CN1843712A - Flexible and remote-controlled operation platform based on virtual robot - Google Patents

Flexible and remote-controlled operation platform based on virtual robot Download PDF

Info

Publication number
CN1843712A
CN1843712A CN 200610026494 CN200610026494A CN1843712A CN 1843712 A CN1843712 A CN 1843712A CN 200610026494 CN200610026494 CN 200610026494 CN 200610026494 A CN200610026494 A CN 200610026494A CN 1843712 A CN1843712 A CN 1843712A
Authority
CN
China
Prior art keywords
hand
dexterous
robot
control
virtual
Prior art date
Application number
CN 200610026494
Other languages
Chinese (zh)
Other versions
CN100484726C (en
Inventor
周思跃
龚振帮
袁俊
Original Assignee
上海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海大学 filed Critical 上海大学
Priority to CN 200610026494 priority Critical patent/CN100484726C/en
Publication of CN1843712A publication Critical patent/CN1843712A/en
Application granted granted Critical
Publication of CN100484726C publication Critical patent/CN100484726C/en

Links

Abstract

The invention relates to a remote control platform based on virtual reality robot hand, which is formed by a man-machine interface system and a remote-control robot hand system. Wherein, said man-machine interface system is a virtual operation platform formed by one computer to supply the operation interface of operator; said remote-control robot hand system comprises a robot hand connected to the robot hand controller; a robot hand controller connected to an upper control computer; and a CCD camera aiming said robot hand to pick up its position and state; while said upper computer and CCD camera via cables are both connected to said virtual operation platform. The invention can realize remote operation and the offline operation to realize the simulation on variable control algorithmic. It can reduce the control notes most, to improve the response speed and the cost of hardware and software.

Description

基于虚拟现实机器人灵巧手遥操作平台 Based on virtual reality dexterous robot hand teleoperation platform

技术领域 FIELD

本发明涉及一种基于虚拟现实机器人灵巧手遥操作平台,它是将遥控技术、虚拟现实技术和机器人灵巧手技术结合起来,形成的一个虚拟现实机器人灵巧手遥操作平台。 The present invention relates to a virtual reality robotic teleoperation dexterous hand based virtual reality dexterous robot hand teleoperation platform, which is the remote control technology, virtual reality and robotics technology dexterous hand combine to form the internet. 可以应用于机器人遥操作领域以及机器人教学等相关领域。 Teleoperation can be applied to fields as well as related fields such as robotics teaching.

背景技术 Background technique

目前有关基于虚拟现实机器人灵巧手遥操作平台还未见商品化的产品。 At present the dexterous hand based on virtual reality teleoperation platform has not been commercialized product. 采用虚拟现实技术的灵巧手遥操作系统中,涉及到一个主要问题,就是对灵巧手控制方式。 Dexterous hand remote operating system uses virtual reality technology, involving a major problem, that is dexterous hand control. 对于这一问题的研究,国内外也有相关的研究报道,比较典型的控制方法是用数据手套来控制灵巧手;第二种方法是在人手指端和手掌上安装空间位置跟踪器,通过人手的运动,测出人手指和手掌的坐标,然后再映射到灵巧手的手指端和手掌,达到控制机器人灵巧手抓取物体的目的;第三种方法是用双摄像机的立体视觉技术捕捉操作人员手的姿态动作,将其映射成机器人灵巧手运动参数来控制灵巧手。 For the study of this issue, there are also domestic and foreign related research reports, typical control methods are used to control the data glove dexterous hand; The second method is to install the spatial location tracker on the end of a human finger and palm of the hand by movement, the coordinate measuring human finger and the palm, and then mapped to the dexterous hand palm and fingers ends, the purpose of controlling the robot dexterous hand grasping an object; third method is using stereoscopic cameras capture art dual hand operator gesture operation, which is mapped to the robot hand motion parameters to control dexterous hand dexterity.

以上三种方法都存在着系统环节多、误差大,操作性差的缺憾。 These three methods have many links with the system, a large error, poor operability defect. 本发明采用的方法是用普通的键盘和鼠标对虚拟环境里的三维图形仿真手进行操作,从而同步带动真实灵巧手完成各种各样的操作。 The method of the invention uses a virtual operating environment of three-dimensional graphics simulation hand with ordinary keyboard and mouse, thereby synchronizing drive real dexterous hand to complete the various operations. 这种方法不仅减少了控制环节,提高了控制响应速度,而且也降低了系统的硬件和软件成本。 This approach not only reduces the control link, to improve the response speed of control, but also reduces the cost of system hardware and software.

发明内容 SUMMARY

本发明的目的在于是提供一种基于虚拟现实机器人灵巧手遥操作平台,它不仅能实现遥操作,使操作人员脱离危险操作环境,而且其人机接口系统还能脱机操作,从而实现灵巧手抓取物体整个操作过程的预演,各种控制算法的仿真。 The purpose of the present invention thus provides a virtual reality-based dexterous robot hand teleoperation platform, which not only enables remote operation, the operator of danger operating environment, and its man-machine interface systems can operate offline, in order to achieve dexterous hand gripping the object preview the entire operation, the simulation of various control algorithms.

为了达到上述目的,本发明的构思如下:本发明在设计上将其系统从空间上分成两个部分:即人机接口系统和遥机器人灵巧手系统。 To achieve the above object, the inventive concept is as follows: the system which the present invention is divided into two parts from the space will be designed: the man-machine interface system, and remote system dexterous hand. 如图1所示。 As shown in Figure 1.

在人机接口系统中,虚拟环境操作平台是一台计算机,含有灵巧手的几何模型和灵巧手的运动学模型的虚拟仿真环境,另外也含有遥机器人灵巧手作业环境图像,反映了操作现场的真实场景,使得操作人员能及时准确地掌握现场和灵巧手的信息,对比仿真手的位置和姿态,以便及时调整灵巧手的姿态;操作人员平台是操作人员的工作界面,通过该界面来观察灵巧手的数据,输入灵巧手的各种数据来控制灵巧手的位置和姿态。 In the man-machine interface system, the virtual environment is a computer operating platform, virtual simulation environment containing geometric models dexterous hands and kinematic model of dexterous hands, while also containing a remote image dexterous robot hand operating environment, reflecting the runaround the real scene, allows the operator to timely and accurate access to information on-site and dexterous hands, compared to simulation hand position and posture, in order to adjust dexterous hand gesture; the operator platform is working interface operator to observe the dexterity through this interface hand data, various data inputted dexterous hand to control the position and attitude of the hand dexterity.

在遥机器人灵巧手系统中,包含一台灵巧手控制器和机器人灵巧手,灵巧手是机器人末端操作器,是本系统控制的最终对象,将随人机接口端虚拟手而动;另外还安装了摄像头作为机器人的眼睛,摄下机器人现场的图像和灵巧手的位置和姿态;上位控制计算机用于收集机器人灵巧手的信息,人机接口系统传来的控制信息。 In remote dexterous hand robot system, comprising a controller and a robot hand dexterity dexterous hand, dexterous robot hand end of the operation, it is the ultimate target of the present control system, the virtual machine interface with the end of the hand moving; also mounted camera as eyes of the robot, the camera position and posture of the robot and the dexterous hand image field; a host computer for controlling the information collection controlling the robot dexterous hand information coming human interface system. 将各类信息融合,然后确定灵巧手的抓取策略,并将各类信息反馈给人机接口系统。 The integration of all kinds of information, and then determine crawling strategy dexterous hands, and all kinds of feedback the man-machine interface systems.

根据上述发明构思,本发明采用下述技术方案:一种基于虚拟实现机器人灵巧手遥操作平台,由人机接口系统和遥机器人灵巧手系统组成,其特征在于:(1)人机接口系统是由一台计算机构成的虚拟环境操作平台;形成操作人员的操作界面;(2)遥机器人灵巧手系统是在虚拟作业场景中,一个机器人灵巧手连接一个灵巧手控制器而受其控制,灵巧手控制器连接一个上位控制计算机;有一个CCD摄像头对准机器人灵巧手摄取灵巧手位置和姿态;所述的上位计算机和CCD摄像头均通过电缆连接所述的虚拟环境操作平台的计算机。 According to the inventive concept, the present invention adopts the following technical solutions: A virtual reality based on the robot platform teleoperation dexterous hand, and by the man-machine interface system remote robotic system dexterous hand, and is characterized in that: (1) system is a human machine interface a virtual environment by the operating platform of the computer configuration; operator interface is formed; (2) remote dexterous hand operating system in a virtual scene, a dexterous hand connected to a controller and controlled by the hand dexterity, dexterous hand a controller connected to a host control computer; a CCD camera at the robot pickup dexterous hand dexterous hand position and posture; host computer and the CCD camera are connected to said computer cable platform by the virtual environment.

上述的虚拟作业场景中,有机器人灵巧手抓取的目标物及其放置的工作台,还有机器人灵巧手和目标物位姿尺寸标志物;所述的机器人灵巧手采用BH-3型三指九自由度机器人灵巧手。 The above-described virtual job scene, dexterous hand gripping the robot and the object placement table, and dexterous hand position and orientation and size of the target markers; dexterous hand of the robot using the three-finger type BH-3 9DOF dexterous robot hand.

上述的操作界面上始终显示出灵巧手各关节状态及指关力反馈的状态;控制面板采用Windows标准对话框的形式:在控制面板的上方布置虚拟灵巧手九个关节状态和力反馈状态编辑框,在九个关节旁边加上了上下尖头按钮以便能独立地调节每一个关节角度;在控制面板的中部设计了对被抓物体设置界面,在这部分界面中有三个复选框分别选定立方体、或球、或圆柱三个不同的被抓物体,有一个尺寸位姿按钮,按下此按钮会弹出另一个界面用于对被抓物体的位置和尺寸的设置;在控制面板的下方设计一组复选框和一组按钮,该复选框用于控制方式的选择以及控制功能的添加;该组按钮是在手动方式下对灵巧手进行操作,其操作有平行抓取、聚中抓取、镊式抓取和预抓取。 Dexterous hand always shows the state of each joint and OFF state refers to the force feedback on said interface; form using standard Windows control panel dialog: Virtual dexterous hand nine joint arrangement state and a force feedback state edit box at the top of the control panel in the next nine vertical joints plus button pointed to independently adjust the angle of each joint; in the central control panel designed for the provided object caught interface, the interface in this part of the three check boxes are selected a cube, or sphere, or a cylinder three different object is caught, there is a size pose button, pressing this button will pop up another screen to set the position and size of an object caught; below the control panel design a set of check boxes and a set of buttons, check boxes for selection, and add the control function of control; the set button is operated hand dexterity in manual mode, the operation of parallel gripping, grasping the poly take, tweezers gripper and pre-fetch.

本发明与现有技术相比较,具有如下显而易见的突出实质性特点和优点:本发明中由一台计算机构成虚环境操作平台,由机器人灵巧手、灵巧手控制器、上位计算机和CCD摄像头构成,配以所需软件,则具有如下功能:1.采用直接控制的方式实现人对机器人灵巧手的遥操作,操作人员通过鼠标和键盘直接操控灵巧手,使灵巧手完成各种抓取任务。 Compared with the prior art the present invention has the following prominent substantive features and obvious advantages: the present invention is configured in a virtual environment of a computer platform by the dexterous hand, the controller dexterous hand, and a host computer configured CCD camera, together with the necessary software, it has the following features: 1. using direct control of the remote operator to achieve dexterous robot hand, the mouse and keyboard operators through direct manipulation of dexterous hands, grab the dexterous hand to complete various tasks.

2.采用示教的方式遥控灵巧手,首先由操作人员“教”灵巧手完成某一抓取任务,然后由灵巧手自动完成同类的任务。 2. The use of remote control manner taught dexterous hand, a first crawling tasks completed by the operator to "teach" dexterous hand, and then complete the same task automatically by the dexterous hand.

3.采用自主的方式控制虚拟灵巧手,让虚拟灵巧手根据被抓物体的几何特征与位姿,自动产生抓取方案,进行抓取过程的预演。 3. The use of independent virtual dexterous hand is controlled, so that the virtual dexterous hand according to the geometric characteristics of the object caught pose, automatically generate program fetch, for the rehearsal crawl.

因而,本发明不仅能实现遥操作,使操作人员脱离危险操作环境,而且其人机接口系统还能脱机操作,从而实现对整个操作过程的预演,各种控制算法的仿真。 Accordingly, the present invention not only enables remote operation, the operating environment of the operator from danger, and its human interface system can also operate offline, enabling preview of the entire operation of the process, various control simulation algorithm. 本发明在设计上尽量减少了控制环节,提高了控制响应速度,同时还降低了系统的硬件和软件成本。 The present invention is designed to minimize the control link, the control response speed is improved, while also reducing the cost of system hardware and software.

附图说明 BRIEF DESCRIPTION

图1本发明的硬件结构示意图。 Figure 1 shows the hardware architecture of the present invention.

图2本发明硬件连接示意图。 FIG invention two hardware connection diagram.

图3虚拟作业场景照片图。 Figure 3 scene photos virtual job chart.

图4机器人灵巧手照片图。 Figure 4 dexterous robot hand photo map.

图5控制面板图。 Control panel 5 in FIG.

图6被抓物体设置界面图。 FIG 6 is caught object interface provided in FIG.

图7(a~c)抓取方式照片图。 FIG 7 (a ~ c) Fetch photograph FIG.

具体实施方式 Detailed ways

本发明的一个优选实施例结合附图详述如下:本基于虚现实机器人灵巧手遥操作平台如图2所示:虚拟操作平台计算机作为人机接口系统。 A preferred embodiment of the present invention in conjunction with the accompanying drawings in detail as follows: The virtual reality based dexterous robot hand teleoperation platform shown in Figure 2: a virtual operating system platform computer to function as a human interface. 遥机器人灵巧手系统有上位控制计算机、北京航空航天大学的BH-3型三指九自由度机器人灵巧手及其控制器、摄像头。 Away dexterous robot hand control system host computer, BH-3, Beijing University of Aeronautics and Astronautics type three-fingered hand 9DOF dexterous robot and its controller, camera. 在遥机器人灵巧手系统中,灵巧手机械部分可以安装在任意的机械臂上,电器部分由连线与灵巧手控制器相连,连线是由三股25线的电缆组成;灵巧手控制器通过连线与上位控制计算机连接,连线是由四股25线的电缆组成;摄像头CCD的连线直接连接到虚拟环境操作平台计算机的USB接口;虚拟环境操作平台计算机与遥机器人灵巧手系统中的上位控制计算机通过连线插入各自的RS-232接口,遥控距离在几十米以内。 In the remote system, the robot dexterous hand, dexterous hand machinery may be mounted on any portion of the robot arm, electrical parts connected by a connection with the controller dexterous hand, the connection cable 25 by the three strands of wire composition; dexterous hand controller is connected line host control computer is connected, the connection is a four-strand cable 25 lines composition; CCD camera wiring is directly connected to the USB virtual environment operating platform of the computer; higher control a virtual environment platform computer and remote dexterous hand system computer into a respective via line RS-232 interface, the remote control within a distance of tens of meters.

软件设计方面,在VC++6.0编程环境下,采用OpenGL这一专业的3D图形硬件的软件接口,完成了以下各功能的设计:1.虚拟环境的设计虚拟作业场景主要由一个虚拟机器人灵巧手和被抓取目标组成,为了使整个虚拟作业场景更加“真实”,虚拟作业场景中还加入工作平台、环境背景等要素,如图3。 Software design, programming in VC ++ 6.0 environment using the OpenGL 3D professional graphics hardware software interface, complete the following design features: 1. Design a virtual job scene of the virtual environment consists of a virtual dexterous robot hand and crawled target composition, in order to make the entire virtual job scene more "real" virtual job scene also joined the work platform, environment, background and other factors, shown in Figure 3. 虚拟灵巧手以北京航空航天大学的BH-3型三指九自由度机器人灵巧手(如图4)为蓝本。 Virtual dexterous hand with BH-3, Beijing University of Aeronautics and Astronautics type three-finger 9DOF dexterous robot hand (Figure 4) is modeled. 虚拟灵巧手由手掌支座和三个手指组成,每个手指有三个指节。 Virtual dexterous hand and three fingers from the palm support, each finger has three knuckles. 该操作平台提供各种抓取目标物,以及它们的尺寸和位姿。 The platform offers a variety of gripping the object, as well as their size and posture.

为了使操作者更加有效地直观地了解虚拟灵巧手在操作过程中的位姿,碰撞等信息,操作者可以通过鼠标和键盘对整个虚拟作业场景进行旋转、平移和缩放操作,同时虚拟灵巧手九个关节旋转的角度会实时显示在虚拟作业场景中。 In order to enable the operator to more efficiently intuitive understanding of the information virtual dexterous hand posture during operation, the collision, the operator can rotate, pan and zoom the entire virtual job scene through mouse and keyboard, and virtual dexterous hand nine a joint angle of rotation will be displayed in real time virtual job scene.

2.操作界面的设计操作界面是操作人员与整个遥操作平台的人机交互接口,为了能包容较多的操作项目,整个操作界面分成二级;另一方面考虑到界面的直观性,将操作人员最关心的灵巧手各关节状态以及指尖力反馈的状态一直显示在操作界面上。 2. The user interface is designed to interface with the interactive interface to the operator platform teleoperation whole, in order to accommodate more operation items, the entire user interface is divided into two; on the other hand considering the intuitive interface, the operation dexterous hands personnel are most concerned about the state of the joints and the state fingertip force feedback has been displayed on the operator interface.

控制面板采用Windows标准对话框的形式,如图5所示。 Windows control panel takes the form of a standard dialog box, as shown in FIG. 在控制面板的上方布置了虚拟灵巧手九个关节状态和力反馈状态编辑框,在九个关节旁边加上了上下尖头按钮以便能独立地调节每一个关节角度。 The control panel is arranged above the virtual state and the dexterous hand nine joint force feedback state edit box, next to the upper and lower tip plus nine buttons joints in order to independently adjust each of the joint angle.

在控制面板的中部设计了对被抓物体设置界面,在这部分界面中有三个复选框分别选定3个不同的被抓物体(立方体、球、圆柱),有一个尺寸位姿按钮,按下此按钮会弹出另一个界面用于对被抓物体的设置,如图6。 In the middle of the control panel is designed to grip an object interface provided with three check boxes are selected caught three different objects (cubes, spheres, cylinders) in this part of the interface, there is a size pose button press this button will pop up on the screen to set another object caught, as shown in FIG 6.

在控制面板的下方设计了一组复选框和一组按钮。 Below the control panel designed a set of check boxes and a set of buttons. 这组复选框主要用于控制方式的选择以及控制功能的添加,如示教功能和联机方式。 This box is mainly used to select and set control function added control, such as teach-and-line manner. 一组按钮主要是在手动方式下对灵巧手的操作,它们有平行抓取、聚中抓取、镊式抓取和预抓取等等。 A set of buttons on the main operation dexterous hand in manual mode, which parallel gripper, the gripping polyethylene, tweezers gripper and pre-fetch the like.

3.操作功能的设计操作功能的设计主要是围绕着本发明的内容展开的,即本操作平台不仅能在脱机状态下进行灵巧手智能抓取物体的仿真,而且也能在联机状态下对实际灵巧手的控制操作,以及示教后的机器人灵巧手完成自动抓取操作。 3. designed to operate features designed operational functions mainly around the expanded content of the invention, that this platform can not only intelligent simulation dexterous hand grasping an object in the offline state, but also to the online mode the actual control operation dexterous hand, and the teaching robot dexterous hand done automatically fetch operation.

灵巧手在抓取物体时,必须根据被抓取目标物的形状、大小、位姿,不断地变换抓取方式和路径。 Dexterous hand when grasping the object, the object must be grasped in accordance with the shape, size, position and orientation, and constantly changing Fetch path. 根据人手抓物体的经验,以及BH-3灵巧手抓物体的大量实验,从中归纳出了三种基本的抓取方式,即平行抓取、聚中抓取和镊式抓取。 The number of experiments human experience grasping an object, and BH-3 clutch smart objects, which sums the three basic Fetch, i.e. parallel to crawl, polyethylene and the gripping tweezers gripper. 如图7a~c所示。 7a ~ c shown in FIG.

灵巧手智能抓取过程的仿真演练功能是采用模糊逻辑的智能控制算法来实现的。 Rehearsal function dexterous hands intelligent crawling process is the use of intelligent fuzzy logic control algorithm to achieve. 程序根据目标物的形状、大小、姿态,选择相应的路径和抓取方式,完成对目标物的抓取。 The procedure object shape, size, attitude, and select the appropriate path gripping manner, the fetch of the target object. 这一功能的设计,为操作人员提供抓取物体的路径和方案,突出了虚拟现实技术为整个系统的操作提供了灵活性、预操作性和演示性,还可以为各种智能控制算法提供实验平台。 This feature is designed to provide a path for operators and program grasping an object, highlight the virtual reality technology provides the flexibility to pre-operational and demonstration of the operation of the entire system can also provide a variety of intelligent control algorithms experiment platform.

示教抓取功能就是在联机的状态下,操作人员根据目标物体的形状、大小、姿态,选择相应的路径和抓取方式,完成对目标物的抓取。 Teach gripping feature is in the online state, the operator according to the shape of the target object, the size, attitude, and select the appropriate path gripping manner, the fetch of the target object. 在操作人员操作过程中程序将操作人员操作的每一步按次序记下来。 During each step of the program operation, the operator operates the operator serial-down. 然后将灵巧手回到原来位置,按动示教再现按钮,程序自动地完成抓取目标物的任务。 Dexterous hand is then returned to the original position, pressing the teaching playback button, the program automatically complete the task of gripping the target object.

4.灵巧手抓取物体的力反馈和虚拟手碰撞物体的检测在虚拟现实机器人灵巧手遥操作平台中,操作人员如何判断灵巧手是否抓住目标物体呢? 4. dexterous hand grasping an object and force feedback virtual hand object collision detection in virtual reality dexterous robot hand teleoperation platform, the operator how to determine whether a dexterous hand to seize the target object do? 主要通过二个途径,其一是由虚拟环境中虚拟手与虚拟物体的碰撞检测来提示。 Mainly through two ways, one is by the virtual environment virtual hand and the virtual object collision detection to prompt. 其二是通过安装在灵巧手指尖的三维力传感器得到灵巧手抓持力。 Second smart handle grip force was installed in the three-dimensional force sensor fingertip dexterity.

虚拟环境中的碰撞检测,不仅在灵巧手抓取物体的预演时能有很好的效果,而且在系统联机操作时提供了很好的警示。 Collision Detection virtual environment, not only in the preview dexterous hand grasping an object can have a good effect, but also provides a good warning when the system is on-line operation.

Claims (3)

1.一种基于虚拟实现机器人灵巧手遥操作平台,由人机接口系统和遥机器人灵巧手系统组成,其特征在于:(1)人机接口系统是由一台计算机(1)构成的虚拟环境操作平台;形成操作人员的操作界面;(2)遥机器人灵巧手系统是在虚拟作业场景中,一个机器人灵巧手(4)连接一个灵巧手控制器(5)而受其控制,灵巧手控制器(5)连接一个上位控制计算机(2);有一个CCD摄像头(6)对准机器人灵巧手(4)摄取灵巧手位置和姿态;所述的上位计算机(2)和CCD摄像头(6)均通过电缆连接所述的虚拟环境操作平台的计算机(1)。 A virtual reality based on the robot platform teleoperation dexterous hand, and by the man-machine interface system remote robotic system dexterous hand, and is characterized in that: (1) a human-machine interface is a computer system (1) constitutes a virtual environment operating platform; operator interface is formed; (2) remote dexterous hand operating system in a virtual scene, a dexterous robot hand (4) connected to a dexterous hand controller (5) and controlled by, the controller dexterous hand (5) connected to a host control computer (2); a CCD camera (6) aligned with dexterous robot hand (4) ingestion dexterous hand position and posture; said host computer (2) and the CCD camera (6) have passed cable connection according to the virtual environment of the computer platform (1).
2.根据权利要求1所述的基于虚拟现实机器人灵巧手遥操作平台,在虚拟作业场景中,有机器人灵巧手抓取的目标物(7)及其放置的工作台(8),还有机器人灵巧手(4)和目标物(7)位姿尺寸标志物(9);所述的机器人灵巧手采用BH-3型三指九自由度机器人灵巧手。 2. The robot 1 based on virtual reality teleoperation platform dexterous hand, in the virtual scene in operation, the robot dexterous hand gripping the object (7) as claimed in claims and their placement table (8), and the robot dexterous hand (4) and the object (7) pose size marker (9); dexterous hand of the robot using the three-finger type BH-3 9DOF dexterous hand.
3.根据权利要求1所述的基于虚拟现实机器人灵巧手遥操作平台,其特征在于所述的操作界面上始终显示出灵巧手各关节状态及指关力反馈的状态;控制面板采用Windows标准对话框的形式:在控制面板的上方布置虚拟灵巧手九个关节状态和力反馈状态编辑框,在九个关节旁边加上了上下尖头按钮以便能独立地调节每一个关节角度;在控制面板的中部设计了对被抓物体设置界面,在这部分界面中有三个复选框分别选定立方体、或球、或圆柱三个不同的被抓物体,有一个尺寸位姿按钮,按下此按钮会弹出另一个界面用于对被抓物体的位置和尺寸的设置;在控制面板的下方设计一组复选框和一组按钮,该复选框用于控制方式的选择以及控制功能的添加;该组按钮是在手动方式下对灵巧手的操作,其操作有平行抓取、聚中抓取、镊式抓取和预抓取。 The virtual reality dexterous robot hand teleoperation platform according to claim 1, characterized in that always shows the state of the joints and the dexterous hand off state refers to the force feedback on the user interface; Windows control panel using the standard dialog in the form of boxes: a virtual smart hand nine joint arrangement state and a force feedback control state edit box at the top of the panel, next to the upper and lower tip plus nine articulation button to independently adjust the angle of each joint; control panel central to the design of an object caught interface provided with three check boxes are selected cube, or sphere, or a cylinder is arrested three different objects in this part of the interface, there is a size pose button, press this button another pop-up screen to set the position and size of an object caught; under the control panel of a set of check boxes and design a set of buttons, check boxes for selection, and add the control function of control; the group is an operation button for dexterous hand in manual mode, the operation of parallel gripping, the gripping polyethylene, and pre-fetch tweezers gripper.
CN 200610026494 2006-05-12 2006-05-12 Flexible and remote-controlled operation platform for robot based on virtual reality CN100484726C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610026494 CN100484726C (en) 2006-05-12 2006-05-12 Flexible and remote-controlled operation platform for robot based on virtual reality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610026494 CN100484726C (en) 2006-05-12 2006-05-12 Flexible and remote-controlled operation platform for robot based on virtual reality

Publications (2)

Publication Number Publication Date
CN1843712A true CN1843712A (en) 2006-10-11
CN100484726C CN100484726C (en) 2009-05-06

Family

ID=37062695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610026494 CN100484726C (en) 2006-05-12 2006-05-12 Flexible and remote-controlled operation platform for robot based on virtual reality

Country Status (1)

Country Link
CN (1) CN100484726C (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844353A (en) * 2010-04-14 2010-09-29 华中科技大学 Teleoperation task planning and simulation method for mechanical arm/dexterous hand system
CN102310409A (en) * 2010-07-05 2012-01-11 株式会社安川电机 Robot apparatus and gripping method for use in robot apparatus
CN102722106A (en) * 2011-03-29 2012-10-10 上海晟昊信息科技有限公司 Immersive virtual reality emulation interaction display method and display system
CN101434066B (en) 2008-10-20 2012-11-21 北京理工大学 Method and platform for predicating teleoperation of robot
CN102120325B (en) 2010-01-08 2012-12-12 哈尔滨理工大学 Novel remote operation far-end robot control platform and method
CN103273495A (en) * 2013-06-09 2013-09-04 中国科学院自动化研究所 Micro-assembling real-time demonstrating and collision detection system based on open graphics library (OpenGL)
CN103717358A (en) * 2011-08-02 2014-04-09 索尼公司 Control system, display control method, and non-transitory computer readable storage medium
CN103722554A (en) * 2014-01-15 2014-04-16 西北工业大学 Space teleoperation method
CN104203503A (en) * 2012-04-02 2014-12-10 株式会社安川电机 Robot system and work facility
CN105353670A (en) * 2015-09-22 2016-02-24 长春工业大学 Embedded motion controller of humanoid robot
CN105702114A (en) * 2016-03-25 2016-06-22 佛山市新恒萃材料科技有限公司 Education platform for zero forcing demonstration technology
CN105700385A (en) * 2016-04-21 2016-06-22 奇弩(北京)科技有限公司 Robot adjusting simulation platform
CN106363637A (en) * 2016-10-12 2017-02-01 华南理工大学 Fast teaching method and device for robot
CN106448422A (en) * 2016-08-22 2017-02-22 纳博特南京科技有限公司 VR device-based robot training system and method
CN106527177A (en) * 2016-10-26 2017-03-22 北京控制工程研究所 Multi-functional and one-stop type remote control design, the simulation system and method thereof
CN106845008A (en) * 2017-02-16 2017-06-13 珠海格力电器股份有限公司 A kind of processing method and processing device of VR equipment
CN107263449A (en) * 2017-07-05 2017-10-20 中国科学院自动化研究所 Robot remote teaching system based on virtual reality

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814815A (en) * 2012-08-24 2012-12-12 广东工业大学 Virtual engineering robot system and control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233514C (en) 2003-03-14 2005-12-28 南开大学 Internet control system for remotely controlling robots to play chess

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434066B (en) 2008-10-20 2012-11-21 北京理工大学 Method and platform for predicating teleoperation of robot
CN102120325B (en) 2010-01-08 2012-12-12 哈尔滨理工大学 Novel remote operation far-end robot control platform and method
CN101844353A (en) * 2010-04-14 2010-09-29 华中科技大学 Teleoperation task planning and simulation method for mechanical arm/dexterous hand system
CN101844353B (en) 2010-04-14 2011-08-10 华中科技大学 Teleoperation task planning and simulation method for mechanical arm/dexterous hand system
CN102310409A (en) * 2010-07-05 2012-01-11 株式会社安川电机 Robot apparatus and gripping method for use in robot apparatus
CN102722106A (en) * 2011-03-29 2012-10-10 上海晟昊信息科技有限公司 Immersive virtual reality emulation interaction display method and display system
CN103717358A (en) * 2011-08-02 2014-04-09 索尼公司 Control system, display control method, and non-transitory computer readable storage medium
CN103717358B (en) * 2011-08-02 2019-09-06 索尼公司 Control system, display control method and non-transient computer readable storage medium
CN104203503A (en) * 2012-04-02 2014-12-10 株式会社安川电机 Robot system and work facility
CN103273495B (en) * 2013-06-09 2016-01-20 中国科学院自动化研究所 OpenGL microassembly one kind of live presentations and based on collision detection system
CN103273495A (en) * 2013-06-09 2013-09-04 中国科学院自动化研究所 Micro-assembling real-time demonstrating and collision detection system based on open graphics library (OpenGL)
CN103722554B (en) * 2014-01-15 2015-12-09 西北工业大学 A spatial teleoperation method
CN103722554A (en) * 2014-01-15 2014-04-16 西北工业大学 Space teleoperation method
CN105353670A (en) * 2015-09-22 2016-02-24 长春工业大学 Embedded motion controller of humanoid robot
CN105702114A (en) * 2016-03-25 2016-06-22 佛山市新恒萃材料科技有限公司 Education platform for zero forcing demonstration technology
CN105700385A (en) * 2016-04-21 2016-06-22 奇弩(北京)科技有限公司 Robot adjusting simulation platform
CN106448422A (en) * 2016-08-22 2017-02-22 纳博特南京科技有限公司 VR device-based robot training system and method
CN106363637B (en) * 2016-10-12 2018-10-30 华南理工大学 A kind of quick teaching method of robot and device
CN106363637A (en) * 2016-10-12 2017-02-01 华南理工大学 Fast teaching method and device for robot
CN106527177A (en) * 2016-10-26 2017-03-22 北京控制工程研究所 Multi-functional and one-stop type remote control design, the simulation system and method thereof
CN106845008A (en) * 2017-02-16 2017-06-13 珠海格力电器股份有限公司 A kind of processing method and processing device of VR equipment
CN107263449A (en) * 2017-07-05 2017-10-20 中国科学院自动化研究所 Robot remote teaching system based on virtual reality

Also Published As

Publication number Publication date
CN100484726C (en) 2009-05-06

Similar Documents

Publication Publication Date Title
US6587752B1 (en) Robot operation teaching method and apparatus
CN101947787B (en) Hierarchical robot control system and method for controlling selected degrees-of-freedom of an object using multiple manipulators
JP3708097B2 (en) Manual feeding device of the robot
Kofman et al. Teleoperation of a robot manipulator using a vision-based human-robot interface
Marín et al. A multimodal interface to control a robot arm via the web: a case study on remote programming
CN100590629C (en) Device, program, recording medium and method for robot simulation
JP6314134B2 (en) User interface for robot training
Morales et al. Integrated grasp planning and visual object localization for a humanoid robot with five-fingered hands
US20110071676A1 (en) Interactive robot control system and method of use
US6157873A (en) Robot programming system and method
Leithinger et al. Physical telepresence: shape capture and display for embodied, computer-mediated remote collaboration
Borst et al. DLR hand II: experiments and experience with an anthropomorphic hand
US8155787B2 (en) Intelligent interface device for grasping of an object by a manipulating robot and method of implementing this device
US9984178B2 (en) Robot simulator, robot teaching apparatus and robot teaching method
DE102012218297B4 (en) Method for dynamically optimizing a robot control interface
Du et al. Markerless kinect-based hand tracking for robot teleoperation
Ekvall et al. Learning and evaluation of the approach vector for automatic grasp generation and planning
CN101278244B (en) Control system and teaching kit for industry robot
Kawasaki et al. Design and control of five-fingered haptic interface opposite to human hand
CN103213125B (en) There is robot teaching's device that 3D shows
Wang et al. Kinematic analysis and singularity representation of spatial five‐degree‐of‐freedom parallel mechanisms
US9643314B2 (en) Robot control, training and collaboration in an immersive virtual reality environment
Du et al. Markerless human–robot interface for dual robot manipulators using Kinect sensor
Boulic et al. Multi-finger manipulation of virtual objects
Borst et al. A humanoid upper body system for two-handed manipulation

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right