZTN film of the range, the crystal lattice constant was measured using an X-ray diffraction method as in FIG. 24A and 24B shows. 根据图24A和图24B,可知Nb的添加量越多,则a轴(或b轴)中的晶格常数与c轴中的晶格常数越接近。 According to FIGS. 24A and 24B, the apparent amount of Nb is added more, the lattice constant of the lattice constant of a-axis (or b-axis) in the c-axis of the closer. 另外, 图24A中的V(abc)是体积变换了晶格常数(a、b、c)后的指数。 Further, FIG. 24A V (abc) is the volume of the converted index lattice constant (a, b, c). 另外,图24A中的V/VQ是PZTN结晶的V(abc)与体积变换未添加Nb的PZT结晶的晶格常数的指数Vtl之比。 Further, FIG. 24A V / VQ index is the ratio of the PZTN crystal Vtl V (abc) and a volume conversion Nb not added PZT crystal lattice constant. 这样,也可根据V(abc)或我栏来确认PZTN结晶随着Nb的添加量增加、结晶晶格变小。 Thus, it can be confirmed that PZTN crystal with increasing amount of Nb added, according to the crystal lattice becomes smaller V (abc) or I column.

[0155] 另外,在图25中示出根据如此添加Nb后形成的PZTN膜的晶格常数来计算与Pt金属膜的晶格常数(a、b、c+3.96)的晶格不匹配率,将Nb的添加量(摩尔% )设为横轴绘制的图。 [0155] Further, in FIG. 25 shows the calculated lattice constants of PZTN films in accordance with the thus formed after the addition of Nb and Pt metal film is a lattice constant (a, b, c + 3.96) of the lattice mismatch ratio, the amount of Nb added (mol%) plotted on the horizontal axis. 根据图25,对PZT类强电介质膜含有Nb的效果不仅上述各实施例中提高强电介质特性的效果,还确认该晶格常数接近Pt等钼类金属结晶的晶格常数的效果。 According to FIG. 25, a PZT-family ferroelectric film containing Nb effect not only to improve the above-described embodiments, the ferroelectric characteristics of the effect, the effect was also confirmed that the lattice constant of the lattice constant close to the molybdenum metal such as Pt crystals. 尤其是在Nb的添加量为5摩尔以上的区域中,确认显著示出该效果。 More particular in the region 5 moles of Nb addition amount, it was confirmed that a significant effect is shown.

[0156] 因此,若使用本发明的方法,则减轻作为电极材料的金属膜与强电介质膜之间的晶格不匹配,例如,在Nb的添加量为30摩尔%时,确认晶格不匹配率改善至2%左右。 [0156] Thus, when using the method of the present invention, to alleviate the lattice as the electrode material between the metal film and the ferroelectric film do not match, for example, when added in an amount of 30 mol% Nb was confirmed lattice mismatch to improve the rate of about 2%. 这被认为在PZTN的晶体结构中,置换B侧的Ti原子的Nb原子与0原子之间产生同时具有离子结合性与共有结合性的强的结合,该结合力沿压缩结晶晶格的方向作用,晶格常数向变小的方向变化。 This is considered to generated between the PZTN crystal structure, the replacement of Ti atoms side B and Nb atoms having 0 at the same time a strong ion-binding consensus binding to the binding, the binding force acts in the direction along the crystal lattice compression , to change the lattice constant becomes smaller in the direction.

[0157] 另外,Pt等钼类金属是化学上稳定的物质,适用于强电介质存储器或压电执行元件的电极材料,根据本实施例的方法,即便在该Pt金属膜上直接形成PZTN膜,也可在比以往缓和晶格不匹配的同时,使界面特性提高。 [0157] Further, Pt and other metals are molybdenum chemically stable material, an electrode material suitable for ferroelectric memory or a piezoelectric actuator dielectric, the method according to the present embodiment, even if the PZTN film is formed directly on the Pt metal film, It may simultaneously alleviate lattice mismatch than ever, so that the interface characteristics are improved. 因此,本实施例的方法可减轻PZT类强电介质膜的疲劳特性,也适用于强电介质存储器或压电执行元件等的元件应用中。 Thus, the method of the present embodiment can reduce the fatigue characteristics of the ferroelectric film is PZT-based, is also applicable to a ferroelectric memory element using a piezoelectric actuator or the like.

[0158](参考例) [0158] (Reference Example)

[0159] 在本例中,制作Pb&Q. 4Ti0.603强电介质膜。 [0159] In the present embodiment, prepared Pb & Q. 4Ti0.603 ferroelectric film.

[0160] 在以往的方法中,使用过剩地含有20 %左右的Pb的溶液,这是为了抑制挥发Pb及降低结晶化温度。 [0160] In the conventional method, a solution containing an excess Pb of about 20%, which is to suppress volatile Pb and reduce the crystallization temperature. 但是,不知得到的薄膜中过剩Pb如何,原本应以最小限度的Pb过剩量来进行抑制。 However, the film obtained did not know how the excess Pb, the original excess Pb should be suppressed to a minimum amount.

[0161] 因此,使用过剩Pb为0. 5、10、15、20%的10重量%浓度的PbZra4Tia6O3形成用溶胶凝胶溶液(溶剂:n-丁醇),进而分别添加1摩尔%的10重量%浓度的PbSiO3形成用溶胶凝胶溶液(溶剂:n- 丁醇),进行图26所示的步骤ST20〜步骤ST25的各工序,形成200nm的PbZra4Tia6O3强电介质膜。 [0161] Thus, using excess Pb of 0.5% concentration of 10% by weight of 5,10,15,20 PbZra4Tia6O3 forming sol-gel solution (solvent: n- butanol), further added 1 mol%, respectively 10 wt. % strength PbSiO3 sol-gel solution is formed by the steps of: (a solvent n- butanol), as shown in FIG. 26 for each of the steps ST25 to step ST20~, PbZra4Tia6O3 ferroelectric film is formed 200nm. 此时的表面组织如图27A〜图27C所示,XRD图案如图28A〜图28C所示。 At this time, the surface of the tissue as shown in FIG. 27C 27A~, XRD pattern as shown in FIG. 28C 28A~.

[0162] 以往需要20%左右过剩的Pb,在5%过剩的Pb下示出结晶化充分进行。 [0162] conventionally required excess of about 20% Pb, at a 5% excess of Pb shown crystallized sufficiently. 这表示仅1摩尔%的PbSiO3催化剂,为了降低PZT的结晶化温度,过剩Pb基本上消失。 This means that only 1 mol% of PbSiO3 catalyst, in order to reduce the crystallization temperature of PZT, Pb excess almost disappeared. 以后,全部使用5% Pb过剩溶液作为PZT、PbTiO3、和PWrTiO3形成用溶液。 After all the excess solution using 5% Pb as PZT, PbTiO3, and PWrTiO3 forming solution.

[0163] 接着,使用在按4 : 6的比例混合的10重量%浓度的Pb&03形成用溶胶凝胶溶液(溶剂:n_ 丁醇)和10重量%浓度的PbTiO3形成用溶胶凝胶溶液(溶剂:n- 丁醇)的溶液中、添加1摩尔% 10重量%浓度的PbSiO3形成用溶胶凝胶溶液(溶剂:n- 丁醇)的混合溶液,按照图2的流程,制作200nm〜PbZra4Tia6O3强电介质膜。 [0163] Next, using a 4: 6 ratio by weight of 10% strength mixture of Pb & 03 formed by sol-gel solution (solvent: butanol of N_) and a 10% strength by weight sol-gel solution for forming PbTiO3 (solvent: n- butanol) was added 1 mol PbSiO3% 10% strength by weight sol-gel solution for forming (solvent: a mixed solution of n- butanol), in accordance with the flow of FIG. 2, the ferroelectric film production 200nm~PbZra4Tia6O3 . 此时的磁滞特性如图29A 和图29B所示,方型性好。 At this time, the hysteresis characteristic shown in FIG. 29A and 29B, rectangular and good. 但是,可知同时泄漏。 However, it was found leaking at the same time. [0164] 另外,为了比较,在以往的方法中,使用所述图26的流程,使用在10重量%浓度的PWrtl4Tia6O3形成用溶胶凝胶溶液(溶剂:n- 丁醇)中、添加1摩尔% 10重量%浓度的PbSiO3形成用溶胶凝胶溶液(溶剂:n- 丁醇)的混合溶液,制作200nm-PbZrQ.4TiQ.603强电介质膜。 [0164] For comparison, in the conventional method, the flow of FIG 26 is used in a concentration of 10% by weight of the sol-gel solution for forming PWrtl4Tia6O3 (solvent: n- butanol) was added 1 mol% 10% strength by weight sol-gel solution for forming PbSiO3: a mixed solution (solvent n- butanol) to prepare 200nm-PbZrQ.4TiQ.603 ferroelectric film. 此时,磁滞特性如图30所示,未提供很好的磁滞。 In this case, the hysteresis characteristic shown in Figure 30, does not provide good hysteresis.

[0165] 因此,在使用各强电介质膜进行脱气分析后,如图31A和图31B所示。 [0165] Thus, after each use of the ferroelectric film degassing analysis, as shown in FIG. 31A and 31B.

[0166] 如图31A所示,利用PZT溶胶凝胶溶液制作的现有的强电介质膜相对于从室温到1000度的温度上升,始终确认联系于H或C的脱气。 [0166] As shown in FIG. 31A, a conventional phase ferroelectric film produced using the PZT sol-gel solution to a temperature of from room temperature to 1000 degrees increase when checking always in degassed H or C.

[0167] 另一方面,如图31B所示,在使用按4 : 6的比例混合10重量%浓度的PWrO3B 成用溶胶凝胶溶液(溶剂m- 丁醇)和10重量%浓度的PbTiO3形成用溶胶凝胶溶液(溶剂:n_ 丁醇)的溶液的本发明的强电介质膜时,判明在分解之前基本上未见脱气。 [0167] On the other hand, as shown in FIG. 31B, using the ratio of 4: 6 mixture of 10% strength by weight PWrO3B to form a sol-gel solution (solvent m- butanol) and 10 wt% concentration PbTiO3 sol-gel solution (solvent: n_ butanol) when the ferroelectric film of the present invention is a solution, it was found substantially no degassed prior to decomposition.

[0168] 这认为是通过使用按4 : 6的比例混合的10重量%浓度的Pb&03形成用溶胶凝胶溶液(溶剂:n_ 丁醇)和10重量%浓度的PbTiO3形成用溶胶凝胶溶液(溶剂:n- 丁醇) 的溶液,首先利用混合溶液中的10重量%浓度的PbTiO3形成用溶胶凝胶溶液(溶剂:n-丁醇),PbTiO3在Pt上结晶化,这成为结晶初期核,而且,消除Pt与PZT的晶格不匹配,PZT容易结晶化。 [0168] This is considered by using a 4: forming a sol-gel solution (solvent: butanol of N_) weight ratio of 10 6 mixed Pb & 03% strength and 10% strength by weight sol-gel solution for forming PbTiO3 (solvent : n- butanol) was first mixed solution by using 10% strength by weight sol-gel solution for forming PbTiO3 (solvent: n- butanol), in the Pt PbTiO3 crystallized, crystallization nuclei which become the initial and , Pt and elimination of lattice mismatch PZT, PZT easily crystallized. 并且,认为通过使用混合溶液,PbTiO3与PZT在良好的界面上连续形成,与良好的磁滞的方型性相关联。 And, that by using a mixed solution, of PbTiO3 and PZT are continuously formed in a well screen, it is associated with a good phase square hysteresis.

[0169] 2、强电介质电容器的制造方法 [0169] 2. A method for manufacturing a ferroelectric capacitor

[0170] 图32A〜图32C是模式地表示本发明实施方式的强电介质电容器的制造工序一例的截面图。 [0170] FIG 32A~ FIG. 32C is a schematic cross-sectional view showing a step of manufacturing a ferroelectric capacitor according to an embodiment of the present invention, an example of.

[0171] (1)首先,如图32A所示,在所定的基体110上依次层叠形成下部电极102、强电介质膜101、上部电极103。 [0171] (1) First, as shown, on a predetermined substrate 110 are sequentially laminating a lower electrode 102, ferroelectric film 101, an upper electrode 103 32A.

[0172] 作为基体110,例如可任意采用半导体基板、树脂基板等适用于强电介质电容器用途的基板,不特别限定。 [0172] As the substrate 110, for example, the substrate may be employed in any semiconductor substrate, a resin substrate is suitable for use in the ferroelectric capacitor is not particularly limited.

[0173] 作为下部电极102和上部电极103,例如可采用由Pt、Ir、Ru等贵金属单体或以所述贵金属为主的复合材料构成的电极。 [0173] As the lower electrode 102 and upper electrode 103, an electrode can be made of, for example, Pt, Ir, Ru and other precious metals of the noble metal-based monomer, or a composite material. 另外,下部电极102和上部电极103例如可使用溅射法或沉积法等公知的成膜方法来形成。 Further, the lower electrode 102 and upper electrode 103 may be, for example, a known method or a deposition method, a sputtering film forming method to form. 另外,当强电介质的构成元素向下部电极102和上部电极103扩散时,在电极与强电介质膜101的界面部产生组成波动,磁滞的方型性降低, 所以期望下部电极102和上部电极103具有强电介质的构成元素不扩散的致密性。 Further, when the constituent elements of the ferroelectric of the lower electrode 102 and upper electrode 103 diffused generated at the interface portion of the electrode and the ferroelectric film 101 composed of fluctuation square reduced hysteresis, it is desirable to lower electrode 102 and upper electrode 103 denseness constituent elements having ferroelectric non-proliferation. 因此, 为了提高下部电极102和上部电极103的致密性,可采用由质量重的气体溅射成膜的方法、 或使Y、La等的氧化物分散到贵金属电极中的方法等。 Therefore, to improve the compactness of the lower electrode, the method employed by the weight of the mass of gas sputter deposition, or to Y, La and other oxides 102 and the upper electrode 103 into the noble metal is dispersed in a method.

[0174] 强电介质膜101是含有Pb、Zr、Ti和Nb作为构成元素的所谓PZTN复合氧化物。 [0174] 101 is a ferroelectric film containing Pb, Zr, Ti and Nb as constituent elements called a PZTN complex oxide. 另外,强电介质膜101,可通过例如使用旋涂法等将含有Pb、Zr、Ti、Nb的溶胶凝胶溶液涂布在下部电极102上来形成。 Further, the ferroelectric film 101, a spin coating method or the like may be contained, for example, by the use of Pb, Zr, Ti, Nb sol-gel solution is applied onto the lower electrode 102 is formed. 作为这种溶胶凝胶溶液,可使用混合第1溶胶凝胶溶液、第2溶胶凝胶溶液和第3溶胶凝胶溶液的溶液,其中,第1溶胶凝胶溶液是为了形成基于Pb和ττ 的Pb&03钙钛矿结晶而在无水状态下在η- 丁醇等溶剂中溶解缩聚物的溶液,第2溶胶凝胶溶液是为了形成基于PZTN强电介质相的构成金属元素中Pb和Ti的PbTiO3钙钛矿结晶而在无水状态下在η- 丁醇等溶剂中溶解缩聚物的溶液,第3溶胶凝胶溶液是为了形成基于PZTN强电介质相的构成金属元素中Pb和Nb的PbNbO3钙钛矿结晶而在无水状态下在η- 丁醇等溶剂中溶解缩聚物的溶液。 As such a sol-gel solution may be mixed first sol-gel solution, a sol-gel solution and the second solution, the third sol-gel solution, wherein the first sol-gel solution is to form the basis of Pb and ττ perovskite crystals by Pb & 03 polycondensate dissolved in a solution η- butanol solvent in the anhydrous state, the second solution to form a sol-gel based metal element constituting the PZTN ferroelectric phase of Pb and Ti calcium PbTiO3 crystallization polycondensate dissolved in a solution η- solvent such as butanol in an anhydrous state and the third sol-gel solution for forming the constituent metal elements based on the PZTN ferroelectric phase in PbNbO3 perovskite Pb and Nb solution of polycondensate dissolved in the crystallization solvent such as butanol, η- in the anhydrous state. 并且,在形成强电介质膜101时,为了降低PZTN复合氧化物的结晶化温度,也可添加含有硅酸盐或锗酸盐的溶胶凝胶溶液。 Further, when the ferroelectric film 101 is formed, in order to reduce the crystallization temperature of the PZTN complex oxide may be added to the sol-gel solution containing silicate or germanate glasses. 具体而言,可以例如1摩尔%以上、不足5摩尔%向上述混合溶胶凝胶溶液中进一步添加第4溶胶凝胶溶液,该第4 溶胶凝胶溶液例如是为了形成PbSiO3结晶而在无水状态下在η- 丁醇等溶剂中溶解缩聚物的溶液。 Specifically, for example, more than 1 mol%, less than 5 mol% is further added a fourth sol-gel solution to the mixed sol-gel solution, the fourth sol-gel solution for forming PbSiO3 crystals is, for example, in the anhydrous state solution of polycondensate dissolved in a solvent such as butanol, η-. 通过混合这种第4溶胶凝胶溶液,可在通过在构成元素中含有Nb、结晶化温度变高的PZTN复合氧化物的结晶化温度为700度以下的可元件化的温度范围下结晶化。 4 by mixing this sol-gel solution, can be constituted by the elements of Nb, the crystallization temperature becomes higher and the crystallization temperature of the PZTN complex oxide is crystallized at a temperature range of the member may be 700 degrees or less.

[0175] 另外,最好强电介质膜101对这种涂布膜在氧化气氛中PZTN复合氧化物不结晶化的温度(例如400度以下)下进行临时热处理,将PZTN复合氧化物变为非晶状态。 [0175] Further, the ferroelectric film 101 is preferably of such a coating film in an oxidizing atmosphere in the PZTN complex oxide is not crystallized preliminary thermal processing temperature (e.g. 400 degrees or less) for the PZTN complex oxide becomes amorphous status. 从而, 强电介质膜101由于是非晶状态而变为不存在粒界的状态,可在防止构成元素扩散的同时推进后述的工序。 Accordingly, since the ferroelectric film 101 is an amorphous state to a state of the absence of grain boundaries, it can be prevented while the diffusion of the constituent elements advancing step described later. 另外,在氧化气氛中进行该临时热处理,也可起在后述的保护膜形成后向强电介质膜101中导入使PZTN复合氧化物结晶化所需的氧成分的作用。 Further, heat treatment is performed in an oxidizing atmosphere the temporary may also be introduced from the ferroelectric film 101 in a later-described protective film is formed so that the PZTN complex oxide oxygen content required for crystallization effects.

[0176] (2)接着,如图32Β所示,蚀刻下部电极102、强电介质膜101和上部电极103,加工成期望的形状,形成由SiO2 (氧化硅)膜构成的保护膜104,以覆盖所述下部电极、强电介质膜和上部电极。 [0176] (2) Next, as shown in FIG 32Β, etching the lower electrode 102, ferroelectric film 101 and the upper electrode 103, processed into a desired shape, made of SiO2 is formed (silicon oxide) film protective film 104 to cover the lower electrode, ferroelectric film and an upper electrode. 此时的保护膜104可使用三甲硅烷(TMS)利用CVD法形成。 At this time, the protective film 104 using trimethylsilane (TMS) is formed by a CVD method. 三甲硅烷(TMS) 与氧化硅膜形成中一般使用的四乙基原硅酸盐(TEOS)相比,CVD工艺中的产生氢量少。 Trimethylsilyl (TMS) and the silicon oxide film is formed generally used tetraethyl orthosilicate (TEOS) as compared to the CVD process to produce hydrogen is less. 因此,若使用三甲硅烷(TMS),则可降低对强电介质膜101的还原反应造成的工艺损害。 Thus, by using trimethylsilane (TMS), the process can reduce damage caused by the reduction reaction of the ferroelectric film 101. 另外, 因为使用三甲硅烷(TMS)的保护膜104的形成工艺与使用TEOS的形成工艺(形成温度为400度以上)相比可在低温(室温〜350度)下进行,所以在(1)工序中,在将强电介质膜101形成非晶状态的情况下,可防止由于这种保护膜104的形成工序中产生的热等PZTN复合氧化物结晶化,维持非晶状态不变。 Further, because the use of trimethylsilane (TMS) process and forming process of forming the protective film 104 using TEOS (formation temperature of at least 400 degrees) may be compared to at low temperature (room temperature ~350 °), so that (1) the step , in the case where the ferroelectric film 101 is formed in an amorphous state, and the like can be prevented due to this thermal protection PZTN complex oxide film 104 is formed in the step of crystallization is generated, the amorphous state is maintained unchanged.

[0177] (3)接着,如图32C所示,进行结晶化构成强电介质膜101的PZTN复合氧化物的热处理,可得到具有PZTN强电介质结晶膜IOla的强电介质电容器。 [0177] (3) Next, as shown in FIG 32C, the crystallization of the PZTN complex oxide ferroelectric film 101 of the heat treatment, to obtain a ferroelectric capacitor having a PZTN ferroelectric crystal film of IOla. 在该热处理中,不仅在氧气氛下,即便通过在例如Ar或队等非氧化气体气氛下或大气中的热处理,也可结晶化PZTN 复合氧化物。 In this heat treatment, not only in an oxygen atmosphere, even by a heat treatment or the like teams Ar gas atmosphere or non-oxidizing atmosphere is, for example, may be crystallized PZTN complex oxide.

[0178] 这里,就适用本实施方式的制造方法来在由PZTN强电介质膜、Pt上部电极构成的强电介质电容器上、形成使用TMS的SiO2保护膜而言,测定在这种SiO2保护膜形成后在氧气氛中和大气中进行热处理后结晶化PZTN强电介质的情况下的电容磁滞特性的结果示于图33A和图33B中。 After [0178] Here, it is suitable for the manufacturing method of the present embodiment be in the ferroelectric capacitor comprises a PZTN ferroelectric film, Pt upper electrode composed of an SiO2 protective film of TMS, the measurement is formed in this SiO2 protective film results in an oxygen atmosphere in the case where the hysteresis characteristic of the capacitance of the PZTN ferroelectric crystallized after heat treatment in the atmosphere and are shown in FIGS. 33A and 33B. 图33A表示在氧气氛中进行热处理的情况,图33B表示在大气中进行热处理的情况。 FIG 33A shows the case where heat treatment is performed in an oxygen atmosphere, FIG. 33B shows the case where heat treatment is performed in the atmosphere. 根据图33A和图33B,在氧气氛中和大气中任一气氛下进行热处理的情况下, 尽管未形成耐氢用的阻挡膜,都可得到方型性好的磁滞特性。 According to FIGS. 33A and 33B, and the atmosphere in an oxygen atmosphere any case where a heat treatment is performed under atmosphere, although the barrier film is not formed with the resistance to hydrogen, can be obtained with good square hysteresis characteristic. 这是因为在强电介质膜101 形成时在氧化气氛下实施临时热处理,所以事先向膜中导入结晶化所需的氧。 This is because preliminary thermal processing at the time of forming the ferroelectric film 101 in an oxidizing atmosphere, introduced beforehand into the desired crystalline oxide film. 即,在本实施方式的制造方法中,可不依赖于热处理的气氛来进行强电介质的结晶化。 That is, in the manufacturing method of the present embodiment, without depending on the heat treatment atmosphere is performed ferroelectric crystallization medium. 并且,在非氧化气体气氛下进行结晶化用的热处理的情况下,在适用于后述的强电介质存储器的制造方法的情况等中,可防止对电容以外的外围部件(例如金属配线)造成高温热处理引起的氧化损害。 And carried out at a crystallization heat treatment is used, like in the case of the manufacturing method of the ferroelectric memory is described below applicable to the occurrence of defects of the peripheral components (e.g., metal wiring) other than the capacitance in a non-oxidizing gas atmosphere oxidative damage caused by high temperature heat treatment. 另外,这种工序中的PZTN复合氧化物的结晶化用热处理由于气氛中的气体种类的依赖性少,所以也可在保护膜104中形成用于形成将上部电极103与外部连接用的金属配线的接触孔之后再进行。 Further, the heat treatment for crystallization of the PZTN complex oxide in this step due to the small gas atmosphere species dependent, so it can be formed with the metal forming the upper electrode 103 for external connection in the protective film 104 then after the contact hole line.

[0179] 另外,就在适用由本实施方式的制造方法的Pt下部电极、PZTN强电介质膜、Pt上部电极构成的强电介质电容器上、形成使用TMS的SiO2保护膜、并在这种SiO2保护膜形成后结晶化PZTN强电介质而言,测定将SiO2保护膜的形成温度设为室温、125度、200度时的磁滞特性、和作为比较例不形成SiO2保护膜、而结晶化PZTN强电介质膜时的磁滞特性,并测量其残留极化量2Pr的值的变化的结果示于图34中。 [0179] Further, it is applicable by the Pt lower electrode manufacturing method according to the present embodiment, a PZTN ferroelectric film, the ferroelectric capacitor Pt upper electrode composed of an SiO2 protective film of TMS, and this SiO2 protective film is formed after crystallization of the PZTN ferroelectric For measuring the SiO2 protective film forming temperature is set to room temperature, the hysteresis characteristic 125 degrees, 200 degrees, and as Comparative Example SiO2 protective film is not formed, crystallized PZTN ferroelectric film hysteresis characteristics, and measuring the change in value of the residual polarization magnitude 2Pr are shown in Figure 34. 根据图34,即便在室温、125度、 200度任一温度下形成SiO2保护膜,残留极化量2Pr中都未见变化,确认得到不逊于形成SiO2保护膜时的值。 According to FIG. 34, even at room temperature, 125 degrees, 200 degrees is formed of any of a SiO2 protective film temperature, the amount of residual polarization 2Pr are no changes, the values ​​obtained confirmed not inferior SiO2 protective film is formed. 即,在本实施方式的制造方法中,即便假设在形成保护膜104时强电介质膜101受到工艺中产生的氢引起的损害,也可通过之后进行PZTN 复合氧化物的结晶化用热处理,在恢复这种损害的同时,结晶化PZTN复合氧化物,所以可省略以往必需的保护强电介质膜101不受还原反应影响的阻挡膜的形成工艺,可实现生产性的提高和生产成本的降低。 That is, in the manufacturing method of the present embodiment, even assumed that when forming the protective film 104 of the ferroelectric film 101 be damaged hydrogen generated in the process caused also be prepared by crystallization heat treatment for the PZTN complex oxide after recovery while such damage, the PZTN complex oxide is crystallized, so that a conventional film forming process of barrier protection required for the ferroelectric film 101 is not affected by the reduction reaction may be omitted, the productivity can be improved and reduction of production costs.

[0180] 3、强电介质存储器 [0180] 3, a ferroelectric memory

[0181 ] 图35A和图35B是表示本发明的实施方式中的单纯矩阵型的强电介质存储器装置300的构成图。 [0181] FIGS. 35A and FIG. 35B shows a configuration of a simple matrix type according to an embodiment of the present invention, in the ferroelectric memory device 300. 图35A是平面图,图35B是沿图35A的AA线的截面图。 FIG 35A is a plan view, FIG. 35B is a sectional view along line AA of FIG. 35A. 强电介质存储器装置300如图35A和图35B所示,具有形成于基板308上的排列所定数量的字线301〜303、 和排列所定数量的位线304〜306。 The ferroelectric memory device 300 shown in FIG. 35A and FIG. 35B, having arranged on the substrate 308 is formed of a predetermined number of word lines 301~303, and a predetermined number of bits arranged in lines 304~306. 在字线301〜303与位线304〜306之间,插入由上述实施方式中说明的PZTN构成的强电介质膜307,在字线301〜303与位线304〜306的交叉区域中形成强电介质电容器。 307, a ferroelectric is formed in the intersection region the word lines and the bit lines 304~306 301~303 of the PZTN ferroelectric film constituting the word lines and the bit lines between 304~306 301~303, inserted by the above-described embodiment capacitor.

[0182] 在排列通过该单纯矩阵构成的存储器单元的强电介质存储器装置300中,利用未图示的外围的驱动电路或读出用放大电路等(将其称为外围电路)来进行对形成于字线301〜303与位线304〜306的交叉区域中的强电介质电容器的写入和读出。 [0182] In the ferroelectric memory device 300 through the medium of memory cells arranged in a simple matrix configuration, the use of a peripheral driving circuit (not shown) or readout amplifier circuit (referred to as a peripheral circuit) to be formed writing and reading of the ferroelectric capacitor crossing regions of the word lines and the bit lines 304~306 301~303 in. 该外围电路通过MOS形成于存储器单元阵列以外的别的基板上,连接于字线301〜303和位线304〜 306上,或者也可通过在基板308中使用单晶硅基板,将外围电路集成在与存储器单元阵列相同的基板上。 Another substrate on which a peripheral circuit is formed by a MOS other than the memory cell array, connected to the word lines and bit lines 301~303 304~ 306, or also by using a single crystal silicon substrate in the substrate 308, the peripheral circuits are integrated on the same substrate with the memory cell array.

[0183] 图36是表示本实施方式中的、将存储器单元阵列与外围电路共同集成在同一基板上的强电介质存储器装置300的一例的截面图。 [0183] FIG. 36 is a diagram of the present embodiment, the memory cell array and a peripheral circuit integrated together on the same substrate a ferroelectric memory sectional view showing an example of the device 300.

[0184] 图36中,在单晶硅基板401上形成MOS晶体管402,该晶体管形成区域构成外围电路部。 In [0184] FIG. 36, MOS transistor 402 is formed on a monocrystalline silicon substrate 401, which constitutes a peripheral circuit transistor formation region portion. MOS晶体管402由单晶硅基板401、源极•漏极区域405、栅极绝缘膜403和栅极电极404构成。 MOS transistor 402 by the single crystal silicon substrate 401, a source • drain regions 405, a gate insulating film 403 and the gate electrode 404 configured.

[0185] 另外,强电介质存储器装置300具有元件分离用氧化膜406、第1夹层绝缘膜407、 第1配线层408和第2夹层绝缘膜409。 [0185] Further, the ferroelectric memory device 300 having a separating member 406, a first interlayer insulating film 407, first wiring layer 408 and the second interlayer insulating film 409 with the oxide film. [0186] 另外,强电介质存储器装置300,具有由强电介质电容器420构成的存储器单元阵列,强电介质存储器420,由构成字线或位线的下部电极(第1电极或第2电极)410、含有强电介质相与常电介质相的强电介质膜411、和形成于强电介质膜411上并构成位线或字线的上部电极(第2电极或第1电极)412构成。 [0186] Further, the ferroelectric memory device 300, a memory cell array composed of ferroelectric capacitors 420, a ferroelectric memory 420, a lower electrode (first electrode or second electrode) constituting a word line or bit line 410, containing ferroelectric film of the ferroelectric phase and paraelectric phase 411, and is formed on the ferroelectric film 411 and forming an upper electrode (second electrode or first electrode) bit lines or word lines 412 configured.

[0187] 并且,强电介质存储器装置300在强电介质电容器420上具有第3夹层绝缘膜413,利用第2配线层414来连接存储器单元阵列与外围电路。 [0187] Further, the ferroelectric memory device 300 has a third interlayer insulation film in the ferroelectric capacitor 420 413, by the second wiring layer 414 is connected to the memory cell array and a peripheral circuit. 就强电介质存储器装置300 而言,在第3夹层绝缘膜413与第2配线层414上形成保护膜415。 In terms of media ferroelectric memory device 300, a protective film 415 is formed on the third interlayer insulating film 413 and the second wiring layer 414.

[0188] 根据具有以上构成的强电介质存储器装置300,可以在同一基板上集成存储器单元阵列与外围电路部。 [0188] The ferroelectric memory device 300 having the above configuration of the media, the memory cell array may be integrated with a peripheral circuit portion on the same substrate. 另外,图36所示的强电介质存储器装置300是在外围电路部上形成存储器单元阵列的构成,但也可构成为不在外围电路部上配置存储器单元阵列,存储器单元阵列与外围电路部平面地接触。 Further, the ferroelectric memory device 300 shown in FIG. 36 is a configuration forming a memory cell array on the peripheral circuit portion, but may also be configured to configure the memory cell array, a memory cell array, a peripheral circuit portion in contact with the planar not on the peripheral circuit portion .

[0189] 本实施方式中使用的强电介质电容器420,由于由上述实施方式的PZTN构成,所以磁滞的方形性非常好,具有稳定的扰动特性。 [0189] This ferroelectric capacitor 420 used in the embodiment, since the above-described embodiment is composed of PZTN embodiment, the squareness of hysteresis is very good, stable disturbance characteristics. 并且,该强电介质电容器420由于加工温度的低温化,对外围电路等其它元件的损害少,另外,加工损害(尤其是氢的还原)少,所以可抑制损害引起的磁滞恶化。 Further, the ferroelectric capacitor 420 because of the low processing temperature, damage to other elements of the peripheral circuits little additional processing damage (particularly reduction of hydrogen) less, so the hysteresis deterioration due to damage can be suppressed. 因此,通过使用这种强电介质电容器420,可实用化单纯矩阵型强电介质存储器装置300。 Thus, by using such a ferroelectric capacitor 420, it can be practical simple matrix type ferroelectric memory device 300 medium.

[0190] 另外,图37A中表示ITlC型强电介质存储器装置500的结构图,作为变形例。 [0190] Further, FIG. 37A showing ITlC type ferroelectric memory device 500 is a configuration diagram as a modification. 图37B是强电介质存储器装置500的等效电路图。 FIG 37B is a ferroelectric memory device 500 is an equivalent circuit diagram.

[0191] 如图37A所示,强电介质存储器装置500是由下部电极501、连接于板极线上的上部电极502、和适用本实施方式的PZTN强电介质的强电介质膜503构成的电容504 (IC),和源极/漏极电极之一方连接于数据线505上、并具有连接于字线上的栅极电极506的开关用晶体管元件507(1T)构成的,类似于DRAM的结构的存储器元件。 [0191] As shown in FIG 37A, the ferroelectric memory device 500 is composed of a lower electrode 501 connected to the upper electrode 502 plate line, a capacitor 504, and the ferroelectric film 503 PZTN ferroelectric is applied to the present embodiment is configured ( the IC memory structure), and the source / drain electrodes is connected to one data line 505, and a gate electrode connected to the word line of the switching transistor element 506 formed of 507 (1T), similar to the DRAM element. ITlC型的存储器的写入和读出可在IOOns以下高速进行,并且,由于写入的数据不易失,所以期望SRAM的置换等。 ITlC writing and reading type memory may be performed at high speed IOOns less, and, because of the non-volatile data is written, it is desirable SRAM substitutions and the like.

[0192] 4、强电介质存储器的制造方法 [0192] 4. A method of manufacturing a ferroelectric memory

[0193] 下面,说明将“2、强电介质电容器的制造方法”栏中说明的制造方法适用于强电介质存储器的制造方法中的情况。 [0193] Next, the case where the method of manufacturing a "2, the method of manufacturing a ferroelectric capacitor" column described manufacturing method suitable for a ferroelectric memory in.

[0194] 图38A〜图38C是模式地表示本发明实施方式的强电介质存储器的制造工序一例的截面图。 [0194] FIG 38A~ FIG. 38C is a schematic cross-sectional view showing a step of manufacturing a ferroelectric memory according to an example of embodiment of the present invention.

[0195] 在本实施方式中,首先如图38A所示,在基体110上依次形成强电介质电容器100 的下部电极102、PZTN强电介质膜101、上部电极103。 [0195] In the present embodiment, first, as shown in FIG 38A, the ferroelectric capacitor are sequentially formed a lower electrode 102 on the substrate 100 in 110, PZTN ferroelectric film 101, an upper electrode 103. 此时,PZTN强电介质膜101在氧化气氛中实施临时热处理后变为非晶状态。 At this time, PZTN ferroelectric film 101 preliminary thermal processing in an oxidizing atmosphere in the amorphous state becomes. 另外,作为基体100,例如图38A所示,可使用在半导体基体111上形成单元选择用的晶体管116的基体。 Further, as the substrate 100, for example, as shown in FIG. 38A, may be formed using the base cell selecting transistor 116 on the semiconductor substrate 111. 该晶体管116可具有源极/漏极113、栅极氧化膜114、栅极电极115。 The transistor 116 may have a source / drain 113, a gate oxide film 114, gate electrode 115. 另外,在晶体管116之一方的源极/漏极113上,例如形成由钨等构成的插头电极117,可采用可与强电介质电容器100的下部电极102连接地形成的堆叠结构。 Further, the source of one transistor 116 of the source / drain 113, for example, a stack structure formed by the plug electrode 117 formed of tungsten or the like, can be formed can be connected with the lower electrode 102 of the ferroelectric capacitor 100. 另外,在基体110内,晶体管116在单元间利用元件分离区域112对每个单元分离,在晶体管116的上部,例如可具有由氧化膜等构成的夹层绝缘膜118。 Further, in the base 110, the transistor 116 using an element 112 for separating each unit cell between the separation zone, in the upper portion of the transistor 116, the interlayer insulating film may have, for example, 118 made of an oxide film or the like.

[0196] 接着,在本实施方式的制造工序中,如图38B所示,将强电介质电容器110图案化成期望的大小和形状。 [0196] Next, in the manufacturing process according to the present embodiment, as shown in FIG. 38B, the ferroelectric capacitor 110 is patterned into a desired size and shape. 之后,使用三甲硅烷(TMS)形成由SiO2保护膜104,以覆盖强电介质电容器100,并在其中形成外部连接用的接触孔105之后,进行热处理,结晶化PZTN强电介质,形成PZTN强电介质膜101a。 Thereafter, using trimethylsilane (TMS) is formed after a protective of SiO2 film 104 to cover the ferroelectric capacitor 100, and in which the contact hole for the external connection 105 is formed, heat treatment, crystallization of the PZTN ferroelectric, form the PZTN ferroelectric film 101a . 在PZTN强电介质的结晶化时,可在非氧化气氛中进行结晶化用的热处理。 , Crystallization may be performed using a heat treatment in a nonoxidizing atmosphere when crystallized PZTN ferroelectric medium. 据此,可防止对强电介质电容器100之外的外围部件(例如金属配线)等造成高温热处理引起的氧化损害。 Accordingly, prevented from causing oxidative damage caused by high temperature heat treatment of peripheral components (e.g., metal wiring) outside of the ferroelectric capacitor 100 and the like.

[0197] 最终,如图38C所示,在SiO2保护膜104中形成将晶体管116与餐饮部连接用的接触孔,并通过形成金属配线层191、192来得到强电介质存储器。 [0197] Finally, as shown in FIG 38C, a contact hole in the SiO2 protective transistor 116 connected to the food portion 104 is formed in a film, and the ferroelectric memory obtained by forming a metal wiring layer 191, 192. 根据本实施方式的制造工序,可省略以往必需的保护强电介质膜101不受还原反应损害用的阻挡膜的形成工艺, 可实现生产性的提高和生产成本的降低。 The manufacturing process of this embodiment, a conventional process may be omitted form the necessary protection of the ferroelectric film 101 from reductive reaction barrier film damage can be achieved to improve productivity and reduce production costs. 另外,由于即便省略这种阻挡膜的形成工艺也可形成具有方型性好的磁滞特性的强电介质电容器100,所以可以得到好的特性的强电介质存储器。 Further, even if omitted, since such a barrier film formation process ferroelectric capacitor having good squareness of the hysteresis characteristic 100 may also be formed, it is possible to obtain good ferroelectric memory characteristics.

[0198] 另外,上述说明了所谓ITlC型强电介质存储器的制造工序,但本实施方式的强电介质电容器的制造方法,此外还可适用于所谓2T2C型或单纯矩阵型(交叉点型)等使用各种单元方式的强电介质存储器的制造工序中。 [0198] Further, the above description of the manufacturing process of a so-called ITlC type of ferroelectric memory but the method of manufacturing a ferroelectric capacitor according to the present embodiment, in addition also applicable to so-called 2T2C type or the simple matrix type (crosspoint-type) and the like using each process of manufacturing ferroelectric memory unit according to the species.

[0199] 5、压电元件和喷墨式记录头 [0199] 5, the piezoelectric element and the ink jet recording head

[0200] 下面,详细说明本发明实施方式中的喷墨式记录头。 [0200] Hereinafter, a detailed embodiment of the ink jet recording head of the present invention is described.

[0201] 在如下喷墨式记录头中,即由振动板构成与喷出墨滴的喷嘴开口连通的压力产生室的一部分,通过压电元件使该振动板变形,对压力产生室的墨水施压,从喷嘴开口喷出墨滴,实用化使用沿压电元件的轴向伸缩的纵向振动模式的压电执行元件的喷墨式记录头、 与使用弯曲振动模式的压电执行元件的喷墨式记录头等两种。 [0201] In the following ink jet recording head, i.e., a portion of the chamber generated by the pressure on the diaphragm communicates with nozzle opening ejecting ink droplets, the piezoelectric element by deforming the vibration plate, the ink applied to the pressure generating chamber the inkjet ink jet recording head of the piezoelectric actuator of longitudinal vibration mode press, ejecting ink droplets from the nozzle openings, the practical use of the piezoelectric element of axial stretching, the piezoelectric actuator using a bending vibration mode of recording top two kinds.

[0202] 另外,作为使用弯曲振动模式的执行元件的喷墨式记录头,例如已知通过成膜技术在振动板的表面整体中形成均勻的压电体层,并利用光刻法将该压电体层分割成对应于压力产生室的形状,对每个压力产生室独立地形成压电元件。 [0202] Further, as an actuator using a bending vibration mode of the ink jet recording head, for example, known to form a uniform piezoelectric layer on the entire surface of the vibration plate by a film formation technique, photolithography method and the use of pressure electrode layer is divided to correspond to the shape of the pressure generating chamber, a pressure generating chamber formed independently for each piezoelectric element.

[0203] 图39是表示本发明的一实施方式的喷墨式记录头的示意分解立体图,图40A、40B 是图39的平面图和A-A'截面图,图41是表示压电元件700的层结构的示意图。 [0203] FIG. 39 is a schematic showing an ink jet recording head according to an embodiment of the present invention is an exploded perspective view of FIG. 40A, 40B and FIG. 39 is a plan view of A-A 'sectional view of FIG. 41 is a piezoelectric element 700 schematic layer structure. 如图所示,流路形成基板10在本实施方式中由面方位(110)单晶硅基板构成,在其一方的面中形成事先通过热氧化形成的、由二氧化硅构成的厚度为1〜2微米的弹性膜50。 As shown, the flow path forming substrate 10 composed of a plane orientation (110) single crystal silicon substrate in the present embodiment, has a thickness made of silicon dioxide previously formed by thermal oxidation on one surface thereof is 1 the elastic film 50 ~ 2 microns. 在流路形成基板10中,沿其宽度方向并列设置有多个压力产生室12。 Forming a flow path substrate 10, provided in parallel with a plurality of pressure generating chambers 12 in the width direction thereof. 另外,在流路形成基板10的压力产生室12的长向外侧的区域中,形成连通部13,连通部13与各压力产生室12经对每个压力产生室12设置的墨水提供路径14连通着。 Further, a pressure in the flow path substrate 10 produces a long chamber 12 to the outside of the region, the communicating portion 13, the communication unit 13 generates the respective pressure generating chambers 12 via ink chamber 12 is provided for each communication path 14 provides pressure a. 另外,连通部13与后述的密封基板30的储备部32连通,构成形成各压力产生室12的共同墨水室的储备器800的一部分。 Further, the communicating portion 13 communicates with the storage portion 32 described later, the sealing substrate 30, constituting the reserve forming each pressure generating chamber is a common ink chamber 12 of the portion 800. 墨水提供路径14以比压力产生室12窄的宽度形成,将从连通部13流入压力产生室12中的墨水的流路阻抗保持恒定。 Ink supply path 14 to a narrower width than the pressure generating chamber 12 is formed, from the communication portion 13 into the pressure generating chamber 12 in the ink flow path resistance is kept constant.

[0204] 另外,在流路形成基板10的开口面侧,经粘接剂或热熔融膜等固定着贯穿设置连通于与各压力产生室12的墨水提供路径14相反侧的端部附近上的喷嘴开口21的喷嘴板20。 [0204] Further, the opening surface side of the substrate 10 is formed in the flow passage, the hot-melt adhesive or film 14 provided on the vicinity of the end portion of the opposite side of the fixed path is provided through the ink chamber 12 communicates with the generation of each pressure the nozzle opening 21 of nozzle plate 20.

[0205] 另一方面,在这种流路形成基板10的开口面的相反侧,如上所述,形成厚度约为1. 0微米的弹性膜50,在该弹性膜50上,形成有厚度约为0. 4微米的绝缘体膜55。 [0205] On the other hand, the flow path is formed in which the side opposite to the opening surface of the substrate 10, as described above, a thickness of about 1.0 microns elastic film 50 is formed on the elastic film 50, is formed with a thickness of about is 0.4 microns insulating film 55. 并且, 在该绝缘体膜55上,利用后述的工艺层叠形成厚度约为0. 2微米的下电极膜60、厚度约为1. 0微米的压电体层70、和厚度约为0. 05微米的上电极膜80,以构成了压电元件700。 And, on the insulator film 55, described later lamination process forming the lower electrode film 60 of a thickness of about 0.2 microns, a thickness of about 1. The piezoelectric layer 70, and a thickness of about 0.05 micron 0 the upper electrode film 80 microns, to form a piezoelectric element 700. 这里,压电元件700是指含有下电极膜60、压电体层70和上电极膜80的部分。 Here, the piezoelectric element 700 refers to the electrode film 60, the piezoelectric layer 70 and the upper electrode film 80 comprising lower. 通常,将压电元件700的任一电极作为共同电极,对每个压力产生室12图案化另一方的电极和压电体层70来构成。 Typically, a piezoelectric element according to any of the electrode 700 as a common electrode pattern generating chamber 12 and the other electrode and the piezoelectric layer 70 is constituted for each of the pressure. 而且,在此将由图案化的任一方电极和压电体层70构成、通过向两电极施加电压、产生压电变形的部分称为压电体能动部。 Further, in either electrode and the piezoelectric layer 70 is patterned by this configuration, by applying voltage to both electrodes, it is called a piezoelectric distortion generating portion piezoelectric active portion. 在本实施方式中,将下电极膜60设为压电元件700的共同电极,将上电极膜80设为压电元件700的单独电极,但通过驱动电路或配线的配合,即便将之颠倒也无妨。 In the present embodiment, the lower electrode film 60 is set to the common electrode of the piezoelectric element 700, the upper electrode film 80 to the individual electrode of the piezoelectric element 700, but by fitting the drive circuit or wiring, even when the reversal of it anyway. 在任一情况下,都可以对每个压电产生室形成了压电体能动部。 In either case, it may be formed for each piezoelectric active portion of the piezoelectric generating chamber. 这里,将压电元件700与利用该压电元件700的驱动产生位移的振动板合称为压电执行元件。 Here, the piezoelectric element 700 and the vibration plate displaced collectively called a piezoelectric actuator using the piezoelectric element 700 is driven. 另外,压电体层70对每个压力产生室12独立设置,如图40所示,由多层的强电介质膜71(71a〜71f)构成。 Further, the piezoelectric layer 70 for each of the pressure generating chamber 12 is provided independently, as shown in FIG. 40, a plurality of layers of ferroelectric film 71 (71a~71f).

[0206] 喷墨式记录头构成具备与墨水卡盘等连通的墨水流路的记录头单元的一部分,被装载于喷墨式记录装置上。 [0206] ink jet recording head constituting a part of a recording head unit provided with an ink passage communicating the ink cartridge and the like, and is mounted on the ink jet recording apparatus. 图42是表示该喷墨式记录装置的一例的示意图。 FIG 42 is a schematic diagram showing an example of the ink jet recording apparatus. 如图42所示, 具有喷墨式记录头的记录头单元1A和1B可拆装地设置构成墨水提供单元的卡盘2A和2B, 装载该记录头单元1A和1B的托架3被轴向自由移动地设置在安装于装置主体4上的托架轴5上。 42, an ink jet recording head units 1A and 1B recording head removably disposed configured to provide an ink cartridge units 2A and 2B, the loading of the recording head units 1A and 1B of the carriage 3 is axially movably disposed on the carriage 4 is mounted on the shaft 5 in the apparatus main body. 该记录头单元1A和1B例如分别喷出黑墨水组合物和彩色墨水组合物。 The recording head units 1A and 1B eject, for example, a black ink composition and color ink compositions. 另外,通过将驱动电机6的驱动力经未图示的多个齿轮和同步皮带7传递给托架3,使装载记录头单元1A和1B的托架3沿托架轴5移动。 Further, by the driving force of the driving motor 6 is transferred through 7 of a plurality of unillustrated gears and a timing belt to the carriage 3, so that the carriage 3 along the loading axis recording head units 1A and 1B of the carriage 5 is moved. 另一方面,在装置主体4上沿托架轴5设置压板8, 在压板8上传输由未图示的供纸辊等供纸的纸等作为记录媒体的记录薄片S。 On the other hand, along the carriage shaft 5 provided on the apparatus main body 8 platen 4, the transmission on the pressure plate 8 by an unillustrated sheet feeding roller or the like as a recording paper sheet feeding of the recording medium sheet S.

[0207] 另外,将喷出墨水的喷墨式记录头作为一例说明为液体喷射头,但本发明也可以使用压电元件的液体喷射头和液体喷射装置整体作为对象。 [0207] Further, the ejecting ink jet recording head described as an example of a liquid ejecting head, but the present invention may be used whole liquid ejecting head and liquid ejecting apparatus of the piezoelectric element as a target. 作为液体喷射头,例如有用于打印机等图像记录装置中的记录头、用于液晶显示器等滤色镜的制造中的色材喷射头、用于有机EL显示器、FED(面发光显示器)等电极形成的电极材料喷射头、用于生物芯片制造中的生物有机物喷射头等。 As the liquid ejecting head, for example, a recording head for image recording apparatus such as a printer, and a color material ejecting head used for manufacturing color filters of liquid crystal display or the like for an organic EL display, an FED (field emission display) or the like formed on the electrode an electrode material ejecting head used for manufacturing biochips bioorganic ejecting head.

[0208] 本实施方式的压电元件由于将上述实施方式的PZTN膜用于压电体层中,所以得到如下效果。 [0208] The piezoelectric element according to the present embodiment, since the PZTN film of the embodiment is used in the piezoelectric layer, the following effects are obtained.

[0209] (1)由于提高压电体层中的共有结合性,所以使压电常数提高。 [0209] (1) due to increased binding consensus of the piezoelectric layer, the piezoelectric constant is increased.

[0210] (2)由于可抑制压电体层中的PbO缺损,所以抑制压电体层与电极的界面中的异相的产生,容易施加电场,使作为压电元件的效率提高。 [0210] (2) Since the piezoelectric layer can be suppressed in defects PbO is suppressed different phase interface between the piezoelectric layer and the electrode, and is easy to apply an electric field, so as to improve the efficiency of the piezoelectric element.

[0211] (3)由于抑制压电体层的泄漏电流,所以可薄膜化压电体层。 [0211] (3) a leakage current due to inhibition of the piezoelectric layer, the piezoelectric layer may be a film of.

[0212] 另外,本实施方式的液体喷射头和液体喷射装置由于使用含有上述压电体层的压电元件,所以尤其得到以下效果。 [0212] Further, the liquid ejecting head and a liquid ejecting apparatus according to the present embodiment, since the piezoelectric element comprising the piezoelectric layer, the following effects in particular.

[0213] (4)由于可减轻压电体层的疲劳恶化,所以可抑制压电体层的位移量的随时间变 [0213] (4) Due to reduce fatigue deterioration of the piezoelectric layer, the amount of displacement of the piezoelectric layer can be suppressed time-varying

化,使可靠性提高。 Of the reliability is enhanced.

[0214] 以上说明本发明的最佳实施方式,但本发明不限于此,可在发明精神的范围内利用各种实施方式来实施。 [0214] the above-described preferred embodiments of the present invention, but the present invention is not limited thereto, and various embodiments may be utilized within the spirit of the present invention is implemented.

[0215] 例如,在强电介质膜101上,即便将Ta、W、V、Mo作为添加物质以代替Nb对PZT施加,也可具有同等的效果。 [0215] For example, in the ferroelectric film 101, even when the Ta, W, V, Mo as the additive material is applied in place of Nb to PZT, may also have the same effect. 另外,即便将Mn用作添加物质,也可具有与Nb—样的效果。 Further, even when Mn is used as the additive material, it may also have the effect of Nb- like. 另夕卜,通过同样的考虑,为了防止Pb逸出,还考虑用+3价以上的元素来置换Pb,作为替补,例如有La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb 和Lu 等镧系元素。 Another Bu Xi, by the same consideration, in order to prevent the escape of Pb, further consider more trivalent elements Pb substitution, as a substitute, for example, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb , Dy, Ho, Er, Tm, Yb and Lu and other lanthanides. 另外,作为促进结晶化的添加剂,也可不用硅酸盐(Si)而使用锗酸盐(Ge)。 Further, as an additive to promote the crystallization, can not silicates (Si) was used germanate (Ge). 图43A中表示对PZT使用10 摩尔%的Ta来代替Nb作为添加物质时的磁滞特性。 FIG. 43A represents the use of 10 mol% of Ta instead of Nb as PZT hysteresis characteristics when the additive material. 图43B中表示对PZT使用10摩尔% 的W来代替Nb作为添加物质时的磁滞特性。 FIG. 43B show the use of 10 mol% W to the PZT in place of Nb is added as a hysteresis characteristic of a material. 可知在使用Ta的情况下也可以得到与添加Nb 一样的效果。 It found that in the case where Ta is added Nb can be obtained with the same effect. 另外,可知在使用W的情况下,就得到绝缘性好的磁滞特性而言,具有与添加Nb—样的效果。 Further, it was found in the case where W is a good insulating property is obtained in terms of hysteresis characteristic, having a kind of effect adding Nb-.

Claims (13)

  1. 一种强电介质膜的制造方法,其中,包括使用溶胶凝胶溶液形成强电介质膜的工序,使用至少混合PbZrO3用溶胶凝胶溶液、PbTiO3用溶胶凝胶溶液和PbNbO3用溶胶凝胶溶液的溶液作为所述溶胶凝胶溶液,所述强电介质膜,由AB1-XNbXO3表示,其中,A元素至少由Pb构成,B元素由Zr、Ti、V、W、Hf以及Ta中的至少一种以上的组合构成,x在0.1≤x≤0.3的范围内。 A method of manufacturing a ferroelectric film, wherein the sol-gel solution comprises a step of forming a ferroelectric film, a mixture of at least PbZrO3 sol-gel solution, and a solution of PbTiO3 sol-gel solution for PbNbO3 sol-gel solution as the sol-gel solution, the ferroelectric film, is represented by AB1-XNbXO3, wherein, a is constituted by at least the elements Pb, B at least a combination of the elements Zr, Ti, V, W, Hf and Ta in one or more configuration, x is in the range of 0.1≤x≤0.3.
  2. 2.根据权利要求1所述的强电介质膜的制造方法,其中,进一步使用以1〜5摩尔%添加PbSi03硅酸盐溶液的溶液作为所述溶胶凝胶溶液。 2. The method of manufacturing a ferroelectric film according to claim 1, wherein 1 ~ 5 mol% is further added to the use solution PbSi03 silicate solution as the sol-gel solution.
  3. 3.根据权利要求2所述的强电介质膜的制造方法,其中,所述强电介质膜是Ti组成比&组成多、且将Ti组成中2. 5摩尔%以上40摩尔%以下置换成Nb的PZT类强电介质膜,所述强电介质膜包含0. 5摩尔%以上Si。 The method of manufacturing a ferroelectric film according to claim 2, wherein said ferroelectric film is composed of more than & Ti composition, and the composition of Ti in the above 40 mol% 2.5 mol% or less of Nb replacing PZT type ferroelectric film, the ferroelectric film containing more than 0.5 mol% Si.
  4. 4.根据权利要求3所述的强电介质膜的制造方法,其中, 所述Si为不到5摩尔%。 The method of manufacturing a ferroelectric film according to claim 3, wherein the Si is less than 5 mol%.
  5. 5.根据权利要求2所述的强电介质膜的制造方法,其中,在所述溶胶凝胶溶液中添加有PbSi03硅酸盐5摩尔%、琥珀酸甲酯,将pH设为6。 5. The method of manufacturing a ferroelectric film according to claim 2, wherein said sol gel solution is added, there PbSi03 silicate 5 mol%, methyl succinate, the pH was set to 6.
  6. 6.根据权利要求1所述的强电介质膜的制造方法,其中,在设作为A侧的构成元素的Pb的化学量理论组成为1的情况下,所述溶胶凝胶溶液包括0.9〜1.2范围内的Pb。 6. The method of manufacturing a ferroelectric film according to claim 1, wherein, in the stoichiometric Pb is provided as a constituent element of the composition of the A-side is 1, and the sol-gel solution comprises a range of 0.9~1.2 Pb inside.
  7. 7.根据权利要求1所述的强电介质膜的制造方法,其中, 包括所述强电介质膜的结晶工序;所述结晶工序的温度为700°C以下的能够元件化的温度范围。 The method of manufacturing a ferroelectric film according to claim 1, wherein said ferroelectric film comprises a crystallization step; step is the crystallization temperature of the element can be a temperature range to 700 ° C is.
  8. 8. 一种强电介质电容器的制造方法,包括: 在基体上形成下部电极的工序;在所述下部电极上使用权利要求1〜20中任一项所述的制造方法形成强电介质膜的工序;在所述强电介质膜上形成上部电极的工序。 A method of manufacturing a ferroelectric capacitor, comprising: a step of forming a lower electrode on a substrate; used on the lower electrode as claimed in claim 1~20 manufacturing method according to any one of the step of forming a ferroelectric film; step upper electrode formed on the ferroelectric film.
  9. 9. 一种强电介质存储器的制造方法,使用权利要求8的制造方法。 9. A method of manufacturing a ferroelectric memory using a manufacturing method as claimed in claim 8.
  10. 10. 一种半导体元件的制造方法,使用权利要求1〜7中任一项所述的制造方法。 10. A method of manufacturing a semiconductor device, using the production method according to claim any one of claims 1~7.
  11. 11. 一种压电元件的制造方法,使用权利要求1〜7中任一项所述的制造方法。 11. A method of manufacturing a piezoelectric element, using the production method according to claim any one of claims 1~7.
  12. 12. —种压电执行元件的制造方法,使用权利要求11所述的制造方法。 12. - The method of manufacturing a manufacturing method, as claimed in claim piezoelectric actuator species.
  13. 13. 一种液体喷射头的制造方法,使用权利要求12所述的制造方法。 13. A method of manufacturing a liquid jet head, using the claimed manufacturing method according to claim 12.
CN 200610172524 2002-10-24 2003-10-23 Method for fabricating ferroelectric film and ferroelectric capacitor CN1983462B (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2002-309487 2002-10-24
JP2002309487 2002-10-24
JP2003-76129 2003-03-19
JP2003076129 2003-03-19
JP2003-85791 2003-03-26
JP2003085791 2003-03-26
JP2003294072 2003-08-18
JP2003-294072 2003-08-18
JP2003-302900 2003-08-27
JP2003302900A JP3791614B2 (en) 2002-10-24 2003-08-27 A ferroelectric film, a ferroelectric memory device, a piezoelectric element, a semiconductor element, a piezoelectric actuator, a liquid ejecting head and a printer
CN200380101906.22003.10.23 2003-10-23

Publications (2)

Publication Number Publication Date
CN1983462A true CN1983462A (en) 2007-06-20
CN1983462B true CN1983462B (en) 2010-11-03

Family

ID=35578648

Family Applications (4)

Application Number Title Priority Date Filing Date
CN 200610172525 CN100449688C (en) 2002-10-24 2003-10-23 Method for fabricating ferroelectric capacitor
CN 200380101906 CN1329927C (en) 2002-10-24 2003-10-23 Ferroelectric film and ferroelectric memory
CN 200610172524 CN1983462B (en) 2002-10-24 2003-10-23 Method for fabricating ferroelectric film and ferroelectric capacitor
CN 200610172526 CN1983464B (en) 2002-10-24 2003-10-23 Ferroelectric film, ferroelectric capacitor, ferroelectric memory, piezoelectric element and semiconductor element

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN 200610172525 CN100449688C (en) 2002-10-24 2003-10-23 Method for fabricating ferroelectric capacitor
CN 200380101906 CN1329927C (en) 2002-10-24 2003-10-23 Ferroelectric film and ferroelectric memory

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 200610172526 CN1983464B (en) 2002-10-24 2003-10-23 Ferroelectric film, ferroelectric capacitor, ferroelectric memory, piezoelectric element and semiconductor element

Country Status (1)

Country Link
CN (4) CN100449688C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918542B2 (en) 2006-09-15 2011-04-05 Fujifilm Corporation Perovskite oxide, process for producing the perovskite oxide, piezoelectric body, piezoelectric device, and liquid discharge device
JP2015065430A (en) * 2013-08-27 2015-04-09 三菱マテリアル株式会社 PNbZT THIN FILM MANUFACTURING METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978207A (en) 1996-10-30 1999-11-02 The Research Foundation Of The State University Of New York Thin film capacitor
GB2357281A (en) 1999-12-16 2001-06-20 Univ Cranfield Fabrication of ceramic films

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100333669B1 (en) 1999-06-28 2002-04-24 박종섭 Method for forming pnzt solution and method for forming ferroelectric capacitor using the same solution
EP1071121A1 (en) 1999-07-19 2001-01-24 Infineon Technologies AG Process for the formation of a collar oxide in a trench in a semiconductor substrate
KR20010030023A (en) 1999-08-20 2001-04-16 마츠시타 덴끼 산교 가부시키가이샤 Dielectric film and method of manufacturing the same
DE10000005C1 (en) 2000-01-03 2001-09-13 Infineon Technologies Ag A process for producing a ferroelectric semiconductor memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978207A (en) 1996-10-30 1999-11-02 The Research Foundation Of The State University Of New York Thin film capacitor
GB2357281A (en) 1999-12-16 2001-06-20 Univ Cranfield Fabrication of ceramic films

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 6337032 B1,全文.

Also Published As

Publication number Publication date Type
CN1983519A (en) 2007-06-20 application
CN100449688C (en) 2009-01-07 grant
CN1983462A (en) 2007-06-20 application
CN1329927C (en) 2007-08-01 grant
CN1706007A (en) 2005-12-07 application
CN1983464B (en) 2010-12-08 grant
CN1983464A (en) 2007-06-20 application

Similar Documents

Publication Publication Date Title
Nakamura et al. Preparation of Pb (Zr, Ti) O3 thin films on Ir and IrO2 electrodes
US6229166B1 (en) Ferroelectric random access memory device and fabrication method therefor
US6194228B1 (en) Electronic device having perovskite-type oxide film, production thereof, and ferroelectric capacitor
US6153898A (en) Ferroelectric capacitor, method of manufacturing same and memory cell using same
US20080074471A1 (en) Perovskite oxide, process for producing the perovskite oxide, piezoelectric body, piezoelectric device, and liquid discharge device
US6281534B1 (en) Low imprint ferroelectric material for long retention memory and method of making the same
US5998819A (en) Thin ferroelectric film element having a multi-layered thin ferroelectric film and method for manufacturing the same
US20030227803A1 (en) Ferroelectric memory device and method of manufacturing the same
US6162293A (en) Method for manufacturing ferroelectric thin film, substrate covered with ferroelectric thin film, and capacitor
US20070296008A1 (en) Semiconductor device
US20020185668A1 (en) Semiconductor device having a ferroelectric capacitor and fabrication process thereof
JP2002057301A (en) Semiconductor device and its manufacturing method
US6855974B2 (en) Ferroelectric capacitor, process for production thereof and semiconductor device using the same
JP2006073648A (en) Semiconductor device and its manufacturing method
JP2006176366A (en) Ferroelectric material, method of manufacturing the same and ferroelectric memory
US20040214352A1 (en) Ferroelectric film, ferroelectric capacitor, ferroelectric memory, piezoelectric element, semiconductor element, method of manufacturing ferroelectric film, and method of manufacturing ferroelectric capacitor
JP2005183841A (en) Manufacturing method of semiconductor device
JP2009010367A (en) Piezoelectric element, method of manufacturing piezoelectric element, piezoelectric actuator, and inkjet recording head
JP2000208725A (en) Semiconductor device and its manufacture
US7048360B2 (en) Piezoelectric body, manufacturing method thereof, piezoelectric element having the piezoelectric body, inject head, and inject type recording device
US20070228431A1 (en) Semiconductor device and its manufacturing method
US20040241501A1 (en) Ferroelectric film, method of manufacturing the same, ferroelectric memory and piezoelectric device
US7456548B2 (en) Piezoelectric element, piezoelectric actuator, and ink jet recording head
JP2001210794A (en) Ferroelectric memory material
US20070170053A1 (en) Insulating target material, method of manufacturing insulating target material, conductive complex oxide film, and device

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted