CN1960118B - Power generation system of hybrid energy sources based on photovoltaic effect, and thermoelectric effect of solar energy - Google Patents

Power generation system of hybrid energy sources based on photovoltaic effect, and thermoelectric effect of solar energy Download PDF

Info

Publication number
CN1960118B
CN1960118B CN 200610114707 CN200610114707A CN1960118B CN 1960118 B CN1960118 B CN 1960118B CN 200610114707 CN200610114707 CN 200610114707 CN 200610114707 A CN200610114707 A CN 200610114707A CN 1960118 B CN1960118 B CN 1960118B
Authority
CN
China
Prior art keywords
lithium ion
power generation
circuit
generation module
photovoltaic
Prior art date
Application number
CN 200610114707
Other languages
Chinese (zh)
Other versions
CN1960118A (en
Inventor
尚永红
李艳秋
Original Assignee
中国科学院电工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院电工研究所 filed Critical 中国科学院电工研究所
Priority to CN 200610114707 priority Critical patent/CN1960118B/en
Publication of CN1960118A publication Critical patent/CN1960118A/en
Application granted granted Critical
Publication of CN1960118B publication Critical patent/CN1960118B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion electric or electronic aspects
    • Y02E10/566Power conversion electric or electronic aspects concerning power management inside the plant, e.g. battery charging/discharging, economical operation, hybridisation with other energy sources

Abstract

The system mainly consists of the solar energy photo-volt battery (PV) and the semi-conductor thermo electric generator module (SG). The hot end insulated heat-lead board of SG contacts with the bottom electrode of PV via the heat-lead silica gel. PV and SG connect to the power supply circuit via a lead. The hot end insulated heat-lead board of SG contacts with the radiator via the heat-lead silica gel. The energy produced by PV and the energy output by SG and boosted by a DC/DC circuit are stored respectively into the different lithium ion batteries. Via control and distribution by the consequent power circuit, these energies are converted into the DC working voltage. The invention utilizes fully the low-level heat energy and solves the problem of PV performance under hi temperature. Theinvention raises the generating efficiency and extends PV life.

Description

基于太阳能光伏效应和热电效应的混合能源发电系统 Hybrid solar energy generation system photovoltaic effect and pyroelectric effect

技术领域 FIELD

[0001] 本发明涉及一种混合能源发电系统,特别涉及一种基于太阳能光伏效应和热电效应的混合能源发电系统。 [0001] The present invention relates to a hybrid energy generation systems, and more particularly to hybrid solar energy power generation system based on a photovoltaic effect and pyroelectric effect.

背景技术 Background technique

[0002] 太阳能光伏电池是由光电效应把光能转化成电能的装置,光伏电池的工作原理是:太阳光照在半导体PN结上形成空穴-电子对,在PN结电场的作用下,空穴由N区流向P区,电子由P区流向N区,接通电路后就形成电流。 [0002] Solar cells are photovoltaic effect by the photoelectric conversion of light energy into electrical energy to the working principle of a photovoltaic cell is: sunlight holes formed on the semiconductor PN junction - electrons, under the influence of the electric field of the PN junction, holes flow from the region P N region, the flow of electrons from the P region N area, connected to the circuit after the formation of a current. 通过改变PN结的串并联形式可以获得不同数值的输出电压,改变光伏电池的面积可以获得不同的输出功率。 Output voltage can be obtained by varying different values ​​of series and parallel form a PN junction, a photovoltaic cell area can be changed to obtain different output power. 它是一种清洁、 可再生能源。 It is a clean, renewable energy.

[0003] 目前投入大规模商业化应用的主要是硅系太阳能电池,硅系光伏电池表面为深色,吸收一定的太阳辐射后电池温度会升高。 [0003] At present large-scale commercial application of silicon-based solar cells mainly, silicon-based photovoltaic cell surface as a dark, solar radiation absorbing certain the battery temperature rises. 如文献1 :《太阳能建材技术的研究与开发(I)——光伏屋顶热性能的调查》(赵春江、崔容强,太阳能学报,2003年第24卷第3期: 352-356)中介绍:对单晶硅光伏电池进行测试,在环境温度为33〜35°C时,光伏电池的背面温度与环境的温差变化数值从早上9点到下午3点变化范围为5〜20°C ;文献2 :《太阳光伏阵列的温度与红外特性分析》(王培珍、沈玉樑、杨维翰,太阳能学报,2005年第26卷第1期:82-85)提出:在冬季1月份环境温度为0°C时,硅光伏电池组件正常工作部分温度为12°C,在春季4月份环境温度约为22°C时,电池组件正常工作部分的温度为46°C,这使得光伏电池背温与环境有10〜15°C的温差。 As Document 1: "solar building technology research and development (I) - investigation of thermal properties of photovoltaic roofs" (Zhao Chunjiang, Rong-Qiang Cui, Solar Technology, 2003, Volume 24, No. 3: 352-356) described: for Monocrystalline cells tested at an ambient temperature of 33~35 ° C, temperature changes and environmental value of the back surface of the photovoltaic cell temperature of from 9:00 to 15:00 range of 5~20 ° C; Document 2: "temperature infrared spectroscopic analysis of the solar PV array" (Wangpei Zhen, Chen Yuliang, Yang Weihan, solar Technology, 2005, volume 26, No. 1: 82-85) stated: January when winter ambient temperature of 0 ° C, silicon photovoltaic working temperature of the battery assembly portion normally 12 ° C, at about ambient temperature spring April 22 ° C, the temperature of the battery assembly work portion is 46 ° C, which makes the photovoltaic cell and a back temperature environment 10~15 ° C the temperature difference.

[0004] 光伏电池的温度直接影响了光伏电池的输出电压、转换效率及使用寿命。 Temperature [0004] The photovoltaic cell directly affects the output voltage of the photovoltaic cell, the conversion efficiency and service life. 因此要使光伏电池保持在较低温度下工作,提高其输出功率。 For holding the photovoltaic cell thus operate at lower temperatures, increase its power output.

[0005] 半导体温差发电是由赛贝克效应把热能转换为电能的装置,它的工作原理是:由N型和P型半导体串联构成的回路中若两个接头处存在温度梯度,高温端空穴和电子浓度较低温端高,在载流子浓度梯度的驱动下,空穴和电子向低温端扩散,从而在高、低温端形成电势差,当回路接通时会有电流输出。 [0005] The semiconductor thermoelectric power generation by the Seebeck effect to convert thermal energy into electric energy, it works is: if there is a temperature gradient at the two terminals, the high temperature end of the hole-type and N-type semiconductor P series circuit composed of low temperature side and high electron concentration, the carrier concentration in the gradient driving diffusion of electrons and holes to the low temperature end, such that the high and low end potential difference is formed, will be turned on when the loop current output. 将多对P型和N型热电半导体材料连接起来组成模块就可获得不同数值的输出电压和功率。 Connecting a plurality of pairs of P-type and N-type thermoelectric semiconductor material together to form the module can be obtained in different voltage and power output values.

[0006] 目前,太阳能光伏发电和温差发电技术已经商业化,尤其是太阳能光伏发电获得了广泛的应用,而温差发电技术则应用在热端温度较高的情形,没有直接利用光伏电池背温作为温差发电动力。 [0006] Currently, solar photovoltaic and thermoelectric power generation technology has been commercialized, in particular solar photovoltaic power generation has been widely applied, and the temperature difference power generation technology is applied in the case of the higher temperature of the hot end, there is no direct use of the photovoltaic cell temperature as a back Thermoelectric Generator power. 我国大多数地区日照时间相对较长,太阳能资源丰富,将利用太阳能光伏电池背温作为发电动力的温差发电系统与太阳能光伏发电系统组成混合发电系统,不仅充分利用了太阳能光伏发电这种清洁能源,也解决了光伏电池背温过高影响发电效率的电池散热问题,为半导体温差发电开辟了新的应用空间,具有节能、无污染、安全稳定性高等优点。 Our relatively long duration of sunshine in most areas, rich in solar energy resources, the use of solar photovoltaic cells back Temperature Thermoelectric Generator and solar photovoltaic power generation system as a component hybrid power system, not only makes full use of solar photovoltaic power generation clean energy, but also solve the problem of cooling the battery back photovoltaic cell temperature is too high impact power generation efficiency for the semiconductor thermoelectric power generation opens up new application space, energy saving, pollution-free, security and stability advantages.

[0007] 美国专利US3,956,017提出了一种由太阳能光伏电池和温差发电模块组成的光电换能器,如图1所示。 [0007] U.S. Patent No. US3,956,017 proposes a photoelectric transducer by a thermoelectric power generation solar photovoltaic cells and modules, as shown in FIG. 其特征在于利用固定在光伏电池底部、具有高热导率的金属材料将光伏电池产生的热量传递给温差发电模块,该专利的优点是金属导热层增大了光伏电池与 Characterized in that the transfer of heat generated by the photovoltaic cell to a thermoelectric power generation module metal material fixed to the bottom photovoltaic cell having a high thermal conductivity, the advantage of this patent is a metallic heat conducting layer is increased and a photovoltaic cell

3温差发电模块间的热传导,使光伏电池将热量更多的传递给温差发电模块,但是受温差电材料的性能制约,温差发电模块在较低温差(<30°C)条件下发电性能较差,若要获得满足负载需求的工作电压和电流,必须将多对PN结串并联,而该专利金属导热层的设计却没有考虑到光伏电池和温差发电模块、温差发电模块内PN结电极间的电绝缘问题。 3 thermal conduction between the thermoelectric power generation module, photovoltaic cells more heat transferred to the thermoelectric power generation module, but constrained by the performance of the thermoelectric material, the thermoelectric power generation performance at the power generation module poor (<30 ° C) at a lower temperature differential condition , to obtain the operating voltage and current to meet the load demand, a plurality of PN junction must series-parallel, and the design of the heat-conducting metal layer patent did not take into account the temperature difference power generation module and the photovoltaic cells, the PN junction between the electrodes in the thermoelectric power generation module electrical insulation problems. 并且金属导热层也增加了微能源发电系统的生产成本和结构复杂度。 And heat-conducting metal layer also increases the production cost and structural complexity of the micro power generation system.

发明内容 SUMMARY

[0008] 本发明的目的是克服现有温差发电技术在较低温差下无法获得负载需要的工作电压和电流的缺点,提出一种新的由太阳能光伏电池和半导体温差发电模块构成的混合能源系统。 [0008] The object of the present invention is to overcome the disadvantages of the prior art thermoelectric power can not be obtained at a lower temperature difference between the operating voltage and current required by the load, and a novel hybrid system consisting of solar energy photovoltaic cell and semiconductor thermoelectric power generation module .

[0009] 本发明在温差发电模块上加上绝缘导热陶瓷,光伏电池和温差发电模块间用绝缘导热硅胶相联,将带电的光伏电池和温差发电器分离,解决了绝缘和传热的问题。 [0009] In the present invention, a thermoelectric power generation module coupled interlayer insulating thermally conductive ceramic, photovoltaic cells and thermoelectric power generation module associated with an insulating thermal silica, photovoltaic cell and the charged separation thermoelectric generators, solves the problem of insulation and heat transfer. 冷端通过添加散热器来增大温差。 Cold end temperature difference is increased by the addition of a heat sink.

[0010] 本发明体积小,携带方便,可应用到为野外以及军事、航空等技术领域中的微型装置如无线传感器网络、照明等装置提供电源,也适合用于远离电网,独立的小功率用电系统,对于野外旅游、孤岛供电等有较好的应用前景。 [0010] The present invention is small, easy to carry, can be applied to provide power to the field and Field military, aerospace and other micro-device in wireless sensor networks, lighting means, also suitable for use away from the grid, with a small independent power electrical systems for the field of tourism, electricity and other island has good prospects.

[0011] 本发明包括太阳能光伏电池、半导体温差发电模块和电源电路,半导体温差发电模块热端与太阳能光伏电池背面通过导热硅胶相连,光伏电池和温差发电模块通过导线与电源电路相连。 [0011] The present invention includes a solar photovoltaic cells, thermoelectric power generation module and a power semiconductor circuit, a semiconductor thermoelectric power generation module and the hot end of the back surface of the solar photovoltaic cell are connected by thermal silica, photovoltaic cells and thermoelectric power generation module is connected by a wire to the power supply circuit. 太阳能光伏电池向阳面用树脂封装,电池背面用导热铜片封装;半导体温差发电模块冷、热端为绝缘导热性能优良的氧化铝陶瓷片,边缘设有保温模套。 The sunny side of photovoltaic solar cells sealed with a resin, the back of the battery package with a thermally conductive copper; semiconductor thermoelectric power generation module hot and cold side is excellent in thermal insulation performance of alumina ceramic sheets, incubated with the edge of the die case. 在与光伏电池背面接触的热端氧化铝绝缘陶瓷片上均勻涂覆导热硅胶,以增大光伏电池与半导体温差发电模块间的热传导。 At the hot end in contact with the back surface of the photovoltaic cell thermal silica alumina uniform coating on the insulating ceramic sheet, in order to increase the heat conduction between the photovoltaic cell and semiconductor thermoelectric power generation module. 半导体温差发电模块冷端设有散热器以保持与外接环境温度一致。 Thermoelectric power generation module is provided with a heat sink to the cold end consistent with the external ambient temperature. 所述的电源电路设有:接在半导体温差发电模块输出端的DC/DC升压电路;锂离子电池恒流恒压充电电路;以及由A/D转换器、单片机和控制开关组成的切换电路。 The power supply circuit is provided with: a semiconductor thermoelectric power generation module connected to the output terminal of the DC / DC boost circuit; lithium ion battery constant current constant voltage charging circuit; and a switching circuit by the A / D converter, the microcontroller and the control switch thereof.

[0012] 本发明的原理是:光伏电池吸收太阳光线,将光能转化成电能输出。 Principle [0012] The present invention is: a photovoltaic solar cells absorb light, the output light energy into electrical energy. 而光伏电池吸收太阳光后温度升高成为半导体温差发电模块的热源,将热量源源不断地通过导热硅胶传递给半导体温差发电模块,在半导体温差发电模块的冷端使用铝质肋片风冷式散热器,使冷端温度始终低于热端温度,在P型、N型半导体间形成温度梯度,即可实现温差发电。 The photovoltaic cell absorbs sunlight and the temperature rises to become a heat source of the semiconductor thermoelectric power generation module, a steady stream of heat transferred to the semiconductor thermoelectric power generation module by thermal silica, aluminum using air cooling fins of the semiconductor at the cold end of the thermoelectric power generation module is the cold end temperature is always lower than the temperature of the hot end, a temperature gradient between the P-type, N-type semiconductor thermoelectric power generation can be realized. 由半导体温差电源输出的直流电压,根据负载用电需求和锂离子蓄电池充电要求,通过DC/DC 升压电路输出高于4. 2V的直流电压,经过升压电路后将电量输送给锂离子蓄电池B储存起来。 Thermoelectric power supply DC voltage output according to the load power demand and lithium ion battery charge request, the DC / DC boost circuit output voltage is higher than the DC 4. 2V, after the booster circuit after the power is supplied to the lithium ion battery B stored. 太阳能光伏的能量密度较高,在白天日照强烈时不仅能满足负载的用电需求,还可将大量的电能存储在锂离子蓄电池A中。 PV higher energy density, in strong sunlight during the day not only to meet the electricity demand of the load, it may also be lithium ion battery A large number of energy storage. 当太阳能光伏电池输出的电压低于3V不能满足负载用电需求时,锂离子蓄电池A则通过切换电路放电为负载输出直流电压。 When the voltage output from the solar photovoltaic cells is less than 3V not meet the load demand for electricity, the lithium ion battery A is discharged to the load through the switching circuit output DC voltage. 当锂离子蓄电池A中的电量也不能满足负载用电需求时,可通过切换电路将锂离子蓄电池B作为电源,以上所述的混合电源电力输出切换功能是由状态切换电路实现的,这样的电路设计是为了保证电源系统能够持续稳定的为用电负载供应电力。 A lithium-ion battery when the power in the load can not meet the demand for electricity, the switching circuit by the power source as a lithium ion secondary battery B, hybrid power supply switching function described above, such a circuit switching circuit implemented by a state It is designed to ensure that the power supply is a steady supply of electrical power load.

[0013] 本发明是一种适用于小功率、小体积用电负载的混合电源,它充分利用了太阳的光能和热能,本发明还具有如下的优点: [0013] The present invention is suitable for low power, small hybrid power electrical loads, which makes full use of solar heat and light, the present invention has the following advantages:

[0014] 1、充分利用了由于光照引起的光伏电池温升,将热能转化为电能;同时及时将热量传递给温差发电模块,解决了光伏电池散热问题,避免由于温度高而引起的输出功率降低。 [0014] 1, full use of the photovoltaic cell temperature due to light-induced, thermal energy into electrical energy; simultaneously in time to transfer heat to a thermoelectric power generation module, a photovoltaic cell to solve the heat dissipation problem, due to high output power to avoid temperature reduction due to .

[0015] 2、混合能源的体积较小,适用于对功能单元体积要求小的用电系统;输出功率可根据用电负载灵活调节。 [0015] 2, the small volume of the mixing energy for electrical functional units of the system requiring a small volume; the output power can be flexibly adjusted according to the electrical load.

[0016] 3、混合电源电路逻辑设计合理,能实现直接输出供负载用电和电能存储;充、放电路具有防过充、过放、回流、过温等功能,保证了锂离子蓄电池和用电负载的正常工作;能实现混合电源供电和锂离子蓄电池供电自动切换,减少了操作复杂性。 [0016] 3, hybrid power circuit logic design is reasonable, can direct the output power and power storage for load; charge and discharge circuit against overcharging, over-discharge, at reflux, over temperature and other functions, and to ensure that the lithium ion secondary battery with normal operating load; to achieve mixing and the lithium ion battery power supply is automatically switched power supply, reducing the complexity of operation.

[0017] 4、可常年置于户外,当混合能源供能充足时,可实现为锂离子蓄电池和用电负载同时供电;当混合能源供能不足时,则由锂离子蓄电池为用电负载供电。 [0017] 4, perennial placed outdoors, when energized sufficient mixing energy, may be implemented as a lithium ion battery and electrical power while the load; energy when energized insufficient mixing, by lithium-ion battery to power electrical loads . 则在多个阴雨天均能连续工作,对需要实时工作的用电系统具有特殊的意义。 The continuous rainy days can work more, has a special significance for the electricity system needs to work in real time.

附图说明 BRIEF DESCRIPTION

[0018] 以下结合附图和具体实施方式进一步说明本发明。 [0018] The present invention is described further below in conjunction with the accompanying drawings and specific embodiments.

[0019] 图1为美国专利US3,956,017的混合电源结构示意图。 [0019] FIG. 1 is a schematic view of a hybrid power of U.S. Patent No. US3,956,017.

[0020] 图2为太阳能光伏电池截面示意图,图中:100为光伏电池,101为上电极,102为减反射膜,103为N型半导体,104为P型半导体,105为下电极。 [0020] FIG. 2 is a schematic cross-sectional solar photovoltaic cells, figure: a photovoltaic cell 100, an upper electrode 101, 102 is an antireflective film, N-type semiconductor 103, 104 is a P-type semiconductor, the lower electrode 105.

[0021] 图3为半导体温差发电模块结构示意图,图中:200为温差发电模块,201为冷端绝缘导热板,202为热端绝缘导热板,203为导流片,204为N型半导体,205为P型半导体。 [0021] FIG. 3 is a schematic structure of a semiconductor thermoelectric power generation module, figure: 200 is a thermoelectric power module, thermal insulation plate 201 of the cold end, thermal insulation plate 202 is a hot end, baffle 203, 204 is an N-type semiconductor, 205 is a P-type semiconductor.

[0022] 图4为由太阳能光伏电池和半导体温差发电模块构成的混合能源,图中:301为散热器。 Mixing energy [0022] FIG. 4 by solar photovoltaic cells and semiconductor thermoelectric power generation module configuration, FIG: 301 radiator.

[0023] 图5为电路逻辑原理框图,图中:401为DC/DC升压电路,402为锂离子蓄电池1, 403为A/D转换器,404为锂离子蓄电池2,405为控制开关,406为单片机,407为稳压电路, 408为负载。 [0023] FIG. 5 is a block diagram of a logic circuit, figure: 401 is a DC / DC boost circuit 402 is a lithium ion battery 1, 403 A / D converter, 404 is a lithium-ion battery is 2,405 control switch, 406 for the microcontroller 407 for the regulator circuit 408 to the load.

具体实施方式 Detailed ways

[0024] 图2为太阳能光伏电池结构示意图,太阳光透过减反射膜[102]照在半导体P[104]、N[103]结上形成新的空穴-电子对,在结电场的作用下空穴由N区流向P区,电子由P区流向N区,将上电极[101]和下电极[105]接通电路后就能输出电流。 [0024] FIG. 2 is a schematic view of a photovoltaic solar cell structure, sunlight [102] as a hole formed on the semiconductor new P [104], N [103] through the antireflection film junction - electrons, the electric field at the joint the holes flow from the N region P region, the flow of electrons from the P region N region, an upper electrode [101] and the lower electrode [105] is connected to the circuit will be able to output current. 一对PN结的工作电压约在0. 45〜0. 5V,工作电流约在20〜25mA/cm2。 One pair of PN junction of the operating voltage of about 0. 45~0. 5V, the operating current of about 20~25mA / cm2.

[0025] 图3半导体温差发电模块结构示意图,由N型[204]和P[205]型半导体串联构成的回路中,热端绝缘导热板[202]的温度高于冷端绝缘导热板[201],在载流子浓度梯度的驱动下,空穴和电子向低温端扩散从而形成电势差,当使用导流片[203]接通回路时会有电流输出。 [0025] Fig 3 a schematic view of a semiconductor thermoelectric power generation module structure, an N-type [204] and P [205] type semiconductor series circuit configuration, the end temperature of the heat insulating and thermally conductive plate [202] is higher than the cold end of the thermal insulation plate [201 ], in the carrier concentration gradient driving diffusion of electrons and holes to the lower temperature side so as to form a potential difference when a sheet guide [203] will be turned on when the output current loop. 一对PN结的工作电压为V= α (T1-T2), α是塞贝克系数由材料属性决定,Ί\、 One pair of PN junction operating voltage of V = α (T1-T2), α is the Seebeck coefficient determined by the material properties, Ί \,

T2为热、冷端温度;工作电流为7 = I2),Rl> R为温差发电模块内阻和负载电阻。 T2 is hot, the temperature of the cold end; operating current 7 = I2), Rl> R is the internal resistance of the thermoelectric power generation module and the load resistance.

Rl+R Rl + R

[0026] 若要获得满足负载需求功率的光伏电池组件和温差发电模块,就需要分别将光伏电池和温差发电模块中的多个PN结串并联后使用,它们遵循串联电流不变电压叠加、并联电压不变电流叠加的原则。 [0026] To meet the load demand power obtained photovoltaic cell assembly modules and thermoelectric power generation, it is necessary to separately use of photovoltaic cells and thermoelectric power generation module in a plurality of series-parallel after the PN junction, they follow the same series current voltage is superimposed, parallel voltage constant current principle of superposition.

[0027] 如图4所示,太阳能光伏电池[100]的下电极[105]与半导体温差发电模块[200] , The solar photovoltaic cell [0027] Figure 4 [100] of the lower electrode [105] and the semiconductor thermoelectric power generation module [200]

5的热端绝缘导热板[202]通过导热硅胶紧密粘合在一起,以便将太阳能光伏电池[100]吸收的热量无损失、快速地传递给半导体温差发电模块[200]。 5 thermal insulating and thermally conductive end plates [202] by thermal silica closely bonded to the solar photovoltaic cells [100] without any loss of heat absorption, quickly transferred to the semiconductor thermoelectric power generation module [200]. 半导体温差发电模块[200]的冷端绝缘导热板板[201]与铝质散热器[301]通过导热硅胶紧密粘合在一起,铝质散热器[301]的作用是将由热端传导过来的热量、半导体发电模块[200]自身产生的焦耳热和汤姆逊热导出,使得半导体发电模块[200]冷端温度与环境温度一致,保证半导体发电模块[200]冷、热端有一定的温度梯度。 Thermoelectric power generation module [200] of the thermal insulation plate board cold end [201] and aluminum heat sink [301] by a thermally conductive closely bonded silica, aluminum radiator action [301] by the end of the heat conduction over heat, the semiconductor power module [200] itself generates Joule heat and Thomson heat removal, so that the semiconductor power module [200] is consistent cold junction temperature and ambient temperature, to ensure that the semiconductor power module [200] of hot and cold ends of a certain temperature gradient .

[0028] 本发明是将太阳能光伏电池[100]和半导体温差发电模块[200]通过电路并联的形式构成混合能源。 [0028] The present invention is a solar photovoltaic cell [100] and the semiconductor thermoelectric power generation module [200] configured in the form of energy mixing circuit in parallel. 如图5所示,光伏电池[100]输出端直接连接锂离子蓄电池A[402]、 A/D转换器[403]和控制开关[405];而半导体温差发电模块[200]输出端直接连接DC/DC 升压电路[401]后与锂离子蓄电池B [404]连接,锂离子蓄电池B [404]再分别与A/D转换器[403]和控制开关[405]连接。 5, the photovoltaic cell [100] is connected directly to the output terminal of the lithium ion battery A [402], A / D converter [403] and the control switch [405]; and [200] an output terminal directly connected to the semiconductor thermoelectric power generation module DC / DC boost circuit [401] after the lithium-ion secondary battery B [404] is connected to a lithium ion secondary battery B [404], respectively, and then the A / D converter [403] and the control switch [405] is connected. A/D转换器[403]在检测到光伏电池[100]、锂离子蓄电池A[402]和锂离子蓄电池B[404]的输出电压后,将信号送给单片机[406],由单片机根据固有的程序设计控制开关电路[405]的通断电路,实现三种电源光伏电池[100]、锂离子蓄电池A[402]和锂离子蓄电池B[404]的交替供电,使得负载[408]在有无光照时均能不间断的工作。 After the A / D converter [403] in the photovoltaic cell is detected [100], the lithium ion battery A [402] and the output voltage of a lithium ion secondary battery B [404], the microcontroller sends a signal to [406], by the microcontroller according to the inherent alternately switching the power supply control circuit programming [405]-off circuit, three power photovoltaic cell [100], the lithium ion battery a [402] and the lithium ion secondary battery B [404], so that the load [408] in when the presence or absence of light can work uninterrupted.

[0029] 本发明曾以无线传感器节点为负载进行了实验,无线传感器节点的工作电压在2. 7V〜5. 0V,平均工作电流为8mA。 [0029] The present invention, once the wireless sensor node operating voltage experiment, the wireless sensor node is supported 2. 7V~5. 0V, the average operating current of 8mA. 具体参数如下: Specific parameters are as follows:

[0030] 1、单晶硅光伏电池[100]:实验中选择的是63mmX69mmX3. 12mm的单晶硅光伏电池,在AMI. 5,t = 25°C条件下,开路电压是7. 11V,短路电流是93. 78mA。 [0030] 1, single crystal silicon photovoltaic cell [100]: The experiment was selected 63mmX69mmX3 12mm single crystal silicon photovoltaic cells, under AMI 5, t = 25 ° C conditions, the open circuit voltage is 7. 11V, the short-circuit. current is 93. 78mA. 晴朗天气条件下, 该电池的输出电压在3. 8〜4. 5V,输出电流在50mA〜60mA (随日照强度变化)。 Under clear weather conditions, the output voltage of the battery 3. 8~4. 5V, the output current 50mA~60mA (with sunshine intensity variation).

[0031] 2、半导体温差发电模块[200]:实验中选择的是由4片30mmX30mmX3. 92mm串联构成的温差发电模块,每片又由126对热电偶串联构成。 [0031] 2, a semiconductor thermoelectric power generation module [200]: experiments thermoelectric power generation module is selected by the four 30mmX30mmX3 92mm in series, each sheet in turn from the 126 pairs of thermocouples connected in series. 如文献1中介绍,在环境温度为33〜35°C时,光伏电池的背面温度与环境的温差变化数值从早上9点到下午3点变化范围为5〜20°C,因此估算该发电模块在冷、热端温差在5°C、10°C和20°C时能获得的开路电压分别为0. 97V、1. 95V 和3. 91V,最大输出电流为16. 67mA,33. 33mA 和66. 67mA。 As described in the literature 1, when the ambient temperature is 33~35 ° C, temperature changes and environmental value of the back surface of the photovoltaic cell temperature of from 9:00 to 15:00 range of 5~20 ° C, so that the power estimation module in the cold, the open circuit voltage when the temperature difference between the warm end 5 ° C, 10 ° C and 20 ° C respectively to obtain 0. 97V, 1. 95V and 3. 91V, the maximum output current 16. 67mA, 33. 33mA and 66. 67mA.

[0032] 3、DC/DC升压电路:为了充分利用温差发电模块输出的电能,由半导体发电模块[200]输出电压经过DC/DC升压电路升压至大于4. 2V后为锂离子蓄电池B [404]充电,充电电流为IOmA〜30mA。 [0032] 3, DC / DC boost circuit: In order to make full use of the thermoelectric power generation module output power, a semiconductor power module [200] The output voltage DC / DC boost circuit of the voltage is greater than the lithium ion battery 4. 2V B [404], the charging current is IOmA~30mA.

[0033] 4、锂离子蓄电池充电电路:当光伏电池[100]输出电压高于4. 2V时,会以50mA〜 60mA(取决于日照强度)的充电电流为锂离子蓄电池A[402]充电;随着充电时间延长,电池电压升至4. 2V时,充电电路保护功能启动使蓄电池不再充电,而蓄电池输入端的防逆流二极管开始工作防止蓄电池电流回流。 [0033] 4, lithium ion battery charge circuit: when the photovoltaic cell [100] is higher than the output voltage of 4. 2V, will 50mA~ 60mA (depending on sunshine intensity) a charging current of the battery A lithium ion [402] charging; when the charging time is prolonged as the battery voltage rises 4. 2V, the circuit protection function is started charging the battery is no longer charged, and the battery input backflow preventing diode starts to work to prevent the battery current at reflux.

[0034] 5、状态切换电路:A/D转换器[403]在检测到光伏电池[100]、锂离子蓄电池A[402]和锂离子蓄电池B[404]的输出电压后,将信号送给单片机[406],由单片机根据固有的程序设计控制开关电路[405]的通断电路,实现三种电源光伏电池[100]、锂离子蓄电池A[402]和锂离子蓄电池B[404]的交替供电,使得负载[408]在有无光照时均能不间断的工作。 [0034] 5, the state of the switching circuit: the A / D converter [403] in the photovoltaic cell is detected [100], the lithium ion battery A [402] and the output voltage of a lithium ion secondary battery B [404], and sends a signal to SCM [406], off by the microcontroller according to the circuit design of the control program unique to the switching circuit [405], to achieve three power photovoltaic cell [100], the lithium ion battery a [402] and the lithium ion secondary battery B [404] of alternating power supply, so that the load [408] when the presence or absence of light can work uninterrupted. 为负载供电的电源设计优先级是:光伏电池[100]优先于锂离子蓄电池A[402], 锂离子蓄电池A [402]优先于锂离子蓄电池B [404]。 Priority designed to supply the load power is: a photovoltaic cell [100] in preference to the lithium ion battery A [402], the lithium ion battery A [402] in preference to the lithium ion battery B [404].

[0035] 6、稳压电路:该稳压电路是将光伏电池[100]输出的电压和锂离子蓄电池A[402]、锂离子蓄电池B[404]的输出电压稳定在3V,为负载提供直流电。 [0035] 6, regulator circuit: The regulator circuit is a photovoltaic cell [100] and the output voltage of the lithium ion battery A [402], a lithium ion secondary battery B [404] of the output voltage at 3V, DC power to the load . [0036] 本发明操作控制简单,只需根据负载用电需求合理设计光伏电池和半导体温差发电模块的PN结串并联形式,经过后续电源电路的控制即可获得用电负载工作所需的直流电压。 [0036] The operation control of the present invention is simple, just depending on the load power demand rational design of a series-parallel form a PN junction photovoltaic cell and semiconductor thermoelectric power generation module, after the control power supply circuit to obtain the subsequent desired DC voltage electrical load operation . 经过理论计算,若采用容量为HOOmAh的锂离子蓄电池A[402]和500mAh的锂离子蓄电池B[404]作为储能元件为无线传感器网络节点供电,可实现节点在5个阴雨天持续不间断工作。 Through theoretical calculations, the use of HOOmAh capacity of the lithium ion battery A lithium ion [402] and 500mAh battery B [404] as the energy storage element is powered wireless sensor network nodes, the nodes can be achieved in five days continued uninterrupted working rainy .

Claims (1)

  1. 一种基于太阳能光伏效应和热电效应的混合能源发电系统,包括太阳能光伏电池[100]、半导体温差发电模块[200]和电源电路;半导体温差发电模块[200]的热端绝缘导热板[202]与太阳能光伏电池[100]的底电极[105]通过导热硅胶相连,太阳能光伏电池[100]和半导体温差发电模块[200]通过导线与电源电路相连;半导体温差发电模块[200]的冷端绝缘导热板[201]与散热器[301]通过导热硅胶相连,其特征在于太阳能光伏电池[100]输出端直接连接锂离子蓄电池A[402]、A/D转换器[403]和控制开关[405];半导体温差发电模块[200]输出端直接连接DC/DC升压电路[401]后与锂离子蓄电池B[404]连接,锂离子蓄电池B[404]再分别与A/D转换器[403]和控制开关[405]连接;A/D转换器[403]在检测到光伏电池[100]、锂离子蓄电池A[402]和锂离子蓄电池B[404]的输出电压后,将信号送给单片机[406],由单片机根据固 A hybrid photovoltaic effect of the solar energy power generation system and the thermoelectric effects, including solar photovoltaic cells based on [100], a semiconductor thermoelectric power generation module [200], and a power supply circuit; Thermoelectric power generation module [200] thermally insulating and thermally conductive end plates [202] a bottom electrode [105] of the solar photovoltaic cell [100] by thermal silica connected solar photovoltaic cells [100] and the semiconductor thermoelectric power generation module [200] is connected by a wire to the power supply circuit; Thermoelectric power generation module [200] the cold end of the insulating heat conductive plate [201] and the heat sink [301] is connected by thermal silica, characterized in that the photovoltaic solar cell [100] is connected directly to the output terminal of the lithium ion battery A [402], A / D converter [403] and the control switch [405 ]; the [200] an output terminal directly connected to the semiconductor thermoelectric power generation module DC / DC boost circuit [401] and a lithium ion secondary battery B [404] is connected to a lithium ion secondary battery B [404], respectively, and then the A / D converter [403 ] and a control switch [405] connection; the output voltage of the a / D converter [403] in the photovoltaic cell is detected [100], the lithium ion battery a [402] and the lithium ion secondary battery B [404], and sends a signal to SCM [406], by the microcontroller according to the solid 的程序设计控制开关电路[405]的通断电路,实现光伏电池[100]、锂离子蓄电池A[402]和锂离子蓄电池B[404]的交替供电,使得负载[408]在有无光照时均能不间断的工作,为负载供电的电源设计优先级是:光伏电池[100]优先于锂离子蓄电池A[402],锂离子蓄电池A[402]优先于锂离子蓄电池B[404]。 Alternately switching the power supply control circuit programming [405]-off circuit, photovoltaic cell [100], the lithium ion battery A [402] and the lithium ion secondary battery B [404], so that the load [408] in the presence or absence of light can work uninterrupted during the design priority is the power supply to the load: a photovoltaic cell [100] in preference to the lithium ion battery a [402], the lithium ion battery a [402] in preference to the lithium ion battery B [404].
CN 200610114707 2006-11-22 2006-11-22 Power generation system of hybrid energy sources based on photovoltaic effect, and thermoelectric effect of solar energy CN1960118B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610114707 CN1960118B (en) 2006-11-22 2006-11-22 Power generation system of hybrid energy sources based on photovoltaic effect, and thermoelectric effect of solar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610114707 CN1960118B (en) 2006-11-22 2006-11-22 Power generation system of hybrid energy sources based on photovoltaic effect, and thermoelectric effect of solar energy

Publications (2)

Publication Number Publication Date
CN1960118A CN1960118A (en) 2007-05-09
CN1960118B true CN1960118B (en) 2010-12-22

Family

ID=38071658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610114707 CN1960118B (en) 2006-11-22 2006-11-22 Power generation system of hybrid energy sources based on photovoltaic effect, and thermoelectric effect of solar energy

Country Status (1)

Country Link
CN (1) CN1960118B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185528A (en) * 2011-05-10 2011-09-14 北京航空航天大学 Heat control system and method with complementary solar energy and temperature difference energy applicable to long-endurance aircraft

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201152652Y (en) * 2008-01-11 2008-11-19 汤益波 Solar automobile temperature regulator
CN101216226B (en) 2008-01-11 2011-04-20 汤益波 Solar automobile temperature regulator
CN101572510B (en) 2008-04-28 2012-09-19 鸿富锦精密工业(深圳)有限公司 Solar energy power supply device and illumination system comprising power supply device
CN101840946B (en) * 2009-12-31 2012-06-13 袁长胜 Secondary power-generating and heat-exchanging device for solar power heat-collecting device
JP2013520785A (en) * 2010-02-10 2013-06-06 クアドラ・ソーラー・コーポレーション Centralized solar power and heat system
CN102201761A (en) * 2010-03-24 2011-09-28 岳凡恩 Power supply module, system and method thereof
CN102244482B (en) * 2010-05-12 2014-04-23 凃杰生 Photothermal power generation device of solar energy
CN102244487A (en) * 2010-05-14 2011-11-16 中国科学院物理研究所 Hybrid power generation system and using method thereof
CN101882892A (en) * 2010-06-08 2010-11-10 河南理工大学 Device for generating power and collecting heat by comprehensively utilizing solar energy
CN102487255B (en) * 2010-12-06 2015-12-09 新奥科技发展有限公司 Solar energy utilization means
CN102738842A (en) * 2011-04-13 2012-10-17 鸿富锦精密工业(深圳)有限公司 Container with self-powered function
CN102195528A (en) * 2011-06-08 2011-09-21 南昌航空大学 Concentrating photovoltaic (PV) and thermoelectric combined generating set
CN102938624A (en) * 2011-08-15 2013-02-20 朴昌浩 Heat energy acquisition system
CN102522920A (en) * 2011-12-21 2012-06-27 浙江尖山光电股份有限公司 Photovoltaic and thermoelectric mixing power generation system
CN102739115A (en) * 2012-06-11 2012-10-17 华北电力大学 Power generating system utilizing internal and external environmental temperature difference of building
CN103051250A (en) * 2012-12-30 2013-04-17 青海天誉汇新能源开发有限公司 Temperature reduction method of temperature difference power generation of photovoltaic assembly
CN103762939A (en) * 2014-01-09 2014-04-30 常州大学 Method and device for improving photovoltaic power generation efficiency of crystalline silicon battery module
CN103910326B (en) * 2014-03-17 2016-04-13 东南大学 Self-powered RF transceiver based thermoelectric assembly and a photosensor
CN104377399B (en) * 2014-09-24 2017-02-15 歌尔股份有限公司 And a battery device having a battery device wearable device
CN104579162A (en) * 2014-12-09 2015-04-29 深圳光启空间技术有限公司 Solar cell panel with heat-electricity conversion function
CN106196247A (en) * 2015-05-06 2016-12-07 南京嘉业新能源有限公司 Solar temperature difference power generation hot water heating system
CN105515528B (en) * 2015-12-31 2017-03-22 哈尔滨工业大学 Mixing one kind of waste heat and solar power generation apparatus multifunction
CN105915158A (en) * 2016-01-02 2016-08-31 俞亮芽 Solar energy generation device
CN105932935A (en) * 2016-02-19 2016-09-07 孙啸 Manufacturing method of solar power generation device
CN105790638B (en) * 2016-03-23 2017-08-25 武汉喜玛拉雅光电科技股份有限公司 Multi-stage high-temperature sensible heat efficient coupling - the latent heat of phase change energy storage power generation unit
CN106026860A (en) * 2016-06-30 2016-10-12 苏州思博露光伏能源科技有限公司 Solar photo-thermal dual-generating battery assembly
CN106412017A (en) * 2016-08-31 2017-02-15 重庆伟睿科技有限公司 Adjacent pushing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956017A (en) 1974-04-09 1976-05-11 Sharp Kabushiki Kaisha Optoelectric transducer
WO2001096740A1 (en) 2000-06-14 2001-12-20 Drucker Ernest R Solar chimney wind turbine
CN2777846Y (en) 2005-02-05 2006-05-03 厦门大学 Temp difference power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956017A (en) 1974-04-09 1976-05-11 Sharp Kabushiki Kaisha Optoelectric transducer
WO2001096740A1 (en) 2000-06-14 2001-12-20 Drucker Ernest R Solar chimney wind turbine
CN2777846Y (en) 2005-02-05 2006-05-03 厦门大学 Temp difference power supply

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平9-149666A 1997.06.06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185528A (en) * 2011-05-10 2011-09-14 北京航空航天大学 Heat control system and method with complementary solar energy and temperature difference energy applicable to long-endurance aircraft
CN102185528B (en) 2011-05-10 2013-03-27 北京航空航天大学 Heat control system and method with complementary solar energy and temperature difference

Also Published As

Publication number Publication date
CN1960118A (en) 2007-05-09

Similar Documents

Publication Publication Date Title
CN101309017B (en) Wind power and photovoltaic power complementary power supply system based on mixed energy accumulation of super capacitor accumulator
US20060001406A1 (en) Power extractor circuit
CN101286655B (en) Complementary power supply system of wind and photovoltaic power generation based on super capacitor power storage
JP2007201257A (en) Photovoltaic generating system
WO2010053997A1 (en) Combined solar/thermal (chp) heat and power for residential and industrial buildings
US8420926B1 (en) Hybrid solar cell integrating photovoltaic and thermoelectric cell elements for high efficiency and longevity
CN202059353U (en) High power condensation solar energy photovoltaic photo-thermal composite power generation system
CN101826823B (en) Thermoelectric-conversion solar thermal power generation system
CN201194339Y (en) Solar energy controller
CN1960118B (en) Power generation system of hybrid energy sources based on photovoltaic effect, and thermoelectric effect of solar energy
CN202587593U (en) Heavy current resistant optically focused photovoltaic photoelectric conversion receiver ceramic circuit board
CN101608606A (en) Solar-energy low-temperature thermal power-generation and photovoltaic power-generation combination system
CN102130106A (en) Solar cell capable of simultaneously performing photoelectric conversion and thermoelectric conversion
CN201570507U (en) Solar-energy electric heating integration assembly
CN204068767U (en) Wearable temperature difference power generation device
CN101431246B (en) Apparatus and method for improving output efficiency of low-power photovoltaic battery
CN2777846Y (en) Temp difference power supply
CN1960119B (en) Autonomic micro system integrated from photovoltaic - temperature difference micro energy sources and network nodes of radio sensors
CN102761289A (en) Solar photovoltaic heating device and heat supply system with same
CN202019211U (en) Off-grid independent solar electric power storage and supply system
CN102013853B (en) Solar control system capable of providing direct-current power supply and control method thereof
CN101604854A (en) Solar energy and wind energy combined power generation system
CN101685986A (en) Wind and light complementary power generation system using super capacitor
CN102104346B (en) One kind of concentrating photovoltaic - Integrated thermoelectric power generation means
CN203617954U (en) Novel wind and light storage combination power generation system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right