CN1929276A - Soft switch back exciting converter used for solar energy photovoltaic generation incorporate in power network - Google Patents

Soft switch back exciting converter used for solar energy photovoltaic generation incorporate in power network Download PDF

Info

Publication number
CN1929276A
CN1929276A CN 200610010389 CN200610010389A CN1929276A CN 1929276 A CN1929276 A CN 1929276A CN 200610010389 CN200610010389 CN 200610010389 CN 200610010389 A CN200610010389 A CN 200610010389A CN 1929276 A CN1929276 A CN 1929276A
Authority
CN
China
Prior art keywords
controllable switch
end
capacitor
switch
connected
Prior art date
Application number
CN 200610010389
Other languages
Chinese (zh)
Other versions
CN100433525C (en
Inventor
谭光慧
纪延超
王建赜
李明成
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to CN 200610010389 priority Critical patent/CN100433525C/en
Publication of CN1929276A publication Critical patent/CN1929276A/en
Application granted granted Critical
Publication of CN100433525C publication Critical patent/CN100433525C/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
    • Y02B70/14Reduction of losses in power supplies
    • Y02B70/1491Other technologies for reduction of losses, e.g. non-dissipative snubbers, diode reverse recovery losses minimisation, zero voltage switching [ZVS], zero current switching [ZCS] or soft switching converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion electric or electronic aspects

Abstract

This invention relates to solar volt flexible switch reverser, which belongs to solar volt power generation technique field, which exerts direct voltage of the solar energy board into input capacitor two ends, wherein, input capacity end is connected to second induction end; other end of second induction is connected to integration electrode and first capacitor end; the first capacitor other end is connected to the encode end of third, second tubes and emission electrode of thirst control switch.

Description

一种用于太阳能光伏并网发电的软开关反激逆变器 Soft-switch flyback inverter for a solar photovoltaic power generation

技术领域 FIELD

本发明属于太阳能光伏并网发电技术领域,具体涉及一种可用于太阳能光伏(Photovoltaic,简称PV)并网发电的软开关反激逆变器。 The present invention pertains to a solar photovoltaic power generation technologies, and particularly relates to a soft-switch flyback an inverter for a solar photovoltaic (Photovoltaic, referred to as PV) of the grid.

背景技术 Background technique

随着传统能源消费的增长、生态环境的日益恶化和人类可持续发展的要求,世界各国都在积极开发无污染可再生的新能源。 As the demand growth in traditional energy consumption, deteriorating ecological environment and sustainable human development, countries around the world are actively developing new energy is clean and renewable. 太阳能资源丰富,分布广泛,可以再生,不污染环境,使得太阳能光伏发电成为新能源开发中的主流。 Rich in solar energy resources, widely distributed, can be regenerated, do not pollute the environment, the solar photovoltaic power generation into the mainstream of new energy development. 光伏逆变器是光伏发电系统中的核心部分,其效率的高低、可靠性的好坏将直接影响整个光伏系统的性能和投资。 PV inverter is the core of photovoltaic power generation system, its level of efficiency, reliability will directly affect the performance of investment and the entire PV system. 在传统的光伏发电系统中,多组光电模块组成PV阵列来获取足够高的直流(DC)总线电压,再通过逆变器逆变产生交流(AC)电压并入电网。 In the conventional photovoltaic power generation system, a plurality of sets of photovoltaic modules of the PV array to obtain a sufficiently high current (DC) bus voltage, then generating an inverter current (AC) voltage by the inverter to the grid. 但是由于太阳辐射强度的变化以及附近建筑物、树木等障碍物的遮挡,PV阵列的总输出功率会有明显的变化。 However, since the total output power of occlusion, the PV array and the change in solar radiation intensity obstacle nearby buildings, trees, etc., there will be significant changes. 为了使光伏系统始终工作在最大功率点上,AC模块的概念被提出。 In order to make photovoltaic systems always work at the maximum power point, the concept of AC modules are presented. 在这种AC模块系统中,每组光电模块装配一个逆变器形成一个AC模块,这些AC模块的输出并联再接入电网。 In such AC module system, each module is equipped with a photovoltaic inverter AC form a module, the output of the AC modules connected in parallel and then connected to the grid. 这种AC模块逆变器针对各自的光电模块,自身完成升压、最大功率点跟踪(MPPT)和逆变等功能。 This AC inverter module for the respective photovoltaic module, boosting their complete, the maximum power point tracking (MPPT) and an inverter function. 许多用于光伏并网发电的逆变器拓扑及其相应的控制策略被报道,其中以Buck-Boost逆变器和反激逆变器为典型,得到了很大的发展。 Many inverter topology for photovoltaic power generation and its corresponding control strategy was reported, which Buck-Boost inverter and the inverter is typical flyback, has been a great development. Buck-Boost逆变器采用四个或五个开关实现升压和逆变,反激逆变器采用三个开关,它们虽然可以实现逆变和电气隔离,但这两种结构都采用高频开关方式,产生了大量的开关损耗,使得系统效率降低。 Buck-Boost inverter switches implemented using four or five boost and inverter, flyback inverter with three switches, although they can achieve electrical isolation and an inverter, but both structures using high frequency switch manner, a large switching loss is generated, so that the efficiency of the system. 例如,如图1所示为传统的反激逆变器,它只用三个开关,采用三绕组变压器作为储能和隔离元件,由开关S1控制输出电流的波形,开关S2和S3控制输出电流的极性,该逆变器的缺点是S1以高频硬开关,损耗很大,限制了其实际应用,而且直流输入侧并联很大的电解电容,这增加了整个装置的体积,缩短了系统的使用寿命。 For example, FIG. 1 shows a conventional flyback inverter, with only three switches, three-winding transformer as the energy storage element and the spacer, the switch S1 is controlled by the output current waveform, switches S2 and S3 to control the output current polarity, the inverter is a disadvantage S1 hard switching at a high frequency, a great loss, which limits its practical application, and the DC input side of the large electrolytic capacitors in parallel, which increases the volume of the entire apparatus, reducing system life. 如图2所示为一种适用于AC模块中的反激式并网逆变器,它在传统反激逆变器的电路基础上增加了一个平波电路,将功率脉动转移到小容量的非电解电容C上,并且使直流侧的平波电容容量大大减小,延长了系统寿命,平波电路的增加虽然改善了功率解耦,但输入侧的两个高频开关都硬关断,其开关损耗较传统的反激逆变器更大,系统的效率也大大降低。 2 is suitable for use in AC module flyback grid inverter, it adds a smoothing circuit on the basis of a conventional flyback circuit of the inverter, the power is transferred to the small capacity of the pulsation a non-electrolytic capacitor C, and the capacitance of the DC-side smoothing capacitor is significantly reduced, extending the life of the system, increasing the smoothing circuit while the power decoupling improved, but the input side of the two high frequency switches are turned off hard, switching losses than conventional flyback inverter greater efficiency of the system is greatly reduced. 如图3所示为一种基于高频反激变换器的软开关逆变器拓扑结构,它的系统损耗更低,效率更高;但其结构并不能改善功率解耦,直流侧仍需要并联大容量的电解电容,这限制了其使用寿命。 3 is based on the soft switching inverter topologies frequency flyback converter, which lower system loss, more efficient; but it does not improve power decoupling structures, there remains a need in parallel to the DC side large-capacity electrolytic capacitors, which limits their useful life. 综上所述,到目前为止还没有一种拓扑能同时实现软开关和改善的功率解耦,而这两种功能对单相PV逆变器显然至关重要。 In summary, so far there is not a soft-switching topology can simultaneously achieve improved power and decoupling, both of which feature apparently is essential for single-phase PV inverters. 因此,迫切需要一种新型的逆变器,除了能实现逆变和电气隔离外,还应具有以下两种功能:减小开关损耗和改善功率解耦。 Accordingly, an urgent need for a new type of inverter, and the inverter can be achieved in addition to electrical isolation, but also has the following two functions: to reduce the switching losses and improve the power decoupling.

发明内容 SUMMARY

为了解决现有的用于太阳能光伏并网发电的逆变器无法同时改善开关损耗及功率解耦的问题,本发明提供了一种用于太阳能光伏并网发电的软开关反激逆变器。 In order to solve the conventional inverter for a solar photovoltaic power generation can not improve the problem of switching loss and power decoupling at the same time, the present invention provides soft switching flyback inverter for a solar photovoltaic power generation.

本发明的软开关反激逆变器包括开关管驱动电路1、太阳能电池板光伏阵列PV、反激变压器T、第一可控开关管S3、第二可控开关管S4、第三可控开关管S2、第一二极管D3、第二二极管D4、输出电容C3和第一电感Lf,太阳能电池板光伏阵列PV位于反激变压器T的原边绕组L2的同一侧,反激变压器T的副边第一绕组L3的非同名端连接第一可控开关管S3的集电极,第一可控开关管S3的发射极连接第一二极管D3的正极端,第一二极管D3的负极端连接第一电感Lf的一端、输出电容C3的一端和第二二极管D4的正极端,第二二极管D4的负极端连接第二可控开关管S4的集电极,第二可控开关管S4的发射极连接反激变压器T的副边第二绕组L4的同名端,反激变压器T的副边第二绕组L4的非同名端连接反激变压器T的副边第一绕组L3的同名端和输出电容C3的另一端;所述软开关反激逆变器还包括 Flyback soft switching inverter of the invention comprises a gate driver circuit 1, an array of photovoltaic solar panel PV, flyback transformer T, the first controllable switch S3, S4 second controllable switch, the third controllable switch tube S2, a first diode D3, a second diode D4, a capacitor C3 and a first output inductor Lf of, photovoltaic solar panel PV array located flyback transformer T primary winding L2 on the same side of the flyback transformer T the collector of the first secondary winding L3 of the non-dot end connected to the first controllable switch S3, the emission of the first controllable switch S3 is connected to the positive terminal of the first diode D3, a first diode D3 Lf negative terminal is connected to one end, an end of the output capacitor C3 and the positive terminal of the first diode D4 of the second inductor, the negative terminal of the second diode D4 is connected to the collector of the second controllable switch S4, the second controllable switch S4 is connected to the same name emitter terminal of the second secondary winding L4 of the flyback transformer T side, the non-dot end of the secondary side of the flyback transformer T is connected to the second winding L4 of the sub-side of the flyback transformer T, a first winding dot end and the other end of the output capacitor C3 L3; said soft switch further comprises a flyback inverter 入电容C1、第二电感L1、第一电容C2、第二电容Cs1、第三电容Cs2、第四可控开关管S1、第三二极管D1和第四二极管D2,太阳能电池板光伏阵列PV输入的直流电压vs施加在输入电容C1的两端,输入电容C1的一端连接第二电感L1的一端,第二电感L1的另一端连接第四可控开关管S1的集电极和第一电容C2的一端,第一电容C2的另一端连接第三二极管D1的正极端、第三可控开关管S2的发射极、第二电容Cs1的一端和第三电容Cs2的一端,第三可控开关管S2的集电极连接第四二极管D2的负极端和第三电容Cs2的另一端,第四二极管D2的正极端连接反激变压器T的原边绕组L2的非同名端和第二电容Cs1的另一端,反激变压器T的原边绕组L2的同名端连接第三二极管D1的负极端、第四可控开关管S1的发射极和输入电容C1的另一端,开关管驱动电路1的四个驱动信号的输出端分别连接所述第一可 Into the capacitor C1, the second inductor L1, a first capacitor C2, the second capacitor Cs1, the third capacitor Cs2, the fourth controllable switch S1, the third diode and the fourth diode D1 D2, photovoltaic solar panels PV array voltage vs current collector input is applied across the input capacitor C1, one end of the input capacitor C1 is connected to a second end of the inductor L1, the second inductor L1 is connected to the other end of the fourth controllable switch S1 and the first One end of the capacitor C2, the other terminal of the first capacitor C2 is connected to the positive terminal of the third diode D1, the third controllable switch S2 emitting pole, one end of the end of the second capacitor Cs1 Cs2 and the third capacitor, the third the other end of the negative terminal of the original capacitor Cs2 and the third controllable switch S2 is connected to the collector of the fourth diode D2, the positive terminal of the fourth diode D2 is connected to the flyback transformer T non-dot end of winding L2, and the other end of the second capacitor Cs1, the flyback transformer T primary winding L2 is connected to the dotted end of the third negative terminal of the diode D1, the emitter and the other end of the fourth controllable switch S1 input capacitance C1, the output terminal of the four drive signals switch driving circuit 1 are connected to the first 控开关管S3、第二可控开关管S4、第三可控开关管S2、第四可控开关管S1的栅极,输出电容C3和第一电感Lf的另一端输出交流电压vo并入电网。 Control switch S3, S4 second controllable switch, the third controllable switch S2, the gate of the fourth controllable switch S1, the output capacitor C3 and the other end of the first inductor Lf AC output to the grid voltage vo . 所述第一可控开关管S3、第二可控开关管S4、第三可控开关管S2、第四可控开关管S1采用IGBT开关管,第四可控开关管S1和第三可控开关管S2为高频开关管,开关频率在10K~100KHZ范围内,且可以采用有反接二极管的开关管;第一可控开关管S3和第二可控开关管S4为工频开关管。 The first controllable switch S3, S4 second controllable switch, the third controllable switch S2, the fourth controllable switch S1 is an IGBT switch, the fourth controllable switch S1 and the third controllable switch S2 is a high frequency switch, the switching frequency is in the range of 10K ~ 100KHZ, reverse and there may be used a diode switch; first controllable switch S3 and the second controllable switch S4 to the switch frequency. 所述输入电容C1、第一电容C2,第二电容Cs1的一端和第三电容Cs2均为容量很小的无极性电容。 The input capacitor C1, a first capacitor C2, one end of the second capacitor Cs1 Cs2 and the third capacitor are very small capacity of the non-polarized capacitor.

如图4所示,本发明将Sepic变换器和传统的反激逆变器有机的结合在一起,得到具有软开关和改善的功率解耦两大功能的新型PV逆变器。 As shown, the present invention is the combination of organic Sepic converter 4 and the conventional flyback inverter together to obtain a PV inverter having a new and improved soft-switching power decoupling of the two functions. 如下表1和图5至图10所示,根据四个开关管(S1、S2、S3、S4)的运行状态和输出电流的正负情况,电路具有以下六种有效的工作模式。 Table 1 below and shown in Figures 5 to 10, according to the case of four negative switch (S1, S2, S3, S4) and the output current operating state, the circuit has six valid operating mode.

表1六种工作模式对比说明 Table 1 Comparative six modes described

(上表中,“1”表示导通,“0”表示开关管的关断或电流大小为零,“×”表示无效,“+”表示电流大于零,“-”表示电流小于零。)模式一:如图5,该模式下第四可控开关管S1和第三可控开关管S2开通,第一可控开关管S3和第二可控开关管S4关断,由于输入电压vs直接加在第二电感L1上,输入电流i1线性增长,第一电容C2上电压vC2也对反激变压器T的原边绕组L2充电,使得流过L2的电流iL1也线性增长。 (In the table, "1" indicates ON and "0" indicates OFF switch or the magnitude of the current is zero, "×" indicates invalid, "+" represents a current greater than zero, "-" indicates that current is less than zero.) mode 1: 5, in this mode, the fourth controllable switch S1 and the third controllable switch S2 is opened, the first controllable switch S3 and the second controllable switch S4 is turned off, the input direct voltage vs applied to the second inductor L1, the input current i1 increases linearly, the first capacitor C2 is also vC2 voltage flyback transformer T primary winding L2 of the charging, so that the current flowing through iL1 L2 also increases linearly.

模式二:如图6,S1和S3开通,S2和S4关断,由于S1仍然开通,所以输入电流i1仍然线性增长,S2关断,使得流过C2和L2上的电流iC2和iL2为0。 Mode 2: As shown in FIG. 6, S1 and S3 are open, S2 and S4 are turned off, since S1 remains open, the input current i1 is still linear growth, S2 is turned off, so that the current flowing through iC2 C2 and L2 is 0 and iL2. 这个过程中,S3开通,S4关断,因此输出电流io大于0。 This process, S3 open, S4 is turned off, the output current io is greater than 0.

模式三:如图7,S1和S4开通,S2和S3关断,这个过程与模式二类似,不同的是,输出电流io小于0。 Mode three: FIG. 7, S1 and S4 are open, S2 and S3 are turned off, and the process is similar to mode two, the difference is, the output current io is smaller than 0.

模式四:如图8,S1、S2和S4都关断,只有S3开通,输入电压和电感L1都对电容C2充电,同时由于开关S3开通,使得输出电流io大于0。 Mode 4: FIG. 8, S1, S2 and S4 are turned off, only the opening of S3, the input voltage and the inductor L1 are charging the capacitor C2, at the same time since the opening of the switch S3, the output current io is greater than 0.

模式五:如图9,开关管S1、S2和S3都关断,只有S4开通,输入电压vs和L1都对C2充电,同时由于S4开通,使得输出电流io小于0。 Model 5: 9, the switch S1, S2 and S3 are turned off, only the opening S4, the input voltage vs charging C2 and L1 are simultaneously opened due S4, so that the output current io is smaller than 0.

模式六:如图10,四个开关管都关断,与模式四和模式五一样,输入电压vs和L1都对C2充电,由输出电容C3向电网提供电流。 Model 6: FIG. 10, four switches are turned off, and Mode 4 and mode five, as both L1 and the input voltage vs charging C2, current is supplied to the grid by the output capacitor C3.

对于本发明所提出的单相逆变器,当工作于单位功率因数时,其交流侧电压和电流可以表示如下:vo=Vosinωot (1)io=Iosinωot (2)因而,电路中就存在大量的功率脉动为:Po=VoIo(1-cos2ωot) (3)上式中,ωo为交流电压的频率,Vo为交流侧电压的幅值,Io为交流侧电流的幅值。 For the single-phase inverter proposed by the present invention, when operating power factor of the unit, the AC-side voltage and current can be expressed as follows: vo = Vosinωot (1) io = Iosinωot (2) Accordingly, there is a large number of circuit power pulsation is: Po = VoIo (1-cos2ωot) (3) in the above formula, ωo is the frequency of the AC voltage, Vo is the amplitude of the AC side voltage, Io is the amplitude of the ac side current.

为了使输出电流为正弦,必须使得流过L2的电流峰值包络为一个正弦波形。 In order to make the output current is sinusoidal, the peak value must be such that the current flowing through L2 envelope is a sinusoidal waveform. 由上式可知,在本发明逆变器中,功率中含有低频(2倍频)分量,这个波动分量被转移到了第一电容C2上,从而使得直流输入电容C1上的电压保持不变,并能使C1的容量为一个很小的值。 From the above equation, the inverter in the present invention, the power contained in the low frequency (frequency 2) component, the fluctuating component is transferred to the first capacitor C2, so that the DC input voltage on capacitor C1 remains unchanged, and C1 enables a capacity of a very small value. 由于C2上的电压在一定的直流偏置上以两倍于工频的频率发生波动,这就使得驱动第三可控开关管S2的PWM信号占空比与流过L2的电流呈非线性关系,所以本发明采用峰值电流控制方法对S2进行控制。 Due to fluctuations in the voltage on the C2 occurs at a frequency twice the frequency in a certain DC bias, so that the PWM signal duty cycle which drives the third controllable switch S2 and the current flowing through the nonlinear relationship L2 , the present invention uses peak current control method of the control S2. 所述峰值电流控制方法是指:如图12所示,流过L2的电流iL2通过电流传感器进行检测,在S2开通时,iL2增加,当电流iL2增加到正弦参考值时,输出低电平驱动信号使S2关断,这样就可以保证iL2的电流峰值始终准确跟踪正弦参考值,从而控制输出电流io为标准的正弦波形。 The peak current control method refers to: As shown, the L2 current iL2 flowing through the current sensor 12 for detecting, when the opening S2, iL2 increases, the current iL2 increases when the sinusoidal reference value, outputs a low level driver so that the signal S2 is turned off, so as to ensure peak current iL2 always accurately track the sinusoidal reference value, thereby controlling the output current io is a standard sine wave. 当然,本发明也可采用其它控制方案对S2进行控制,如通过检测C2上的电压,经过运算得到各个开关周期的占空比,输出驱动脉冲,从而完成对S2的控制,但实现起来与峰值电流控制方案相比较复杂。 Of course, the present invention is also applicable to other control schemes S2 is controlled, such as by detecting a voltage on C2, through the operation to obtain the duty cycle, the output of each switching cycle of the drive pulse, thereby completing the control of S2, but it will peak comparing the current control program complicated. 第四可控开关管S1控制着输入电流io的大小,从而决定了输入能量的大小。 Fourth controllable switch S1 controls the magnitude of the input current io, which determines the size of the input energy. 为了跟踪PV电池的最大功率,需要保证输入恒定的能量,这就要求S1以固定占空比工作。 In order to track the maximum power of the PV cell, the need to ensure constant energy input, which requires working with a fixed duty cycle S1. 考虑到电路有效的工作状态,S1和S2应同时开通,且S2导通信号的占空比必须小于S1导通信号的占空比。 Considering the effective working state of the circuit, S1, and S2 should be turned on simultaneously, and the duty cycle of the signal S2 is turned to be less than the duty cycle of the signal S1 is turned. 第一可控开关管S3和第二可控开关管S4控制着输出电流io的极性,二者交替在工频正负半周期开通和关断,从而得到正负两个方向的输出电流io。 First controllable switch S3 and S4 is a second controllable switch controls the polarity of the output current io, alternately in both positive and negative frequency half cycles on and off, to thereby obtain the positive and negative directions of the output current io .

本发明所述结构中,高频开关S1和S2的软开关运行是靠第三可控开关管S2和第四二极管D2上的寄生电容以及所引入的第二电容Cs1和第三电容Cs2实现的(如图4所示)。 The structure of the present invention, the high frequency switches S1 and S2 is soft-switching operation by the parasitic capacitance of the third controllable switch S2 and the fourth diode D2 and a second capacitor Cs1 is introduced and a third capacitor Cs2 implementation (as shown in Figure 4). 如图11所示,给出了S1和S2上的电压电流波形,S1和S2同时导通,其上的电流从0线性增长,因此两个开关都以零电流(ZCS)软开通。 11, shows the voltage and current waveforms S1 of S2, S1 and S2 are simultaneously turned on, a current which increases linearly from zero, both switches are therefore zero current (the ZCS) soft switching. 当S2关断时,L2上的电流并不马上传到二次侧,而是先流过Cs1和Cs2,直到二次侧有电流,这样就实现了S2的零电压(ZVS)关断。 When S2 is turned off, the current does not immediately transmitted to the secondary side L2, but the first flow through Cs1 and Cs2, until the secondary-side current, thus achieving the zero voltage S2 (ZVS) is turned off. 而当S1关断时,输入电流也并不马上流过二极管D1,而是先给Cs1放电,直到D1导通,这样也就实现了S1的零电压关断。 When S1 is off, input current flows through the diode D1 is not immediately, but give Cs1 discharged until D1 conducts this will achieve zero-voltage turn-off of S1. 另外,开关管S3和S4工作于工频,这两个开关的开通和关断过程也和传统的反激逆变器一样,工作于软开关状态。 Further, switches S3 and S4 operate in frequency, on and off switching of these two processes are also conventional flyback inverter as the working state of the soft switch.

综上所述,本发明改善的功率解耦是由电路结构本身实现的,正是因为Sepic电路将功率脉动转移到电容C2上的电压上,才使得电容C1和C2的容量都能减小;而本发明的软开关特性是因为在电路中引入了第二电容Cs1和第三电容Cs2,从而保证两个高频开关在关断时也能实现软开关。 In summary, the present invention is to improve the power decoupling is implemented by the circuit structure itself, precisely because Sepic circuit power transferred to the pulsating voltage on the capacitor C2, which makes the capacity of the capacitors C1 and C2, can be reduced; and soft switching characteristics of the present invention is because of the introduction of the second capacitor Cs1 Cs2 and the third capacitor in the circuit, thus ensuring two frequency switching at turn-off soft-switching can be achieved. 而本发明提出的峰值电流控制方案则是为了向电网提供优质的输出电流而应用于本发明的电路中的,有了合适的控制方案,也能实现更好地改善功率解耦和软开关特性。 And the peak current control scheme proposed by the present invention is to provide a high output current to the grid and applied to the circuit according to the present invention, with a suitable control program, it can achieve a better improvement in soft switching characteristics of the power decoupling and .

本发明的逆变器具有以下优点:(1)它的电路结构简单,只用了四个功率开关器件;(2)它可实现所有开关的软开关运行,从而减小开关损耗,提高系统效率;(3)它通过将功率脉动转化为电容C2上的电压脉动,可显著的减小解耦电容的体积和容量,从而改善功率解耦;(4)开关S1工作于固定的占空比,开关S2采用峰值电流控制方案,开关S3和S4以工频运行,易于控制和实现;(5)它通过反激变压器,可实现输入输出的电气隔离;(6)它可向电网提供单位功率且低谐波的输出电流;(7)根据需要,通过合适的控制,可以实现谐波抑制和无功补偿功能。 The inverter according to the present invention has the following advantages: (1) its simple circuit structure, only four power switching devices; (2) it can achieve soft switching operation for all switches, thereby reducing switching losses and improve efficiency of the system ; (3) which by pulsating power into a voltage ripple on the capacitor C2, significantly reduced the volume and decoupling capacitors, thereby improving the power decoupling; (4) working at a fixed duty cycle of the switch S1, switch S2 uses peak current control scheme, the switches S3 and S4 to frequency operation, easy to control and implement; (5) which by the flyback transformer, may be electrically isolated input and output; and (6) which provides a unit power to the grid, and low output current harmonics; (7) if necessary, by a suitable control can be achieved harmonic suppression and reactive power compensation.

附图说明 BRIEF DESCRIPTION

图1是传统的反激逆变器。 FIG 1 is a conventional flyback inverter.

图2是现有技术中一种适用于AC模块中的反激式并网逆变器。 FIG 2 is a prior art AC module suitable for use in a flyback grid inverter.

图3是现有技术中一种基于高频反激变换器的软开关逆变器拓扑结构。 FIG 3 is a soft switching inverter topologies based on the prior art high-frequency flyback converter.

图4是本发明的PV软开关反激逆变器的结构示意图。 FIG 4 is a schematic view of the soft switching flyback PV inverter according to the invention.

图5至图10依次为本发明逆变器的六种有效工作模式的简单结构示意图,图中,i1为输入电流,iL1为流过第二电感L1的电流,iC2为流过第一电容C2的电流,vC2为第一电容C2上的电压,iL2为流过反激变压器T的原边绕组L2的电流,iL3为流过反激变压器T的副边第一绕组L3的电流,iL4为流过反激变压器T的副边第二绕组L4的电流,i2为反激变压器T的副边绕组电流,io为输出电流。 Simple and effective structural diagram of six operating modes 5 to 10 the present invention sequentially inverter, drawing, i1 input current, L1 current iL1 is flowing through the second inductor, IC2 is flowing through the first capacitor C2 current, VC2 is the voltage across the first capacitor C2, iL2 L2 of the current flowing through the flyback primary winding of the transformer T, iL3 L3, the first winding sub-current flyback transformer T through the edge flow, iL4 the stream current through the flyback transformer T, secondary winding L4 of the second, i2 is the current secondary winding of the flyback transformer T, io is the output current.

图11是第四可控开关管S1和第三可控开关管S2上的导通信号波形、电压波形及其电流波形示意图,图中,vS1表示第四可控开关管S1上的电压,iS1表示第四可控开关管S1上的电流,vS2表示第三可控开关管S2上的电压,vcs1表示第二电容Cs1两端的电压,vcs2表示第三电容Cs2两端的电压,iS2表示第三可控开关管S2上的电流。 FIG 11 is a turn-on signal waveform, voltage waveform and a current waveform diagram of the fourth controllable switch S1 and the third controllable switch S2, figure, it represents the voltage VS1 on the fourth controllable switch S1, ISl current on a fourth controllable switch S1, vS2 represents the voltage on the third controllable switch S2, vcs1 represents the voltage across the second capacitor Cs1, vcs2 represents the voltage across the third capacitor Cs2, iS2 be a third the current control switch S2.

图12是本发明逆变器的工作波形。 FIG 12 is an operation waveform of the inverter of the present invention.

具体实施方式 Detailed ways

参见图4所示,本具体实施方式的软开关反激逆变器由开关管驱动电路1、太阳能电池板光伏阵列PV、反激变压器T、第一可控开关管S3、第二可控开关管S4、第三可控开关管S2、第一二极管D3、第二二极管D4、输出电容C3、第一电感Lf、输入电容C1、第二电感L1、第一电容C2、第二电容Cs1、第三电容Cs2、第四可控开关管S1、第三二极管D1和第四二极管D2组成,太阳能电池板光伏阵列PV位于反激变压器T的原边绕组L2的同一侧,反激变压器T的副边第一绕组L3的非同名端连接第一可控开关管S3的集电极,第一可控开关管S3的发射极连接第一二极管D3的正极端,第一二极管D3的负极端连接第一电感Lf的一端、输出电容C3的一端和第二二极管D4的正极端,第二二极管D4的负极端连接第二可控开关管S4的集电极,第二可控开关管S4的发射极连接反激变压器T的副边第二绕组L4的同名 Referring to FIG. 4, the soft-switch flyback inverter embodiment of the present embodiment by the particular switch driving circuit 1, a photovoltaic solar panel array of PV, the flyback transformer T, the first controllable switch S3, the second controllable switch tube S4, the third controllable switch S2, a first diode D3, a second diode D4, an output capacitor C3, a first inductor Lf, input capacitor C1, the second inductor L1, a first capacitor C2, the second capacitors Cs1, third capacitance Cs2, fourth controllable switch Sl, a third and a fourth diode D1, diode D2, an array of PV solar photovoltaic panels on the same side of the flyback transformer primary winding L2 of the T , a first secondary winding L3 of the non-dot end of the flyback transformer T is connected to the collector of the first controllable switch S3, transmitting the first controllable switch S3 is connected to the positive terminal of the first diode D3, first a negative terminal of the diode D3 is connected to one end Lf, one end of the capacitor C3 and the positive output terminal of the first diode D4 of the second inductor, a second diode D4 is connected to the negative terminal of the second controllable switch S4 of a collector, emitter of the second controllable switch S4 is connected to the same name as the sub flyback transformer T side of the second winding L4 ,反激变压器T的副边第二绕组L4的非同名端连接反激变压器T的副边第一绕组L3的同名端和输出电容C3的另一端;太阳能电池板光伏阵列PV输入的直流电压vs施加在输入电容C1的两端,输入电容C1的一端连接第二电感L1的一端,第二电感L1的另一端连接第四可控开关管S1的集电极和第一电容C2的一端,第一电容C2的另一端连接第三二极管D1的正极端、第三可控开关管S2的发射极、第二电容Cs1的一端和第三电容Cs2的一端,第三可控开关管S2的集电极连接第四二极管D2的负极端和第三电容Cs2的另一端,第四二极管D2的正极端连接反激变压器T的原边绕组L2的非同名端和第二电容Cs1的另一端,反激变压器T的原边绕组L2的同名端连接第三二极管D1的负极端、第四可控开关管S1的发射极和输入电容C1的另一端,开关管驱动电路1的四个驱动信号的输出端分别连接所述第一可控 , A first secondary winding L3 and the other end of the output capacitor C3 dotted end of the secondary side of the non-dot end of the flyback transformer T is connected to the second winding L4 of the flyback transformer T; vs DC voltage photovoltaic solar panel array PV input is applied across the input capacitor C1, one end of the input capacitor C1 is connected to one end of the second inductor L1, the other end of the second inductor L1 is connected to one end of the collector and the fourth controllable switch S1 of the first capacitor C2, a first the positive terminal of capacitor C2 is connected to the other end of the third diode D1, the emitter of the third controllable switch S2 pole, one end of the capacitor Cs1 and the second end of the third capacitor Cs2, the third set of controllable switch S2 the negative terminal of the third capacitor Cs2 and the other end connected to the fourth electrode of the diode D2, the positive terminal of the fourth diode D2 is connected to the flyback primary winding of the transformer T further non-dot end L2 and a second capacitor Cs1 one end of the negative terminal, the dot end of the primary winding of the flyback transformer T is connected to the third diode D1 L2, and the other end of the input capacitor C1 and the emitter of the fourth controllable switch S1, the switch driving circuit four 1 output of drive signals are respectively connected to the first controllable 关管S3、第二可控开关管S4、第三可控开关管S2、第四可控开关管S1的栅极,输出电容C3和第一电感Lf的另一端输出交流电压vo并入电网。 Switch tube S3, S4 second controllable switch, the third controllable switch S2, the gate of the fourth controllable switch S1, the output capacitor C3 and the other end of the first inductor Lf AC output voltage vo to the grid. 第四可控开关管S1和第三可控开关管S2为高频IGBT开关管,开关频率在10K~100KHZ范围内;第一可控开关管S3和第二可控开关管S4为工频IGBT开关管。 Fourth controllable switch S1 and the third controllable switch S2 is a high frequency IGBT switches, the switching frequency in the range of 10K ~ 100KHZ; first controllable switch S3 and S4 of the second controllable switch frequency IGBT turning tube. 所述输入电容C1和第一电容C2为无极性电容。 The input capacitors C1 and C2 is a first non-polarized capacitor. 反激变压器T的变比为1∶n∶n(n>1)。 It turns ratio of the flyback transformer T is 1:n:n (n> 1).

如图12所示四个开关(S1、S2、S3、S4)的驱动信号波形,第一可控开关管S3和第二可控开关管S4互补工作在工频正负半周期;第三可控开关管S2的开通或关断依据流过反激变压器T的原边绕组L2的电流正弦波包络线采用峰值电流控制方法来进行控制;第四可控开关管S1以固定占空比高频运行,第四可控开关管S1导通信号的占空比总大于第三可控开关管S2导通信号的占空比,且第四可控开关管S1与第三可控开关管S2同时开通。 As shown in FIG. 12 four switches (S1, S2, S3, S4) of the drive signal waveform, a first controllable switch S3 and the second controllable switch S4 work in a complementary positive and negative half-cycle frequency; third can opening the control switch S2 on or off based on flow through the flyback transformer T primary winding L2 of the current sine wave envelope uses peak current control method to control; fourth controllable switch S1 and a fixed high duty cycle operating frequency, the duty ratio of the fourth controllable switch signal S1 is always greater than the duty of the third controllable switch S2 is conducting signal, and the fourth controllable switch S1 and the third controllable switch S2 At the same time it opened.

Claims (6)

1.一种用于太阳能光伏并网发电的软开关反激逆变器,所述软开关反激逆变器包括开关管驱动电路(1)、太阳能电池板光伏阵列(PV)、反激变压器(T)、第一可控开关管(S3)、第二可控开关管(S4)、第三可控开关管(S2)、第一二极管(D3)、第二二极管(D4)、输出电容(C3)和第一电感(Lf),太阳能电池板光伏阵列(PV)位于反激变压器(T)的原边绕组(L2)的同一侧,反激变压器(T)的副边第一绕组(L3)的非同名端连接第一可控开关管(S3)的集电极,第一可控开关管(S3)的发射极连接第一二极管(D3)的正极端,第一二极管(D3)的负极端连接第一电感(Lf)的一端、输出电容(C3)的一端和第二二极管(D4)的正极端,第二二极管(D4)的负极端连接第二可控开关管(S4)的集电极,第二可控开关管(S4)的发射极连接反激变压器(T)的副边第二绕组(L4)的同名端,反激变压器(T)的副边第二绕组(L4)的非同名端连接 Soft-switch flyback inverter 1. A solar photovoltaic power generation, the soft switching flyback inverter circuit comprising a gate driver (1), a photovoltaic solar panel array (the PV), the flyback transformer (T), the first controllable switch (S3), a second controllable switch (S4), the third controllable switch (S2), a first diode (D3), a second diode (D4 ), output capacitor (C3) and a first inductor (Lf of), photovoltaic solar panel array (PV) on the same side of the flyback transformer (T) of the primary winding (L2), the secondary side of the flyback transformer (T), the positive terminal of the first winding (L3) of the non-dot end connected to the collector of the first controllable switch (S3), the emitter of the first controllable switch (S3) is connected to a first diode (D3), the first one end of a diode (D3) is connected to the negative terminal of a first inductor (Lf of), the output capacitor (C3) and the positive terminal of one end of a second diode (D4), and a second diode (D4) is negative dot end connected to the collector terminal of the second controllable switch (S4), the emitter of the second controllable switch (S4) is connected to the flyback transformer (T), a second secondary winding (L4) of the flyback transformer (T), a second secondary winding (L4) connected to the non-dot end 反激变压器(T)的副边第一绕组(L3)的同名端和输出电容(C3)的另一端;其特征在于所述软开关反激逆变器还包括输入电容(C1)、第二电感(L1)、第一电容(C2)、第二电容(Cs1)、第三电容(Cs2)、第四可控开关管(S1)、第三二极管(D1)和第四二极管(D2),太阳能电池板光伏阵列(PV)输入的直流电压(vs)施加在输入电容(C1)的两端,输入电容(C1)的一端连接第二电感(L1)的一端,第二电感(L1)的另一端连接第四可控开关管(S1)的集电极和第一电容(C2)的一端,第一电容(C2)的另一端连接第三二极管(D1)的正极端、第三可控开关管(S2)的发射极、第二电容(Cs1)的一端和第三电容(Cs2)的一端,第三可控开关管(S2)的集电极连接第四二极管(D2)的负极端和第三电容(Cs2)的另一端,第四二极管(D2)的正极端连接反激变压器(T)的原边绕组(L2)的非同名端和第二电容(Cs1)的另一端,反激变压器(T)的原边绕 Dot end and the other end of the output capacitor (C3) secondary flyback transformer (T) side of the first winding (L3); characterized in that said soft switching flyback inverter further includes an input capacitor (C1), a second an inductor (L1), a first capacitor (C2), a second capacitor (Cs1), a third capacitor (Cs2), a fourth controllable switch (S1), a third diode (D1) and the fourth diode DC voltage (D2 of), photovoltaic solar panel array (PV) input (vs) is applied across the input capacitor (C1), the end of the input capacitor (C1) is connected to one end of a second inductor (L1), the second inductor collector and the positive terminal of the first capacitor (C2) one end (L1) is connected to the other end of the fourth controllable switch (S1), the first capacitor (C2) connected to the other end of the third diode (D1) of , transmitting a third controllable switch (S2) of the electrode, one end of a second capacitor (Cs1) and an end of the third capacitor (Cs2 are), the third controllable switch connected to a collector pipe (S2) of the fourth diode non-dot end of the primary winding (L2) the other end (D2) and the negative terminal of the third capacitor (Cs2 are), the positive terminal of the fourth diode (D2) is connected to the flyback transformer (T) and a second capacitor (Cs1) of the other end, the original flyback transformer (T) around the edges (L2)的同名端连接第三二极管(D1)的负极端、第四可控开关管(S1)的发射极和输入电容(C1)的另一端,开关管驱动电路(1)的四个驱动信号的输出端分别连接所述第一可控开关管(S3)、第二可控开关管(S4)、第三可控开关管(S2)、第四可控开关管(S1)的栅极,输出电容(C3)和第一电感(Lf)的另一端输出交流电压(vo)并入电网。 A negative terminal (L2) connected to the dotted terminal of the third diode (D1), the other end of the emitter and the input capacitor (C1) of the fourth controllable switch (S1), the switch drive circuit (1) of tetrakis output of drive signals are respectively connected to the first controllable switch (S3), a second controllable switch (S4), the third controllable switch (S2), a fourth controllable switch (S1) of the gate, the output capacitor (C3) and a first inductor (Lf of) the other end of the AC output voltage (VO) to the grid.
2.根据权利要求1所述的一种用于太阳能光伏并网发电的软开关反激逆变器,其特征在于第四可控开关管(S1)和第三可控开关管(S2)为高频开关管,开关频率在10K~100KHZ范围内。 The soft-switch flyback inverter as claimed in claim 1, for one of the solar photovoltaic power generation, which is characterized in that the fourth controllable switch (S1) and the third controllable switch (S2) is a high frequency switch, the switching frequency in the range of 10K ~ 100KHZ.
3.根据权利要求1所述的一种用于太阳能光伏并网发电的软开关反激逆变器,其特征在于第一可控开关管(S3)和第二可控开关管(S4)为工频开关管。 The soft-switch flyback inverter as claimed in claim 1, for one of the solar photovoltaic power generation, characterized in that the first controllable switch (S3) and the second controllable switch (S4) is frequency switch.
4.根据权利要求1所述的一种用于太阳能光伏并网发电的软开关反激逆变器,其特征在于所述输入电容(C1)和第一电容(C2)为无极性电容。 According to claim 1, wherein one of the solar photovoltaic power generation for soft-switch flyback inverter, wherein said input capacitor (C1) and a first capacitor (C2) is a non-polarized capacitor.
5.根据权利要求1、2、3或4所述的一种用于太阳能光伏并网发电的软开关反激逆变器,其特征在于第一可控开关管(S3)和第二可控开关管(S4)互补工作在工频正负半周期;第三可控开关管(S2)的开通或关断依据流过反激变压器(T)的原边绕组(L2)的电流正弦波络线采用峰值电流控制方法来进行控制;第四可控开关管(S1)以固定占空比高频运行,第四可控开关管(S1)导通信号的占空比总大于第三可控开关管(S2)导通信号的占空比,且第四可控开关管(S1)与第三可控开关管(S2)同时开通。 The soft-switch flyback inverter for a solar photovoltaic power generation as claimed in claim 3 or claim 4, characterized in that the first controllable switch (S3) and the second controllable switch (S4) works in a complementary positive and negative half cycle of the power frequency; opened third controllable switch (S2) is based on or off flow through the flyback transformer (T) of the primary winding (L2) of the current sine wave envelope line uses peak current control method to control; fourth controllable switch (S1) is running at a high frequency fixed duty ratio, the duty ratio of the fourth controllable switch (S1) ON signal is greater than the total third controllable switch (S2) ON signal duty cycle, and the fourth controllable switch (S1) and the third controllable switch (S2) simultaneously to open.
6.根据权利要求5所述的一种用于太阳能光伏并网发电的软开关反激逆变器,其特征在于所述第一可控开关管(S3)、第二可控开关管(S4)、第三可控开关管(S2)、第四可控开关管(S1)采用IGBT开关管。 The soft-switch flyback inverter for a solar photovoltaic power generation according to claim 5, characterized in that the first controllable switch (S3), a second controllable switch (S4 ), a third controllable switch (S2), a fourth controllable switch (S1) using IGBT switches.
CN 200610010389 2006-08-09 2006-08-09 Soft switch back exciting converter used for solar energy photovoltaic generation incorporate in power network CN100433525C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610010389 CN100433525C (en) 2006-08-09 2006-08-09 Soft switch back exciting converter used for solar energy photovoltaic generation incorporate in power network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610010389 CN100433525C (en) 2006-08-09 2006-08-09 Soft switch back exciting converter used for solar energy photovoltaic generation incorporate in power network

Publications (2)

Publication Number Publication Date
CN1929276A true CN1929276A (en) 2007-03-14
CN100433525C CN100433525C (en) 2008-11-12

Family

ID=37859117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610010389 CN100433525C (en) 2006-08-09 2006-08-09 Soft switch back exciting converter used for solar energy photovoltaic generation incorporate in power network

Country Status (1)

Country Link
CN (1) CN100433525C (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100588105C (en) 2008-04-15 2010-02-03 张海波 Inverse-excitation type single-stage inverter for interconnected photovoltaic power generation system
CN102148584A (en) * 2010-02-10 2011-08-10 上海岩芯电子科技有限公司 Compensation method of direct current (DC) voltage fluctuation of photovoltaic grid-connected inverter
CN102522766A (en) * 2011-11-04 2012-06-27 浙江大学 Flyback type miniature photovoltaic grid connected inverter with power decoupling circuit and control method thereof
CN103095163A (en) * 2011-11-04 2013-05-08 丰郅(上海)新能源科技有限公司 High order position difference energy storage photovoltaic inverter
CN103378761A (en) * 2012-04-24 2013-10-30 丰郅(上海)新能源科技有限公司 Three-stage topology photovoltaic inverter
WO2013163779A1 (en) * 2012-05-02 2013-11-07 上海康威特吉能源技术有限公司 Multi-input flyback photovoltaic grid-connected inverter
CN103606953A (en) * 2013-11-25 2014-02-26 东南大学 Single-stage boosting three-phase flyback inverter for solar energy grid-connected power generation
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
CN105356733A (en) * 2015-11-02 2016-02-24 南京航空航天大学 Two-stage inverter for eliminating input current ripple, and control method thereof
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
CN107395041A (en) * 2017-08-24 2017-11-24 东莞理工学院 High conversion efficiency isolated form miniature grid-connected inverter and its control method
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
CN108111046A (en) * 2016-11-25 2018-06-01 南京航空航天大学 A kind of active Ripple Suppression type grid-connected converter and its control method
CN108123634A (en) * 2016-11-25 2018-06-05 南京航空航天大学 A kind of polarity inversion output type inverter and its control method with power decoupled
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448153C (en) 2004-09-24 2008-12-31 南京航空航天大学 Back exciting converter main circuit topology
CN2762419Y (en) 2004-12-30 2006-03-01 中国科学院电工研究所 Parallel network photovoltaic inversion system
CN100424978C (en) 2005-02-06 2008-10-08 合肥阳光电源有限公司 A method of photovoltaic grid-connected inversion

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
CN100588105C (en) 2008-04-15 2010-02-03 张海波 Inverse-excitation type single-stage inverter for interconnected photovoltaic power generation system
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
CN102148584A (en) * 2010-02-10 2011-08-10 上海岩芯电子科技有限公司 Compensation method of direct current (DC) voltage fluctuation of photovoltaic grid-connected inverter
CN102148584B (en) 2010-02-10 2013-04-17 上海英孚特电子技术有限公司 Compensation method of direct current (DC) voltage fluctuation of photovoltaic grid-connected inverter
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
CN102522766A (en) * 2011-11-04 2012-06-27 浙江大学 Flyback type miniature photovoltaic grid connected inverter with power decoupling circuit and control method thereof
CN103095163A (en) * 2011-11-04 2013-05-08 丰郅(上海)新能源科技有限公司 High order position difference energy storage photovoltaic inverter
CN102522766B (en) * 2011-11-04 2014-12-24 浙江昱能科技有限公司 Flyback type miniature photovoltaic grid connected inverter with power decoupling circuit and control method thereof
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
CN103378761A (en) * 2012-04-24 2013-10-30 丰郅(上海)新能源科技有限公司 Three-stage topology photovoltaic inverter
WO2013163779A1 (en) * 2012-05-02 2013-11-07 上海康威特吉能源技术有限公司 Multi-input flyback photovoltaic grid-connected inverter
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
CN103606953A (en) * 2013-11-25 2014-02-26 东南大学 Single-stage boosting three-phase flyback inverter for solar energy grid-connected power generation
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105356733B (en) * 2015-11-02 2018-04-13 南京航空航天大学 A kind of two-stage type inverter and its control method for eliminating input current ripple
CN105356733A (en) * 2015-11-02 2016-02-24 南京航空航天大学 Two-stage inverter for eliminating input current ripple, and control method thereof
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
CN108111046A (en) * 2016-11-25 2018-06-01 南京航空航天大学 A kind of active Ripple Suppression type grid-connected converter and its control method
CN108123634B (en) * 2016-11-25 2019-09-13 南京航空航天大学 A kind of polarity reversion output type inverter and its control method with power decoupled
CN108123634A (en) * 2016-11-25 2018-06-05 南京航空航天大学 A kind of polarity inversion output type inverter and its control method with power decoupled
CN107395041A (en) * 2017-08-24 2017-11-24 东莞理工学院 High conversion efficiency isolated form miniature grid-connected inverter and its control method

Also Published As

Publication number Publication date
CN100433525C (en) 2008-11-12

Similar Documents

Publication Publication Date Title
Li et al. Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications
CN102005928B (en) Photovoltaic high-frequency isolation boost soft switch DC/DC converter and control method thereof
US8559193B2 (en) Zero-voltage-switching scheme for high-frequency converter
CN202034903U (en) Soft switching pressure rising direct current to direct current (DC-DC) convertor
CN102522766B (en) Flyback type miniature photovoltaic grid connected inverter with power decoupling circuit and control method thereof
Wu et al. Design considerations of soft-switched buck PFC converter with constant on-time (COT) control
CN102307017A (en) Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device
CN101958657A (en) Power supply switching circuit, equipment and alternate control method of power factor correction circuit
CN102624266A (en) Three-level inverter circuit
CN102437765B (en) An inverter circuit topology, an inverter and an inverter method
CN103187879B (en) Bidirectional direct current converter based on immittance network, and digital control system and method of bidirectional direct current converter
CN101841252B (en) Photovoltaic grid-connected inverter for active energy decoupling
CN100433525C (en) Soft switch back exciting converter used for solar energy photovoltaic generation incorporate in power network
CN101707442A (en) Transformer-free inverter
CN102593869B (en) One kind of h-bridge micro inverter grid means
CN1592061A (en) Push-pull converter and method for power supply device and uninterrupted power supply system
CN201918915U (en) DC (direct current)-AC (alternating current) convertor
CN201563081U (en) Solar energy conversion module and power supply system utilizing same
CN101667789A (en) Inverter circuit used for solar energy photovoltaic grid connection and device thereof
CN102946194B (en) A high-gain interleaved boost converter
CN101304221A (en) Solar photovoltaic interconnected inverter
CN101710716A (en) Grid-connected inverter capable of reducing electrolytic capacitance
CN201682429U (en) Bridgeless PFC boost rectifier
CN100346562C (en) Transformer clamping zero voltage switch three level full bridge converter and its expansion circuit
CN103401463B (en) DC bus capacitor decreases micro photovoltaic inverter and a control method

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted