CN1868033A - Multilayer mirror, method for manufacturing the same, and exposure equipment - Google Patents

Multilayer mirror, method for manufacturing the same, and exposure equipment Download PDF

Info

Publication number
CN1868033A
CN1868033A CN 200480030249 CN200480030249A CN1868033A CN 1868033 A CN1868033 A CN 1868033A CN 200480030249 CN200480030249 CN 200480030249 CN 200480030249 A CN200480030249 A CN 200480030249A CN 1868033 A CN1868033 A CN 1868033A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
multilayer
reflectance
film
si
ru
Prior art date
Application number
CN 200480030249
Other languages
Chinese (zh)
Other versions
CN100449690C (en )
Inventor
神高典明
村上胜彦
小宫毅治
白石雅之
Original Assignee
株式会社尼康
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

A multilayer film reflection mirror intended to reduce the dependency of reflectance on an incident angle. A substrate (1) is made of a low-thermal-expansion glass polished until its surface (top surface in the FIG.) has a roughness of up to 0.2 nmRMS. An Ru/Si multilayer film (3) having the large half width of peak reflectance is formed on the surface of the substrate (1), and an Mo/Si multilayer film (5) having a high peak reflectance is formed on this Ru/Si multilayer film (3). Accordingly, a reflectance peak having a higher reflectance than the case with of Ru/Si only and a larger half width than the case with of Mo/Si multilayer film (5) only is obtained. Since Ru provides a larger EUV beam absorption than Mo, a higher reflectance than with the case of a structure in which the Ru/Si multilayer film (3) is formed on the Mo/Si multilayer film (5) is obtained. Since a multilayer film having a larger half width at a spectral reflectance has a smaller dependency of reflectance on an angle, the invention can keep a high imaging performance in a projection optical system.

Description

多层膜反射镜、多层膜反射镜的制造方法及曝光系统 The multilayer film reflecting mirror, a multilayer mirror manufacturing method and an exposure system

技术领域 FIELD

本发明涉及在EUV光刻技术中使用的多层膜反射镜等,更具体地,涉及降低反射镜表面上的反射率对入射角的依从关系的技术。 The present invention relates to a multilayer film reflecting mirror used in the EUV lithography, etc., and more particularly, to a technique to reduce dependence of the reflectance on the incident angle of the mirror surface.

背景技术 Background technique

目前,作为制造半导体集成电路的方法,能够获得高处理速度的缩小的投影曝光得到了广泛的应用。 Currently, as a method for producing a semiconductor integrated circuit, it is possible to obtain a high reduction projection exposure processing speed has been widely used. 在该缩小的投影技术中,随着半导体集成电路装置变得更为精细,人们开发了使用具有约11~14nm波长的软X射线代替紫外线的投影光刻技术(参见非专利文献1)。 In the reduced projection technology, as the semiconductor integrated circuit devices become more sophisticated, having been developed from about 11 to soft X-ray projection lithography in place of ultraviolet wavelength 14nm technology (see Non-Patent Document 1). 近来,该技术也被称作EUV(远紫外线、软X射线)光刻技术。 Recently, this technique is also called EUV (extreme ultraviolet rays, soft X-ray) lithography. 人们期望该EUV光刻技术为具有45nm或以下的分辨率的技术,这用传统的光刻技术是不可能实现的(波长约为190nm或以上)。 The EUV lithography are expected to have a resolution of 45nm or less in the art, using conventional photolithographic techniques which can not be realized (wavelength of about 190nm or more).

与此同时,目前的使用可见光或紫外线的主流缩小投影的光学系统中,可以使用为透射型光学元件的透镜。 At the same time, the current mainstream of using visible light or ultraviolet reduction projection optical system may be used as a transmission type optical element of the lens. 要求高分辨率的缩小投影的光学系统由若干透镜构成。 Reduction projection optical system requires a high-resolution lens composed of a plurality. 与此相比,在EUV射线(软X射线)的波长范围内,没有透明材料,且材料的折射率非常接近于1,因此,不能使用利用折射的传统光学元件。 In contrast to this, in the EUV wavelength range rays (soft X-rays) is not a transparent material, the material having a refractive index very close to 1, and therefore, can not use conventional optical elements using refraction. 取而代之,人们使用利用全反射的掠射镜、通过调整界面处弱反射光的相位来重叠若干反射光线从而能够获得总体上高反射率的多层膜反射镜等。 Instead, people use grazing incidence mirrors using total reflection, the reflected light is weak at the interface by adjusting the phase of the reflected light to a plurality of overlapping multi-layered film can be obtained a high reflectivity mirror on the whole and the like.

在使用透镜的投影光学系统中,可以实现光线沿着光轴在一个方向上前进的光学系统,然而,在配置了反射镜的投影光学系统中,光束被多次返回。 In the projection optical system using a lens, the light rays can be achieved along the optical axis of the optical system in a forward direction, however, the configuration of the projection mirror optical system, the light beam is repeatedly returned. 因此,有必要阻止返回的光束与反射镜基底发生空间干涉,并要限制光学系统中的数值孔径(NA)。 Therefore, it is necessary to prevent the return beam and the mirror substrate spatial interference occurs, and to limit the numerical aperture (NA) optical system.

目前,由四至六个反射镜构成的投影光学系统是受到推荐的。 Currently, by the projection optical system composed of four to six mirrors it is subject recommended. 为了获得足够的分辨率,投影光学系统的数值孔径最好大些,因此,能够获得大数值孔径的由六个反射镜构成的光学系统被认为是可取的。 In order to obtain sufficient resolution, the numerical aperture of the projection optical system is preferably larger, and therefore, the optical system is constituted by the six mirrors is possible to obtain a large numerical aperture is considered desirable. 作为六反射镜光学系统的例子,Takahashi等人推荐了一种结构(参见专利文献1和后面的图21)。 Examples of the six-mirror optical system, Takahashi et al proposed a structure (see FIG. 1 and the following Patent Document 21).

为了使缩小投影的光学系统在缩小的投影曝光中表现出足够的性能,照明光学系统的结构也是很重要的。 In order to make the reduction projection optical system exhibit sufficient performance in the reduction projection exposure, the structure of the illumination optical system is also important. 为了使投影光学系统表现出足够的分辨率,有必要使光瞳中的光照射强度均匀,并且以均匀的强度照射掩膜上形成了待传送的电路构图的曝光区域。 In order to make the projection optical system exhibits a sufficient resolution, it is necessary that the light irradiation intensity uniform pupil, and in the formation of uniform intensity illumination exposure mask patterned regions of the circuit to be transmitted. 此外,为了保证通过量,照射尽可能强的光线也很重要。 Further, in order to ensure by the amount of irradiation light as strong as possible is also important. 作为这样的照明光学系统的示例,其在例如专利文献2中已被公开。 As an example of such an illumination optical system, which has been disclosed in Patent Document 2, for example.

在构成EUV光学系统的多层膜反射镜中,适于获得高反射率的材料随着入射光的波长范围的不同而不同。 In the EUV multilayer mirror constituting an optical system, suitable for obtaining a material with high reflectance of incident light in different wavelength ranges are different. 例如,在接近13.5nm的波长范围中,如果使用钼(Mo)层和硅(Si)层依次层叠的钼Mo/Si多层膜,对于垂直入射就能获得67.5%的反射率。 For example, in the range close to the wavelength of 13.5nm, if a molybdenum (Mo) layer and a silicon (Si) layer are stacked molybdenum Mo / Si multilayer film, it can be obtained for the normal incidence reflectance of 67.5%. 另外,在接近11.3nm的波长范围中,如果使用钼(Mo)层和铍(Be)层依次层叠的Mo/Be多层膜,对于垂直入射就能获得70.2%的反射率(参见非专利文献2)。 Further, in the wavelength range close to 11.3nm, if molybdenum (Mo) Mo / Be multilayer film layer and a beryllium (Be) layer are sequentially stacked, for normal incidence reflectance of 70.2% can be obtained (see Non-Patent Document 2). 据非专利文献2中的报道,在Mo/Si多层膜的情况下,多层膜的反射率峰值的半宽度(FWHM)为约0.56nm,其周期长度已被调整,以便对于垂直入射在13.5nm的波长处具有峰值。 It is reported in Non-Patent Document 2, in the case of Mo / Si multilayer film, the reflectance of the multilayer film peak half width (FWHM) of about 0.56 nm, the period length which has been adjusted so that the vertical incidence It has a peak at a wavelength of 13.5nm.

与此同时,众所周知多层膜反射镜的反射率随着光入射角和波长的不同会有显著的改变。 At the same time, the reflectance of the multilayer mirror known as the angle of incidence of light of different wavelengths and there is a significant change. 图19示例了传统多层膜反射镜的反射率与入射角之间的关系。 FIG. 19 illustrates the relationship between the reflection angle of incidence of the conventional multilayer film mirror. 该图中,横轴表示被投射到多层膜反射镜的光的入射角(度(°)),而纵轴表示波长(λ)为13.5nm的EUV射线的反射率(%)。 This figure, the horizontal axis represents the light is projected onto the multilayer film mirror of the angle of incidence (in degrees ([deg.])), And the vertical axis represents the wavelength ([lambda]) of EUV radiation reflectance (%) 13.5nm of. 如图所示,在传统的多层膜反射镜中,当入射角为约0°至5°时将获得70%或更高的高反射率,然而,当为10°以上时,反射率则显著下降。 As illustrated, in the conventional multilayer film reflecting mirror, when the incident angle is from about 0 ° to 5 ° or more to obtain a high reflectivity of 70%, however, when less than 10 °, the reflectance is Decreased significantly.

图20示例了传统多层膜反射镜的光谱反射性能。 FIG 20 illustrates a conventional spectral reflectance properties of a multilayer film mirror. 该图中,横轴表示入射光的波长(λ),纵轴表示反射率(%)。 This figure, the horizontal axis represents the wavelength of incident light ([lambda]), and the vertical axis represents reflectance (%). 注意,其入射角假定为0°(垂直投射到反射表面)。 Note that the incident angle is assumed to be (vertically projected onto the reflective surface) 0 °. 如图可见,传统的多层膜反射镜中,波长13.5nm附近(图的中央部位)获得了70%或以上的高反射率,然而,在其它的波长范围内,反射率显著下降。 As can be seen, the conventional multilayer mirror in the vicinity of a wavelength of 13.5 nm (the central portion in the figure) to obtain the high reflectivity of 70% or more, however, in other wavelength range, the reflectance decreased significantly.

对于这样的问题,Kuhlmann等人已经提出了一种通过使反射性多层膜的周期性结构(每层的膜厚)不均匀从而在较宽的波长范围内具有大致均匀的反射率的反射性多层膜(参见非专利文献3)。 For such problems, Kuhlmann et al have proposed to have one kind of reflective substantially uniform reflectivity over a wide wavelength range by the periodic structure of the reflective multilayer film (film thickness of each layer) uneven The multilayer film (see Non-Patent Document 3). 非专利文献3公开了一种对于反射率角度分布或光谱反射率来说具有宽范围的多层膜结构,其是通过使用商购多层膜优化程序来调整50层的多层膜的每层的膜厚而获得的。 Patent Document 3 discloses a method for spectral reflectance distribution or a multilayer film structure having a wide range of reflectance at an angle, which is a multilayer film by using a commercially available program optimized to adjust the multilayer film 50 of each layer the film thickness is obtained.

例如,在多层膜的周期性长度恒定的情况下,如果优化该周期性长度以使垂直入射时反射率最大,能够保持高反射率的范围是当入射角为0°至5°时,当入射角为10°或以上时,反射率显著下降。 For example, at a constant periodic length of the multilayer film, if an optimized so that the maximum length of the periodic reflectivity normal incidence, it is possible to maintain a high reflectance when the incident angle is in the range of 0 ° to 5 °, when when the incident angle is 10 ° or more, the reflectance decreased significantly. 与此相比,非专利文献3公开一种具有不均匀膜厚结构的多层膜,在入射角在0°至20°的范围内,其反射率几乎恒定在约45%。 In contrast to this, Patent Document 3 discloses a multilayer film having an uneven film thickness structure, the incident angle in the range of 0 ° to 20 °, the reflectivity is almost constant at about 45%. 尽管正常的Mo/Si多层膜的光谱反射率峰值的半宽度(FWHM)为约0.56nm,非专利文献3也公开了一种结构,对于垂直入射,波长范围在13nm至15nm时其反射率几乎稳定在30%。 Half width (FWHM) although normal Mo / Si multilayer film spectral reflectance peak is about 0.56 nm, Non-Patent Document 3 also discloses a structure for normal incidence, the wavelength range of 13nm to 15nm at which reflectance almost stable at 30%.

上述的宽波长范围中反射率的一致以及宽入射角范围内的一致不是能够单独控制的性能,在能够在宽的波长范围内获得均匀的反射率的多层膜中,具有这样的趋势,即,即使在宽的入射角范围内反射率的改变也变小了。 Not uniform can be controlled individually and consistent performance in a wide range of the incident angle in the wide wavelength range of reflectivity, can be obtained in a uniform in a wide wavelength range reflectance multilayer film having such a tendency that changed even over a wide range of angles of incidence the reflectance becomes smaller. 在这样的宽波长范围内能够获得均匀的反射率的多层膜可以利用宽波长区域中的EUV射线,尽管其反射峰值比一般的多层膜的要低,因此,当入射光的波长范围宽时可以期待获得取决于其应用的大量光照。 In such a wide wavelength range can be obtained uniform reflectivity of the multilayer film may be utilized in a wide wavelength region of EUV radiation, although lower than the average peak reflection multilayer film, and therefore, when a wide range of wavelength of incident light when they can expect to get a lot of light depending on their application.

另外,Singh等人已经报道了通过使Mo/Si多层膜的Γ值(多层膜的周期性长度与Mo层厚度的比例)在深度方向上不均匀,从而增加反射率(参见非专利文献4)。 Further, Singh, et al. Have reported by Mo / Si multilayer film Γ value (ratio of length to Mo periodic multilayer film thickness) unevenness in the depth direction, thereby increasing the reflectance (see Non-Patent Document 4). 当Γ值为0.35至0.4时Mo/Si多层膜的EUV反射率达到最大,然而,非专利文献4公开了当将多层膜的基底侧(深层侧)部分处的Mo/Si的Γ值接近于0.5时,可以使反射率获得比当对于整个多层膜来说将其设定在恒定值0.4时能获得更大的增加。 When Γ is 0.35 to 0.4 when the Mo / EUV reflectance Si multilayer film is maximized, however, Patent Document 4 discloses that when the value of Mo Γ at the side of the multilayer film substrate (deep side) portion / Si of close to 0.5, the reflectivity can be obtained than when the entire multilayer film is set at a constant value which can be obtained when a greater increase 0.4.

与此同时,作为对接近13nm波长的EUV射线能够获得高反射率的反射性多层膜结构,除了Mo/Si之外,还有Ru/Si(Ru表示钌)。 At the same time, as close to the EUV radiation of a wavelength of 13nm is possible to obtain a reflective multilayer film structure of high reflectivity, in addition to the Mo / Si, there Ru / Si (Ru represents a ruthenium). 如果假定n为折射率,k为消光系数(复折射率的虚部),13.5nm波长的硅的光学常数(n,k)为n(Si)=0.9993,和k(Si)=0.0018。 If assumed that a refractive index n, k is the extinction coefficient (imaginary part of complex refractive index), the optical constants of a wavelength of 13.5 nm of silicon (n, k) to n (Si) = 0.9993, and k (Si) = 0.0018.

而钼和钌的光学常数(n,k)分别为n(Mo)=0.9211,k(Mo)=0.0064,n(Ru)=0.8872,和k(Ru)=0.0175。 And the optical constants of molybdenum and ruthenium (n, k) are n (Mo) = 0.9211, k (Mo) = 0.0064, n (Ru) = 0.8872, and k (Ru) = 0.0175.

与用于EUV射线的多层膜一样,当多层膜自身吸收光线时,为了获得高的反射率,优选构成多层膜的物质的折射率的差量大且吸收小。 EUV radiation with a multilayer film of the same, when the multilayer film itself absorbs light, in order to obtain a high reflectivity, preferably greater difference in refractive index of the material constituting the multilayer film and low absorption. 从上述光学常数可见,从折射率的角度上看,Ru/Si多层膜合适,而从吸收的角度看,Mo/Si多层膜更适于获得高反射率。 Seen from the above-described optical constants, the refractive index viewed from the perspective of, Ru / Si multilayer film is suitable, but from the point of view absorption, Mo / Si multilayer film is more suitable for obtaining a high reflectance. 在该两种多层膜的情况下,吸收的影响是主导的,且Mo/Si多层膜具有更高的峰值反射率。 In the case where the two kinds of the multilayer film, impact absorption is dominant, and Mo / Si multilayer film having a higher peak reflectivity.

多层膜的反射率峰的半宽度是由折射率差量造成的。 Half-width of the reflection peak of the multilayer film are caused by the refractive index difference amount. 已知在红外线、可见光和紫外线领域众知的介电多层膜(一种具有不同折射率的两种物质依次层叠的多层膜)的反射率峰的带全宽由下式表示(例如,参见非专利文献5)。 Known reflectance peak in the infrared, visible and ultraviolet well known in the art dielectric multilayer film (multilayer film of two substances having different refractive indices are sequentially laminated having a) a full width band represented by the formula (e.g., see Non-Patent Document 5).

[数学公式1]2Δg=4π·sin-1(nH-nLnH+nL)···(1)]]>这里,nH是高折射率物质的折射率,而nL是低折射率物质的折射率。 [Mathematical Formula 1] 2 & Delta; g = 4 & pi; & CenterDot; sin-1 (nH-nLnH + nL) & CenterDot; & CenterDot; & CenterDot; (1)]]> Here, nH is a high refractive index material, and nL is low refractive index material.

从上式可见,构成多层膜的两种物质之间的折射率差越大,谱带(band)增加越多,因此,从Ru/Si多层膜比从Mo/Si多层膜可获得更宽的半宽度。 , The larger the refractive index difference between the two substances constituting the multilayered film seen from the above formula, band (Band) increases, the more so, than can be obtained from the Ru / Si multilayer film from the Mo / Si multilayer film wider half width. 在膜层不吸收的情况下,介电多层膜反射率的峰值逐渐达到100%,然而,在EUV区域由于吸收它达不到100%。 In the case of non-absorbing layer, the dielectric multilayer film peak reflectivity level gradually reaches 100%, however, due to absorption in the EUV region which less than 100%.

由于吸收量取决于波长,如果标绘出反射率相对于波长的改变,峰值波长前后的反射率是不对称的。 Since the amount of absorption depends on the wavelength, if the reflectivity is plotted with respect to a change in wavelength, the reflectivity before and after the peak wavelength is asymmetric. EUV区域中的多层膜反射率峰值随着形成的膜层的对数增加而增加,然而,在某个层对数处饱和。 EUV reflectivity of the multilayer film in the region of the peak increases as the number of layers formed increases, however, the number of saturated at a certain level. 达到饱和时的层对数对于Mo/Si多层膜来说为约50对膜层,而对于Ru/Si来说为约30对膜层。 Logarithmic layer reaches saturation for Mo / Si multilayer film of the film is about 50, and for the Ru / Si is about 30 to film. 反射率达到饱和的原因是,当EUV射线通过膜层时每个边界表面的反射和吸收使得几乎没有光线到达更深的部位,并且不再对整个膜层的反射有贡献。 The reflectance is saturated because, when EUV radiation by reflecting and absorbing layers such that each boundary surface is little light reaches a deeper portion, and no longer contributes to the overall reflection film layer. Ru/Si多层膜的吸收量大于Mo/Si多层膜,并且其在单个界面的反射率也较高,因此,达到饱和的膜层对数较小。 Absorption Ru / Si multilayer film is greater than Mo / Si multilayer film, and is also higher in reflectivity of a single interface, and therefore, saturation of the number of layers is small.

专利文献1:日本未审查专利申请出版公开号2003-15040专利文献2:日本未审查专利申请出版公开号11-312638非专利文献1:Daniel A.Tichenor和其他21个人,“集成EUVL实验工具的发展近况(Recent results in the development of an integratedEUVL laboratory tool)”,SPIE论文集(Proceedings of SPIE),美国(USA),[SPIE,光学工程国际学会(The International Society forOptical Engineering)],1995年5月,第2437卷,第293页非专利文献2:Claude Montcalm和其他5个人,“用于远紫外光刻技术的多层膜反射涂层(Multilayer reflective coatings forextreme-ultraviolet lithography)”,SPIE论文集,美国,(SPIE,光学工程国际学会),1989年6月,第3331卷,第42页非专利文献3:Thomas Kuhlmann和其他3个人,“具有特定的光谱反射率的EUV多层膜反射镜(EUV multilayer mirrors with tailoredspectral reflectivity)”,SPIE论文集,美国,(SPIE,光学工程国际学会),2003 Patent Document 1: Japanese Unexamined Patent Application Publication Publication No. 2003-15040 Patent Document 2: Japanese Unexamined Patent Application Publication No. 11-312638 Non-Patent Document 1: Daniel A.Tichenor and 21 other individuals, "integrated test tool EUVL Recent Developments (Recent results in the development of an integratedEUVL laboratory tool) ", SPIE Proceedings (Proceedings of SPIE), United States of America (USA), [SPIE, the international Society for optical Engineering (The international Society forOptical Engineering)], May 1995 , Vol. 2437, page 293 Non-Patent Document 2: Claude Montcalm and other five people, "multilayer reflective coatings for extreme ultraviolet lithography technology (multilayer reflective coatings forextreme-ultraviolet lithography)", SPIE Proceedings, USA, (SPIE, the international Society for optical Engineering), June 1989, Vol. 3331, page 42 Non-Patent Document 3: Thomas Kuhlmann and other three people, "EUV multilayer mirror having a specific spectral reflectance ( EUV multilayer mirrors with tailoredspectral reflectivity) ", SPIE Proceedings, United States, (SPIE, the international Society for optical Engineering), 2003 ,第4782卷,第196页非专利文献4:Mandeep Singh和另一个人,“远紫外反射镜的改进的理论反射率(Improved Theoretical Reflectivities of ExtremeUltraviolet Mirrors)”,SPIE论文集,美国,2000年7月,第3997卷,第412页非专利文献5:HAMacleod撰写,Shigetaro Ogura和其他3人翻译,“光学薄膜(Optical Thin Film)”,Nikkan Kogyo Shimbun有限责任公司,1989年11月发明内容实际用于EUV光刻技术中的投影光学系统由多层膜反射镜构成,其中Mo/Si多层膜在基底上形成。 , Vol. 4782, page 196 Non-Patent Document 4: Mandeep Singh and another, "Improved far ultraviolet theoretical reflectance mirror (Improved Theoretical Reflectivities of ExtremeUltraviolet Mirrors)", SPIE Proceedings, USA, July 2000 January, 3997 Vol., pp. 412 Non-Patent Document 5: HAMacleod writing, Shigetaro Ogura translation and three others, "an optical film (optical thin film)", Nikkan Kogyo Shimbun Co., Ltd., November 1989 SUMMARY actually used the projection optical system in the EUV lithography is formed of a multilayer film reflecting mirror, wherein the Mo / Si multilayer film is formed on the substrate.

图21示例了由6个反射镜构成的投影光学系统。 FIG 21 illustrates a projection optical system composed of six mirrors. 该投影光学系统由CM1至CM6这6个反射镜构成,且由掩膜M反射的光线被投影到晶片W上。 The projection optical system is composed of CM1 to CM6 six mirrors, and the mask M is projected by the light rays reflected onto the wafer W. 该光学系统中的上游侧(靠近掩膜M的一侧)的4个镜CM1至CM4构成第一反射图像成形光学系统G1,用以在掩膜M上形成掩膜构图的中间图像,而下游侧的两个反射镜CM5和CM6(靠近晶片W的一侧)构成第二反射图像成形光学系统G2,用以将掩膜构图的中间图像缩小地投影在晶片W上。 Upstream side of the optical system (a side near the mask M) four mirrors CM1 to CM4 constituting the first reflecting image forming optical system G1, a mask for forming an intermediate image patterned on the mask M, with the downstream two side mirrors CM5 and CM6 (near the wafer W side) constituting a second reflecting image forming optical system G2, a mask for patterning the intermediate image reduction projected onto the wafer W.

被掩膜M反射的光线被第一凹面镜CM1的反射表面R1反射,并被第二凸面镜CM2的反射表面R2反射。 The reflected light is reflected by the mask M surface reflected by the first concave mirror CM1, R1, R2 and a second convex surface is reflected CM2. 被反射表面R2反射的光线经由穿孔隔膜AS,随后依次被第三凸面镜CM3的反射表面R3和第四凹面镜CM4的反射表面R4反射,形成掩膜构图的中间图像。 The light reflected by the reflection surface R2 via the AS perforate membrane, and then sequentially convex reflecting surface R3 of the third and fourth concave mirror CM3 the reflection surface R4 CM4 forms an intermediate image of the mask patterned. 接着,来自经由第一反射图像成形光学系统G1形成的掩膜构图的中间图像的光线被第五凸面镜CM5的反射表面R5和第六凹面镜CM6的反射表面R6反射,于是在晶片W上形成掩膜构图的缩小的图像。 Subsequently, the light patterned mask intermediate image forming optical system G1 is reflected from a first image formed via the reflective surface is reflected R5 R6 CM5 fifth convex reflective surface and a sixth concave mirror CM6, so formed on the wafer W image reduction mask patterning.

在反射镜表面形成的Mo/Si多层膜的基底平面中的周期性长度分布直接影响该平面内的反射率分布,且该反射率的平面内分布作为形成的图像表面上平面内照明度变化或光瞳平面中的光量变化来影响图像成形性能,因此,有必要将它们都考虑在内,来建立一种最优的平面内分布。 Periodic length of the substrate plane Mo / Si multilayer film formed on the mirror surface reflectance distribution directly affect the distribution plane and in-plane illumination distribution on an image forming surface as a change of the reflectance within the plane or a light amount of change in the pupil plane to affect the image formability, and therefore, it is necessary that they are taken into account, to establish an optimal distribution plane. 然而,由于很难在基底上形成具有自由膜厚分布的膜层,因此,当设置光学系统时,一般优化围绕光学系统的光轴的轴对称膜厚分布。 However, since the layer is difficult to form a free film thickness distribution on the substrate, and therefore, when an optical system is generally optimized around the shaft axis of the optical system symmetrical thickness distribution.

即使如上所述优化周期性长度分布,仍然存在下述问题。 Even optimizing the periodic length distribution described above, the following problems still exist. 在图21所示的投影光学系统中,到达图像成形表面上的某点的光线不是仅来自于到达该图像成形表面的一个方向,而是来自于在某种程度上可会聚成一点的立体角度空间。 The projection optical system shown in FIG. 21, the light reaching a point on the image forming surface not only from one direction reaches the image forming surface, but are to some extent from the perspective angle of convergence to a point space. 换言之,对图像成形表面上一点处的图像成形做出贡献的一束射线在每个具有有限面积的反射镜基底上的区域、以及在相应于图像成形表面上不太分开的两点的反射镜基底上部分彼此重叠的两个区域中被反射。 In other words, the region contributing to the image forming surface at a point of a bundle of rays forming an image on each of the mirror substrate having a finite area, and a mirror on an image forming surface corresponding to not separate the two points is reflected by the two regions overlap with each other on the base portion. 换言之,反射镜基底上单个点处的反射对图像成形表面上的具有某个范围的区域中的图像成形将做出贡献,且同样点处反射的光线将到达图像成形表面上的不同点。 In other words, reflection at a single point on the mirror substrate on the image forming region having a certain range on the image forming surface will contribute to, and the same light reflection point will reach different points on the image forming surface. 此时,到达图像成形表面上不同点的光线以不同的角度被入射到反射镜上相同的点上,因此,在反射表面上某点处的入射角具有某个范围。 At this time, the upper surface of the light reaching the image forming different points are incident on the same point on the mirror at a different angle, and therefore, the angle of incidence on the reflective surface at a point having a certain range.

在多层膜反射镜中,对于固定波长的最优周期长度取决于入射角,因此,严格地说,不存在对于所有的入射角来说均为最优的周期长度。 In the multilayer film reflecting mirror, the optimal wavelength for a fixed period length depends on the angle of incidence, and therefore, strictly speaking, there are optimal cycle length for all angles of incidence. 如果入射角的范围不是这样大,其影响不大。 If the incident angle range is not so large, it has little impact. 然而,即使对于构成光学系统的反射镜基底来说优化通常的Mo/Si多层膜的周期性长度面内分布(该周期性长度是恒定的),例如如图21所示,以使传送的光线的光波表面偏差变得较小,光瞳平面中光线强度也会发生大的变化。 However, even within the normally optimized Mo / Si multilayer film mirror substrate for constituting the optical system for the length of the periodic surface profile (the periodic length is constant), for example, shown in Figure 21, so that the transfer of light wave surface of light deviation becomes smaller, the pupil plane light intensity also changes. 这里,在上述膜层成形方法的约束下,在配置光学系统时,在围绕光轴的轴对称分布的范围内优化多层膜周期长度的分布。 Here, under the constraints of the above-described film forming method, when the configuration of the optical system, the multilayer film distribution optimization cycle length in the range of symmetrically distributed about the axis of the shaft.

光瞳平面中的光强度变化在光学上等同于有效NA不规则地变得更小,因此,图像成形性能显著下降。 Change in light intensity in the pupil plane optically equivalent to the effective NA of the smaller irregularly, and therefore, the image forming performance is significantly decreased. 这是发生在正常的Mo/Si多层膜中的一个问题,因为反射率对入射角的依从性大。 This is a problem in normal Mo / Si multilayer film, because the reflectance of the incident angle is large compliance. 因此,人们要求一种减小降低图像成形性能的反射率对入射角的依从性的方法,该方法可获得高的图像成形性能。 Therefore, it requires a compliance method angle of incidence reflectance image forming performance is reduced decreases, the process can be obtained a high image forming performance.

另外,为了在投影光学系统中获得高的图像成形性能,有必要使得掩膜上的照射光线强度分布和照明光学系统中光瞳平面中的光线强度分布均匀。 Further, in order to obtain a high image forming performance of the projection optical system, it is necessary that the light intensity in the pupil plane light intensity distribution of the illumination light and an illumination optical system for uniform distribution of the mask. 这是因为照明光学系统中光瞳平面中的光线强度分布直接反映在投影光学系统中图像成形表面上的强度分布和光瞳平面的强度分布上。 This is because the illumination optical system in the pupil plane light intensity distribution is directly reflected on the intensity distribution and the intensity distribution of the pupil plane on the image forming surface of the projection optical system.

此外,在近来提出的照明光学系统中的多层膜反射镜中,入射角的面内分布大。 Further, the multilayer film in the illumination optical system proposed in recent mirror, the incident angle of the inner surface of the large distribution. 因此,难于对反射表面上所有的点来严格选配最优周期长度。 Thus, it is difficult for all points on the reflective surface strictly optimal matching cycle length. 这是因为面内周期性长度分布中的变化量需要增加,且由于当周期性长度分布在膜层形成时被控制时、或者当照明光学系统进行校准时产生细微的偏移,对应于假定的入射角的膜厚与对应于实际的入射角的膜厚不同,导致反射率显著减小。 This is because the amount of change in the periodicity length of the plane distribution needs to be increased, and since when a periodic length distribution to be controlled when the film forming, or produce subtle when the illumination optical system offset calibration, corresponding to the putative film thickness with an incident angle corresponding to the angle of incidence different from an actual, resulting in significant reduction in reflectivity. 在这种情况下,存在能被用于照明的光线量减少、且产量下降的问题。 In this case, there is a problem that can be used to reduce the amount of light illumination, and the yield is decreased. 因此需要降低反射镜面上的反射率对入射角的依从性的技术。 It is necessary to reduce the compliance in the art reflectance on the incident angle of the mirror.

本发明的一个目的是提供一种降低多层膜反射镜等上的反射率对入射角的依从性的技术。 An object of the present invention is to provide a technique compliance reflectance of the multilayer mirror decreases the incident angle and the like.

根据本发明的第一个实施例,多层膜反射镜具有反射性多层膜,其中对于EUV射线的高折射率膜层和低折射率膜层依次层叠,其具有以下特征。 According to a first embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, wherein the high refractive index film layer for EUV radiation and low refractive index film are sequentially laminated, with the following characteristics. 首先,在光线入射平面侧上的多层膜(表面膜层组)中,低折射率膜层由包括钼(Mo)的物质构成,而高折射率膜层由包括硅(Si)的物质构成。 Firstly, the multilayer film (surface film layer group) on the light incidence plane side, the low refractive index layer is constituted by materials include molybdenum (Mo), and the high refractive index layer composed of a substance comprising silicon (Si), . 第二,在表面膜层组的光线入射平面对侧上的多层膜(深层膜层组)中,低折射率膜层由包括钌(Ru)的物质构成,而高折射率膜层由包括硅的物质构成。 A second multilayer film (underlying layer group) on the light incident surface of the film plane contralateral group, composed of a low refractive index film material comprises ruthenium (Ru), and a high refractive index film layer comprising silicon material composition.

这里,高折射率膜层或低折射率膜层可以是单个膜层或者是多个膜层重叠的复合膜层。 Here, the high refractive index layer or low refractive index film may be a single layer or a plurality of superimposed layers of composite film. 另外,在高折射率膜层和低折射率膜层之间还可能插入另一个的膜层。 Further, between the high refractive index film layer and the low refractive index film layer may also be inserted into another.

根据本发明,包括钼的基底也包括如铑(Rh)、碳(C)、硅(Si)等。 According to the present invention, it comprises a molybdenum substrate can also include such as rhodium (Rh), carbon (C), silicon (Si) and the like. 换言之,包括钼的基底可能是含有杂质Rh、C和Si的钼,或者可能是这些物质和钼的化合物(这一点同样适用于包括钌的物质和包括硅的物质)。 In other words, the substrate may include molybdenum containing impurities Rh, C Si and molybdenum, or may be a compound of these materials molybdenum (This also applies to the material comprising ruthenium and include materials of silicon). 另外,包括钌的物质也包括如铑(Rh)、碳(C)、硅(Si)等。 Further, ruthenium materials also include including such as rhodium (Rh), carbon (C), silicon (Si) and the like. 此外,包括硅的物质也包括如碳(C)、四硼化碳(B4C)、硼(B)等。 Further, also includes materials comprising silicon, such as carbon (C), four carbon boride (of B4C), boron (B) and the like.

根据上述的第一实施例,具有高的反射率峰值的Mo/Si多层膜在具有大的反射率峰值半宽度的Ru/Si多层膜上形成,因此有可能获得比仅仅Ru/Si的情况下要更高的反射率,以及比仅仅Mo/Si多层膜的情况下具有更宽的半宽度的反射率峰值。 Mo / Si multilayer film according to the above-described first embodiment, having a high reflectance peak having a large half width of the reflectance peak Ru / Si multilayer film is formed, it is possible to obtain more than just Ru / Si of to a case where a higher reflectance, and the case where only the ratio Mo / Si multilayer film having a wider half width of the reflectance peak. 另外,Ru比Mo吸收更多的EUV射线,因此将获得比Ru/Si多层膜在Mo/Si多层膜上形成的结构中更高的反射率。 Further, Ru Mo absorb more than EUV radiation, the structure thus obtained ratio Ru / Si multilayer film Mo / Si multilayer film formed in the higher reflectance. 具有关于光谱反射率的宽的半宽度的多层膜具有较小的反射率对入射角的依从性,这使得根据本发明的投影光学系统能够保持高的图像成形性能。 Half-width of a multilayer film having a broad spectrum on reflectance has a smaller angle of incidence reflectivity compliance, which makes it possible to maintain a high image forming performance of the projection optical system according to the present invention.

根据第一实施例,优选表面膜层组中的高折射率膜层和低折射率膜层的层对数为2至10。 According to the first embodiment, the surface layer is preferably set high refractive index layer and the low refractive index film of layer number of from 2 to 10. Mo/Si多层膜的层叠数为10或以下,因此,由于来自在基底侧上形成的Ru/Si的影响,反射率峰的半宽度保持较宽。 Number of stacked Mo / Si multilayer film is 10 or less, and therefore, the influence of the substrate on the side formed Ru / Si from the half width of the reflection peak is wider maintained. 另外,最表层为具有比Ru/Si多层膜更高的反射率的Mo/Si多层膜,因此,峰值反射率增加。 Further, the outermost layer having a reflectance than a multilayer Mo higher Ru / Si film / Si multilayer film, thus increasing the peak reflectivity. 这使得可以获得具有单是Mo/Si多层膜或者单是Ru/Si多层膜不可能得到的高反射率和宽的半宽度的多层膜。 This alone makes it possible to obtain a Mo / Si multilayer film, or a single highly reflective Ru / Si multilayer film can not be obtained and a wide half-width of the multilayer film.

图22(A)为表示Mo/Si多层膜和Ru/Si多层膜的理论反射率的入射波长性能的曲线图。 FIG. 22 (A) is a graph showing the performance of the incident wavelength Mo / Si multilayer film, and the theoretical reflectance Ru / Si multilayer film. 该图中,横轴表示入射光线的波长,纵轴表示理论反射率(反射率的计算值)。 This figure, the horizontal axis represents wavelength of the incident light, and the vertical axis represents the theoretical reflectance (reflectance calculated value). 图中的实线表示100对膜层的Mo/Si多层膜的理论反射率,虚线表示100对膜层的Ru/Si多层膜的理论反射率。 Theoretical reflectance theoretical reflectance solid line indicates the 100 pairs of coating layer Mo / Si multilayer film, the broken line represents a film layer 100 pairs Ru / Si multilayer film. 从图22(A)可见,具有100对膜层的足够大的形成膜层对数的Mo/Si多层膜的半宽度为0.6nm,而Ru/Si多层膜的半宽度为0.8nm。 A sufficiently large film formed from the FIG. 22 (A) is visible, with 100 of the film layer of the half-width of the number of Mo / Si multilayer film is 0.6nm, and the half-width of the Ru / Si multilayer film is 0.8nm.

图22(B)的曲线图表示了半宽度和反射率峰值关于通过在Ru/Si多层膜上形成Mo/Si多层膜而形成的多层膜中的Mo/Si多层膜的成形膜对数的变化。 FIG. 22 (B) is a graph showing a film forming multilayer film and reflectance peak half-width on Mo / Si multilayer film is formed by a Ru / Si multilayer film is formed in the Mo / Si multilayer film changes in the numbers. 图中,横轴表示在100对膜层的Ru/Si多层膜上形成的Mo/Si多层膜的层对数。 Figure, the abscissa represents the layer Mo / Si multilayer film is Ru / Si multilayer film layer formed film 100 pairs of numbers. 关于Mo/Si多层膜的层对数的半宽度用白三角(△)表示,反射率峰值用黑圆点(●)表示。 About layer Mo / Si multilayer films with a half-width of white triangles (△) represents the number, reflectivity peak indicated by black circles (●).

从图22(B)可见,随着Mo/Si多层膜的层对数增加,反射率峰值增加,然而,当该层对数变为15以上时,峰值几乎饱和。 (B) can be seen from FIG. 22, as the layer of Mo / Si multilayer films to increase the number of peak reflectivity increases, however, when the layer number becomes 15 or more, the peak is almost saturated. 另一方面,随着Mo/Si多层膜的层对数减小,半宽度减小。 On the other hand, as the layer of Mo / Si multilayer film is reduced to the number of half-width decreases. 于是,当Mo/Si多层膜的层对数变为15时,半宽度减小到0.7nm以下,并接近Mo/Si多层膜的值(参见图22(A))。 Thus, when a layer Mo / Si multilayer film 15 becomes logarithmic, the half width is reduced to 0.7nm or less, and Mo proximity value (see FIG. 22 (A)) / Si multilayer film.

如上所述,为了获得反射率增加的效果并且使得半宽度减小的影响最小,优选Mo/Si多层膜的成形膜层对数为两对以上,更优选为5至10对。 As described above, in order to obtain the effect of increasing the reflectance is reduced and that the influence of the minimum half-width, preferably forming layer Mo / Si multilayer film is more than two pairs of the atoms, and more preferably 5 to 10 pairs. 第一实施例中的多层膜反射镜由下面的方法制造。 The first embodiment multilayer mirror manufactured by the following method. 换言之,该方法仅仅有必要具有通过在基底上交替沉积包括钌的物质和包括硅的物质来形成深层膜层组的工序,以及在深层膜层组上交替沉积包括钼的物质和包括硅的物质来形成表面膜层组的工序。 In other words, this method is only necessary to have a material on a substrate by alternately depositing materials comprises ruthenium and silicon material comprising the step of forming a deep layer of the group, and the deep layer alternately deposited on the substance group comprising molybdenum and silicon comprising a step of forming the surface layer of the group.

根据本发明的第二实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中对于EUV射线的高折射率膜层和低折射率膜层交替层叠。 According to a second embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film for the high refractive index film layer are alternately laminated EUV radiation and a low refractive index layer. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,它具有在光线入射平面侧的多层膜组(表面膜层组)、在表面膜层组中相对入射平面侧上的附加层,以及在附加层的相对入射平面侧的多层膜组(深层膜层组)。 Firstly, the multilayer film having a group (Group surface layer) side of the light incidence plane, the surface layer group relative to the incident plane on the side of the additional layer, and the multilayer film is set on the opposite side of the plane of incidence of the additional layer (deep layer group). 第二,由于存在附加层,反射光的相位改变,因此反射镜中反射率峰值整体减小,同时,与不存在附加层的情形相比,围绕峰值波长的反射率增加。 Second, the presence of additional layers, phase change of the reflected light, the mirror reflectance peak reduced as a whole, at the same time, compared with the case where there are no additional layers, the increase in reflectance peak wavelength around.

根据本发明的第三实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中对于EUV射线的高折射率膜层和低折射率膜层交替层叠。 According to a third embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film for the high refractive index film layer are alternately laminated EUV radiation and a low refractive index layer. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,它具有在光线入射平面侧的多层膜组(表面膜层组)、在表面膜层组中相对入射平面侧上的附加层,以及在附加层的相对入射平面侧的多层膜组(深层膜层组)。 Firstly, the multilayer film having a group (Group surface layer) side of the light incidence plane, the surface layer group relative to the incident plane on the side of the additional layer, and the multilayer film is set on the opposite side of the plane of incidence of the additional layer (deep layer group). 第二,在表面膜层组中,低折射率膜层由包括钌(Ru)的物质构成,而高折射率膜层由包括硅(Si)的物质构成。 Second, the surface layer group, layer is made of a low refractive index material comprises ruthenium (Ru), and the high refractive index layer composed of a substance comprising silicon (Si),. 第三,在深层膜层组中,低折射率膜层由包括钌(Ru)的物质构成,而高折射率膜层由包括硅(Si)的物质构成。 Third, in the deep layer group, layer is made of a low refractive index material comprises ruthenium (Ru), and the high refractive index layer composed of a substance comprising silicon (Si),. 第四,附加层的厚度约为多层膜的周期长度的一半,或者约为周期长度的一半加上周期长度的整数倍。 Fourth, the thickness of the additional layer is about half the length of the period of the multilayer film, or about half the length of the period plus an integral multiple of the cycle length. 注意,表面膜层组中低折射率膜层可能由包括钼(Mo)的物质而不是上述的包括钌(Ru)的物质构成。 Note that, the surface layer may be a group composed of a low-refractive index layer materials include molybdenum (Mo) is other than the above include ruthenium (Ru) substance. 另外,深层膜中的低折射率膜层也可由包括钼(Mo)而不是钌的物质哦构成。 Further, deep in the film comprising a low refractive index layer may also be molybdenum (Mo) instead of ruthenium is constituted oh.

在上述第二和第三实施例中的多层膜反射镜中,优选表面膜层组的单位周期结构(层对)数为10至30,而深层膜层组的对数为表面膜层组对数的5~50%。 In the second embodiment and the third embodiment of the multilayer film reflecting mirror, the surface layer preferably sets the unit periodic structure (layer) 10 to 30 atoms, and the number of the deep layer is a surface layer group group 5 to 50% of the number.

在第二和第三实施例中的多层膜反射镜中,附加层在从多层膜的顶表面起第十至第三十周期的位置,然而,EUV射线将到达深于附加层的位置。 Multilayer mirror in the second embodiment and the third embodiment, the additional layer from the top surface of the multilayer film of the tenth to thirtieth position cycle, however, the EUV radiation reaches deeper than the position of the additional layer . 因此,来自附加层的相对入射平面侧(基底侧)上的多层膜组(深层膜层组)的反射光线对整个多层膜的反射率做出贡献。 Thus, the multilayer film group (group deep layer) on the opposite side from the incident plane of the additional layer (substrate side) of the reflected light contribute to the reflectance of the entire multilayer film.

附加层的厚度使得来自附加层之上及之下的周期性多层膜(入射平面侧和相对入射平面侧)的反射光线的相位在反射峰附近改变,因此反射光线的振幅衰减。 The thickness of the additional layer such that the phase of the reflected light from the periodic multilayer film (the incidence plane side and an opposite side of the plane of incidence) and an additional layer below the top of the reflection peak in the vicinity of changes, attenuation of the amplitude of the reflected light. 因此,由于附加层的存在,在反射率峰的前端部反射率下降。 Thus, the presence of additional layers, the distal end portion of the reflectance peak the reflectance decreases. 在多层膜对数小于反射率饱和时的膜层对数的多层膜中的反射率峰顶峰处的形状是尖的,然而,随着峰部的反射率下降,峰顶部接近平坦(峰部将可承受较宽的性能)。 In the multilayer film is less than the number of layers when the reflectance of the saturation shape of the reflectivity of the multilayer film in the peak number at the peak is sharp, however, as the reflectivity peaks drops, nearly flat top peak (peak the unit can withstand a wider performance).

另一方面,在除了峰值之外的峰谷部位处情况明显不同。 On the other hand, in cases other than the valley site distinct peaks. 在一般的周期性结构中,当波长偏离最佳波长(获得反射率峰值的波长)时,来自表面附近的界面的反射光线的相位改变小,因此,振幅通过相互重叠而增加,然而,也可能来自离开表面的界面的反射光线的相位变为相反的相位从而减小振幅。 In a general periodic structure, when the wavelength deviates from the optimum wavelength (the wavelength of peak reflectance is obtained), the phase of the reflected light from the interface near the surface of small changes, therefore, by increasing the amplitude of overlap, however, also possible the phase of the light reflected from the surface away from the interface becomes an opposite phase to reduce the amplitude. 在与Mo/Si或Ru/Si多层膜的反射率峰谷相对应的波长处,来自10~30对膜层之后的界面的反射光线的作用将减小反射光线强度。 At the Mo / Si or Ru / Si multilayer film reflectance peak wavelength corresponding to the role of the reflected light from the interface after the film layer 10 to 30 pairs of reflected light intensity will be reduced. 然而,如果添加附加层,来自更深部位处边界的反射光线的相位移动半个波长,因此,反射光线的振幅增加。 However, if the added additional layers, the phase of the light reflected from the deeper portion of the boundary by half a wavelength, and therefore, an increase in amplitude of the reflected light.

如上所述,通过在表面膜层组和深层膜层组之间提供附加层,反射率峰的前端部变平,并且在反射率(峰)的尾部,反射率增加,因此,反射率峰的半宽度增加。 As described above, by providing an additional layer between the surface layers and deep layers group group, the distal end portion flattened peak reflectivity, and the reflectivity at the end (peak), the reflectance increases, and therefore, the reflectance peak increase in half-width. 在Ru/Si多层膜或Mo/Si多层膜的情况下,在波长为12~15nm的范围内,理论上将获得超过60%的反射率。 In the case of Ru / Si multilayer film or Mo / Si multilayer film in the wavelength range of 12 ~ 15nm, in theory, it will receive more than 60% reflectance. 通过使这些多层膜采用根据本发明的多层膜结构,可能获得反射率的半宽度比没有附加层的Ru/Si和Mo/Si的更宽的多层膜。 By using the multilayer film multilayer film structure according to the present invention it is possible to obtain the half width of the reflectance ratio Ru / Si and Mo no additional layer / Si multilayer film wider.

图23表示了当附加层(该例中的硅层)的厚度相对于Mo/Si多层膜的周期性长度改变时的反射率峰的形状。 23 shows when the thickness of the additional layer (silicon layer in this embodiment) with respect to the Mo / Si periodic multilayer film of the change in length of the shape of the reflectivity peak. 图中,横轴表示入射光线的波长,纵轴表示反射率。 Figure, the horizontal axis represents the wavelength of the incident light, and the vertical axis represents the reflectance. 图中,实线(i)表示当附加层的厚度被设定成约为多层膜的半周期性长度(=约3.5nm)时的反射率的波长性能,虚线(ii)和点划线(iii)分别表示附加层的厚度(附加层的厚度=约2.8nm)被设定成比大约多层膜的半周期性长度(=约3.5nm)更薄时的情形,和该厚度(附加层的厚度=约4.2nm)被设定成较之更厚的情形。 Figure, the solid line (i) indicates when the thickness of the additional layer is a multilayer film is set to about half the length of the wavelength performance periodically during the reflectance (= approximately of 3.5 nm), the broken line (ii) and dot chain line (iii) represent the thickness (= thickness of the additional layer is about 2.8 nm) an additional layer is set to be approximately half-length of the periodic multilayer film (of 3.5 nm = approximately) the case when a thinner, and the thickness (additional = thickness of the layer of approximately 4.2nm) is set to be thicker than the case.

从图23可见,在虚线(ii)和点划线(iii)的情况下,顶部不很平坦,但是在实线(i)的情况下,反射率峰的顶部相当平坦。 Seen from FIG. 23, in a case where the broken line (ii) dot chain line and (iii), the top is not flat, but in the case of the solid line (i), the reflectance of the top of the relatively flat peak. 很明显,将附加层的厚度设定到约为多层膜的半周期性长度将有效降低峰值附近的反射率变化。 Obviously, the thickness of the additional layer is set to approximately half the length of a periodic multilayer film will reduce the reflectivity near the peak variation.

多层膜的半周期性长度是指多层膜中周期性结构部分中一个周期的光学厚度(膜厚×折射率)的一半。 Half the length of the periodic multilayer film refers to half the thickness of the multilayer optical film in a periodic cycle moiety (refractive index × film thickness) of. 优选附加层的厚度为该半光学厚度,然而,没有必要严格地为上述的半光学厚度,仅仅有必要基本上为该厚度。 The additional layer preferably has a thickness that is half the optical thickness, however, is not strictly necessary for the optical thickness of the half of the thickness is only necessary that substantially. 因此,优选附加层厚度和半光学厚度之差在采用的EUV射线的波长的5/100之内,更优选在采用的波长的3/100之内。 Thus, the wavelength difference is preferably 5/100 the thickness of the additional layer and the half of the optical thickness of the EUV radiation used, more preferably within the wavelength employed of 3/100.

多层膜结构中一个周期的光学厚度约为入射光线的半波长,因此,换言之,有必要将附加层的光学厚度设定为采用的波长的约1/4。 The optical thickness of the multilayer film structure in a period of about a half wavelength of the incident light line, therefore, in other words, it is necessary to the optical thickness of the additional layer is set to about 1/4 of the wavelength employed. 注意,随着传送的EUV射线与界面法线之间的角度(折射角)增加,单位周期性结构中的光程长度变得比膜厚长(如果假定折射角为θ,光程长度=膜厚/cosθ)。 Note that, as the angle (refraction angle) between EUV radiation and normal to the interface transmission is increased, the optical path length unit of the periodic structure becomes longer than the film thickness (assuming that the refraction angle [theta] is the optical path length = membrane thick / cosθ). 因此,有必要在使用时根据EUV射线的入射角来调整附加层的厚度。 Therefore, it is necessary to use an additional layer to adjust the thickness according to the EUV radiation incidence angle. 当采用的波长为如13.5nm时,优选附加层的厚度在多层膜的半周期长度±0.68nm的范围内,而在入射角范围为5°至10°时,优选为在3.4±0.68nm的范围内。 When the wavelength of 13.5 nm when employed as such, the additional layer preferably has a thickness in the range of ± 0.68nm half period length of the multilayer film, but when the incident angle range of 5 ° to 10 °, preferably at 3.4 ± 0.68nm In the range.

此外,根据本发明的多层膜结构是用于红外线、可见光和紫外线的,也可认为其与校准器(Etalon)类似,其中在反射膜之间添加了1/4使用波长厚度的空间。 Further, the multilayer film structure according to the present invention for infrared, visible and ultraviolet light, may be considered similar to the calibrator (Etalon), wherein the reflective film is added between spatial 1/4 wavelength thickness. 然而,根据本发明的多层膜与校准器在结构、使用目的和下述的特性等方面很不相同。 However, the multilayer film of the present invention, the calibration is very different in structure, purpose of use and the following characteristics. 校准器是一种Fabry-Perot类型的共振器,主要用作窄波段过滤器。 The calibrator is a Fabry-Perot type resonator, a narrow band filter mainly used.

图24是一种校准器的结构示意图。 FIG 24 is a schematic structure of a calibrator. 校准器300是一种利用多重干涉的装置,其结构中,两个高反射率反射镜301被配置以使得其中间夹着具有一定厚度的隔板302。 300 is a multiple calibration apparatus utilizing interference in its structure, two high reflectivity of the mirror 301 is arranged such that a separator interposed therebetween wherein 302 having a certain thickness. 射入校准器300的大部分光线303(见左侧的箭头)被反射到图的左侧,变成反射光线305。 Most of the light incident on the calibrator 303 300 (see the arrow on the left side) is reflected to the left side of FIG, 305 into reflected light. 另一方面,两个反射镜301和隔板302起着共振器的作用,只让入射光线303中具有满足共振条件的波长的光线通过,作为透射光线304。 On the other hand, two mirrors 301 and separator 302 plays a role in the resonator, so that only light having a wavelength of the incident light 303 by the resonance condition is satisfied, the light transmittance as 304.

由此产生尖锐的透射峰。 The resulting sharp transmission peaks. 由于如上所述校准器300只让具有满足共振条件的波长的光线通过,反射率只在该波长附近处下降,而在其它波长处维持高的反射率。 Since the calibrator 300 as described above so that light having a wavelength satisfying the resonance condition by, reflectance decreases only near the wavelength, while maintaining high reflectivity at other wavelengths. 因此,校准器300的光谱反射率性能具有尖锐的谷。 Thus, the performance of the Calibrator 300 reflectance spectrum having sharp valleys. 注意,校准器300被用作窄波段过滤器,两个反射表面的反射率应该高且几乎相等。 Note that, the calibration 300 is used as a narrow band filter, the reflectivity of the two reflecting surfaces should be high and substantially equal.

与此相比,在本发明的多层膜的情况下,附加层之上和附加层之下的多层膜的反射率必不相等,且基底侧上的多层膜的反射率有必要低。 In contrast to this, in the case of the multilayer film of the present invention, additional layers above and below the reflectivity of the multilayer film will not equal the additional layer and the reflectivity of the multilayer film on the substrate side it is necessary to lower . 如果基底侧上的多层膜的反射率与表面侧上的多层膜的相等,由于干涉导致的反射率下降在窄的波长区域中发生,并在接近峰顶处呈现尖锐的谷,因此,不再是宽波段多层膜。 If the reflectance is equal to the multilayer film on the substrate side of the multilayer film on the surface side, due to the decrease in reflectance due to interference occurring in a narrow wavelength region, and exhibits a sharp peak near the valley, and therefore, It is no longer a wide-band multi-layered film.

如非专利文献3中公开的那样,具有不同周期长度的膜层层叠结构的多层膜可能在宽的波段中获得相当高的反射率。 As disclosed in Non-Patent Document 3 as a multilayer film having a laminate structure of layers of different lengths may be obtained periods of relatively high reflectance in a wide wavelength band. 然而,在该情况下,很难评估该结构。 However, in this case, the structure is difficult to assess. 一般地,作为评估多层膜结构的方法,采用的是X射线的小角度散射并从测得的峰值角来评估其周期。 Generally, as a method of evaluating the multilayer film structure, using small-angle scattering of X-rays and the measured angle from the peak to assess their cycle.

图25是表示当X射线衍射强度角度分布变化时预期的衍射峰形状的曲线图。 FIG 25 is a graph showing the expected X-ray diffraction intensity when the angle distribution of the change in diffraction peak shape. 图25(A)表示周期性构造的多层膜的衍射峰形状,图25(B)表示不均匀周期结构多层膜的衍射峰形状,图25(C)表示包括附加层(在该例中为硅层)的多层膜的衍射峰形状。 FIG 25 (A) indicates the diffraction peak shape of the periodic structure of the multilayer film, FIG. 25 (B) indicates the diffraction peak shape periodic structure of the multilayer film is uneven, FIG. 25 (C) represented include additional layers (in this embodiment a diffraction peak shape of the silicon layer) of the multilayer film. 图中,横轴表示入射光线的入射角,纵轴表示反射率。 Figure, the abscissa represents the angle of incidence of the incident light, and the vertical axis represents the reflectance.

如图25(A)所示,在具有周期性结构的多层膜的情况下,对应于入射角的峰尖锐。 FIG 25 (A), in the case of a multilayer film having a periodic structure, a sharp peak corresponding to the angle of incidence. 另一方面,在被报道为宽波段多层膜(参见非专利文献3)的不均匀周期性多层膜的周期性长度不均匀的情况下,如图25(B)所示,呈现出许多不规则形状的峰,且多层膜的周期性长度的评估困难。 On the other hand, in the uniform periodicity length is reported as a broad band multi-layer film (see Non-Patent Document 3) non-uniform periodic multilayer film, the FIG. 25 (B), the present many irregularly shaped peak, and difficult evaluation of the periodic length of the multilayer film.

与此相比,根据本发明,只向多层膜的周期性结构中添加了附加层,如图25(C)所示产生了尖锐的衍射光峰,这使得多层膜周期长度的评估容易。 In contrast to this, according to the present invention, only adding to the periodic structure of the multilayer film of the additional layer, as shown in FIG. 25 (C) produces a sharp peak of diffracted light, which makes the length of the evaluation period the multilayer film is easy . 注意,不可能直接测量附加层的厚度,然而,根据本发明可能控制附加层的厚度。 Note that, not possible to directly measure the thickness of the additional layer is, however, possible to control the thickness of the additional layer according to the present invention. 具体地,有可能通过基于膜层形成工作中每单位时间从用于附加层的物质形成的膜厚(膜层形成速率)来调整膜层形成时间从而控制附加层的厚度,从多层膜的周期性结构部分的周期长度评估和膜层形成所需时间可得出膜层形成速率。 In particular, it is possible by adjusting the time so as to control the film thickness of the additional layer forming a film thickness (film formation rate) of the work per unit time is formed from the material of the additional layer based on the film, the multilayer film assessment and the film period length of the periodic structure portion of time required to form the film forming rate can be obtained.

同样,本发明中,深层膜层组的层对数是表面膜层组的层对数的一半或以下。 Similarly, the present invention, the several layers deep layer film group is half the surface layer of the group number or less. 如上所述,当多层膜更接近基底侧而不是附加层时,与只存在表面膜层组时相比,反射率峰附近的反射率下降。 As described above, when the multilayer film is closer to the substrate side rather than the additional layer, as compared to when there is only a surface layer group, the reflectance of the reflectivity peaks drops. 这里,由于深层膜层组的层对数是表面膜层组的层对数的一半或以下,反射率下降量小,反射率峰的形状为前端部平坦或变得稍微凹陷。 Here, since the deep layer film is set to the number of layer of the surface layer of half the number of groups or less, the reflectance decreased amount is small, the peak reflectivity distal portion shape becomes flat or slightly concave. 反射率峰值附近部分不可能变成尖且深的谷。 Reflectance around the peak portion can not become sharp and deep valleys.

图26是表示当深层膜层组的层对数变化时Mo/Si多层膜的反射率峰形状改变的曲线图。 FIG 26 is a graph showing when the deep layer of the Mo layer group number changes the reflectance peak shape changed / Si multilayer film. 图中,横轴表示入射光线的波长,纵轴表示反射率。 Figure, the horizontal axis represents the wavelength of the incident light, and the vertical axis represents the reflectance. 在图26的示例中,附加层为硅。 In the example of FIG. 26, the additional layer is silicon. 图中的实线(i)、点划线(ii)和虚线(iii)分别表示当表面膜层组均为20对膜层、而深层膜层组分别为4对膜层、2对膜层和12对膜层时的反射率。 The solid line (i) in FIG dot chain line in (ii) and the broken line (iii), respectively when the surface coating layer group are 20 pairs of layers, the deep layer film group were four pairs, two pairs of film layers and a reflectance of 12 pairs of layers.

从图26可见,在表面膜层组为20对膜层、深层膜层组为2对膜层的(ii)的情况下,反射率峰不够平坦而有尖头,然而,在深层膜层组的层对数增至4对膜层的(i)的情况下,反射率峰平坦。 Seen from FIG. 26, a surface film layer group is set to 20, the deep layer of the group 2 on the case where the film of (ii), the reflectance peak has not flat and pointed, however, in the deep layer group in the case of the number of layers increased to four film layer (i), the reflectance of the flat peak. 另外,在深层膜层组的层对数增至12对膜层的(iii)的情况下,在反射率峰的顶部形成深谷而不能得到平坦的形状。 In addition, when the deep layer of the film on the group number of the film layer to 12 (iii), the valley is formed on the top of the peak reflectance can not be obtained a flat shape. 因此,优选深层膜层组的层对数为表面膜层组的层对数的至少一半或以下。 Thus, the film layer is preferably set deep layer of the surface layer of the number of groups of at least half the number or less. 如上所述,根据本发明,能够获得半宽度宽且峰值处平坦的反射率峰。 As described above, according to the present invention, it is possible to obtain a wide and flat half width of the peak of the reflectance peak.

同样,在上述第二和第三种形式的多层膜反射镜中,可用硅(Si)、硼(B)或包含它们的物质来制造附加层。 Similarly, in the second and third in the form of a multilayer film mirror, the available silicon (Si), boron (B) containing them or a substance producing additional layers. 在波长为13.5nm时硅(Si)和硼(B)的消光系数k相当小,为k(Si)=0.0018,和k(B)=0.0041。 13.5nm wavelength of silicon (Si) and extinction coefficient of boron (B) k is rather small, as k (Si) = 0.0018, and k (B) = 0.0041.

附加层的作用是将深层膜层组和表面膜层组中反射光线的相位改变1/2波长,因此,优选通过使用这些物质或含有这些物质的物质(如B4C)能使吸收尽可能地小,并获得较高的反射率。 Effect of the additional layer is a deep layer of the phase group and the surface layer of the reflected light changes group 1/2 wavelength, and therefore, is preferably by use of these materials or substances containing these substances (e.g., of B4C) as small as possible to make the absorption and to obtain a higher reflectivity.

根据本发明的第四实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中对于EUV射线的高折射率膜层和低折射率膜层交替层叠。 According to a fourth embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film for the high refractive index film layer are alternately laminated EUV radiation and a low refractive index layer. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,它具有在光线入射平面侧的多层膜组(表面膜层组)、在表面膜层组中相对入射平面侧上的附加层,以及在附加层的相对入射平面侧的多层膜组(深层膜层组)。 Firstly, the multilayer film having a group (Group surface layer) side of the light incidence plane, the surface layer group relative to the incident plane on the side of the additional layer, and the multilayer film is set on the opposite side of the plane of incidence of the additional layer (deep layer group). 第二,在表面膜层组的入射平面侧上的多层膜组(第一表面膜层组)中,低折射率膜层由包括钼(Mo)的物质构成,而高折射率膜层由包括硅(Si)的物质构成。 Second, the surface film layer on the incident plane side of the multilayer film set group (the first group of the surface layer), the low refractive index layer is constituted by materials include molybdenum (Mo), and a high refractive index film layer It includes silicon (Si) constituting the substance. 第三,在表面膜层组的附加层侧上的多层膜组(第二表面膜层组)中,低折射率膜层由包括钌(Ru)的物质构成,而高折射率膜层由包括硅(Si)的物质构成。 Third, the additional layer on the surface of film layer side of the multilayer film set group (the surface of the second layer group), a low refractive index layer composed of a substance comprising a ruthenium (Ru), and a high refractive index film layer It includes silicon (Si) constituting the substance. 第四,在深层膜层组中,低折射率膜层由包括钌(Ru)的物质构成,而高折射率膜层由包括硅(Si)的物质构成。 Fourth, in the deep layer group, layer is made of a low refractive index material comprises ruthenium (Ru), and the high refractive index layer composed of a substance comprising silicon (Si),.

根据上述第四实施例,由钼和硅构成的多层膜在具有这样的结构的多层膜上形成,该结构中,在由钌和硅构成的实质上周期性多层膜中添加了附加层。 According to the fourth embodiment, a multilayer film composed of molybdenum and silicon multilayer film having such a structure is formed, the structure, adds an additional substantially periodic multilayer film composed of ruthenium and silicon Floor. 即使是周期性结构的Ru/Si多层膜也能具有比Mo/Si多层膜的更宽的半宽度,并且即使是添加了附加层的多层膜也能具有比Mo/Si多层膜的更宽的半宽度。 Even periodic structure Ru / Si multilayer film can have a half-width wider than the Mo / Si multilayer film, and even if a multilayer film is to add an additional layer can have a ratio of Mo / Si multilayer film wider half width. 通过在其上形成Mo/Si膜层,能增加反射率峰值,并获得更宽的半宽度。 By forming the Mo / Si film thereon, the reflectance peak can be increased, and a wider half width is obtained.

根据本发明的第五实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相。 According to a fifth embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film, a high refractive index layer and the low refractive index film at the following Bragg reflection condition is maintained are alternately stacked on the substrate: the reflection light from the high refractive index film layer and a plurality of interface between the low refractive index film layer is made of EUV radiation in phase. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,它包括厚度为EUV射线的中心波长的一半或以上的插入层。 First, it includes a thickness less than half the center wavelength of EUV radiation or intervening layers. 第二,具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 Second, EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened.

根据上述的第五实施例,一对高折射率膜层和低折射率膜层(膜层对)的一部分由两种物质构成,另一部分可能由三种或以上的物质构成。 According to the fifth embodiment, a portion of the high refractive index film layer and a pair of low refractive index film layer (layer on) is composed of two substances, another portion may consist of three kinds or more substances.

另外,在第五实施例中,反射性多层膜可以包括多个膜层块,该膜层块中高折射率膜层H和不同结构的低折射率膜层L1和L2对重复层叠。 Further, in the fifth embodiment, the reflective multilayer film may include a plurality of blocks layer, the high refractive index layer block low refractive index film of the L1 and L2 layers are repeatedly stacked H and different structures. 例如,可能包括L1/L2/L1/H膜层对反复层叠的膜层块和L1/H膜层对反复层叠的膜层块,且每个膜层块中膜层对层叠反复数可以是1-50。 For example, it may include a L1 / L2 / L1 / H block repeatedly laminated film layer of film blocks and L1 / H of repeatedly laminated layers, and each layer in the laminated film block may be repeated a number of -50. 在该情况下,每个膜层对中包括的膜层的厚度可能都不相同。 In this case, each layer may not include the same thickness of the film layer. 注意,假定L1和L2的膜层构成物质彼此不同(这也适用于下文)。 Note that, assuming L1 and L2 are different from each other film constituting material (this also applies below). 另外,在该第五实施例中,也可以在进行层叠的同时自主改变每个膜层的厚度,并将对波长为13.1nm至13.9nm的光线的反射率设定为45%或以上。 Further, in this fifth embodiment, the laminate may be performed while changing the thickness of each layer is independent, and reflectivity for the wavelength of 13.1nm 13.9nm light is set to 45% or more.

根据本发明的第六实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相。 According to a sixth embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film, a high refractive index layer and the low refractive index film at the following Bragg reflection condition is maintained are alternately stacked on the substrate: the reflection light from the high refractive index film layer and a plurality of interface between the low refractive index film layer is made of EUV radiation in phase. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,该反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和不同结构的低折射率膜层L1和L2对(层对)重复层叠。 First, the reflective multilayer film comprising a plurality of blocks layer, the block layer low refractive index film of high refractive index layer H and the different structures L1 and L2 of the repeatedly stacked (layer). 第二,在多层膜反射镜的基底侧上的膜层块由L2/H膜层对反复层叠形成,从基底开始的第二膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第三膜层块由L1/H膜层对反复层叠形成,从基底开始的第四膜层块由L1/L2/L1/H膜层对反复层叠形成,从基底开始的第五膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第六膜层块由L1/H膜层对反复层叠形成,从基底开始的第七膜层块由L1/L2/L1/H膜层对反复层叠形成,以及从基底开始的第八膜层块由L1/H膜层对反复层叠形成。 Second, on the base layer side of the multilayer film mirror is formed by the L2 of the block / H of repeatedly laminated layers, the second layer from the base block start / H layer is formed by L2 / L1 of repeatedly laminated, the third layer starts from the base of the block repeatedly laminated is formed by L1 / H layer, the fourth layer starts from the base block is formed by a L1 / L2 / L1 / H of repeatedly laminated layers, beginning from the base of the fifth repeatedly laminated film formed of a block L2 / L1 / H layer, the sixth layer starting from the base block formed by the L1 / H repeatedly laminated film of the seventh layer from the substrate when the start of the block L1 / L2 / L1 / H film is formed on the repeatedly laminated, and an eighth block from the base layer is formed from the start L1 / H of repeatedly laminated layers. 第三,每个膜层块中膜层对层叠反复数为1-50。 Third, each of the film layers of the laminated block numbers 1 to 50 repeatedly. 第四,具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 Fourth, EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened.

这里,具有相当高的EUV射线反射率的EUV射线波长是指该波长位于曲线图中包括反射率的最大值和平坦部分(反射率几乎恒定)的范围之内,该曲线图中的横轴表示波长,纵轴表示反射率。 Here, EUV radiation having a very high reflectance wavelength EUV radiation means that the wavelength is included within the graph and the maximum range of the flat portion (almost constant reflectance) of the reflectance, the graph, the horizontal axis represents wavelength, and the vertical axis represents the reflectance. 例如,在上述图26中实线(i)的情况下,该范围是波长约为13.2-13.6nm。 For example, in the case where the solid line in FIG. 26 (i), which is a wavelength range of about 13.2-13.6nm. 优选包括理想波长(如13.5nm)的波长范围为0.5nm以内,更优选为0.60nm以内,其中反射率为50%或以上,且反射率峰的形状平坦(反射率波动在±5%之内)。 Preferably comprises a desired wavelength (e.g., of 13.5 nm) in a wavelength range of 0.5nm or less, more preferably 0.60 nm or less, wherein a reflectance of 50% or more, and the shape of the flat peak reflectivity (reflectivity fluctuates within ± 5% of the ).

这里,具有相当高的EUV射线反射率的入射角是指该角度位于曲线图中包括反射率的最大值和平坦部分(反射率几乎恒定)的范围之内,该曲线图中的横轴表示入射角,纵轴表示反射率。 Here, the incident EUV radiation having a very high reflectivity means that the angle is within the range of the graph includes a flat portion and a maximum reflectance (reflectance nearly constant), the horizontal axis of the graph shows the entrance angle, and the vertical axis represents the reflectance. 注意,在第六实施例中,优选对于以至少18度至25度范围的入射角入射的掠射光线的反射率为50%或以上。 Note that, in the sixth embodiment, it is preferable for at least the range 18 degrees to 25 degrees in grazing incidence angle of light reflectance of 50% or more. 优选包括在0-25度的入射角范围中的理想角度(如20度)的入射角范围为5度之内,更优选为入射角范围的7度之内,其中反射率为50%或以上,并且反射率峰的形状平坦(反射率波动在±5%之内)。 Preferably in the range of incident angles including 0-25 degrees over an angle of (e.g., 20 degrees) angle of incidence within the range of 5 degrees, 7 degrees and more preferably within the range of incidence angles, wherein a reflectance of 50% or more , and the reflectance peak of a flat shape (reflectance fluctuates within ± 5% of).

根据本发明的第七实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相。 According to a seventh embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film, a high refractive index layer and the low refractive index film at the following Bragg reflection condition is maintained are alternately stacked on the substrate: the reflection light from the high refractive index film layer and a plurality of interface between the low refractive index film layer is made of EUV radiation in phase. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,该反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和不同结构的低折射率膜层L1和L2对重复层叠。 First, the reflective multilayer film comprising a plurality of blocks of layers, the layer of high refractive index and low refractive index block layer L1 and L2 are H and repeated laminated film of different structures. 第二,在多层膜反射镜的基底侧上的膜层块由L2/H膜层对反复层叠形成,从基底开始的第二膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第三膜层块由L1/H膜层对反复层叠形成,从基底开始的第四膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第五膜层块由L1/L2/L1/H膜层对反复层叠形成,从基底开始的第六膜层块由L1/H膜层对反复层叠形成,从基底开始的第七膜层块由L1/L2/L1/H膜层对反复层叠形成,以及从基底开始的第八膜层块由L1/H膜层对反复层叠形成。 Second, on the base layer side of the multilayer film mirror is formed by the L2 of the block / H of repeatedly laminated layers, the second layer from the base block start / H layer is formed by L2 / L1 of repeatedly laminated, the third layer starts from the base of the block repeatedly laminated is formed by L1 / H layer, the fourth layer starts from the base block is formed from L2 / L1 / H of repeatedly laminated layers, beginning from the base of the fifth layer repeatedly laminated block formed by the L1 / L2 / L1 / H layer, the sixth layer starting from the base block formed by the L1 / H repeatedly laminated film of the seventh layer from the substrate when the start of the block L1 / L2 / L1 / H film is formed on the repeatedly laminated, and an eighth block from the base layer is formed from the start L1 / H of repeatedly laminated layers. 第三,每个膜层块中膜层对层叠反复数为1-50。 Third, each of the film layers of the laminated block numbers 1 to 50 repeatedly. 第四,具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 Fourth, EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened.

根据本发明的第七实施例,有可能根据反射表面上每个部位处光线的入射角度、通过自主改变反射性多层膜的总膜厚来使整个反射表面上的反射率一致。 According to a seventh embodiment of the present invention, it is possible according to the angle of incidence of light rays on the reflective surface of each portion to the reflectance over the entire surface of the reflective unanimously by changing the total thickness of the reflection independent of the multilayer film. 另外,在第七实施例中,有可能通过在维持反射性多层膜中每层的膜厚比例的同时改变反射性多层膜的总膜厚来设定对于以至少0-20度范围的入射角入射的掠射光线的反射率为50%或以上。 Further, in the seventh embodiment, it is possible by the ratio of the thickness of each layer while changing the total thickness of the multilayer reflective film is set in the reflective multilayer film is maintained for at least a range of 0 to 20 degrees glancing incident angle of the light reflectance of 50% or more.

根据本发明的第八实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相。 According to an eighth embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film, a high refractive index layer and the low refractive index film at the following Bragg reflection condition is maintained are alternately stacked on the substrate: the reflection light from the high refractive index film layer and a plurality of interface between the low refractive index film layer is made of EUV radiation in phase. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,该反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和不同结构的低折射率膜层L1和L2对重复层叠。 First, the reflective multilayer film comprising a plurality of blocks of layers, the layer of high refractive index and low refractive index block layer L1 and L2 are H and repeated laminated film of different structures. 第二,在多层膜反射镜的基底侧上的膜层块由L1/L2/L1/H膜层对反复层叠形成,从基底开始的第二膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第三膜层块由L1/L2/L1/H膜层对反复层叠形成,从基底开始的第四膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第五膜层块由L1/H膜层对反复层叠形成,从基底开始的第六膜层块由L1/L2/L1/H膜层对反复层叠形成,从基底开始的第七膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第八膜层块由L1/L2/L1/H膜层对反复层叠形成,从基底开始的第九膜层块由L1/H膜层对反复层叠形成,从基底开始的第十膜层块由L1/L2/L1/H膜层对反复层叠形成,从基底开始的第十一膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第十二膜层块由L1/L2/L1/H膜层对反复层叠形成,以及从基底开始的第十三膜层块由L1/H膜层对反复层叠形成。 Second, the film on the substrate side of the multilayer film mirror block / H layer is formed by a L1 / L2 / L1 repeatedly laminated on the second layer from the substrate by a start block L2 / L1 / H layer of repeatedly laminated formation, starting from the base layer of the third block is formed of L1 / L2 / L1 / H of repeatedly laminated layers, the fourth layer from the base block start / H layer is formed by L2 / L1 of repeatedly laminated, the fifth layer starts from the base of the block to be formed by the repeatedly laminated L1 / H layer, the sixth layer starting from the base block formed by the L1 / L2 / L1 / H of repeatedly laminated layers, beginning from the base of the seventh repeatedly laminated film formed of a block L2 / L1 / H layer, the eighth layer starting from the base block formed by the L1 / L2 / L1 / H repeatedly laminated film of the ninth layer from the substrate starting from the block L1 / H repeatedly laminated film is formed on the tenth layer is formed starting from the base block by a L1 / L2 / L1 / H repeatedly laminated film of the eleventh layer from the substrate starting from block L2 / L1 / H repeatedly laminated film for forming a twelfth layer from the base block start / H layer is formed by a L1 / L2 / L1 of repeatedly laminated, and the thirteenth layer from the substrate by a start block Ll / H layer of repeatedly layered. 第三,每个膜层块中膜层对层叠反复数为1-50。 Third, each of the film layers of the laminated block numbers 1 to 50 repeatedly. 第四,具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 Fourth, EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened. 根据本发明的第八实施例,优选对于以至少0-20度范围的入射角入射的掠射光线的反射率为45%或以上。 According to an eighth embodiment of the present invention, it is preferable for the grazing angle of incidence of light at least incident range of 0 to 20 degrees reflectance of 45% or more.

根据本发明的第九实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相。 According to a ninth embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film, a high refractive index layer and the low refractive index film at the following Bragg reflection condition is maintained are alternately stacked on the substrate: the reflection light from the high refractive index film layer and a plurality of interface between the low refractive index film layer is made of EUV radiation in phase. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,该反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和不同结构的低折射率膜层L1和L2对(层对)重复层叠。 First, the reflective multilayer film comprising a plurality of blocks layer, the block layer low refractive index film of high refractive index layer H and the different structures L1 and L2 of the repeatedly stacked (layer). 第二,在多层膜反射镜的基底侧上的膜层块由L2/H膜层对反复层叠形成,从基底开始的第二膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第三膜层块由L2/H膜层对反复层叠形成,从基底开始的第四膜层块由L1/H膜层对反复层叠形成,从基底开始的第五膜层块由L2/H膜层对反复层叠形成,从基底开始的第六膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第七膜层块由L1/H膜层对反复层叠形成,从基底开始的第八膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第九膜层块由L1/H膜层对反复层叠形成,从基底开始的第十膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第十一膜层块由L1/H膜层对反复层叠形成,从基底开始的第十二膜层块由L2/L1/H膜层对反复层叠形成,从基底开始的第十三膜层块由L1/L2/L1/H膜层对反复层叠形成,以及从基底开始的第十四膜 Second, on the base layer side of the multilayer film mirror is formed by the L2 of the block / H of repeatedly laminated layers, the second layer from the base block start / H layer is formed by L2 / L1 of repeatedly laminated, the third layer starts from the base of the block repeatedly laminated formed from L2 / H layer, the fourth layer starts from the base block is formed by a L1 / H of repeatedly laminated layers, the fifth block from the base layer starting from L2 / H repeatedly laminated film is formed on the sixth layer starting from the base block is formed from L2 / L1 / H repeatedly laminated film of the seventh layer from the substrate when the start of the block L1 / H of repeatedly laminated layers forming an eighth layer blocks from the beginning of the repeatedly laminated substrate formed of L2 / L1 / H layer, the ninth layer from the base block is formed starting from the L1 / H of repeatedly laminated layers, beginning from the base of the tenth repeatedly laminated film formed of a block L2 / L1 / H layer, eleventh layer starting from the base block formed by the L1 / H repeatedly laminated film of the twelfth layer from the substrate starting from block L2 / L1 / H repeatedly laminated film for forming a thirteenth layer from the base block is formed starting from the L1 / L2 / L1 / H of repeatedly laminated layers, and starting from the base film fourteenth 层块由L1/H膜层对反复层叠形成。 Block layer is formed by L1 / H of repeatedly laminated layers. 第三,每个膜层块中膜层对层叠反复数为1-50。 Third, each of the film layers of the laminated block numbers 1 to 50 repeatedly. 第四,具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 Fourth, EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened. 根据该第九实施例,优选对于波长为13.1-13.9nm的光线的反射率为45%或以上。 According to this ninth embodiment, preferably the wavelength of the light 13.1-13.9nm reflectance of 45% or more.

根据本发明的第十实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相。 According to a tenth embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film, a high refractive index layer and the low refractive index film at the following Bragg reflection condition is maintained are alternately stacked on the substrate: the reflection light from the high refractive index film layer and a plurality of interface between the low refractive index film layer is made of EUV radiation in phase. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,该反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和不同结构的低折射率膜层L1和L2对(层对)重复层叠。 First, the reflective multilayer film comprising a plurality of blocks layer, the block layer low refractive index film of high refractive index layer H and the different structures L1 and L2 of the repeatedly stacked (layer). 第二,在多层膜反射镜的基底侧上的膜层块由H膜层反复层叠形成,从基底开始的第二膜层块由L2/H膜层对反复层叠形成,以及从基底开始的第三膜层块由L2/L1/H膜层对反复层叠形成。 Second, the film blocks on the substrate side of the multilayer film mirror is formed by a repeatedly laminated layers H, starting from the base layer of the second block is formed of L2 / H of repeatedly laminated layers, starting from the base, and a third layer formed from block L2 / L1 / H of repeatedly laminated layers. 第三,每个膜层块中膜层对层叠反复数为1-50。 Third, each of the film layers of the laminated block numbers 1 to 50 repeatedly. 第四,具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 Fourth, EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened.

根据本发明的第十一实施例,多层膜反射镜具有反射性多层膜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相。 According to an eleventh embodiment of the present invention, a multilayer film mirror having a reflective multilayer film, the multilayer reflective film, a high refractive index layer and the low refractive index film at the following Bragg reflection condition is maintained layers are alternately laminated on a substrate: a plurality of interfaces for reflecting light from the high refractive index layer and a low refractive index film layer is made of EUV radiation in phase. 该多层膜反射镜具有下面的特征。 The multilayer mirror has the following characteristics. 首先,高折射率膜层中的至少一层具有EUV射线的中心波长的一半或以上的厚度。 First, the high refractive index film layer having at least one layer or more than half of the central wavelength EUV radiation thickness. 第二,具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 Second, EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened.

本发明的曝光设备是用于通过EUV射线选择性地照射敏感基底来形成构图、并在光学系统中布置上述多层膜反射镜的曝光设备。 The exposure apparatus of the present invention is a method for forming a selectively patterned by EUV ray radiation sensitive substrate, and the above-described arrangement of the exposure apparatus of the multilayer mirror in the optical system. 根据本发明的曝光设备,具有宽波段的多层膜至少在投影光学系统和照明光学系统中的一部分处形成,因此,可以使得图像成形表面上的照明和光瞳内光线量一致,并保持高的图像成形性能。 The exposure apparatus according to the invention, having a wide-band multi-layered film is formed at least in the projection optical system and an illumination optical system at a portion, and therefore, it is possible that the image forming illumination uniform amount of light within the pupil and the surface, and to maintain a high image forming performance. 另外,可以防止投影光学系统中具有大的周期长度平面内分布的反射镜的校准错误造成光线量下降。 Further, the projection optical system can be prevented from having a mirror calibration distribution over a large period length error caused by light plane decreased.

用本发明的多层膜反射镜,可以获得反射率相当高并具有宽的半宽度的反射率峰性能。 Multilayer film mirror of the present invention may be obtained relatively high reflectance and reflectance peaks having a wide half-width properties. 由于具有宽的光谱反射率半宽度的多层膜具有小的反射率对入射角的依从性,根据本发明,因此可以在投影光学系统中保持高的图像成形性能。 Due to having a broad spectral reflectance of a multilayer film having a small half-width angle of incidence reflectivity adherence, according to the present invention, it is possible to maintain a high image forming performance of the projection optical system.

由于本发明的曝光设备使用这样的多层膜反射镜,因此可以使图像成形表面上的照明和光瞳内光线量一致,并保持高的图像成形性能。 Since the exposure apparatus according to the present invention uses such a multilayer film reflecting mirror, it is possible to make uniform the amount of light illuminating the image forming pupil and on the surface, and to maintain a high image forming performance.

附图说明 BRIEF DESCRIPTION

图1是表示根据本发明第一实施例的多层膜反射镜的横截面视图;图2是表示根据本发明第一实施例的多层膜反射镜的反射率计算值与入射光线的波长之间的关系的曲线图;图3是表示根据本发明第一实施例的多层膜反射镜的反射率计算值与入射光线的入射角之间的关系的曲线图;图4是表示根据本发明第二实施例的多层膜反射镜的横截面视图; FIG 1 is a cross-sectional view of a multilayer film mirror according to the embodiment of the first embodiment of the present invention; FIG. 2 is a wavelength of the reflectance of the multilayer mirror to the first embodiment of the present invention, the calculated value of the incident light graph showing the relationship between; FIG. 3 is a graph showing the relationship between the angle of incidence of the reflection multilayer film mirror of the first embodiment of the present invention and the calculated value according to the incident light; FIG. 4 is a diagram according to the present invention, a cross-sectional view of a second embodiment of the multilayer film mirror;

图5是表示根据本发明第二实施例的多层膜反射镜的反射率计算值的曲线图,其中(A)表示对入射光线波长的依从关系,(B)表示对入射光线的入射角的依从关系;图6是表示根据本发明第三实施例的多层膜反射镜的横截面视图;图7是表示根据本发明第三实施例的多层膜反射镜的反射率计算值的曲线图,其中(A)表示对入射光线波长的依从关系,(B)表示对入射光线的入射角的依从关系;图8是表示根据本发明第四实施例的多层膜反射镜的横截面视图;图9是表示根据本发明第四实施例的多层膜反射镜的反射率计算值的曲线图,其中(A)表示对入射光线波长的依从关系,(B)表示对入射光线的入射角的依从关系;图10是表示根据本发明第五实施例的多层膜反射镜的反射率对入射角的依从关系的曲线图;图11是表示根据本发明第六实施例的多层膜反射镜的反射率对入射 FIG 5 is a graph showing calculated values ​​of the reflectance of the multilayer film of the second embodiment of the present invention, a mirror, wherein (A) shows the wavelength dependence of the incident light, (B) represents the incident angle of the incident light dependence; FIG. 6 is a cross-sectional view of a third embodiment of the multilayer film reflector according to the present invention; FIG. 7 is a graph showing the reflectance of the multilayer film according to a third embodiment of the present invention, the calculated value of the mirror wherein (a) shows dependence of the incident light wavelength, (B) represents the incident angle dependency of incident light rays; FIG. 8 is a cross-sectional view of a multilayer film mirror of the embodiment according to a fourth embodiment of the present invention; FIG 9 is a graph showing calculated values ​​of reflectance multilayer mirror to a fourth embodiment of the present invention, wherein (a) shows the wavelength dependence of the incident light, (B) represents the incident angle of the incident light dependence; FIG. 10 is a graph showing the dependency of the reflectance on the incident angle of the multilayer mirror according to a fifth embodiment of the present invention; FIG. 11 is a multilayer film according to a sixth embodiment of the present invention, the mirror the reflectance of the incident 的依从关系的曲线图;图12是表示根据本发明第六实施例的多层膜反射镜的反射率对入射角的依从关系的曲线图;图13是表示根据本发明第七实施例的多层膜反射镜的反射率对入射角的依从关系的曲线图;图14是表示根据本发明第八实施例的多层膜反射镜的光谱反射率性能的曲线图;图15是表示根据本发明第九实施例的多层膜反射镜的光谱反射率性能的曲线图;图16是表示根据本发明第十实施例的多层膜反射镜的光谱反射率性能的曲线图;图17是表示根据本发明第七实施例的多层膜反射镜的反射率对入射角的依从关系的曲线图;图18是表示根据本发明的实施例的曝光设备的示意图; The dependence graph; FIG. 12 is a graph showing the dependency of the reflectance on the incident angle of the sixth embodiment of the multilayer film reflecting mirror of the present invention; FIG. 13 shows a seventh embodiment in accordance with multiple embodiments of the present invention. reflectivity of the layer film mirror graph showing the dependence of the angle of incidence; FIG. 14 is a graph showing reflectance of a multilayer film properties eighth embodiment of the present invention in accordance with a spectral mirror; FIG. 15 is a diagram according to the present invention, graph showing the spectral reflectance properties of the multilayer film mirror of a ninth embodiment; FIG. 16 is a graph showing the reflectance properties of the multilayer film of the present invention, a tenth embodiment of the mirror according to a spectrum; FIG. 17 is a representation of reflectance of the multilayer film reflecting mirror according to a seventh embodiment of the present invention versus the incident angle dependence; FIG. 18 is a schematic view showing an exposure apparatus according to an embodiment of the present invention;

图19是示例传统的多层膜反射镜的反射率对入射角的依从关系的曲线图;图20是示例传统的多层膜反射镜的光谱反射率性能的曲线图;图21表示了配置有六个反射镜的光学系统的视图;图22(A)是表示Mo/Si多层膜和Ru/Si多层膜的理论反射率的入射波长性能的曲线图,(B)是表示半宽度和反射率峰对于在Ru/Si多层膜上形成Mo/Si多层膜从而形成的多层膜中的Mo/Si多层膜的形成膜层对数的变化的曲线图;图23表示了当附加层(硅层)的厚度随着Mo/Si多层膜的周期长度变化时反射率峰的形状;图24是校准器结构示意图;图25是表示当X射线衍射强度角度分布改变时预期衍射峰形状的曲线图,其中(A)表示周期性结构多层膜的情况,(B)表示不均匀周期性结构的情况,(C)表示包括附加层的多层膜的情况;图26是表示当深层膜层组的膜层对数变化时Mo/Si多层膜的反射率峰形状的变化的 FIG 19 is a graph showing the dependency of reflectivity of an example of conventional multi-layered film mirrors of the angle of incidence; FIG. 20 is a graph showing the spectral reflectance properties of a conventional example of a multilayer film mirror; FIG. 21 shows a configuration with a view of an optical system of the six mirrors; FIG. 22 (a) is a graph showing the performance of the incident wavelength Mo / multilayer film and the theoretical reflectance Ru / Si multilayer film of Si, (B) shows a half-width, and graph showing the change layer is formed of a multilayer film reflection peak for Mo / Si multilayer film is formed on Ru / Si multilayer film, thereby forming in the Mo / Si multilayer film is logarithmic; FIG. 23 shows when thickness of the additional layer (silicon layer) with the shape of the reflectivity peak variation period when the Mo / Si multilayer film length; FIG. 24 is a schematic view of a calibration structure; FIG. 25 is changed when the distribution of the X-ray diffraction intensity of the diffraction angle of the expected peak shape of the graph, wherein (a) shows the case where the periodic structure of the multilayer film, (B) shows the case of non-uniform periodic structure, (C) shows the case of a multilayer film comprises an additional layer; FIG. 26 is a when the deep layer film changes the shape of the peaks of the group of Mo / Si multilayer films when the number of changes in reflectance 线图。 line graph.

具体实施方式 detailed description

下面将参照附图来说明本发明的实施例。 It will now be described with reference to the accompanying drawings of embodiments of the present invention.

实施例1图1是根据本发明第一实施例的多层膜反射镜的横截面视图。 Example 1 Figure 1 is a cross-section of the multilayer film mirror of a first embodiment of the present invention is the view. 基底1由被抛光到表面粗糙度为0.2nm RMS或以下的低热膨胀玻璃制成。 The substrate 1 is polished to a surface roughness of 0.2nm RMS or less made of a low thermal expansion glass. 在基底1的表面形成20对Ru/Si多层膜3,并在Ru/Si多层膜3上形成5对Mo/Si多层膜5。 20 pairs of Ru / Si multilayer film 3 formed on the surface of the substrate 1, and form five pairs of Mo / Si multilayer film 5 on a Ru / Si multilayer film 3. Ru/Si多层膜3的周期长度(Ru/Si的单位周期性结构(膜层对)的厚度,在图中以d11表示)为6.86nm,而Mo/Si多层膜5的周期长度(Mo/Si的膜层对的厚度,在图中以d12表示)为6.9nm。 Ru / Si multilayer film period length 3 (thickness Ru / Si periodic structure of the unit (membrane pair), represented in the figure by d11) of 6.86nm, and the Mo / Si multilayer film period length (5 the thickness of the layer of Mo / Si, and d12 in the figure expressed in) of 6.9nm. 在每个单位周期性结构中这些多层膜的Γ值为0.4。 In each unit of the periodic structure of these multilayer films Γ value of 0.4. 注意,Γ值是Ru层或Mo层的厚度(dRu或dMo)对多层膜的周期长度(d)的比例(Γ=dRu/d或Γ=dMo/d)。 Note that, Γ is the value of the ratio of the period length of the multilayer film (d), the thickness (DRU or dMo) Ru layer or a Mo layer (Γ = dRu / d or Γ = dMo / d).

这里,将说明本实施例中制造多层膜的方法。 Here, the method of the present embodiment will be described for producing a multilayer film embodiment. 首先,抛光由低热膨胀玻璃制得的基底1的表面直到粗糙度为0.2nm RMS或以下。 First, the surface was polished by a low thermal expansion glass substrate 1 until the roughness of 0.2nm RMS or less. 其次,在基底1的表面上用磁控溅射法形成20对Ru/Si多层膜3。 Next, the multilayer film 20 of Ru / Si 3 is formed by a magnetron sputtering method on the surface of the substrate 1. 然后,在Ru/Si多层膜3的表面上用磁控溅射法形成5对Mo/Si多层膜5。 Then, a five pairs of Mo / Si multilayer film 5 by a magnetron sputtering method on the surface of the Ru / Si multilayer film 3.

图2和图3是表示根据本实施例的多层膜反射镜的反射率计算值的曲线图。 2 and FIG. 3 is a graph showing calculated values ​​of the reflectance of the multilayer film according to the present embodiment mirror. 图2(A)和图2(B)表示与入射光线的波长的关系,图3(A)和图3(B)表示与入射光线的入射角的关系。 FIG 2 (A) and 2 (B) shows the relationship between the wavelength of the incident light, FIG. 3 (A) and 3 (B) shows the relationship between angle of incidence of the incident light. 图2中的横轴表示入射光线的波长。 FIG 2 horizontal axis represents wavelength of the incident light. 图3中的横轴表示入射角(下文中,入射角是指入射光线与反射表面的法线所成的夹角)。 In FIG 3 the horizontal axis represents the incident angle (hereinafter, refers to the angle of incidence is normal to the incident light to the reflective surface angle). 两个图中,纵轴均表示多层膜的反射率,实线(i)表示多层膜(深层膜层侧:20对Ru/Si膜层,表面膜层侧:5对Mo/Si膜层)的反射率。 In both figures, the vertical axis represents the reflectivity of each multilayer film, the solid line (i) denotes a multilayer film (underlying film layer side: 20 pairs of Ru / Si layer, the surface layer side: five pairs of Mo / Si film layer) reflectance. 图2(A)和图3(A)中的虚线(ii)以及图2(B)和图3(B)中的虚线(iii)为比较例。 (B) the dotted line (A) in the broken line in FIG. 2 (A) and 3 (ii) and FIG. 2 (B) and 3 (iii) of Comparative Example. 比较例(ii)表示26对Ru/Si多层膜的反射率,比较例(iii)表示27对Mo/Si多层膜的反射率。 Comparative Example (ii) represented by 26 pairs of reflectance Ru / Si multilayer film of Comparative Example (iii) represents a reflectance of Mo / Si multilayer film 27 of the pair.

如图2(A)所示,本实施例中的多层膜(i)的反射率峰值为69.7%,半宽度为0.86nm。 As shown in FIG 2 (A), the peak reflectivity of the multilayer film in the present embodiment (i) was 69.7%, half-width of 0.86nm. 与此相比,在比较例(ii)中(26对Ru/Si多层膜),与本实施例(i)一样,半宽度宽为0.86nm,然而,反射率峰值低至67.4%,低了2%或以上。 Compared with this, (26 pairs Ru / Si multilayer film), the present embodiment (i) as in Comparative Example (ii), the half width of the width of 0.86nm, however, as low as 67.4% peak reflectivity, low 2% or more. 另外,如图2(B)所示,在比较例(iii)(27对Mo/Si多层膜)中,峰值约为70.0%,其基本上与本实施例(i)的相同,然而,半宽度为0.72nm,窄了0.1nm或以上。 Further, in FIG. 2 (B), the (27 pairs of Mo / Si multilayer film) Comparative Example (iii), a peak from about 70.0%, which is substantially the same as the present embodiment (i) of the embodiment, however, half-width of 0.72nm, or narrower than 0.1nm. 如上所述,通过在Ru/Si多层膜上形成Mo/Si多层膜,可以获得高的反射率峰值和宽的半宽度。 As described above, the Mo / Si multilayer film is formed on Ru / Si multilayer film, a high reflectivity and a wide peak half-width.

如图3(A)所示,本实施例中的多层膜(i)与比较例(ii)的相似在于在0°-10°的入射角范围内反射率最大并几乎恒定,然而峰值反射率比比较例(ii)中的更高。 FIG 3 (A), the multilayer films (i) Examples and Comparative Example (ii) of the present embodiment is similar to that of the maximum reflectance and nearly constant angle of incidence within the range 0 ° -10 °, whereas the peak reflectivity higher conductivity than Comparative Example (ii) in the. 另外,如图3(B)所示,本实施例中多层膜(i)的峰值反射率比比较例(iii)中的更高,并且峰值反射率在其中恒定的入射角范围比比较例(iii)中的更宽。 Further, in FIG. 3 (B), the present peak reflectivity of the multilayer film embodiment (i) of Comparative Example higher than the embodiment (iii), and peak reflectivity at a constant incident angle range than that of Comparative Examples wherein (iii) is wider. 如上所述,在本实施例中,能够获得在宽的入射角范围内几乎恒定的反射率。 As described above, in the present embodiment can be obtained over a wide range of incident angles nearly constant reflectance.

注意,本实施例中提及的周期长度只是示例,该周期长度可以根据要使用的目标波长来作调整。 Note that, in the embodiment mentioned in the present embodiment is merely exemplary cycle length, the period length can be adjusted according to the target wavelength to be used. 另外,本实施例中,多层膜是通过磁控溅射法形成的,然而,该膜层的形成方法并不限于此,膜层可用离子束溅射法或真空沉积法来形成。 Further, in this embodiment, the multilayer film is formed by magnetron sputtering method according to the present embodiment, however, the film forming method is not limited thereto, layer by ion beam sputtering method or a vacuum deposition method is formed. 本实施例中,多层膜的Γ值被设为0.4,然而,该Γ值并不限于此,如果该周期性结构可控,基底上的Γ值可以增加到如约0.5。 In this embodiment, the multilayer film Gamma] value is set to 0.4, however, it is not limited to the Gamma] value, if the controlled periodic structure, Gamma] value can be increased to a substrate such as about 0.5. 在该情况下,能够获得较高的反射率(参见上述非专利文献4)。 In this case, a high reflectance can be obtained (see Non-Patent Document 4).

实施例2图4是根据本发明的第二实施例的多层膜反射镜的横截面示意图。 Example 2 FIG. 4 is a schematic cross sectional view of the second embodiment of the multilayer film mirrors of the present invention. 基底10由被抛光到表面(图中的顶表面)粗糙度为0.2nm RMS或以下的低热膨胀玻璃制成。 From the substrate 10 is polished to a surface (a top surface in the drawing) or 0.2nm RMS roughness less low thermal expansion glass. 在基底10的表面形成4对Mo/Si多层膜(深层膜层组)11。 Four pairs of Mo / Si multilayer film (underlying layer group) 11 is formed on the surface of the substrate 10. Mo/Si多层膜11的周期长度(Mo/Si膜层对的厚度)为6.9nm,且Γ值为0.5。 Mo / Si periodic length (Mo thickness / Si layer pairs) of the multilayer film 11 was 6.9nm, and Γ is 0.5.

在Mo/Si多层膜11的表面上形成附加层12(在本实施例中为硅层)。 Forming an additional layer 12 (in the present embodiment, a silicon layer) on the surface of the multilayer film 11 of Mo / Si. 调整附加层12的厚度以便具有约为入射光线波长的1/4的光学厚度。 The thickness of the additional layer 12 is adjusted so as to have an optical thickness of about 1/4 of the wavelength of the incident light. 本实施例中,附加层12的厚度约为3.5nm。 In this embodiment, the thickness of the additional layer 12 is about 3.5nm. 另外,在附加层12的表面上,形成周期长度为6.9nm、Γ值为0.4的20对Mo/Si多层膜(表面膜层组)13。 Further, on the surface of the additional layer 12, a period length of 6.9nm, Γ value of 0.4 to 20 pairs of Mo / Si multilayer film (surface film layer group) 13. 此外,图中进一步简化表示了表面膜层组13和深层膜层组11。 In addition, further simplified drawing showing the surface layer and the deep layer 13 groups 11 groups.

图5是表示根据本实施例的多层膜反射镜的反射率计算值的曲线图。 FIG 5 is a graph showing calculated values ​​of the reflectance of the multilayer film according to the present embodiment mirror. 图5(A)表示与入射光线的波长的关系,图5(B)表示与入射光线的入射角的关系。 FIG 5 (A) shows the relationship between the wavelength of the incident light, FIG. 5 (B) shows the relationship between angle of incidence of the incident light. 图5(A)中的横轴表示入射光线的波长,图5(B)中的横轴表示入射角。 FIG 5 (A), the horizontal axis represents the wavelength of incident light, the horizontal axis in FIG. 5 (B) represents the angle of incidence. 两图中的纵轴均表示反射率的计算值。 Both figures the vertical axis represents the calculated average value of reflectance. 图中的实线(w1)表示本实施例中多层膜反射镜的反射率,虚线(C)表示比较例。 The solid line (w1) in the figure shows the reflectance of the multilayer mirror embodiment of the present embodiment, a dotted line (C) shows a comparative example. 比较例(C)表示40对Mo/Si多层膜的反射率。 Comparative Example (C) shows 40 pairs of Mo / Si multilayer film reflectivity.

如图5(A)所示,本实施例中的多层膜反射率峰(w1)的半宽度为0.9nm或以上。 FIG 5 (A), the present peak reflectivity of the multilayer film embodiment (w1) in the half width is 0.9nm or embodiment above. 另外,本实施例中的反射率峰(w1)的形状为顶部平坦,在13.2-13.7nm的波长范围内反射率几乎恒定,约为52%。 Further, the shape of the reflectance peaks in the embodiment (w1) of the present embodiment is a flat top, a substantially constant reflectance in the wavelength range of 13.2-13.7nm, about 52%. 当与比较例(C)相比时,本实施例中的多层膜反射率的峰值(w1)与简单周期性结构多层膜的比较例(C)中的不一致,然而,已知在宽的波长范围内反射率一致是非常有优势的。 When compared with Comparative Example (C), peak reflectivity of a multilayer film of embodiment (w1) and a simple periodic structure of the multilayer film of Comparative Example (C) is inconsistent in the present embodiment, however, it is known in a wide within the wavelength range of the reflectance agreement it is very advantageous.

如图5(B)所示,本实施例中的多层膜的反射率(w1)在入射角为0°至约13°的宽范围内几乎恒定。 FIG 5 (B), the reflectance of the multilayer film of the present embodiment in the (w1) in the embodiment is almost constant over a wide range of incidence angles of about 0 ° to 13 ° to. 与此相比,在比较例(C)中,反射率几乎恒定的入射角范围为0°至约7°。 In contrast, in Comparative Example (C), the reflectivity is almost constant incident angle range of 0 ° to about 7 °. 本实施例中,反射率恒定的入射角范围明显比比较例(C)中的宽。 Broad embodiment, the reflectivity constant range of incident angles significantly higher than Comparative Example (C) in the present embodiment. 因此,根据本实施例,反射率对入射角的依从性显著降低,并且已知在宽入射角范围内可以获得高反射率。 Thus, according to the present embodiment, the reflectance of the incident angle significantly reduced compliance, and it is known to obtain a high reflectance in a wide range of incidence angles.

下面将说明实施例2的补充情况。 The following additional information will be described in Example 2. 本实施例中,多层膜的Γ值在附加层12的顶部和底部之间变化,然而,本发明并不限于此,例如,Γ值可以相同。 Embodiment, the multilayer film Gamma] values ​​vary between the top and bottom of the additional layer 12 of the present embodiment, however, the present invention is not limited thereto, e.g., Gamma] may be the same value. 另外,本实施例中,硅被用作附加层12的材料,然而,附加层的材料也不限于硅。 Further, in this embodiment, silicon is used as the material of the additional layer 12, however, is not limited to the material of the additional layer of silicon. 作为附加层材料,除了硅之外,还优选其吸收性在EUV区域中小的硼(B)、Mo和Ru,或者包含这些物质的四硼化碳(B4C)、碳化硅(SiC)等。 As an additional layer material, in addition to silicon, boron is also preferred that the absorbent (B) EUV region of small, Mo and Ru, or contains these substances four carbon boride (of B4C), silicon carbide (SiC) and the like. 如果反射率略微下降没有带来严重的问题,其它物质也可以使用。 If the reflectance slightly decreased no serious problems, other materials can be used. 然而,即使在使用这些物质中的任何一种的情况下,也有必要使附加层12的光学厚度约为入射光线波长的1/4(约多层膜周期长度的一半)或者为该厚度加上周期长度的整数倍。 However, even in the case where any of these materials is also necessary to make the optical thickness of the additional layer 12 is about 1/4 of the incident light (about half the length of the period of the multilayer film) or the plus-ray wavelength for the thickness an integer multiple of the period length. 上述补充情况也适用于实施例3和4。 Supplementary above also applies to Examples 3 and 4.

本实施例中,附加层12夹在其中,在基底侧上形成4对膜层,在入射侧上形成20对膜层,然而,膜层对数并不限于此。 In this embodiment, additional layer 12 is sandwiched, to form a 4 layer on the substrate side, on the film layer 20 is formed on the incident side, however, the number of layers is not limited thereto. 根据使用目的可以改变膜层对数,以获得足够的反射率或者均匀的反射率。 May be varied depending on the purposes for several layers to obtain a sufficient reflectance or uniform reflectivity.

实施例3图6是根据本发明的第三实施例的多层膜反射镜的横截面示意图。 Example 3 FIG. 6 is a schematic cross sectional view of the third embodiment of the multi-layered film mirrors of the present invention. 基底20由被抛光到表面(图中的顶表面)的粗糙度为0.2nm RMS或以下的低热膨胀玻璃制成。 From the substrate 20 is polished to a roughness of the surface (the top surface in the drawing) is formed below 0.2nm RMS or low thermal expansion glass. 在基底20的表面上形成5对Ru/Si多层膜(深层膜层组)21。 Forming five pairs of Ru / Si multilayer film (underlying layer group) on the surface 21 of the substrate 20. Ru/Si多层膜21的周期长度(Ru/Si膜层对的厚度)为6.9nm,且Γ值为0.5。 Ru / Si cycle length (the thickness of the Ru / Si layer pairs) of the multilayer film 21 is 6.9nm, and Γ is 0.5.

在Ru/Si多层膜21的表面上形成附加层22(在本实施例中为硅层)。 The additional layer 22 is formed on the surface of the multilayer film 21 of Ru / Si (in the present embodiment, a silicon layer). 调整附加层22的厚度以便具有约为入射光线波长的1/4的光学厚度。 The thickness of the additional layer 22 is adjusted so as to have an optical thickness of about 1/4 of the wavelength of the incident light. 本实施例中,附加层22的厚度约为3.85nm。 Embodiment, the thickness of the additional layer 22 of the present embodiment is approximately 3.85nm. 另外,在附加层22的表面上,形成周期长度为6.96nm、Γ值为0.4的20对Ru/Si多层膜(表面膜层组)23。 Further, on the surface of the additional layer 22 is formed period length of 6.96nm, Γ value of 0.4 to 20 pairs of Ru / Si multilayer film (surface film layer group) 23.

图7是表示根据本实施例的多层膜反射镜的反射率计算值的曲线图。 FIG 7 is a graph showing calculated values ​​of the reflectance of the multilayer film according to the present embodiment mirror. 图7(A)表示与入射光线的波长的关系,图7(B)表示与入射光线的入射角的关系。 FIG 7 (A) shows the relationship between the wavelength of the incident light, FIG. 7 (B) shows the relationship between angle of incidence of the incident light. 图7(A)中的横轴表示入射光线的波长,图7(B)中的横轴表示入射角。 FIG 7 (A) and the horizontal axis represents the wavelength of incident light rays, in FIG. 7 (B) and the horizontal axis represents the angle of incidence. 两图中的纵轴均表示反射率的计算值。 Both figures the vertical axis represents the calculated average value of reflectance. 图中的实线(w2)表示本实施例中多层膜反射镜的反射率,虚线(C)表示比较例。 The solid line (w2) in the figure shows the reflectance of the multilayer mirror embodiment of the present embodiment, a dotted line (C) shows a comparative example. 比较例(C)表示40对Mo/Si多层膜的反射率。 Comparative Example (C) shows 40 pairs of Mo / Si multilayer film reflectivity.

如图7(A)所示,本实施例中的多层膜反射率峰(w2)的半宽度为1.0nm或以上。 Half width shown in FIG 7 (A), the present embodiment of the multilayer film reflectance peak (w2) is 1.0nm or more embodiments. 另外,本实施例中的反射率峰(w2)的形状为顶部平坦,在13.2-13.7nm的波长范围内反射率几乎恒定,约为60%。 Further, the shape of the reflectance peaks in the embodiment (w2) of the present embodiment is a flat top, a substantially constant reflectance in the wavelength range of 13.2-13.7nm, about 60%. 当与比较例(C)相比时,本实施例中的多层膜反射率的峰值(w2)与简单周期性结构多层膜的比较例(C)中的不一致,然而,已知在宽的波长范围内反射率一致是非常有优势的。 When compared with Comparative Example (C), peak reflectivity of a multilayer film of embodiment (w2) Comparative Example simple periodic structure of the multilayer film inconsistent (C) in the present embodiment, however, it is known in a wide within the wavelength range of the reflectance agreement it is very advantageous.

如图7(B)所示,本实施例中的多层膜的反射率(w2)在入射角为0°至约13°的宽范围内几乎恒定。 FIG. 7 (B), the reflectance of the multilayer film embodiment (w2) of the present embodiment is almost constant over a wide range of incidence angles of about 0 ° to 13 ° to. 与此相比,在比较例(C)中,反射率几乎恒定的入射角范围为0°至约7°。 In contrast, in Comparative Example (C), the reflectivity is almost constant incident angle range of 0 ° to about 7 °. 因此,本实施例中,反射率恒定的入射角范围明显比比较例(C)中的宽。 Thus, wide embodiment, the reflectivity constant range of incident angles significantly higher than Comparative Example (C) in the present embodiment. 由此,根据本实施例,反射率对入射角的依从性显著降低,并且已知在宽入射角范围内可以获得高反射率。 Thus, according to the present embodiment, the reflectance of the incident angle significantly reduced compliance, and it is known to obtain a high reflectance in a wide range of incidence angles.

注意:本实施例中,附加层22夹在其中,在基底侧上形成5对膜层,在入射侧上形成20对膜层,然而,膜层对数并不限于此。 Note: In this embodiment, the additional layer 22 interposed therein, to form a 5 layer on the substrate side, on the film layer 20 is formed on the incident side, however, the number of layers is not limited thereto. 根据使用目的可以改变膜层对数,以获得足够的反射率或者均匀的反射率。 May be varied depending on the purposes for several layers to obtain a sufficient reflectance or uniform reflectivity.

实施例4图8是根据本发明的第四实施例的多层膜反射镜的横截面示意图。 Example 4 FIG. 8 is a schematic cross sectional view of the fourth embodiment of the multi-layered film mirrors of the present invention. 基底30由被抛光到表面(图中的顶表面)的粗糙度为0.2nm RMS或以下的低热膨胀玻璃制成。 From the substrate 30 is polished to a roughness of the surface (the top surface in the drawing) is formed below 0.2nm RMS or low thermal expansion glass. 在基底30的表面上形成5对Ru/Si多层膜(深层膜层组)31。 5 pairs of Ru / Si multilayer film (underlying layer group) 31 is formed on the surface of substrate 30. Ru/Si多层膜31的周期长度(Ru/Si膜层对的厚度)为6.96nm,且Γ值为0.5。 Ru / Si multilayer film period length (Ru / Si layers of thickness) was 6.96nm, and a value of 0.5 Γ 31.

在Ru/Si多层膜31的表面上形成附加层32(在本实施例中为硅层)。 Forming an additional layer 32 (in the present embodiment, a silicon layer) on the surface of the multilayer film 31 of Ru / Si. 调整附加层32的厚度以便具有约为入射光线波长的1/4的光学厚度。 The thickness of the additional layer 32 is adjusted so as to have an optical thickness of about 1/4 of the wavelength of the incident light. 本实施例中,附加层32的厚度约为3.75nm。 Embodiment, the thickness of the additional layer 32 of the present embodiment is approximately 3.75nm. 另外,在附加层32的表面上,形成周期长度为6.96nm、Γ值为0.4的16对Ru/Si多层膜(第二表面膜层组)33,并且在Ru/Si层33的表面上形成周期长度为6.9nm、Γ值为0.4的16对Mo/Si多层膜(第一表面膜层组)34。 Further, on the surface of the additional layer 32 is formed period length of 6.96nm, Γ 16 value of 0.4 (second surface layer group) 33 pairs of Ru / Si multilayer film, and the upper surface of the Ru / Si layer 33 formation cycle length is 6.9nm, 16 pair of Mo / Si multilayer film (surface film layer of the first group) 34 Gamma] value of 0.4.

图9是表示根据本实施例的多层膜反射镜的反射率计算值的曲线图。 FIG 9 is a graph showing calculated values ​​from the reflectance of the multilayer film according to the present embodiment mirror. 图9(A)表示与入射光线的波长的关系,图9(B)表示与入射光线的入射角的关系。 FIG. 9 (A) shows the relationship between the wavelength of the incident light, FIG. 9 (B) shows the relationship between angle of incidence of the incident light. 图9(A)中的横轴表示入射光线的波长,图9(B)中的横轴表示入射角。 In FIG. 9 (A) and the horizontal axis represents the wavelength of incident light rays, in FIG. 9 (B) and the horizontal axis represents the angle of incidence. 两图中的纵轴均表示反射率的计算值,实线(w3)表示本实施例中多层膜反射镜的反射率,虚线(C)表示比较例。 Both figures the vertical axis represents the calculated average value of reflectance, the solid line (W3) represents the reflectance of the multilayer mirror embodiment of the present embodiment, a dotted line (C) shows a comparative example. 比较例(C)表示40对Mo/Si多层膜的反射率。 Comparative Example (C) shows 40 pairs of Mo / Si multilayer film reflectivity.

如图9(A)所示,本实施例中的多层膜反射率峰(w3)的半宽度为1.0nm或以上。 FIG. 9 (A), the half width of this peak reflectivity of a multilayer film of embodiment (W3) is embodied as 1.0nm or more. 另外,本实施例中的反射率峰(w3)的形状为顶部平坦,在13.2-13.7nm的波长范围内反射率几乎恒定,约为62%。 Further, the shape of the reflectance peaks in the embodiment (W3) of the present embodiment is a flat top, a substantially constant reflectance in the wavelength range of 13.2-13.7nm, about 62%. 当与比较例(C)相比时,本实施例中的多层膜反射率的峰值(w3)与简单周期性结构多层膜的比较例(C)中的不一致,然而,已知在宽的波长范围内反射率一致是非常有优势的。 When compared with Comparative Example (C), peak reflectivity of a multilayer film of embodiment (W3) Comparative Example simple periodic structure of the multilayer film inconsistent (C) in the present embodiment, however, is known in a wide within the wavelength range of the reflectance agreement it is very advantageous.

如图9(B)所示,本实施例中的多层膜的反射率(w3)在入射角为0°至约10°的宽范围内几乎恒定,且直到入射角约为15°反射率也没有显著下降。 FIG. 9 (B), the reflectance of the multilayer film of the present embodiment in the (W3) is almost constant over a wide range of incidence angles of about 0 ° to 10 ° embodiment, until the angle of incidence and reflectance of about 15 ° no significant decline. 与此相比,在比较例(C)中,反射率几乎恒定的入射角范围为0°至约7°,且在入射角为约10°附近处反射率急剧下降。 In contrast, in Comparative Example (C), the reflectivity is almost constant incident angle range of 0 ° to about 7 °, and a sharp decline in the reflectivity near the incident angle of approximately 10 °. 因此,本实施例中,反射率恒定的入射角范围明显比比较例(C)中的宽。 Thus, wide embodiment, the reflectivity constant range of incident angles significantly higher than Comparative Example (C) in the present embodiment. 由此,本实施例中,反射率对入射角的依从性显著降低,并且已知在宽入射角范围内可以获得高反射率。 Thus, in this embodiment, the reflectivity of the incident angle significantly reduced compliance, and it is known to obtain a high reflectance in a wide range of incidence angles.

注意:本实施例中,附加层32夹在其中,在基底侧上形成5对膜层,在入射侧上形成21(=16+5)对膜层,然而,膜层对数并不限于此。 Note: In this embodiment, the additional layer 32 interposed therein, is formed on the base film layer 5 side to form a 21 (= 16 + 5) on the incident side of the film, however, is not limited to this number of layers . 根据使用目的可以改变膜层对数,以获得足够的反射率或者均匀的反射率。 May be varied depending on the purposes for several layers to obtain a sufficient reflectance or uniform reflectivity.

实施例5接着,将说明根据本发明的第五实施例的多层膜反射镜。 Example 5 Next, the multilayer film will be described in accordance with a fifth embodiment of the present invention is a mirror. 在本实施例的多层膜中,通过使用Needle法来优化每个膜层的材料结构和膜厚,以便对于波长为13.5nm并且以15°至25°的入射角入射的EUV射线(远紫外射线)能够获得均匀一致的高反射率。 In the multilayer film of the present embodiment, by using the Needle method to optimize the structure and thickness of each film layer, so that an incident angle of incidence of 15 ° to 25 ° with respect to the wavelength of 13.5nm and EUV radiation (extreme ultraviolet rays) can be obtained a uniform high reflectivity.

本实施例中的多层膜是在精细抛光的合成二氧化硅玻璃基底上形成的,其包括多个膜层块,该膜层块中不同结构的膜层对(单位周期性结构)重复层叠。 Embodiment the multilayer film is formed on the fine synthetic silica glass substrate polished according to the present embodiment, the blocks comprising a plurality of layers, the membrane layer blocks of different structures are repeatedly stacked (in the periodic structure) . 这里,膜层对(单位周期性结构)是由对EUV具有低折射率的物质制成的低折射率膜层和由对EUV具有高折射率的物质制成的高折射率膜层层叠成多层膜的一种膜层结构。 Here, the low refractive index film layer of the film (in the periodic structure) is made of a material having a low refractive index and high refractive index film layer of the laminate EUV a substance having a high refractive index is formed in a plurality of EUV one kind of film structure layers of the film. 本实施例中,钼(Mo)和钌(Ru)被用作低折射率膜层,硅(Si)被用作高折射率膜层。 In this embodiment, molybdenum (Mo) and ruthenium (Ru) is used as a low refractive index film layer, silicon (Si) are used as the high refractive index film layer.

此外,在下面的说明中,多层膜的结构由每个膜层块(单位周期性结构)中的一对膜层的结构和层叠膜层的对数(重复数)来表示,且每个膜层块由从基底开始的计数表示(第A膜层块)。 Further, in the following description, the structure of the multilayer film is represented by logarithm (number of repetitions) and the laminated layer structure of each film block (unit periodic structure) in the pair of film layers, and each block represents the film (layer a first block) by the count starting from the base.

本实施例中多层膜的结构如表1所示。 The multilayer film structure of the present embodiment are shown in Table 1. 本实施例中多层膜的总厚度为约450nm。 The total thickness of the multilayer film embodiment of the present embodiment is about 450nm. 另外,优选多层膜的每层膜的厚度不恒定,并根据每层膜在多层膜上的位置来调整膜厚,从而获得理想的反射率。 The thickness of each film is preferably a multilayer film is not constant, and adjusting the thickness of the multilayer film in accordance with the position of each film, to obtain a desired reflectance.

表1 Table 1

在下面的表2、表3和表4中,表示了本实施例的多层膜中每层膜的厚度。 In the following Table 2, Table 3 and Table 4 shows the thickness of the multilayer film according to the present embodiment, each film. 这些表中,多层膜的每层膜用从基底侧起的计数表示,并表示了每层膜的优选膜厚范围(nm)和更优选的膜厚(nm)。 These tables, each film from the multilayer film represented by counted from the substrate side, and that the preferred film thickness of each film (nm) and more preferably a thickness (nm). 注意,由于多层膜的膜层数大,该表以多个分开的表来表示。 Note that, due to the large number of film layers of the multilayer film, the table to represent a plurality of separate tables.

表2 Table 2

“-”表示原子%小于0.1 "-" indicates less than 0.1 atomic%

表3 table 3

实施例6接着,将说明本发明的第六实施例。 Example 6 Next, a sixth embodiment of the present invention will be described. 本实施例的多层膜中,在保持每个膜层的膜厚比例的同时优化了每个膜层的材料结构和总膜厚,以便对于波长为13.5nm并且以0°至20°的入射角入射的EUV射线能够获得高的反射率。 Embodiment of the present embodiment of the multilayer film, while maintaining the film thickness ratio of each layer of material to optimize the structure of each layer and the total film thickness, so that the incident wavelength at 13.5nm and 0 ° to 20 ° EUV radiation incident at an angle possible to obtain high reflectance. 使用实施例中的多层膜,通过控制光学元件的每部分的总膜厚,例如以对相同反射表面中每个部分的不同的光射线入射角在整个反射表面上均一致地获得高反射率。 Examples of the use of the multilayer film embodiment, by controlling the total thickness of each part of an optical element, for example a different angle of incidence of light rays on the reflective surface of each portion of the same are consistent with obtaining a high reflectance in the entire reflective surface .

本实施例中的多层膜是通过在精细抛光的合成二氧化硅玻璃基底上形成具有下面的表5所示结构的多层膜而形成的。 The multilayer film of the present embodiment is the embodiment of the multilayer film having the following structure as shown in Table 5 is formed on the polished fine synthetic silica glass substrate is formed. 注意,本实施例中多层膜的总膜厚为约420nm-430nm。 Note that, the present embodiment from about 420nm-430nm total thickness of the multilayer film embodiment. 另外,优选多层膜的每层膜的厚度不恒定,可根据在多层膜上的位置改变厚度来进行调整,从而获得理想的反射率。 The thickness of each film is preferably a multilayer film is not constant, can be adjusted according to a change in the position of the thickness of the multilayer film, to obtain a desired reflectance.

表5 table 5

在下面的表6、表7和表8中,表示了本实施例的多层膜中每层膜的厚度。 In the following Table 6, Table 7 and Table 8 shows the thickness of the multilayer film of the present embodiment, each film. 注意,由于多层膜的膜层数多,该表以多个分开的表来表示。 Note that, since the number of multi-layers of the multilayer film, the table to represent a plurality of separate tables. 根据这些表,从基底侧数起,第28和第69个硅层为极厚硅膜层。 According to these tables, the number from the substrate side, 28 and silicon layer 69 is extremely thick silicon layer.

表6 Table 6

表7 Table 7

表8 Table 8

图11和12是表示根据本实施例的多层膜反射镜的反射率对入射角的依从关系的曲线图。 11 and FIG. 12 is a graph showing the reflectance of the multilayer mirror of the present embodiment dependence on the angle of incidence. 图中,横轴表示光线射入多层膜反射镜的入射角(度(°)),纵轴表示对具有13.5nm波长(λ)的EUV射线的反射率(%)。 FIG., The horizontal axis represents the incident light angle of incidence multilayer film mirror (degree ([deg.])), And the vertical axis represents the reflectance of the EUV radiation with a wavelength of 13.5nm ([lambda]) of (%). 图11和图12中所示的反射率是从多层膜中获得的,在保持多层膜的每层膜膜厚比例的同时,该多层膜的总膜厚变化。 11 and the reflectance shown in FIG. 12 is obtained from the multilayer film, while maintaining the ratio of each film thickness of the multilayer film, the total thickness of the multilayer film changes. 每个图中所示的膜厚为当图11(A)中的多层膜的总膜厚假定为1.000、并在1.000(图11(A))至0.9650(图12(G))的范围内以0.0025的间隔变化时的值。 Thickness of each figure is shown in FIG. 11 when the total film thickness of the multilayer film (A) is assumed to be 1.000, and 1.000 in the range (FIG. 11 (A)) to 0.9650 (FIG. 12 (G)) of the interval changes when a value of 0.0025.

每个图中两个纵向虚线之间的区域A2表示反射率对入射角的依从性小的入射角范围。 FIG each region between two longitudinal broken line A2 shows the reflectance of a small range of incident angles adherence of the incident angle. 由图11和图12可见,随着总膜厚增加,区域A2向较大的入射角处移动(移向图的右边)。 With the increase of the total film thickness, area A2 is moved by FIGS. 11 and FIG. 12 to be seen at a larger incident angle (toward the right of the figure). 例如,当区域A2在图12(G)中位于约4°-9°的入射角范围内时,在图11(A)中,该范围为约17°-20°。 For example, when the area A2 at about 4 ° -9 ° in FIG. 12 (G) range of angles, in FIG. 11 (A), the range is about 17 ° -20 °. 因此,根据本实施例,通过改变多层膜的总膜厚,在0°-20°的宽的入射角范围内能够获得50%或以上的高反射率。 Thus, according to the present embodiment, by changing the total film thickness of the multilayer film over a wide range of incidence angles of 0 ° -20 ° to obtain a high reflectance of 50% or more.

实施例7接着将说明本发明的第七实施例。 Example 7 The seventh embodiment of the present invention will be described next. 本实施例的多层膜中,每个膜层的材料结构和膜厚被优化,以便对于波长为13.5nm并且经过0°至20°的整个入射光线范围的EUV射线能够获得高的反射率。 The multilayer film of embodiment of the present embodiment, the material structure and the film thickness of each layer is optimized, so that for a wavelength of 13.5nm EUV radiation and the incident light through the entire range of 0 ° to 20 ° is possible to obtain high reflectance. 本实施例中的多层膜是通过在精细抛光的合成二氧化硅玻璃基底上形成具有下面的表9所示结构的多层膜而形成的。 The multilayer film is in the present embodiment is formed by forming on a finely polished synthetic silica glass substrate having a multilayer film structure following Table 9 of FIG. 注意,本实施例中多层膜的总膜厚为约280nm。 Note that, in this embodiment the total thickness of the multilayer film embodiment is about 280nm. 另外,优选多层膜的每层膜的厚度不恒定,并根据在多层膜上的位置来改变厚度进行调整,从而获得理想的反射率。 The thickness of each film is preferably a multilayer film is not constant, and depending on the position to vary the thickness of the multilayer film is adjusted to obtain a desired reflectance.

表9 Table 9

图13是表示根据本实施例的多层膜反射镜的反射率对入射角的依从关系的曲线图。 13 is a graph showing the dependency of the reflectance on the incident angle of the embodiment according to the present embodiment of the multilayer film mirror. 图中,横轴表示光线射入多层膜反射镜的入射角(度(°)),纵轴表示对具有13.5nm波长(λ)的EUV射线的反射率(%)。 FIG., The horizontal axis represents the incident light angle of incidence multilayer film mirror (degree ([deg.])), And the vertical axis represents the reflectance of the EUV radiation with a wavelength of 13.5nm ([lambda]) of (%). 从图中可见,根据本实施例的多层膜反射镜,在0°-20°的整个入射角范围内能够获得45%或以上的高反射率(更详细地,为54%或以上)。 Seen from the figure, the multilayer film reflecting mirror according to the present embodiment, over the entire range of incidence angles of 0 ° -20 ° to obtain a high reflectance of 45% or more (more specifically, 54% or more).

实施例8接着将说明本发明的第八实施例。 Example 8 The eighth embodiment of the present invention will be described next. 本实施例的多层膜中,每个膜层的材料结构和膜厚被优化,以便对于波长为13.1-13.9nm并且垂直入射的EUV射线(远紫外线)能够获得高的反射率。 The multilayer film of embodiment of the present embodiment, the material structure and the film thickness of each layer is optimized, so that for a wavelength of 13.1-13.9nm incident EUV radiation and perpendicular (extreme ultraviolet) a high reflectance can be obtained. 本实施例中的多层膜是通过在精细抛光的合成二氧化硅玻璃基底上形成具有下面的表10所示结构的多层膜而形成的。 The multilayer film is in the present embodiment is formed on a finely polished by a synthetic silica glass substrate having a multilayer film structure following Table 10 is formed as shown. 注意,本实施例中多层膜的总膜厚为约360nm。 Note that, in this embodiment the total thickness of the multilayer film embodiment is about 360nm. 另外,优选多层膜的每层膜的厚度不恒定,并根据在多层膜上的位置来改变厚度进行调整,从而获得理想的反射率。 The thickness of each film is preferably a multilayer film is not constant, and depending on the position to vary the thickness of the multilayer film is adjusted to obtain a desired reflectance.

表10 Table 10

在下面的表11和表12中,表示了本实施例的多层膜中每层膜的厚度。 In the following Table 11 and Table 12 shows the thickness of the multilayer film of the present embodiment, each film. 注意,由于多层膜的膜层数多,该表以多个分开的表来表示。 Note that, since the number of multi-layers of the multilayer film, the table to represent a plurality of separate tables. 根据这些表,从基底侧数起,第28、第51、第73和第75个硅层为极厚硅膜层。 According to these tables, the number from the substrate side, 28, 51, 73 and 75 of the silicon layer is extremely thick silicon layer.

表11 Table 11

表12 Table 12

图14是表示根据本实施例的多层膜反射镜的光谱反射率性能的曲线图。 FIG 14 is a graph showing the reflectance properties of the multilayer film mirror of the present embodiment spectrum. 图中,横轴表示入射光线的波长(nm),纵轴表示反射率(%)。 Figure, the horizontal axis represents the wavelength of the incident light (nm), and the vertical axis represents reflectance (%). 注意,其假定光线的入射角为0°(在反射表面上垂直入射)。 Note that, it is assumed that an angle of incidence of 0 ° (normal incidence on the reflecting surface). 从图中可见,根据本实施例的多层膜反射镜,在整个上述的宽波长范围内能够获得45%或以上的高反射率(更详细地,为50%或以上)。 Seen from the figure, the multilayer film reflecting mirror according to the present embodiment, throughout a wide wavelength range can be obtained above a high reflectance of 45% or more (more specifically, 50% or more).

这些实施例中得到的结果以及对比数据都示于以下表1-3中。 The results obtained in Examples and Comparative data are shown in Table 1-3. 为证实根据本发明的化合物与已知化合物相比具有优越性,在酶测试中使根据本发明的化合物与已知的参考化合物以及WO00/096888之实施例10中的结构类似的已知化合物进行对比。 To confirm that the compound having advantages over known compounds according to the present invention, in enzymatic tests manipulation similar known compounds according to the compounds of the invention and the known reference compound of Example WO00 / 096888 10 of the structure Compared. 结果示于以下表1和2中。 The results are shown in Tables 1 and 2. 在表3中,与WO00/12486之实施例10的化合物以及乙酰唑胺相比,根据本发明的化合物显示出更佳的数据。 In Table 3, compared with the compounds and acetazolamide embodiment WO00 / 12486 of 10, showing better data for compounds according to the invention.

表1 Table 1

实施例中多层膜的每层膜的厚度。 The thickness of each film in the multilayer film embodiment embodiment. 注意,由于多层膜的膜层数多,该表以多个分开的表来表示。 Note that, since the number of multi-layers of the multilayer film, the table to represent a plurality of separate tables. 根据这些表,第46个硅层(几乎位于多层膜中间的硅层)为极厚硅膜层。 According to these tables, the first silicon layer 46 (almost in the middle of the multilayer film silicon layer) is extremely thick silicon layer.

表14 Table 14

表2 Table 2

图17是表示根据本实施例的多层膜反射镜的反射率对入射角的依从关系的曲线图。 FIG 17 is a graph showing the dependency of the reflectance on the incident angle of the embodiment according to the present embodiment of the multilayer film mirror. 图中,横轴表示光线射入多层膜反射镜的入射角(度(°)),纵轴表示对具有13.5nm波长(λ)的EUV射线的反射率(%)。 FIG., The horizontal axis represents the incident light angle of incidence multilayer film mirror (degree ([deg.])), And the vertical axis represents the reflectance of the EUV radiation with a wavelength of 13.5nm ([lambda]) of (%). 从图中可见,根据本实施例的多层膜反射镜,在0°-20°的整个宽入射角范围内能够获得45%或以上的高反射率(更优选为50%或以上)。 Seen from the figure, the multilayer film reflecting mirror according to the present embodiment, throughout a wide range of incidence angles of 0 ° -20 ° to obtain a high reflectance of 45% or more (more preferably 50% or more).

实施例11图18为根据本发明的实施例的曝光设备的示意图。 Example 11 FIG. 18 is a schematic embodiment of an exposure apparatus according to an embodiment of the present invention. 如图所示,EUV曝光100具有X射线发生装置(激光等离子体X射线源)101。 As shown, EUV exposure apparatus 100 has an X-ray generator (laser plasma X-ray source) 101. 该X射线发生装置101具有球状真空容器102,用真空泵对真空容器102的内部抽真空。 The X-ray generator 101 having a spherical vacuum vessel 102, with a vacuum pump to the vacuum chamber 102. 在图中真空容器102内的上侧安置了多层膜抛物面镜104,其反射表面104a在图中面朝下(+Z方向)。 In the drawing the upper side in the vacuum chamber 102 is disposed a multi-layer film parabolic mirror 104, which faces the reflecting surface 104a in the figure (+ Z direction).

图中真空容器102的右侧安置了透镜106,在透镜106的右侧安置了未图示出的激光源。 The right side in the vacuum chamber 102 of the lens 106 is disposed on the right side of the lens 106 is disposed a laser source (not shown). 该激光源在-Y方向放射脉冲激光105。 The laser light source pulsed laser radiation in the -Y direction 105. 该脉冲激光105通过透镜106在多层膜抛物面镜的焦点上汇聚。 The pulsed laser 105 converges on the focal point of the parabolic mirror multilayer film 106 by the lens. 该焦点处安置了靶材料[氙(Xe)等],且当用被汇聚的脉冲激光105照射靶材料103时,产生等离子体107。 The focal point of the target material is disposed [xenon (Xe), etc.], and when the target is irradiated with a pulsed laser 105 is converged material 103, 107 to generate a plasma. 等离子体107在接近13nm的波长范围内放射软X射线(EUV射线)108。 107 plasma soft X-ray radiation (EUV radiation) in the wavelength range close to 108 of 13nm.

在真空容器102的下部具有删减可见光的X射线过滤器109。 X-ray visible light cut filter having a lower portion 102 of the vacuum chamber 109. EUV射线108被多层膜抛物面镜104沿+Z方向反射,经过X射线过滤器109被导入曝光室110。 EUV radiation in the multilayer film 108 is the parabolic reflecting mirror 104 + Z direction, the X-ray through the filter 109 is introduced into the exposure chamber 110. 此时,EUV射线108的可见光谱段被删减。 At this time, the visible spectrum EUV radiation 108 is cut.

注意,本实施例中氙气被用作靶材料,然而,也可以使用氙团(cluster)或氙液滴,并且也可使用如锡(Sn)这样的物质。 Note that the present embodiment is used as a xenon target material, however, groups may be used xenon (Cluster) or xenon droplets, and as tin (Sn) such materials may also be used. 另外,使用激光等离子体X射线源作为X射线发生装置101,然而,也可采用放电等离子体X射线源。 Further, using a laser plasma X-ray source as X-ray generation apparatus 101, however, may also be employed a discharge plasma X-ray source. 放电等离子体X射线源通过高脉冲电压放电将靶材料转变成等离子体,并致使从该等离子体中放射X射线。 Discharge plasma X-ray source by a high voltage discharge pulse converting the target material into a plasma, and the plasma resulting from the X-ray emission.

图中X射线发生装置101下面有曝光室110。 FIG X-ray generator 101 below the exposure chamber 110. 在曝光室110内安置了照明光学系统113。 The illumination optical system 113 placed in the exposure chamber 110. 该照明光学系统113由聚光系统反射镜、蝇眼光学系统反射镜等(图中以简化的形状表示)构成,将从X射线发生装置101射入的EUV射线108形成圆形,并将其射向图的左侧。 The illumination optical system 113 (FIG represented to simplify the shape of) a condensing mirror system, the fly-eye optical system, like a mirror, the EUV radiation incident on the 108 X-ray generation apparatus 101 is formed from a circular shape, and toward the left side of FIG.

在照明光学系统113的左侧安置了反射镜115。 On the left side of the illumination optical system 113 is disposed a mirror 115. 反射镜115是圆形凹面镜,被图中未表示出的支撑元件垂直支撑(平行于Z轴),因此其反射表面115a面向图的右侧(+Y方向)。 Circular mirror 115 is a concave mirror, it is not shown in FIG supporting vertical support member (parallel to the Z axis), so that the reflecting surface 115a faces the right side of FIG. (+ Y direction). 在图中反射镜115的右手侧安置了光路弯曲镜116。 In the right-hand side of FIG mirror 115 disposed in the optical path bending mirror 116. 在图中该光路弯曲镜116上面,水平(平行于XY平面)安置了反射型掩膜111,因此反射表面111a面朝下(+Z方向)。 In the drawing the optical path bending mirror 116 above horizontal (parallel to the XY plane) of the reflection type mask 111 is disposed, the reflection surface 111a faces (+ Z direction) below. 从照明光学系统113发射出的EUV射线在被反射镜115反射和汇聚之后,经由光路弯曲镜116,到达反射型掩膜111的反射表面111a。 Emitted from the illumination optical system 113 EUV radiation reflected at the mirror 115, and after being converged through the optical path bending mirror 116, reaches the reflecting surface 111 of the reflective mask 111a.

反射镜115和116由略微热变形且反射表面被高度精细加工过的低热膨胀玻璃基底构成。 Mirror 115 and slightly deformed by the heat and the reflective surface is highly refined and processed through a low thermal expansion glass substrate 116 is configured. 与多层膜抛物面镜的反射表面一样,在反射镜115的反射表面115a上,高折射率膜层和低折射率膜层交替层叠形成反射性多层膜。 As with the reflective surface of the multilayer film parabolic mirror, the reflective surface 115a of the mirror 115, a high refractive index layer and a low refractive index film layer are alternately laminated reflective multilayer film is formed. 注意,当使用波长为10-15nm的X射线时,可以使用物质如钼(Mo)、钌(Ru)和铑(Rh)与物质如硅(Si)、铍(Be)和四硼化碳(B4C)相结合的反射性多层膜。 Note that, when the 10-15nm wavelength of X-rays, materials can be used such as molybdenum (Mo), ruthenium (Ru) and rhodium (Rh) and material such as silicon (Si), beryllium (Be) and tetrakis carbon boride ( of B4C) a reflective multilayer film combination.

同样,在反射型掩膜111的反射表面111a上,形成由多层膜构成的反射膜层。 Similarly, on the reflection surface 111a of the reflection type mask 111, forming a reflective film layer of a multilayer film. 在反射型掩膜111的反射膜层上,根据要被传送到晶片112上的构图形成掩膜构图。 A reflective layer on the reflection type mask 111, a mask is patterned according to the patterning to be transferred to the wafer 112. 反射型掩膜111与图顶部所示的掩膜架117相连接。 Mask holder 111 shown in the reflection type mask 117 is connected to the top of FIG. 该掩膜架117至少能在Y方向上移动,并且被光路弯曲镜116反射的EUV射线在反射型掩膜111上被顺序扫描。 The mask holder 117 is movable at least in the Y direction, and the optical path bending mirror 116 is reflected by EUV radiation is sequentially scanned on the reflection type mask 111.

图中反射型掩膜111的下面由上至下依次安置了投影光学系统114和晶片(涂抹了感光树脂的基底)112。 FIG following reflection type mask 111 are sequentially disposed from top to bottom of the projection optical system 114 and a wafer (a substrate a photosensitive resin is applied) 112. 投影光学系统114由多个反射镜等构成。 The projection optical system 114 is constituted by a plurality of mirrors and the like. 晶片112被固定在能在XYZ方向上移动的晶片架118上,以便其曝光面112a在图中朝上(-Z方向)。 Wafer 112 is fixed to the movable frame in the XYZ direction of the wafer 118, so that the exposed surface 112a upwards (-Z direction) in FIG. 被反射型掩膜111反射的EUV射线被投影光学系统削减了预定的削减系数(如1/4),并在晶片112上形成图像,将掩膜111上的构图传送到晶片112上。 Reflected by the reflection type mask 111 is the projection optical system the EUV radiation cut a predetermined reduction factor (e.g. 1/4), and forms an image on the wafer 112, the transmission 111 is patterned on the mask 112 onto the wafer.

在本实施例的曝光设备100中使用的反射镜(不包括利用全反射的掠射镜)上,形成具有上述第一至第十个实施例中说明的结构中的任一种的多层膜。 In the mirror according to the present embodiment, the exposure apparatus 100 to use (including grazing incidence mirrors using total reflection), forming a structure having any one of the above-described first to tenth embodiments described in the multilayer film . 注意,多层膜抛物面镜104、照明光学系统113和投影光学系统114中的反射镜等,都具有未图示出的冷却机构,以防止表面温度超过100℃。 Note that, the multilayer film parabolic mirror 104, the illumination optical system 113 and projection optical system 114 is a reflection mirror, having a cooling mechanism (not shown), to prevent the surface temperature exceeds 100 ℃.

由于射向多层膜抛物面镜104的反射表面的EUV射线的入射光线根据其在平面上的位置不同变化相当大,因此平面中周期性长度也变化相当大。 Since the EUV radiation incident light toward the reflective surface of the multi-layer film parabolic mirror 104 depending on its position in a plane different vary considerably, and therefore also the length of the plane periodically varies considerably. 如上所述,多层膜抛物面镜104的周期长度分布和基底安装位置发生了略微的偏差,因此,由于控制周期长度时预期的入射角与实际入射角之间有偏差,反射率因而改变。 As described above, the cycle length distribution, and installation position of the base 104 of the multi-layer film parabolic mirror slight deviation occurred, and therefore, since the deviation between the desired control period length and the actual angle of incidence of the incident angle, thus changing the reflectivity. 根据本实施例,通过使用具有根据上述实施例的反射率的宽的半宽度的多层膜反射镜,这样的反射率变化几乎不会发生。 The present embodiment, by having a wide half width in accordance with the reflectivity of the multilayer film mirror of the embodiment described above, such a reflectivity change hardly occurs according to. 另外,通过使用具有宽反射率范围的多层膜作为构成照明光学系统113和投影光学系统114的多层膜反射镜,光学系统的图像成形性能可以保持得高,因此,有可能使图像成形表面上的光照和光瞳中的光线量一致,并能获得优异的分辨率。 Further, by using a multilayer film having a reflectance of a wide range of image forming performance as the multilayer film mirror 114, an optical system 113 constitute an illumination optical system and the projection optical system can be kept high, and therefore, it is possible to cause the image forming surface uniform amount of light on the illumination and the pupil, and excellent resolution can be obtained.

本实施例中,多层膜抛物面镜104等被冷却,然而,如果冷却进行得不够,也可能象第二至第四实施例中那样,利用即使温度增加反射率也下降很少的膜层结构(Mo/SiC/Si、MoC/Si多层膜等)、向结其构中增加附加层。 Embodiment, the multilayer film parabolic mirror 104 or the like is cooled according to the present embodiment, however, if the cooling is carried enough, as it may, even when the temperature is increased by using little reduction of reflectance film structure as in the second embodiment to the fourth embodiment (Mo / SiC / Si, MoC / Si multilayer film or the like), adding additional layers to the structure in which the junction.

如上所述,本发明可被广泛应用于多层膜反射镜和曝光设备领域。 As described above, the present invention can be widely applied to the field of multilayer film mirror and the exposure apparatus.

Claims (26)

  1. 1.一种具有反射性多层膜的多层膜反射镜,该反射性多层膜中对EUV射线的高折射率膜层和低折射率膜层交替层叠,其中:在光线入射平面侧上的多层膜(表面膜层组)中,低折射率膜层由包括钼(Mo)的物质构成,高折射率膜层由包括硅(Si)的物质构成;并且在所述表面膜层组的相对光线入射平面侧上的多层膜(深层膜层组)中,低折射率膜层由包括钌(Ru)的物质构成,高折射率膜层由包括硅(Si)的物质构成。 A multilayer film reflecting mirror having a reflective multilayer film, the multilayer reflective film for EUV radiation high refractive index layer and a low refractive index film layer are alternately laminated, wherein: the light incidence plane side the multilayer film (surface film layer group), a low refractive index layer is constituted by materials include molybdenum (Mo), the high refractive index layer composed of a substance comprising silicon (Si); and in the surface layer group the multilayer film (underlying layer group) on the opposite side of the light incidence plane, the low refractive index layer composed of a substance comprising a ruthenium (Ru), the high refractive index layer composed of a substance comprising silicon (Si),.
  2. 2.根据权利要求1的多层膜反射镜,其中所述表面膜层组中高折射率膜层和低折射率膜层的膜层对数为2-10。 The multilayer film mirror of claim 1, wherein said surface film layer of high refractive index film layer and set low refractive index film of layer number of 2-10.
  3. 3.一种制造多层膜反射镜的方法,该多层膜反射镜具有反射性多层膜,该反射性多层膜中对EUV射线的高折射率膜层和低折射率膜层交替层叠,所述方法包括步骤:在基底上通过交替沉积包括钌的物质和包括硅的物质以形成深层膜层组;和在所述深层膜层组上通过交替沉积包括钼的物质和包括硅的物质以形成表面膜层组。 3. A method of manufacturing a multi-layered film mirrors, the multilayer film mirror having a reflective multilayer film, the multilayer reflective film for EUV radiation high refractive index layer and a low refractive index film layer are alternately laminated , said method comprising the steps of: depositing on a substrate by alternately include ruthenium and materials comprising silicon material to form a deep layer groups; and the deposited material comprises molybdenum and silicon comprising materials by alternate in the layer group depth groups to form a surface layer.
  4. 4.一种具有反射性多层膜的多层膜反射镜,该反射性多层膜中对EUV射线的高折射率膜层和低折射率膜层交替层叠,该多层膜反射镜包括:在光线入射平面侧上的多层膜组(表面膜层组);在所述表面膜层组的相对光线入射平面侧上的附加层;和在所述附加层的相对光线入射平面侧上的多层膜组(深层膜层组),其中:所述表面膜层组的反射率高于所述深层膜层组的反射率;并且反射光线由于所述附加层的存在而相位改变,致使整个反射镜的反射率峰值保持比不存在所述附加层时更小,峰值波长周围的反射率保持比不存在所述附加层时更高。 A multilayer film mirror having a reflective multilayer film, the multilayer reflective film for EUV radiation high refractive index layer and a low refractive index film layer are alternately laminated, the multilayer mirror comprising: on the side of the light incidence plane of the multilayer film groups (surface layer group); an additional layer is incident on the planar side surface opposite to the light film layer group; and the light incident plane on the opposite side of the additional layer the multilayer film group (group deep layer), wherein: a surface layer having high reflectance is set to the deep layer reflectivity group; and reflected light rays due to the presence of the additional layer and the phase change, causing the entire peak reflectivity of the mirror holder is smaller than in the absence of the additional layer, the reflectance is maintained around the peak wavelength higher than in the absence of the additional layers.
  5. 5.一种具有反射性多层膜的多层膜反射镜,该反射性多层膜中对EUV射线的高折射率膜层和低折射率膜层交替层叠,该多层膜反射镜包括:在光线入射平面侧上的多层膜组(表面膜层组);在所述表面膜层组的相对光线入射平面侧上的附加层;和在所述附加层的相对光线入射平面侧上的多层膜组(深层膜层组),其中:在所述表面膜层组中,低折射率膜层由包括钼(Mo)的物质构成,高折射率膜层由包括硅(Si)的物质构成;在所述深层膜层组中,低折射率膜层由包括钼(Mo)的物质构成,高折射率膜层由包括硅(Si)的物质构成;并且所述附加层的厚度约为所述多层膜的周期长度的一半,或是周期长度的整数倍加上约周期长度的一半。 A multilayer film reflecting mirror having a reflective multilayer film, the multilayer reflective film for EUV radiation high refractive index layer and a low refractive index film layer are alternately laminated, the multilayer mirror comprising: on the side of the light incidence plane of the multilayer film groups (surface layer group); an additional layer is incident on the planar side surface opposite to the light film layer group; and the light incident plane on the opposite side of the additional layer the multilayer film group (group deep layer), wherein: the surface layer group composed of a low refractive index layer materials include molybdenum (Mo), the high refractive index layer comprises a silicon (Si) material configuration; deep layer in the group, consists of a low refractive index layer materials include molybdenum (Mo), the high refractive index layer composed of a substance comprising silicon (Si); and the thickness of the additional layer is about half integer period length of the multilayer film, or the period length of about half the doubly cycle length.
  6. 6.一种具有反射性多层膜的多层膜反射镜,该反射性多层膜中对EUV射线的高折射率膜层和低折射率膜层交替层叠,该多层膜反射镜包括:在光线入射平面侧上的多层膜组(表面膜层组);在所述表面膜层组的相对光线入射平面侧上的附加层;和在所述附加层的相对光线入射平面侧上的多层膜组(深层膜层组),其中:在所述表面膜层组中,低折射率膜层由包括钌(Ru)的物质构成,高折射率膜层由包括硅(Si)的物质构成;在所述深层膜层组中,低折射率膜层由包括钌(Ru)的物质构成,高折射率膜层由包括硅(Si)的物质构成;并且所述附加层的厚度约为所述多层膜的周期长度的一半,或是周期长度的整数倍加上约周期长度的一半。 A multilayer film reflecting mirror having a reflective multilayer film, the multilayer reflective film for EUV radiation high refractive index layer and a low refractive index film layer are alternately laminated, the multilayer mirror comprising: on the side of the light incidence plane of the multilayer film groups (surface layer group); an additional layer is incident on the planar side surface opposite to the light film layer group; and the light incident plane on the opposite side of the additional layer the multilayer film group (group deep layer), wherein: the surface layer group composed of a low refractive index layer materials include ruthenium (Ru), the high refractive index layer comprises a silicon (Si) material configuration; deep layer in the group, consists of a low refractive index layer materials include ruthenium (Ru), the high refractive index layer composed of a substance comprising silicon (Si); and the thickness of the additional layer is about half integer period length of the multilayer film, or the period length of about half the doubly cycle length.
  7. 7.根据权利要求4至6中任一项的多层膜反射镜,其中:所述表面膜层组的单位周期性结构(对)数为10-30;和所述深层膜层组的膜层对数为所述表面膜层组的膜层对数的5-50%。 According to claim 4 to 6, the multilayer mirror of any one of, wherein: the unit periodic structure of the surface layer group (p) number of 10-30; and the group of the deep layer of the film the number of layers of film on the surface layer of 5-50% of the group number.
  8. 8.根据权利要求4至7中任一项的多层膜反射镜,其中所述附加层由硅(Si)、硼(B)以及包括硅和硼的物质之一构成。 According to claim 4 to 7, the multilayer film reflecting mirror according to any one of, wherein the additional layer of silicon (Si), silicon and boron one species of boron (B) and comprises configuration.
  9. 9.一种具有反射性多层膜的多层膜反射镜,该反射性多层膜中对EUV射线的高折射率膜层和低折射率膜层交替层叠,该多层膜反射镜包括:在光线入射平面侧上的多层膜组(表面膜层组);在所述表面膜层组的相对光线入射平面侧上的附加层;和在所述附加层的相对光线入射平面侧上的多层膜组(深层膜层组),其中:在所述表面膜层组中入射平面侧上的多层膜组(第一表面膜层组)中,低折射率膜层由包括钼(Mo)的物质构成,高折射率膜层由包括硅(Si)的物质构成;在所述表面膜层组中所述附加层侧上的多层膜组(第二表面膜层组)中,低折射率膜层由包括钌(Ru)的物质构成,高折射率膜层由包括硅(Si)的物质构成;和在所述深层膜层组中,低折射率膜层由包括钌(Ru)的物质构成,高折射率膜层由包括硅(Si)的物质构成。 A multilayer film reflecting mirror having a reflective multilayer film, the multilayer reflective film for EUV radiation high refractive index layer and a low refractive index film layer are alternately laminated, the multilayer mirror comprising: on the side of the light incidence plane of the multilayer film groups (surface layer group); an additional layer is incident on the planar side surface opposite to the light film layer group; and the light incident plane on the opposite side of the additional layer the multilayer film group (group deep layer), wherein: the multilayer film enters the group (the first group of the surface layer) on the flat side of the surface layer in the group, from the low refractive index film include molybdenum (Mo ) of the substance constituting the high refractive index layer composed of a substance comprising silicon (Si); a group of multi-layered film (the surface layer of the second group) on the additional film layer on the surface layer side groups, lower refractive index film layer is composed of material comprising ruthenium (Ru), the high refractive index layer composed of a substance comprising silicon (Si); and a group in the deep layer, the low refractive index layer comprises a ruthenium (Ru) the material constituting the high refractive index layer composed of a substance comprising silicon (Si),.
  10. 10.一种包括反射性多层膜的多层膜反射镜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相,该多层膜反射镜包括:厚度为EUV射线的中心波长的一半或以上的插入层,其中具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 A multilayer reflective film comprising a multilayer film mirror, the reflective multilayer film, under the condition of Bragg reflection conditions were maintained following the high refractive index layer and the low refractive index film alternately on a substrate laminate: for EUV light rays reflected from the interface of the plurality of high refractive index layer and a low refractive index film layer are made the same phase, the multilayer film mirror comprising: a thickness of half or more of the central ray of EUV wavelength insertion layer, wherein the EUV radiation with a very high reflectivity of EUV radiation wavelength range or the incident angle range is widened.
  11. 11.根据权利要求10的多层膜反射镜,其中高折射率膜层和低折射率膜层的膜层对的一部分由两种物质构成,另一部分由三种或以上的物质构成。 11. The multilayer film reflecting mirror of claim 10, wherein the high refractive index film layer and the low refractive index film layer is constituted by a part of the two substances, the other part consists of three or more substances.
  12. 12.根据权利要求10或11的多层膜反射镜,其中:所述反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和低折射率膜层L1和L2的(膜层)对重复层叠,该高折射率膜层和低折射率膜层具有不同结构,低折射率膜层L1和L2由相互不同的材料形成;所述多个膜层块包括L1/L2/L1/H膜层对反复层叠的膜层块和L1/H膜层对反复层叠的膜层块;并且每个膜层块中膜层对层叠反复数为1-50。 12. The multilayer film reflecting mirror 10 or claim 11, wherein: the multilayer film comprises a plurality of reflective layer blocks, the block layer and a high refractive index layer H and the low refractive index layer L1 L2 (the film layer) are repeatedly stacked on the high refractive index layer and a low refractive index film layer having a different structure, the low refractive index layer L1 and L2 are formed of different materials from each other; said blocks comprising a plurality of layers L1 / L2 / L1 / H block repeatedly laminated film layer of film blocks and L1 / H of repeatedly laminated layers; and each layer of the laminated film block numbers 1 to 50 repeatedly.
  13. 13.根据权利要求12的多层膜反射镜,其中每个膜层对中包括的膜层的厚度各不相同。 13. A multilayer mirror as claimed in claim 12, wherein the thickness of each film layer comprises a layer pair varies.
  14. 14.根据权利要求10至13中任一项的多层膜反射镜,其中在层叠每个膜层的同时自主改变其厚度,以便将对波长为13.1nm至13.9nm的光线的反射率设定为45%或以上。 14. The multilayer film of any one of 10 to 13 mirror according to claim, wherein the independent change the thickness thereof, while each film layer laminated to the reflectance wavelength will 13.1nm to 13.9nm light setting 45% or more.
  15. 15.一种包括反射性多层膜的多层膜反射镜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相,其中:所述反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和低折射率膜层L1和L2的(膜层)对重复层叠,该高折射率膜层和低折射率膜层具有不同结构,低折射率膜层L1和L2由相互不同的材料形成;在所述多层膜反射镜的基底侧上的膜层块由L2/H膜层对反复层叠形成;从基底开始的第二膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第三膜层块由L1/H膜层对反复层叠形成;从基底开始的第四膜层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第五膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第六膜层块 A multilayer reflective film comprising a multilayer film mirror, the reflective multilayer film, under the condition of Bragg reflection conditions were maintained following the high refractive index layer and the low refractive index film alternately on a substrate laminate: a plurality of interfaces for reflecting light from the high refractive index layer and a low refractive index film layer becomes EUV radiation is in phase, wherein: the multilayer film comprises a plurality of reflective layer blocks, the block layer high refractive index layer H and the low refractive index layer L1 and L2 (layer) of the repeatedly stacked, the high refractive index layer and a low refractive index film layer having a different structure, the low refractive index layer L1 and L2 to each other by the different materials; layer on the substrate side of the multilayer film mirror is formed by a block L2 / H of repeatedly laminated film; a second layer from the substrate by a start block L2 / L1 / H layer of repeatedly laminated form; third layer starting from the base block formed by the L1 / H of repeatedly laminated layers; and a fourth block from the base layer is formed from the start L1 / L2 / L1 / H of repeatedly laminated layers; from the substrate the fifth layer is formed by a block start L2 / L1 / H of repeatedly laminated layers; the sixth layer starting from the base block 由L1/H膜层对反复层叠形成;从基底开始的第七膜层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第八膜层块由L1/H膜层对反复层叠形成;每个膜层块中膜层对层叠反复数为1-50;并且具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 / H film is formed on the L1 repeatedly laminated; the seventh layer from the base block is formed starting from the L1 / L2 / L1 / H of repeatedly laminated layers; eighth film layer substrate blocks from the start of the L1 / H layer repeated laminate is formed; in each film layer of the laminated block number is repeated from 1 to 50; and the EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened.
  16. 16.根据权利要求15的多层膜反射镜,其中对于以至少18度至25度的入射角入射的掠射光线的反射率为50%或以上。 16. The multilayer mirror as claimed in claim 15, wherein the grazing light for an incident angle at least 18 degrees to 25 degrees is incident reflectance of 50% or more.
  17. 17.一种包括反射性多层膜的多层膜反射镜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相,其中:所述反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和低折射率膜层L1和L2的(膜层)对重复层叠,该高折射率膜层和低折射率膜层具有不同结构,低折射率膜层L1和L2由相互不同的材料形成;在所述多层膜反射镜的基底侧上的膜层块由L2/H膜层对反复层叠形成;从基底开始的第二膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第三膜层块由L1/H膜层对反复层叠形成;从基底开始的第四膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第五膜层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第六膜层块 17. A multilayer reflective film comprising a multilayer film mirror, the reflective multilayer film, under the condition of Bragg reflection conditions were maintained following the high refractive index layer and the low refractive index film alternately on a substrate laminate: a plurality of interfaces for reflecting light from the high refractive index layer and a low refractive index film layer becomes EUV radiation is in phase, wherein: the multilayer film comprises a plurality of reflective layer blocks, the block layer high refractive index layer H and the low refractive index layer L1 and L2 (layer) of the repeatedly stacked, the high refractive index layer and a low refractive index film layer having a different structure, the low refractive index layer L1 and L2 to each other by the different materials; layer on the substrate side of the multilayer film mirror is formed by a block L2 / H of repeatedly laminated film; a second layer from the substrate by a start block L2 / L1 / H layer of repeatedly laminated form; third layer starting from the base block is formed of L1 / H of repeatedly laminated layers; and a fourth block from the base layer is formed from the start L2 / L1 / H of repeatedly laminated film; starting from the base a fifth film layer is formed by a block L1 / L2 / L1 / H of repeatedly laminated layers; the sixth layer starting from the base block 由L1/H膜层对反复层叠形成;从基底开始的第七膜层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第八膜层块由L1/H膜层对反复层叠形成;每个膜层块中膜层对层叠反复数为1-50;并且具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 / H film is formed on the L1 repeatedly laminated; the seventh layer from the base block is formed starting from the L1 / L2 / L1 / H of repeatedly laminated layers; eighth film layer substrate blocks from the start of the L1 / H layer repeated laminate is formed; in each film layer of the laminated block number is repeated from 1 to 50; and the EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened.
  18. 18.根据权利要求17的多层膜反射镜,其中通过根据反射表面上每个位置处光线的入射角来自主改变所述反射性多层膜的总膜厚,设定整个反射表面具有一致的反射率。 18. The multilayer film mirror of claim 17, wherein the light having a uniform through according to the angle of incidence at each position from the change of the total thickness of the primary reflective multilayer film on the reflective surface, the reflective surface of the entire set of Reflectivity.
  19. 19.根据权利要求17或18的多层膜反射镜,其中通过在维持反射性多层膜中每层的膜厚比例的同时改变反射性多层膜的总膜厚将对于以至少0-20度的入射角入射的掠射光线的反射率设定为50%或以上。 19. A multilayer mirror as claimed in claim 17 or 18, wherein changing the overall thickness of the reflection multilayer film by the film thickness ratio of each layer while maintaining the reflective multilayer film for at least 0-20 the reflectance of light glancing incident angle is set at 50% or more.
  20. 20.一种包括反射性多层膜的多层膜反射镜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相,其中:所述反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和低折射率膜层L1和L2的(膜层)对重复层叠,该高折射率膜层和低折射率膜层具有不同结构,低折射率膜层L1和L2由相互不同的材料形成;在所述多层膜反射镜的基底侧上的膜层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第二膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第三膜层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第四膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第五膜层块由L1/H膜层对反复层叠形成;从基底开始的第六膜 20. A multilayer film comprising a reflective multilayer film mirror, the reflective multilayer film, under the condition of Bragg reflection conditions were maintained following the high refractive index layer and the low refractive index film alternately on a substrate laminate: a plurality of interfaces for reflecting light from the high refractive index layer and a low refractive index film layer becomes EUV radiation is in phase, wherein: the multilayer film comprises a plurality of reflective layer blocks, the block layer high refractive index layer H and the low refractive index layer L1 and L2 (layer) of the repeatedly stacked, the high refractive index layer and a low refractive index film layer having a different structure, the low refractive index layer L1 and L2 to each other by the different materials; film blocks on the substrate side of the multilayer film mirror is formed by the L1 / L2 / L1 / H of repeatedly laminated film; a second layer starts from the base block by L2 / L1 / H repeatedly laminated film forming; third layer starts from the base block / H layer is formed by a L1 / L2 / L1 of repeatedly laminated; fourth layer starts from the base block by L2 / L1 / H layer of repeatedly laminated form; fifth block from the base layer is formed from the start L1 / H of repeatedly laminated layers; the sixth base from the beginning of the film 层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第七膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第八膜层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第九膜层块由L1/H膜层对反复层叠形成;从基底开始的第十膜层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第十一膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第十二膜层块由L1/L2/L1/H膜层对反复层叠形成;以及从基底开始的第十三膜层块由L1/H膜层对反复层叠形成;每个膜层块中膜层对层叠反复数为1-50;并且具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 Block layer is formed by L1 / L2 / L1 / H of repeatedly laminated layers; the seventh layer from the base block is formed starting from the L2 / L1 / H of repeatedly laminated layers; eighth layer from the substrate by a start block L1 / L2 / L1 / H repeatedly laminated film forming; the ninth base from the beginning of the block layer is formed by L1 / H of repeatedly laminated layers; tenth layer starts from the base block by L1 / L2 / L1 / H repeatedly laminated film forming; eleventh block from the base layer is formed from the start L2 / L1 / H of repeatedly laminated layers; the twelfth base layer blocks from the start of the L1 / L2 / L1 / H layer repeated laminate is formed; and thirteenth block from the base layer is formed from the start L1 / H of repeatedly laminated layers; in each film layer of the laminated block number is repeated from 1 to 50; and with relatively high EUV EUV radiation range of the incident angle or wavelength range is widened ray reflectivity.
  21. 21.根据权利要求20的多层膜反射镜,其中对于以至少0-20度的入射角入射的掠射光线的反射率为45%或以上。 21. The multilayer mirror as claimed in claim 20, wherein for grazing incident angle of light incident on the at least 0-20 degrees reflectance of 45% or more.
  22. 22.一种包括反射性多层膜的多层膜反射镜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相,其中:所述反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和低折射率膜层L1和L2的(膜层)对重复层叠,该高折射率膜层和低折射率膜层具有不同结构,低折射率膜层L1和L2由相互不同的材料形成;在所述多层膜反射镜的基底侧上的膜层块由L2/H膜层对反复层叠形成;从基底开始的第二膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第三膜层块由L2/H膜层对反复层叠形成;从基底开始的第四膜层块由L1/H膜层对反复层叠形成;从基底开始的第五膜层块由L2/H膜层对反复层叠形成;从基底开始的第六膜层块由L2/L1/ 22. A multilayer film comprising a reflective multilayer film mirror, the reflective multilayer film, under the condition of Bragg reflection conditions were maintained following the high refractive index layer and the low refractive index film alternately on a substrate laminate: a plurality of interfaces for reflecting light from the high refractive index layer and a low refractive index film layer becomes EUV radiation is in phase, wherein: the multilayer film comprises a plurality of reflective layer blocks, the block layer high refractive index layer H and the low refractive index layer L1 and L2 (layer) of the repeatedly stacked, the high refractive index layer and a low refractive index film layer having a different structure, the low refractive index layer L1 and L2 to each other by the different materials; layer on the substrate side of the multilayer film mirror is formed by a block L2 / H of repeatedly laminated film; a second layer from the substrate by a start block L2 / L1 / H layer of repeatedly laminated form; third layer starting from the base block is formed from L2 / H of repeatedly laminated layers; and a fourth block from the base layer is formed from the start L1 / H of repeatedly laminated layers; start from the base of the fifth layer block is formed of L2 / H of repeatedly laminated layers; the sixth layer starting from the base block from L2 / L1 / H膜层对反复层叠形成;从基底开始的第七膜层块由L1/H膜层对反复层叠形成;从基底开始的第八膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第九膜层块由L1/H膜层对反复层叠形成;从基底开始的第十膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第十一膜层块由L1/H膜层对反复层叠形成;从基底开始的第十二膜层块由L2/L1/H膜层对反复层叠形成;从基底开始的第十三膜层块由L1/L2/L1/H膜层对反复层叠形成;从基底开始的第十四膜层块由L1/H膜层对反复层叠形成;每个膜层块中膜层对层叠反复数为1-50;并且具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 H repeatedly laminated film forming; the seventh layer from the substrate block formed from the start of Ll / H of repeatedly laminated layers; eighth start block from the base layer / H layer is formed by L2 / L1 of the laminated repeatedly; the ninth block from the base layer is formed from the start L1 / H of repeatedly laminated layers; tenth block from the base layer is formed from the start L2 / L1 / H of repeatedly laminated film; starting from the base film eleventh block layer is formed by L1 / H of repeatedly laminated layers; twelfth block from the base layer is formed from the start L2 / L1 / H of repeatedly laminated layers; thirteenth layer from the substrate when the start of the block L1 / L2 / L1 / H repeatedly laminated film forming; fourteenth block from the base layer is formed from the start L1 / H of repeatedly laminated layers; in each film layer of the laminated block number is repeated from 1 to 50; and EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened.
  23. 23.根据权利要求22的多层膜反射镜,其中对于波长为13.1-13.9nm的光线的反射率为45%或以上。 23. A multilayer mirror according to claim 22, wherein the wavelength of the reflected light 13.1-13.9nm of 45% or more.
  24. 24.一种包括反射性多层膜的多层膜反射镜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相,其中:所述反射性多层膜包括多个膜层块,该膜层块中高折射率膜层H和低折射率膜层L1和L2的(膜层)对重复层叠,该高折射率膜层和低折射率膜层具有不同结构,低折射率膜层L1和L2由相互不同的材料形成;在所述多层膜反射镜的基底侧上的膜层块是H膜层;从基底开始的第二膜层块由L2/H膜层对反复层叠形成;从基底开始的第三膜层块由L2/L1/H膜层对反复层叠形成;每个膜层块中膜层对层叠反复数为1-50;并且具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 24. A multilayer film comprising a reflective multilayer film mirror, the reflective multilayer film, under the condition of Bragg reflection conditions were maintained following the high refractive index layer and the low refractive index film alternately on a substrate laminate: a plurality of interfaces for reflecting light from the high refractive index layer and a low refractive index film layer becomes EUV radiation is in phase, wherein: the multilayer film comprises a plurality of reflective layer blocks, the block layer high refractive index layer H and the low refractive index layer L1 and L2 (layer) of the repeatedly stacked, the high refractive index layer and a low refractive index film layer having a different structure, the low refractive index layer L1 and L2 to each other by the different materials; film blocks on the substrate side of the multilayer film mirror is H film; a second layer starting from the base block is formed of L2 / H of repeatedly laminated film; starting from the base the third block layer / H layer is formed by L2 / L1 of the laminated repeatedly; each film layer of the laminated block number is repeated from 1 to 50; and EUV radiation having a very high reflectivity of EUV radiation wavelength range or the incident angle range is widened.
  25. 25.一种包括反射性多层膜的多层膜反射镜,该反射性多层膜中,在布拉格反射条件保持以下情况的条件下高折射率膜层和低折射率膜层在基底上交替层叠:对于EUV射线的来自高折射率膜层和低折射率膜层的多个界面的反射光线被变得同相,其中:高折射率膜层中的至少一层具有EUV射线的中心波长的一半或以上的厚度;以及具有相当高的EUV射线反射率的EUV射线波长范围或入射角范围被增宽。 25. A multilayer film comprising a reflective multilayer film mirror, the reflective multilayer film, under the condition of Bragg reflection conditions were maintained following the high refractive index layer and the low refractive index film alternately on a substrate laminate: a plurality of interfaces for reflecting light from the high refractive index layer and a low refractive index film layer becomes EUV radiation is in phase, wherein: the high refractive index film layer having at least one half of the central wavelength of the EUV radiation or more thickness; and EUV radiation range of the incident angle or wavelength range having a relatively high reflectivity for EUV radiation is widened.
  26. 26.曝光设备,其通过用EUV射线选择性地照射敏感基底来形成构图,其在光学系统中包括根据权利要求1至25中任一项的多层膜反射镜。 26. The exposure apparatus, which is formed by patterning by selectively irradiating EUV radiation sensitive substrate, which optical system comprises a multilayer film according to claim 1 to 25 mirror according to any one of.
CN 200480030249 2003-10-15 2004-10-15 Multilayer mirror, method for manufacturing the same, and exposure equipment CN100449690C (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003354561 2003-10-15
JP354561/2003 2003-10-15
JP354989/2003 2003-10-15
JP354568/2003 2003-10-15
JP094633/2004 2004-03-29

Publications (2)

Publication Number Publication Date
CN1868033A true true CN1868033A (en) 2006-11-22
CN100449690C CN100449690C (en) 2009-01-07

Family

ID=37426178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200480030249 CN100449690C (en) 2003-10-15 2004-10-15 Multilayer mirror, method for manufacturing the same, and exposure equipment

Country Status (1)

Country Link
CN (1) CN100449690C (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660717B (en) 2008-08-25 2011-04-20 沈阳仪表科学研究院 Wide-angle color temperature-adjusting cold reflector for shadowless lamp
CN102193121A (en) * 2010-03-17 2011-09-21 卡尔蔡司Smt有限责任公司 Reflective optical element, projection system, and projection exposure apparatus
CN102395907A (en) * 2009-04-15 2012-03-28 卡尔蔡司Smt有限责任公司 Mirror for the EUV wavelength range, projection objective for microlithography comprising such a mirror, and projection exposure apparatus for microlithography comprising such a projection objective
CN102472976A (en) * 2009-07-10 2012-05-23 卡尔蔡司Smt有限责任公司 Mirror for the euv wavelength range, projection objective for microlithography comprising such a mirror, and projection exposure apparatus for microlithography comprising such a projection objective
CN102640021A (en) * 2009-12-04 2012-08-15 旭硝子株式会社 Optical member for euv lithography, and process for production of reflective-layer-attached substrate for euv lithography
CN102782531A (en) * 2009-12-15 2012-11-14 卡尔蔡司Smt有限责任公司 Reflective optical element for EUV lithography
CN102792156A (en) * 2010-01-18 2012-11-21 谢诺思公司 Compact X-Ray Analysis System
CN102798902A (en) * 2012-07-23 2012-11-28 中国科学院长春光学精密机械与物理研究所 Novel multilayer film for improving extreme ultraviolet (EUV) spectral purity
CN102903412A (en) * 2011-07-29 2013-01-30 通用电气公司 Multilayer total internal reflection optic devices and methods of making and using the same
CN102084297B (en) 2008-06-12 2013-06-12 卡尔蔡司Smt有限责任公司 Method for producing a multilayer coating, optical element and optical arrangement
CN103229248A (en) * 2010-09-27 2013-07-31 卡尔蔡司Smt有限责任公司 A mirror, a projection objective comprising the mirror, and a projection exposure apparatus for microlithography comprising the projection objective
US20140340749A1 (en) * 2013-05-14 2014-11-20 Seiko Epson Corporation Display apparatus
CN104254891A (en) * 2012-03-08 2014-12-31 卡尔蔡司Smt有限责任公司 Mirror for the euv wavelength range, method for producing such a mirror, and projection exposure apparatus comprising such a mirror
CN104297820A (en) * 2014-09-26 2015-01-21 中国科学院长春光学精密机械与物理研究所 Multilayer film improving extreme ultraviolet spectral purity and oxidation resistance
CN104412136A (en) * 2012-10-26 2015-03-11 京瓷株式会社 Optical filter member and imaging device provided with same
CN104838729A (en) * 2012-10-04 2015-08-12 Asml荷兰有限公司 Harsh environment optical element protection
CN104919537A (en) * 2013-01-11 2015-09-16 卡尔蔡司Smt有限责任公司 Euv mirror and optical system comprising euv mirror
CN105446088A (en) * 2015-12-21 2016-03-30 中国科学院长春光学精密机械与物理研究所 Light source collecting mirror with micro-structure and spectrum purification layers
CN105445822A (en) * 2015-12-21 2016-03-30 中国科学院长春光学精密机械与物理研究所 Angle broadband extreme ultraviolet multi-layer film having spectrum purification function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222349A (en) * 2011-04-05 2012-11-12 Asml Netherlands Bv Multilayer mirror and lithographic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228512B1 (en) 1999-05-26 2001-05-08 The Regents Of The University Of California MoRu/Be multilayers for extreme ultraviolet applications

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084297B (en) 2008-06-12 2013-06-12 卡尔蔡司Smt有限责任公司 Method for producing a multilayer coating, optical element and optical arrangement
CN101660717B (en) 2008-08-25 2011-04-20 沈阳仪表科学研究院 Wide-angle color temperature-adjusting cold reflector for shadowless lamp
CN102395907A (en) * 2009-04-15 2012-03-28 卡尔蔡司Smt有限责任公司 Mirror for the EUV wavelength range, projection objective for microlithography comprising such a mirror, and projection exposure apparatus for microlithography comprising such a projection objective
CN102395907B (en) 2009-04-15 2014-01-22 卡尔蔡司Smt有限责任公司 Mirror for the EUV wavelength range, projection objective for microlithography comprising such a mirror, and projection exposure apparatus for microlithography comprising such a projection objective
CN102472976A (en) * 2009-07-10 2012-05-23 卡尔蔡司Smt有限责任公司 Mirror for the euv wavelength range, projection objective for microlithography comprising such a mirror, and projection exposure apparatus for microlithography comprising such a projection objective
CN102472976B (en) * 2009-07-10 2014-12-10 卡尔蔡司Smt有限责任公司 Mirror for the EUV wavelength range, projection objective for microlithography comprising such a mirror, and projection exposure apparatus for microlithography comprising such a projection objective
US8927179B2 (en) 2009-12-04 2015-01-06 Asahi Glass Company, Limited Optical member for EUV lithography, and process for production of reflective layer-equipped substrate
CN102640021A (en) * 2009-12-04 2012-08-15 旭硝子株式会社 Optical member for euv lithography, and process for production of reflective-layer-attached substrate for euv lithography
CN102640021B (en) 2009-12-04 2014-06-25 旭硝子株式会社 Optical member for euv lithography, and process for production of reflective-layer-attached substrate for euv lithography
CN102782531A (en) * 2009-12-15 2012-11-14 卡尔蔡司Smt有限责任公司 Reflective optical element for EUV lithography
CN102792156A (en) * 2010-01-18 2012-11-21 谢诺思公司 Compact X-Ray Analysis System
CN102193121B (en) * 2010-03-17 2015-06-17 卡尔蔡司Smt有限责任公司 Reflective optical element, projection system, and projection exposure apparatus
CN102193121A (en) * 2010-03-17 2011-09-21 卡尔蔡司Smt有限责任公司 Reflective optical element, projection system, and projection exposure apparatus
CN103229248A (en) * 2010-09-27 2013-07-31 卡尔蔡司Smt有限责任公司 A mirror, a projection objective comprising the mirror, and a projection exposure apparatus for microlithography comprising the projection objective
CN103229248B (en) * 2010-09-27 2016-10-12 卡尔蔡司Smt有限责任公司 A mirror projection exposure apparatus comprising such a mirror projection objective, and comprising such a projection objective for microlithography
CN102903412A (en) * 2011-07-29 2013-01-30 通用电气公司 Multilayer total internal reflection optic devices and methods of making and using the same
CN102903412B (en) * 2011-07-29 2017-06-27 通用电气公司 Full multilayer reflective optics, and methods of making and using
CN104254891A (en) * 2012-03-08 2014-12-31 卡尔蔡司Smt有限责任公司 Mirror for the euv wavelength range, method for producing such a mirror, and projection exposure apparatus comprising such a mirror
CN104254891B (en) * 2012-03-08 2017-09-12 卡尔蔡司Smt有限责任公司 Euv range mirrors, the method for manufacturing the mirror comprises a mirror and a projection exposure apparatus
US9696632B2 (en) 2012-03-08 2017-07-04 Carl Zeiss Smt Gmbh Mirror for the EUV wavelength range, method for producing such a mirror, and projection exposure apparatus comprising such a mirror
CN102798902A (en) * 2012-07-23 2012-11-28 中国科学院长春光学精密机械与物理研究所 Novel multilayer film for improving extreme ultraviolet (EUV) spectral purity
CN104838729A (en) * 2012-10-04 2015-08-12 Asml荷兰有限公司 Harsh environment optical element protection
CN104412136A (en) * 2012-10-26 2015-03-11 京瓷株式会社 Optical filter member and imaging device provided with same
US9915876B2 (en) 2013-01-11 2018-03-13 Carl Zeiss Smt Gmbh EUV mirror and optical system comprising EUV mirror
CN104919537A (en) * 2013-01-11 2015-09-16 卡尔蔡司Smt有限责任公司 Euv mirror and optical system comprising euv mirror
US20140340749A1 (en) * 2013-05-14 2014-11-20 Seiko Epson Corporation Display apparatus
CN104297820A (en) * 2014-09-26 2015-01-21 中国科学院长春光学精密机械与物理研究所 Multilayer film improving extreme ultraviolet spectral purity and oxidation resistance
CN105445822A (en) * 2015-12-21 2016-03-30 中国科学院长春光学精密机械与物理研究所 Angle broadband extreme ultraviolet multi-layer film having spectrum purification function
CN105446088A (en) * 2015-12-21 2016-03-30 中国科学院长春光学精密机械与物理研究所 Light source collecting mirror with micro-structure and spectrum purification layers

Also Published As

Publication number Publication date Type
CN100449690C (en) 2009-01-07 grant

Similar Documents

Publication Publication Date Title
US6724462B1 (en) Capping layer for EUV optical elements
US5052033A (en) Reflection type mask
US6441963B2 (en) Multi-layered mirror
US6333961B1 (en) Reflection masks, microlithography apparatus using same, and integrated circuit manufacturing methods employing same
Louis et al. Nanometer interface and materials control for multilayer EUV-optical applications
US20050122589A1 (en) Optical element, lithographic apparatus including such optical element and device manufacturing method, and device manufactured thereby
JP2004095993A (en) Method for cooling optical component, apparatus for cooling optical component, and euv exposure system employing the apparatus
US20110104595A1 (en) Reflective mask blank for euv lithography and mask for euv lithography
WO2003032329A1 (en) Optical element and method for its manufacture as well as lightography apparatus and method for manufacturing a semiconductor device
US5239566A (en) Multi-layered mirror
WO2012126867A1 (en) Deflection mirror and projection exposure apparatus for microlithography comprising such a deflection mirror
JP2003014893A (en) Multilayer film reflection mirror and exposure equipment
JP2004095980A (en) Multilayer film reflection mirror, reflection mask, aligner and manufacturing method of reflection mask
JP2007273656A (en) Reflective mask blanks, reflective mask, and manufacturing method of semiconductor device
JPH07114173A (en) Reflection mask for lithography and reduction stepper
JP2004524524A (en) Narrow-band spectral filter and its applications
US20060066940A1 (en) Reflective optical element and EUV lithography appliance
US5528654A (en) Multilayer film for X-rays
US20060192147A1 (en) Multilayer mirror, method for manufacturing the same, and exposure equipment
JP2006177740A (en) Multilayer film mirror and euv exposure apparatus
CN101088031A (en) Thermally stable multilayer mirror for the EUV spectral region
JPH0868897A (en) Reflection mirror and its production method
JP2001110709A (en) Multilayer film reflecting mirror, aligner and manufacturing method of integrated circuit
JP2002134385A (en) Multilayer film reflector and projection aligner
JP2006228767A (en) Mask for extreme ultraviolet ray exposure, mask blank, and exposure method

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted