CN1802800A - Space division multiplex wireless communication system, device and method for the same - Google Patents

Space division multiplex wireless communication system, device and method for the same Download PDF

Info

Publication number
CN1802800A
CN1802800A CN 200480015806 CN200480015806A CN1802800A CN 1802800 A CN1802800 A CN 1802800A CN 200480015806 CN200480015806 CN 200480015806 CN 200480015806 A CN200480015806 A CN 200480015806A CN 1802800 A CN1802800 A CN 1802800A
Authority
CN
China
Prior art keywords
plurality
base station
terminals
antenna
terminal
Prior art date
Application number
CN 200480015806
Other languages
Chinese (zh)
Inventor
古贺正一
近藤润二
Original Assignee
松下电器产业株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003384894 priority Critical
Application filed by 松下电器产业株式会社 filed Critical 松下电器产业株式会社
Publication of CN1802800A publication Critical patent/CN1802800A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Abstract

一种无线通信系统,包括基站(4)和终端(1)-(3)。 A radio communication system comprising a base station (4) and the terminal (1) - (3). 基站(4)和终端(1)-(3)进行空分复用无线传输。 The base station (4) and the terminal (1) - (3) space division multiplex radio transmission. 基站(4)和终端(1)-(3)中的每一个都包括用于空分复用的多波束天线。 The base station (4) and the terminal (1) - each of the (3) comprises a multi-beam antenna for space division multiplexing. 根据在基站(4)的多波束天线的天线单元和终端(1)-(3)的多波束天线的天线单元之间形成的无线电波传播特性的传递函数值来使由基站(4)的多波束天线形成的波束方向图正交化。 According to the multibeam antenna of the base station (4) and a terminal antenna units (1) - the value of the transfer function between the radio wave propagation characteristic (3) multi-beam antenna the antenna elements are formed by a base station to make multiple (4) beam antenna beam pattern formed of orthogonal FIG.

Description

空分复用无线通信系统、设备及其方法 Wireless communication system, a space division multiplexing apparatus and method

技术领域 FIELD

本发明涉及一种使用多波束天线及其相关技术来进行空分无线点对多点通信的无线通信系统。 The present invention relates to a multi-beam antenna and to the related art spatial-multipoint wireless communication is a wireless communication system.

背景技术 Background technique

通常,频分复用(FDM)、时分复用(TDM)和码分复用(CDM)已为人们所熟知。 Typically, frequency division multiplexing (FDM), time division multiplexed (TDM) and code division multiplexing (CDM) has been well known.

根据这些复用技术,可使多项信息组成输出数据,并按无线方式发送此输出数据。 The multiplexing of these, can form the output data items of information, and are sent to this output data wirelessly. 在输出数据的信息多重性增加的时候,所需的无线电频率带宽变得很宽。 When the output data information multiplicity increased, the desired radio frequency bandwidth becomes wider. 因此,在可利用的带宽不足够宽的时候,就容易出现频率短缺。 Thus, the bandwidth available is not sufficient when the width, it is easy to frequency shortages.

根据空分复用(SDM),每个发送终端和接收终端上都装有多个天线单元,并用相同的频率来复用发送的数据而不增加无线电频率带宽。 The space division multiplexing (the SDM), are equipped with a plurality of antenna elements on each transmitting and receiving terminals, and with the same frequency multiplexed data transmission without increasing the radio frequency bandwidth. MIMO(多输入多输出)是SDM的典型通信技术。 MIMO (multiple input multiple output) communication technology is typically the SDM. 根据MIMO,如文件1(已公布的日本专利申请公开第H10-178367号)中所公开的那样,在发送终端和接收终端之间形成了多个传播路径,并且,通过多个传播路径发送的多项信息基本上是彼此不同的。 According to the MIMO, such as file 1 (published Japanese Patent Application Publication No. H10-178367), as disclosed in, between the transmitting and receiving terminals are formed a plurality of propagation paths, and transmitted through a plurality of propagation paths more information is essentially different from each other.

更具体地说,零控制(null-steered)多个定向天线中的每一个,并对每个传播路径上的无线电信号进行空间划分,从而进行点到点的复用通信。 More specifically, the control zero (null-steered) a plurality of directional antennas each, and spatially dividing the radio signal on each channel so as to perform multiplexing communication point to point.

在对无线电信号进行零控制的时候,将波束方向图(beam pattern)的主波束调节到指向想要的波到达方向,并将波束方向图的零点调节到指向不想要的波到达方向。 When the radio signal controlled to zero, the beam pattern (beam pattern) of the main beam is adjusted to point to the desired wave arrival direction, and the beam pattern is adjusted to zero point undesired wave direction of arrival.

图17(a)示出了使用两元阵列天线的波束方向图的一个例子。 FIG 17 (a) shows an example of using a two-cell array antenna beam pattern. 在图17(a)的例子中,主波束100指向想要的波到达方向,而零点101指向不想要的波到达方向。 In the example of FIG. 17 (a), the primary beam 100 directed in the desired wave arrival direction, and the null point 101 undesired wave direction of arrival.

图17(b)示出了在使用六元阵列天线时的波束方向图的一个例子。 FIG 17 (b) shows an example of a beam pattern in the six-cell array antenna. 同时,在图17(b)的例子中,主波束100指向想要的波到达方向,而零点101指向不想要的波到达方向。 Meanwhile, in the example of FIG. 17 (b), the primary beam 100 directed in the desired wave arrival direction, and the null point 101 undesired wave direction of arrival. 这样,根据多个传播路径来对无线电信号进行零控制,从而能够使波束方向图正交化。 Thus, it controls to zero in accordance with a plurality of radio signal propagation paths, thereby enabling the beam pattern orthogonalization.

根据MIMO,使用多波束天线作为定向天线,通过计算信道矩阵H来控制定向天线的方向性,其中,信道矩阵H的矩阵元素是无线电波传播特性的传递函数值。 According to the MIMO, the use of multi-beam antenna as a directional antenna, the directional antenna is controlled by calculating a channel matrix H directivity, wherein the matrix elements of the channel matrix H is the transfer function of the value of the propagation characteristics of radio waves. 无线电波传播特性是在发送终端的多个天线单元和接收终端的多个天线单元之间的特性。 Radio wave propagation characteristic is a characteristic between the plurality of antenna elements and a plurality of antenna elements of the receiving terminal to the transmitting terminal.

文件2(GJFoschini work,Bell Labs Technical Journal,Vol.1,No.2,Autumn 1996,pp 41-59(GJFoschini著,贝尔实验室技术杂志,第1卷,第2期,1996年秋季,41-59页))公开了由贝尔实验室的Foschini提出的BLAST(Bell Labs Layered Space-Time(贝尔实验室分层的空时))方法。 File 2 (GJFoschini work, Bell Labs Technical Journal, Vol.1, No.2, Autumn 1996, pp 41-59 (GJFoschini the Bell Laboratory Technology Magazine, Vol. 1, No. 2, Fall 1996, 41- 59)) discloses that BLAST (Bell labs layered space-time (Bell labs layered empty proposed by Bell labs, Foschini)) method. 根据BLAST方法,在接收终端,以从具有最小范数的加权向量开始的顺序,重复进行信道矩阵H的一般逆矩阵计算。 The BLAST method, the receiving terminal, in order from the weight vector with the smallest norm, repeated general inverse matrix of the channel matrix H is calculated. 除了取得空分复用通信的效果而外,重复计算还取得了空间分集的效果。 In addition to obtaining the effect of the outer space division multiplex communication, repeated calculations also made of the effect of spatial diversity.

文件3(已公开的日本专利中请公开第2001-237751号)公开了一种控制多波束天线的加权的技术。 Document 3 (see Japanese Patent Publication No. 2001-237751 has disclosed) discloses a method of controlling the multi-beam antenna weighting technique. 为了进行这种控制,发送终端和接收终端进行信道矩阵H的特征值计算以获取特征向量。 In order to perform such control, the transmitting and receiving terminals eigenvalue of the channel matrix H is calculated to obtain the eigenvectors. 此外,还结合了基于所谓的水填充原则(water filling rule)的发送功率控制;因而,除了取得空分复用通信的效果而外,还可以取得高效率的功率利用。 In addition, the combined transmit power control based on the principle of so-called water filling (water filling rule); and therefore, in addition to the effect achieved outer space division multiplexing communication, but also can be obtained using a high power efficiency.

然而,常规的技术实现了点对点的复用通信。 However, the conventional technology implements multiplexing point communication. 因此,当存在很少的在发送终端天线和接收终端天线之间形成的传播路径的时候,就要根据传播路径的数目来限制多重性。 Thus, when there is little propagation path formed between transmitting antennas and the receiving terminal when the terminal antenna, according to the number of propagation paths must be limited multiplicity. 不管天线的天线单元的数目如何,都不能避免这个限制。 Regardless of the number of antenna elements of the antenna how, you can not avoid this restriction.

根据常规的技术,在只有很少传播路径的环境中,频率利用效率就会变低。 According to the conventional technique, only a few propagation path environments, the frequency utilization efficiency is low.

本发明的第一目的是提供一种无线通信系统,其在基站和终端之间形成的传播路径很少的环境条件下,取得了高的频率利用效率。 The first object of the present invention is to provide a wireless communication system, the propagation path formed between the base station and the terminal little environmental conditions, to obtain a high frequency utilization efficiency.

本发明的第二目的是提供一种技术,其用于使基站的多波束天线的波束方向图正交化。 The second object of the present invention is to provide a technique for multi-beam antenna beam direction of the base station of FIG orthogonalization.

本发明的第三目的是提供一种技术,其用于使由终端的多波束天线形成的波束方向图的伪正交化。 The third object of the present invention is to provide a technique for pseudo-beam pattern formed by the multibeam antenna terminal orthogonalization.

发明内容 SUMMARY

本发明的第一方面提供了一种无线通信系统,包括:基站;多个终端;和控制单元,其中,基站和多个终端的每一个可以使用相同的频率同时进行信息的空分复用无线传输,其中,多个终端中的至少一个通过多个传播路径与基站通信,其中,基站包括:用于空分复用无线传输的基站多波束天线,其中所述基站多波束天线含有多个基站天线单元;其中,多个终端的每一个包括:用于空分复用无线传输的终端多波束天线,其中所述终端多波束天线含有多个终端天线单元,并且,其中,控制单元用于使基站多波束天线的波束方向图正交化,从而控制空分复用无线传输。 A first aspect the present invention provides a wireless communication system, comprising: a base station; a plurality of terminals; and a control unit, wherein each base station and a plurality of terminals can use the same frequency at the same time the space division multiplexing information radio transmission, wherein at least one of the plurality of terminals via a plurality of propagation paths of communication with the base station, the base station comprising: a base station for a wireless transmission space division multiplexing multi-beam antenna, wherein said multi-beam antenna comprising a plurality of base station antenna unit; wherein each of the plurality of terminals comprises: a space division multiplex transmission terminal of a wireless multi-beam antenna, wherein said multi-beam antenna comprising a plurality of terminal terminal antenna units, and wherein the control means for base multi-beam antenna beam pattern of FIG orthogonalization, thereby controlling the wireless transmission space division multiplexing.

使用此结构,控制单元能够使基站多波束天线的多个基站天线单元的波束方向图正交化,从而进行空分无线点对多点通信。 With this configuration, the base station control unit capable of multi-beam base station antenna beam direction of the plurality of antenna elements of FIG orthogonalization, to perform space division wireless point to multipoint communication. 具体地说,在传播路径很少的环境下,可以改善频率利用效率。 Specifically, in the propagation path environment few, can improve frequency utilization efficiency.

本发明的第二方面根据本发明的第一方面提供了一种无线通信系统,其中,控制单元根据用于确定多个基站天线单元和多个终端天线单元之间的无线电波传播特性的多个传递函数值来使基站多波束天线的波束方向图正交化。 A second aspect of the present invention there is provided a radio communication system according to a first aspect of the present invention, wherein the control means for determining a plurality of the radio wave propagation characteristics between a plurality of base stations and a plurality of antenna units units units terminal antenna transfer function value for the base station to the multi-beam antenna beam pattern of FIG orthogonalization.

使用此结构,即使在基站和终端之一之间的传播路径很少的情况下,利用在基站和彼此分离的其它终端之间的传播路径,也能够提高多重性(multipilicity),从而改善频率利用效率。 With this structure, a few cases even if the propagation path between the base station and one terminal, using the propagation path between the base station and the other terminal separate from each other, it is possible to increase the multiplicity (multipilicity), thereby improving the frequency utilization effectiveness.

本发明的第三方面根据本发明的第一方面提供了一种无线通信系统,其中,基站天线单元的数目大于在多个终端中的终端天线单元的最大数目。 A third aspect of the present invention there is provided a radio communication system according to a first aspect of the present invention, wherein the number of antenna elements of the base station antennas in the maximum number of terminals of the plurality of terminal unit is greater than.

使用此结构,终端的负担可以减轻,并且在基站和终端之间形成的传播路径能够有效地增加终端通过基站进行通信的关系的利用。 Using this burden structure, the terminal can be reduced, and a propagation path formed between the base station and the terminal can be effectively increased by using the relationship between the communication terminal through the base station.

本发明的第四方面根据本发明的第二方面提供了一种无线通信系统,其中,多个终端中的每一个都可以向基站发送导频信号,该导频信号用于估计在多个终端的每一个和基站之间的无线电波传播特性,其中基站用于接收导频信号,并且其中控制单元用于根据导频信号来计算多个传递函数值。 A fourth aspect of the present invention provides according to a second aspect of the present invention is a wireless communication system, wherein each of the plurality of terminals may transmit a pilot signal to the base station, the pilot signal for estimating a plurality of terminals radio wave propagation characteristics between each of the base and wherein the base station for receiving a pilot signal, and wherein the control means for calculating a plurality of pilot signal transfer function value.

使用此结构,基站能够进行对导频信号的集中控制,从而能提高系统的工作效率。 With this configuration, the base station can perform centralized control of the pilot signal, thereby improving the working efficiency of the system.

本发明的第五方面根据本发明的第二方面提供了一种无线通信系统,其中,控制单元可以计算信道矩阵的特征向量,该信道矩阵的矩阵元素是由多个传递函数值构成的,并且其中,控制单元可以利用信道矩阵的特征向量来控制要施加到多个基站天线单元上的一组加权(weight)。 A fifth aspect of the present invention provides according to a second aspect of the invention a wireless communication system, wherein the control unit may calculate the eigenvectors of the channel matrix, the matrix elements of the channel matrix is ​​constituted by a plurality of transfer function values, and wherein the control unit can use the eigenvectors of the channel matrix to be applied to control a set of weighting (weight) on the plurality of base station antenna elements.

使用此结构,能够利用特征向量来准确地评估无线电波传播特性。 With this configuration, using the feature vector to accurately assess the radio wave propagation characteristics.

本发明的第六方面根据本发明的第二方面提供了一种无线通信系统,其中,控制单元可以计算信道矩阵的多个对角线元素,该信道矩阵的矩阵元素是由多个传递函数值组成的,其中,控制单元可以使用信道矩阵的多个对角线元素来控制要施加到多个基站天线单元上的一组加权。 A sixth aspect of the present invention provides according to a second aspect of the invention a wireless communication system, wherein the control unit may calculate a plurality of diagonal elements of the channel matrix, the matrix elements of the channel matrix is ​​composed of a plurality of transfer function values composition, wherein the control unit may use a plurality of diagonal elements of the channel matrix to be applied to control a plurality of base stations in the set of weighted antenna units.

使用此结构,可以使用对角线元素来准确地评估无线电波传播特性。 With this structure, the diagonal elements may be used to accurately assess the radio wave propagation characteristics.

本发明的第七方面根据本发明的第二方面提供了一种无线通信系统,其中,在多个终端之一发生移动时,该多个终端之一可以向基站发送移动导频信号,其中,该移动导频信号用于估计在该多个终端之一和基站之间的无线电波传播特性,基站用于接收该移动导频信号,控制单元用于重新计算与该多个终端之一相关的多个传递函数值,并且控制单元可以根据多个重新计算的传递函数值来使基站多波束天线的波束方向图正交化。 A seventh aspect of the present invention provides according to a second aspect of the present invention is a wireless communication system, wherein, upon occurrence of one of the plurality of mobile terminals, one of said plurality of mobile terminals may transmit a pilot signal to the base station, wherein, the mobile radio-wave propagation characteristics of the pilot among the plurality of terminals and a base station one signal for estimating a mobile station for receiving the pilot signal, a control unit for re-calculating a correlation with the one of the plurality of terminals a plurality of transfer function values, and the control unit may make the multi-beam antenna beam direction of the base station according to a plurality of transfer function values ​​recalculated orthogonalization FIG.

使用此结构,即使在一个或多个终端发生移动的情况下,也能进行空分无线点对多点通信。 With this structure, even in the case where one or more terminal moves, but also space division wireless point to multipoint communication.

本发明的第八方面根据本发明的第七方面提供了一种无线通信系统,其中,控制单元可以重新计算与一个或多个未移动的终端相关的多个传递函数值,该一个或多个未移动的终端属于所述多个终端。 The eighth aspect of the present invention provides according to a seventh aspect of the present invention is a wireless communication system, wherein a plurality of the control unit may recalculate the transfer function values ​​associated with one or more non-mobile terminals, the one or more No mobile terminal belonging to said plurality of terminals.

使用此结构,总能够利用准确的传递函数值来进行无线通信。 With this configuration, the wireless communication can be performed always using the accurate transfer function value.

本发明的第九方面根据本发明的第七方面提供了一种无线通信系统,其中,控制单元不重新计算与一个或多个未移动的终端相关的多个传递函数值,该一个或多个未移动的终端属于所述多个终端。 The ninth aspect of the invention provides according to a seventh aspect of the present invention is a wireless communication system, wherein the control unit does not recalculate a plurality of transfer function values ​​associated with one or more non-mobile terminals, the one or more No mobile terminal belonging to said plurality of terminals.

使用此结构,由于能够省略与一个或多个终端相关的传递函数值的计算,即使在一个或多个终端发生移动时,也能够快速进行空分无线点对多点通信。 With this structure, since the calculation can be omitted transfer function values ​​associated with one or more terminals, even when one or more terminal moves, it is possible to quickly perform space division wireless point to multipoint communication.

本发明的第十方面根据本发明的第七方面提供了一种无线通信系统,其中,控制单元可以利用迁移率(mobility)作为表示多个终端之一在单位时间内、在空间中的移动程度的参数,来确定基站多波束天线的正交化的优先级。 A tenth aspect of the invention there is provided a radio communication system according to a seventh aspect of the invention, wherein the control unit can utilize the mobility (Mobility) as a unit of time, the degree of movement in space represented by one of the plurality of terminals parameters determining the base station orthogonal multibeam antenna of priority.

使用此结构,由于使用了迁移率,能够通过考虑到通信优先级,来进行空分无线点对多点通信。 With this structure, since the mobility it is possible to space division multipoint communication by taking into consideration a wireless communication priority.

本发明的第十一方面根据本发明的第十方面提供了一种无线通信系统,其中,控制单元可以确定基站多波束天线的正交化的优先级,以使得具有特定迁移率的多个终端之一的优先级高于其迁移率大于该特定迁移率的多个终端的另一个的优先级。 An eleventh aspect of the present invention provides according to a tenth aspect of the present invention is a wireless communication system, wherein the control unit may determine the base station orthogonal multibeam antenna of priority, so that the plurality of terminals having a specific mobility another one of the plurality of terminals is higher than the priority of which is greater than the mobility of the mobility particular priority.

使用此结构,可以通过将高优先级赋予难于移动的一个或多个终端来进行空分无线点对多点通信。 With this structure, a high priority may be given by one or more terminals are difficult to be spatially mobile wireless multipoint communication.

本发明的第十二方面根据本发明的第十方面提供了一种无线通信系统,其中,通过给予多个终端的各个标识符来表示多个终端的迁移率,该多个终端用于向基站发送各个标识符,控制单元用于接收从多个终端发送的各个标识符,并且控制单元用于根据由基站接收的各个标识符来确定基站多波束天线的正交化的优先级。 A twelfth aspect of the present invention provides according to a tenth aspect of the present invention is a wireless communication system, wherein the respective identifiers by administering a plurality of terminals to a plurality of terminals represents the mobility of the plurality of terminals to a base station for transmitting individual identifiers, the control unit is configured to receive a plurality of individual identifiers transmitted from the terminal and the base station control unit for determining a multibeam antenna according to the respective base station identifier received by orthogonalizing priority.

使用此结构,由于使用了标识符,所以在考虑到通信的优先级而没有复杂计算的情况下,能够进行空分无线点对多点通信。 With this structure, since the identifier, so that in consideration of the priority of the communication without complex calculations, it is possible space division wireless point to multipoint communication.

本发明的第十三方面根据本发明的第一方面提供了一种无线通信系统,其中,在基站中提供了控制单元。 A thirteenth aspect of the invention there is provided a radio communication system according to a first aspect of the present invention, wherein the control unit is provided in the base station.

使用此结构,由于不需要提供除了基站和终端之外的其它部件,因此,能够简单地构造此无线通信系统。 With this structure, it is not necessary to provide other components in addition to the base station and the terminal, therefore, can be easily configured the wireless communication system.

根据本发明,即使在基站和终端之一之间只有很少的传播路径的情况下,利用在基站和彼此分离的其它终端之间的传播路径,能够提高空间多重性,从而改善频率利用效率。 According to the present invention, even if the terminal between one base station and a few cases where only the propagation path, using the propagation path between the base station and other terminals separated from each other, it is possible to improve the spatial multiplicity, thereby improving the frequency utilization efficiency.

根据本发明,即使在终端彼此分开和/或在一对或多对终端不能不通过基站而直接通信的情况下,基站能够检测整个无线通信系统的信道矩阵H。 According to the present invention, even when separated from each other in the terminal and / or one or more base station by the terminal can not be the case of direct communication, the base station can detect the entire wireless communication system channel matrix H. 因此,能够容易地使基站多波束天线的波束方向图正交化。 Accordingly, the base station can be easily multi-beam antenna beam pattern of FIG orthogonalization.

根据本发明,由于能够省略交换接收到的信号,因此,在任何终端上都不必提供用于交换接收到的信号的电路,从而降低了终端的电路规模。 According to the present invention, it is possible to omit exchange signals received, and therefore, do not have any terminal in the supply circuit for switching the received signal, thereby reducing the circuit scale of the terminal.

通过结合附图阅读下面的描述,本发明的上述和其他目的、特点和优点将会变得更加清楚,在附图中用相同的附图标记来表示相同的部件。 By reading the following description taken in conjunction with the above and other objects, features and advantages of the present invention will become more apparent by reference the same reference numerals denote the same parts.

附图说明 BRIEF DESCRIPTION

图1是图解本发明的实施例1中的无线通信系统的示意图;图2是示出本发明的实施例1中的天线波束方向图的例示图;图3是图解本发明的实施例1中的传输特性的模似图;图4是本发明的实施例1中的正交化过程的说明图(普通的逆矩阵); FIG 1 is a schematic diagram of a wireless communication system in the embodiment of the present invention illustrated; FIG. 2 is a diagram illustrating a diagram illustrating an antenna beam pattern in the embodiment of the present invention; FIG. 3 is a diagram of an embodiment of the present invention 1 transmission characteristic similar mold; Figure 4 is an explanatory view (general inverse matrix) orthogonalization procedure in Example 1 of the present invention;

图5是本发明的实施例1中的正交化过程的说明图(特征值);图6是图解本发明的实施例1中的基站的方框图;图7是图解本发明的实施例1中的终端的方框图;图8是图解本发明的实施例1中的天线传输控制单元(基站)的方框图;图9是图解本发明的实施例1中的天线接收控制单元(终端)的方框图;图10是本发明的实施例1中的导频信号传输的说明图;图11是本发明的实施例1中的顺序图;图12是本发明的实施例1中的天线单元限制的说明图;图13是本发明的实施例1中的伪正交化过程的说明图;图14是本发明的实施例1中的、由基站看来的扩展角θ的说明图;图15是本发明的实施例1中的波束方向图排除的说明图;图16是本发明的实施例1中的波束方向图排除的说明图;以及图17(a)和图17(b)是常规的零控制的说明图。 FIG 5 is an explanatory view (characteristic value) orthogonalization procedure in Example 1 of the present invention; FIG. 6 is a block diagram illustrating an embodiment of the present invention in a base station; FIG. 7 is a diagram of an embodiment of the present invention 1 a block diagram of a terminal; FIG. 8 is a block diagram of an embodiment of the present invention, the antenna transmission control unit (base station) is illustrated; FIG. 9 is a block diagram illustrating an embodiment of the present invention, an antenna reception control unit (terminal); FIG. 10 illustrates a pilot signal transmission in an embodiment of the present invention; FIG. 11 is an embodiment of the present invention is a sequence diagram; FIG. 12 is an explanatory view of the embodiment of the present invention an antenna unit of limitation; FIG 13 is a diagram illustrating the process of pseudo-orthogonal embodiments of the present invention 1; Figure 14 is an embodiment of the present invention, an explanatory view of a spread angle θ opinion of the base station; FIG. 15 is the present invention. DESCRIPTION oF FIG beam direction in Example 1. FIG excluded embodiment; FIG. 16 is a beam direction in an embodiment of the present invention. FIG excluded explanatory view; and FIG. 17 (a) and 17 (b) is a conventional zero control Illustrating.

具体实施方式 Detailed ways

以下,参照附图来详细说明本发明的实施例。 Hereinafter, embodiments of the present invention will be described in detail with reference.

实施例1图1是图解本发明的实施例1中的无线通信系统的示意图。 Example 1 Figure 1 is a schematic diagram of a wireless communication system in Embodiment 1 of the present invention is illustrated. 如图1所示,本实施例的无线通信系统包括第一终端1、第二终端2、第三终端3和基站4。 As shown in FIG. 1, a wireless communication system according to the present embodiment includes a first terminal, a second terminal 2, terminal 3 and the third base station 4. 在详细说明基站4和终端1、2、3中的每个终端之前,将先说明该无线通信系统的概况。 Before explaining the base station and the terminal 4 of each of the terminals 1, 2, will first be described before the wireless communication system.

在图1的例子中,在基站4和第二终端2之间存在一个电磁干扰物体6,在基站4和第三终端3之间存在一个电磁干扰物体7。 In the example of FIG. 1, 4 between the base station and terminal 2 there is a second object 6 of electromagnetic interference, in the presence of an electromagnetic interference between base station 4 and the third terminal 3 of the object 7.

这样,在基站4和第一终端1之间形成了传播路径8。 Thus, between the base station and the first terminal 4 is formed a channel 8. 同样地,在基站4和第二终端2之间分别形成了传播路径9和传播路径10,而在基站4和第三终端3之间分别形成了传播路径11和传播路径12。 Similarly, between the base station 4 and the second terminal 2 are formed of channel 9 and the channel 10, the propagation path 11 are formed and a propagation path between the base station 12 4 and the third terminal 3.

图2图解了在图1的条件下、在基站4中形成的天线波束方向图。 Figure 2 illustrates a beam pattern of the antenna under the condition of FIG. 1, formed in the base 4. 在图2中,为传播路径8形成了主波束21,为传播路径9形成了主波束22,为传播路径10形成了主波束23,为传播路径11形成了主波束24,并且为传播路径12形成了主波束25。 In FIG. 2, is a channel 8 formed in the main beam 21 as a channel 9 is formed a main beam 22, as channel 10 is formed a main beam 23, for the propagation path 11 is formed a main beam 24, and is a channel 12 a main beam 25 is formed.

如像下面将详细说明的那样,基站4和终端1、2、3中的每一个都包含多波束天线,其同时形成多个波束方向图,以便利用相同的频率来进行空分复用通信。 The image will be described in detail below, each base station 4 and the terminal 1, 2 are multi-beam antenna comprising, a plurality of beam patterns are formed simultaneously, using the same frequency in order to perform space division multiplexing communication.

如图2所示,基站4形成了五个正交波束,即,用于去向第一终端1的传播路径8的波束,用于去向第二终端2的传播路径9和10的两个波束,用于去向第三终端3的传播路径11和12的两个波束,由此进行空分复用通信。 2, the base station 4 forms a five orthogonal beams, i.e., a first destination terminal to a beam propagation path 8, the propagation path for the whereabouts of the second terminal 2 of the two beams 9 and 10, a third terminal for the whereabouts of the propagation path 3 and two beams 12 and 11, whereby the space division multiplex communication.

在该例子中,考虑到在基站4和终端1、2、3之一之间的(点对点的)空间,最多存在两个传播路径,并且能够实现只有两个信道的空分无线通信,但是不能实现三个或更多信道的空分无线通信。 In this example, taking into account between one terminal and the base station 4 1,2,3 (point to point) space is present a maximum of two propagation paths, and the two channels can be realized only space division wireless communication, but not three or more channels to achieve spatial division wireless communication.

然而,根据本发明,利用基站4和三个终端1、2、3之间的五个传播路径8到12,能够实现具有五个信道的空分无线点对多点通信。 However, according to the present invention, the use of five propagation path between base station 4 and the three terminals 2, 3, 8 to 12, it is possible to realize space division wireless multipoint communication with five channels. 因此,可以明显地改善单位体积空间中的频率利用效率。 Thus, it is possible to significantly improve the frequency use efficiency per unit volume of the space.

在该实施例中,由于作为中心的基站4进行与终端1、2和3的空分复用通信,因此,应当使在基站4进行的零控制的灵活性高。 In this embodiment, since the center 4 and a base station 2 and the terminal 3 of the space division multiplex communication, and therefore, it should be zero so that high flexibility in the control of base station 4.

换句话说,在基站4的多波束天线中能够形成的零点的数目应当足够多,并且基站4的天线单元的数目应当大于终端1、2、3中的任何一个的天线单元的数目。 In other words, the number of zero crossings of the base station 4 in the multibeam antenna can be formed should be sufficient, and the number of base station antennas should be 4 units of any number of antennas of the terminal unit is greater than 2,3.

由于这个缘故,考虑到终端1、2和3通过基站4进行通信的关系,最好能够没有浪费地利用这些数目的传播路径。 For this reason, considering the terminals 2 and 3 via the base station 4 in communication relationship, preferably without waste use that number of propagation paths.

下面将要说明使基站4中的波束方向图正交化的方法。 It will be described in the beam direction orthogonal to the base station 4 of the method of FIG. 图3图解了在图1的无线通信系统的基站4和终端1、2和3之间形成的传输特性。 Figure 3 illustrates a transmission characteristic is formed between the base station and the terminal 4 of the wireless communication system of FIG. 1, 2 and 3. 每个传输特性与多波束天线的每个天线单元相对应。 Each antenna element and the transmission characteristics of each multibeam antenna corresponds.

在图3中,基站4包括由六个天线单元A1、A2、A3、A4、A5和A6组成的多波束天线。 In Figure 3, base station 4 comprises six antenna elements A1, A2, A3, A4, A5 and A6 composed of multi-beam antenna. 第一终端1包括由三个天线单元B1、B2和B3组成的多波束天线。 The first terminal 1 by the multibeam antenna comprises three antenna units B1, B2 and B3 thereof. 第二终端2包括由四个天线单元B4、B5、B6和B7组成的多波束天线。 The second terminal 2 comprises a multi-beam antenna comprises four antenna units B4, B5, B6 and B7 thereof. 第三终端3包括由三个天线单元B8、B9和B10组成的多波束天线。 The third terminal 3 by the multi-beam antenna comprising three antenna elements B8, B9 and B10 thereof.

在图3中,假设在基站4的天线单元Ai和终端1、2和3之一的天线单元Bj之间的传递函数值用值hi_j来表示,那么可用下面的公式1来表示传播特性矩阵H。 In Figure 3, the transfer function assuming a value between the base station and the antenna unit 4 of the terminal 1 Ai and Bj one antenna element 3 is represented by the value hi_j, then the following formula can be represented by a propagation characteristic matrix H . 当然,在图3中的天线单元的数目仅仅是一个例子,并且可以有各种改变。 Of course, the number of antenna elements in FIG. 3 is merely an example, and there may be variously changed.

[公式1] [Formula 1]

当与传递函数值hi_j的频率特性相比,用于空分复用通信的信号的带宽足够窄时,可以用下面的简单公式来表达传递函数值hi_j:hi_j=Ae-jθ其中,A是通过所组成的传播路径的振幅衰减项,θ是通过所组成的传播路径的相位延迟项。 When compared to the frequency characteristic of the transfer function value hi_j, a signal bandwidth of the space division multiplexing communication sufficiently narrow, the following simple formula can be used to express the transfer function value hi_j: hi_j = Ae-jθ where, A is obtained by amplitude propagation path consisting of a damping term, θ is the phase delay term of the propagation paths thereof.

为了形成正交波束,估计传播特性矩阵H并使矩阵H对角线化。 In order to form orthogonal beams, the propagation characteristic estimation matrix H and the matrix H diagonalized. 然后,在空间上分离无线电信号并消除干扰波。 Then, spatially separated radio signal and eliminate interference waves.

如像线性代数所教导的那样,使用普通逆矩阵的过程和使用特征值和/或特征向量的过程可以被用来使矩阵H正交化。 Such as linear algebra as taught, during normal use of the inverse matrix and the process using the feature values ​​and / or features may be used to vector orthogonalization matrix H.

参见图4来说明使用普通逆矩阵的过程的例子。 Referring to Figure 4 will be described using the example of an inverse matrix of an ordinary process. 在图4中,假设向量“X”是一个发送信号向量,其由输入到第一终端1的分量、输入到第二终端2的分量和输入到第三终端3的分量组成,矩阵“Wm”是一个要与发送信号向量X相乘的加权矩阵,而矩阵“H”是一个传播特性矩阵。 In FIG. 4, the vector is assumed that "X" is a transmission signal vector, which is a component of the first input to the terminal 1, the input component and the input to the second terminal to the third terminal 2 is composed of three components, the matrix "Wm" a weighting matrix is ​​multiplied to the transmission signal vector X, while the matrix "H" is a matrix of propagation characteristics.

进而,向量“Y”是由在基站4接收到的分量组成的接收信号向量,矩阵“Wb”是一个要与接收信号向量Y相乘的加权矩阵,而向量“X”是由基站4估计的发送信号向量。 Furthermore, the vector "Y" is the received signal vector by the base station 4 receives the component in the composition, the matrix "Wb" is a weight matrix to the received signal vector Y is multiplied, and a vector "X" is estimated by the base station 4 transmission signal vector.

然后,用于对角线化的公式是下面的公式2、3和4。 Then, for the diagonal of the formula is the following formula 2, 3 and 4. 其中,在公式3中的向量“I”是一个单位矩阵,在公式4中的上标符号“-1”表示普通的逆矩阵。 Wherein the vector "I" in Equation 3 is an identity matrix, the superscript symbols in the formula 4, "-1" denotes an inverse matrix common.

[公式2]X'=WbHWmX[公式3]Wm=I[公式4] [Formula 2] X '= WbHWmX [Equation 3] Wm = I [Formula 4]

Wb=H-1参见图5来说明使用特征值和/或特征向量的过程。 Wb = H-1 Referring to FIG. 5 illustrating a process using the feature values ​​and / or feature vectors. 在图5中,假设向量“X”是由输入到基站4中的分量组成的发送信号向量,矩阵“Wb”是要与发送信号向量X相乘的加权矩阵,而矩阵“HT”是传播特性矩阵。 In FIG. 5, the vector is assumed that "X" is sent from the vector components of the input signal to the base station 4 in the composition, the matrix "Wb" is multiplied with the weighting matrix to a transmission signal vector X, while the matrix "HT" is the propagation characteristics matrix.

此外,向量“Y”是一个接收信号向量,其由输入到第一终端1中的分量、输入到第二终端2中的分量和输入到第三终端3中的分量组成,矩阵“Wm”是一个要与接收信号向量Y相乘的加权矩阵,而向量“X'”是一个由基站4估计的发送信号向量。 Furthermore, the vector "Y" is a received signal vector, which is an input component to a first terminal, a second input terminal 2 is input to the third terminal component and 3 component composition, the matrix "Wm" is to a reception signal vector Y is multiplied with the weighting matrix and a vector "X '" is an estimate of the base station 4 by the transmission signal vector.

然后,用于对角线化的公式是下面的公式5、6和7。 Then, for the diagonal of the formula is the following formula 5, 6 and 7. 其中,在公式5中的上标符号“T”表示矩阵的转置,在公式6中的上标符号“*”表示共轭转置(conjugate tranpose)。 Where the superscript symbols in Equation 5 "T" denotes transpose of a matrix, the superscript symbols in Equation 6, "*" denotes a conjugate transpose (conjugate tranpose). 矩阵“P”是这样一个矩阵,其中,与矩阵(HT)*HT的特征值相应的特征向量通常被正交化。 Matrix "P" is a matrix, wherein the matrix (HT) * corresponding eigenvalue HT eigenvectors are usually orthogonalized.

[公式5]X'=WmHTWbX[公式6]Wm=P-1(HT)*[公式7]Wb=P下面,将具体地说明基站4和终端1、2和3的细节。 [Equation 5] X '= WmHTWbX [Equation 6] Wm = P-1 (HT) * [Equation 7] Wb = P Next, the details of the particular base station will 4 and the terminals 1, 2 and 3. 为了说明简单起见,假设已经估计了传播特性矩阵H。 To illustrate the simplicity, we assume that the propagation characteristics has been estimated matrix H.

图6是图解基站4的方框图。 FIG 6 is a block diagram illustrating a base station 4. 如图6所示,基站4由下列部件组成。 6, the base 4 is made up of.

在CODEC单元601通过输入-输出端口620输入信号时,CODEC单元601对信号进行编码并将编码的结果输出到调制单元602中。 In the CODEC unit 601 via the input - output port 620 an input signal, the signal CODEC unit 601 outputs the encoded result to the modulation encoding unit 602.

在CODEC单元601输入来自解调单元604的解调结果时,CODEC单元601对此解调结果进行解码,并将解码的结果输出到输入-输出端口620。 CODEC unit 601 when the demodulation result input from the demodulating unit 604, CODEC unit 601 decodes the demodulation result of this, and outputs the decoded result to the input - output port 620.

CODEC单元601还输入来自导频信号处理单元609的处理结果,并将处理结果输出到迁移率识别(identifying)单元611。 CODEC unit 601 also inputs the pilot signal processing result from the processing unit 609, and outputs the processing result to the mobility identification (Identifying) unit 611.

在调制单元602输入来自CODEC单元601的信号时,调制单元602根据确定的调制方式来调制信号,并将调制结果输出到天线传输控制单元603中。 When the input signal from the modulation unit 602 of the CODEC unit 601, modulation unit 602 modulates the signal in accordance with the determined modulation scheme, and outputs the modulation result to the transmission control unit 603 of the antenna. 如后面将要提及的那样,在天线传输控制单元603输入调制结果时,天线传输控制单元603确定多波束天线608的天线单元的波束方向图,并向天线接收控制单元605输出所确定的波束方向图。 As will be mentioned, when the antenna control unit 603 inputs the transmission modulation result, the control unit 603 determines antenna transmission beam multi-beam antenna pattern of the antenna element 608, and antenna receiver beam direction control unit 605 outputs the determined Fig.

天线传输控制单元603根据所确定的波束方向图来产生发送信号,并向变频单元606输出发送信号。 Antenna transmission control unit 603 generates a transmission signal according to the determined beam pattern, and sends a signal conversion unit 606 outputs.

解调单元604解调从天线接收控制单元605接收到的信号,并向CODEC单元601和导频信号处理单元609输出解调结果。 Demodulation unit 604 demodulates the received signal from the antenna control unit 605 received, to the CODEC unit 601 and the pilot signal processing unit 609 outputs the demodulation result.

在天线接收控制单元605输入来自变频单元606的信号时,天线接收控制单元605根据由天线传输控制单元603确定的波束方向图来处理信号,并向解调单元604输出处理结果。 When the signal from the frequency conversion unit 606 of the reception control unit 605 inputs the antenna, the antenna reception signal processing control unit 605 in accordance with a beam pattern determined by the transmission antenna control unit 603, and demodulation unit 604 outputs the processing result.

发送/接收控制单元607选择发送状态和接收状态之一。 Transmission / reception control unit 607 to select one of the transmit and receive states. 在发送状态中,发送/接收控制单元607向多波束天线608输出从变频单元606输入的信号。 In the transmission state, the transmission / reception signal input from the frequency conversion unit 606 outputs multi-beam antenna 608 to the control unit 607. 并且,在接收状态中,发送/接收控制单元607向变频单元606输出由多波束天线608接收的信号。 And, in the reception state, the transmission / reception signal received by the conversion unit 606 outputs the multi-beam antenna 608 607 the control unit.

由发送/接收控制单元607来控制变频单元606。 By the transmission / reception control unit 607 controls the conversion unit 606. 在发送状态中,变频单元606转换从控制单元603输入的信号的频率,并向发送/接收控制单元607输出转换结果。 In the transmission state, the converting unit 606 converts a frequency signal input from the control unit 603, and transmission / reception control unit 607 outputs the conversion result. 在接收状态中,变频单元606转换从控制单元607输入的信号的频率,并向天线接收控制单元605输出转换结果。 In the receiving state, the frequency conversion unit 606 converts a signal input from the control unit 607, unit 605 outputs the conversion result to the control receiving antenna.

在导频信号处理单元609输入来自解调单元601的、由终端1、2和3的天线单元中的任何一个发送的导频信号时,导频信号处理单元609检测导频信号的相位和/或振幅的漂移量(drift amount),并向干扰量估计单元612和加权计算单元610输出检测结果。 In the pilot signal processing unit 609 is input from the demodulation unit 601, when any of the pilot signal transmitted from the terminal 2 and the antenna unit 3, the phase of the pilot signal processing unit 609 detects a pilot signal and / drift amount (drift amount) or amplitude estimation unit 612 and to the weight calculation unit 610 outputs the detection result of the amount of interference.

干扰量估算单元612估计成对传播路径的干扰量,而每对传播路径是从由去向终端1、2和3的传播路径8到12组成的一组传播路径中选择出来的。 Interference amount estimation unit 612 estimates the amount of interference propagation path pairs, and each pair of a propagation path is set by the propagation path from the destination terminals 1, 2 and 3 of the propagation path consisting of 8 to 12 selected from the.

加权计算单元610根据由干扰量估计单元612估计的干扰量来计算多波束天线608的每个天线单元的加权。 Weight calculation unit 610 calculates a multi-beam antenna weights for each antenna element 608 according to the interference amount estimated by the interference amount estimation unit 612.

天线传输控制单元603根据由加权计算单元610计算的加权来确定多波束天线608的波束方向图。 Antenna transmission control unit 603 determines the multi-beam antenna beam pattern 608 of the weighting calculation by the weighting calculation means 610. 已经将一个唯一的标识符给予终端1、2和3中的每一个。 It has a unique identifier given to each of terminals 1, 2 and 3. 迁移率识别单元611识别该标识符。 Mobility recognition unit 611 recognizes the identifier.

在该实施例中,加权计算单元610和天线传输控制单元603都与控制单元相对应。 In this embodiment, the antenna weight calculation unit 610 and the transmission control unit 603 corresponds to the control unit. 该控制单元使基站多波束天线608的波束方向图正交化,并被设置于基站4之中。 The base station control unit causes the multi-beam direction of the antenna beam 608 of FIG orthogonalization, and is disposed on the base station 4 in.

下面将说明终端1、2和3。 It will be described below, 2 and 3 terminals. 由于终端1、2和3中的每一个都有相同的结构,因此只说明终端1。 Since each terminal has the same structure 1, 2 and 3, therefore only one terminal.

图7是图解第一终端1的方框图。 FIG 7 is a block diagram illustrating a first terminal 1. 如图7所示,该终端1包括:CODEC单元701、调制单元702、天线传输控制单元703、解调单元704、天线接收控制单元705、变频单元706、发送/接收控制单元707、具有L个天线单元的多波束天线708、加权计算单元709、导频信号产生单元710、和输入-输出端口720。 7, the terminal 1 comprises: CODEC unit 701, modulation unit 702, a transmission antenna control unit 703, a demodulation unit 704, the control unit 705 receiving antenna, the frequency conversion unit 706, the transmission / reception control unit 707, with L multibeam antenna of the antenna unit 708, weight calculation unit 709, a pilot signal generation unit 710, and an input - output ports 720.

在图7中,为了避免重复说明,将相同的名称给予具有与图6中的相同功能的部件授予。 In FIG. 7, in order to avoid duplicate description, the name given to the same members having the same functions granted in FIG. 6. 在图7中,导频信号产生单元701产生要发送给基站4的、用于估计无线电波的传播特性的导频信号。 In FIG 7 the guide, a pilot signal generation unit 701 generates propagation characteristics to be transmitted to base station 4, the radio wave for estimating the pilot signal. 多波束天线708向基站4发送由导频信号产生单元710产生的导频信号。 Multibeam antenna guide 708 by the pilot signal generation unit 710 generates the pilot signal to the base station 4.

在基站4使其波束方向图正交化之后,天线传输控制单元703和天线接收控制单元705利用迫零法(zero forcing method)和最大似然估计法中的至少一个来消除干扰波。 After the beam pattern so that the base station 4 orthogonalization, the antenna control unit 703, and an antenna transmission reception control unit 705 by using zero forcing (zero forcing method) and a maximum likelihood estimation method of at least one of canceling interference waves like.

下面,将使用图1中的基站4和第二终端2相互通信的例子来详细说明本实施例中的无线通信方法。 Hereinafter, examples will be used to communicate with each other in FIG 1 the base station 4 and the second terminal 2 will be described wireless communication method of the present embodiment in detail embodiments.

假设值“M”表示整个系统的空间多重性,值“N”是基站4的多波束天线608的天线单元的数目,值“L”是有关终端(在该例子中为第二终端2)的多波束天线708的天线单元的数目,而值“K”表示去向有关终端(在该例子中为第二终端2)的多重性。 Suppose the value "M" represents the spatial multiplicity of the system, the value of "N" is the number of base stations 4 multibeam antenna of the antenna unit 608, a value "L" is related to the terminal (in this example the second terminal 2) number of antenna elements 708 multibeam antenna, and the value of "K" indicates the relevant destination terminal (in this example the second terminal 2) multiplicity. 即,在该例子中,M=5、N=6、L=4和K=2。 That is, in this example, M = 5, N = 6, L = 4 and K = 2. 当然,这些值仅与此例相关,并且可以不同地改变它们。 Of course, these values ​​are only relevant to this embodiment, and they may be changed variously.

基站4的CODEC单元601使包含数据的M个帧被发送到终端1、2和3中的至少一个,并以时间同步的方式将M个帧中的每一个输出到调制单元602。 CODEC unit 601 base station 4 so that M frames containing data to be transmitted to the terminal 1, 2 and 3 at least one, and as to each of the time synchronization unit 602 is output to the modulation of M frames. 调制单元602对每个帧进行多载波调制。 Modulation unit 602 performs multi-carrier modulation for each frame.

如上所述,在与传递函数值hi_j的频率特性相比,子载波的带宽足够窄时,可以用下面的简单公式来表达传递函数值hi_j。 As described above, compared with the frequency characteristics of the transfer function value hi_j, subcarrier bandwidth sufficiently narrow, the following simple formula can be used to express the transfer function value hi_j.

hi_j=Ae-jθ进而,由于子载波信号被正交化,因此能够进行与每个频率无关的通信。 hi_j = Ae-jθ Further, since the sub-carrier signals are orthogonalized, it is possible to carry out independent communication with each frequency.

下面,为了说明简便起见,只说明如何处理频率相同的一组M个子载波信号。 Hereinafter, for simplicity of explanation, only how to handle the same set of M subcarrier frequency signal.

调制单元602将M个子载波调制信号(X1,X2,...,XM)放大成为N个发送信号向量X(X1,X2,...,XM,...,XN)(例如,使用零插入),并向天线传输控制单元603输出N个发送信号向量X。 Modulation unit 602 subcarrier modulation signal M (X1, X2, ..., XM) become the N amplifying a transmission signal vector X (X1, X2, ..., XM, ..., XN) (e.g., a zero insertion), outputs 603 and N transmission antenna transmission signal vector control unit X.

下面,参照图8来说明天线传输控制单元602的细节。 Hereinafter, details will be explained with reference to FIG 8 the transmission control unit 602 of the antenna. 根据公式4或公式7,在考虑到从干扰量估计单元612、导频信号处理单元609和迁移率识别单元611中获得的一个或多个参数的情况下,加权计算单元610计算加权矩阵Wb。 The formula 4 or formula 7, in consideration of the interference amount estimation unit 612, the one or more parameters of the pilot signal processing unit 609 recognition unit 611 and the mobility obtained in the case, the weight calculation unit 610 calculates a weighted matrix Wb.

天线传输控制单元602将加权矩阵Wb(w11,w12,...,w1N,...,wN1,wN2,...,wNN)与发送信号向量X相乘,以产生发送波束向量S(S1,S2,...,SM,...,SN)。 The transmission antenna control unit 602 weighting matrix Wb (w11, w12, ..., w1N, ..., wN1, wN2, ..., wNN) multiplying the transmission signal vector X, to generate a transmission beam vectors S (S1 , S2, ..., SM, ..., SN). 通过数字信号处理以基带频率进行矩阵乘法。 Matrix multiplication process proceeds to a baseband frequency by a digital signal.

变频单元606将发送波束向量S上变频到高频带中,以便产生上变频了的发送波束向量,并在发送/接收控制单元607已经保证时间同步之后,多波束天线608将上变频了的发送波束向量当作为空分复用信号发送给终端1、2和3。 After the conversion unit 606 transmits beam vector S to a high frequency band, for generating a transmission beam vector conversion, and transmission / reception control unit 607 has time to ensure synchronization, a multi-beam antenna 608 of the transmitting frequency when the beam vector as a space division multiplex signal transmitted to the terminal 1, 2 and 3.

终端2的多波束天线708通过去向终端2的一个或多个传播路径来接收来自基站4的空分复用信号。 2 multibeam antenna terminal 708 receives the space division multiplexing signals from the base station 4 via the whereabouts of the terminal 2 or a plurality of propagation paths.

发送/接收控制单元707获取时间同步的接收到的空分复用信号,并且变频单元706将接收到的空分复用信号下变频为到基带频率,以产生接收到的信号向量Y(Y1,Y2,...,YL),并将接收到的信号向量Y输出到天线接收控制单元705。 Transmission / reception control unit 707 acquires time synchronization on the received space division multiplexed signal, and the frequency conversion unit 706 converts the received space division downconverted to the baseband multiplexed signal frequency to produce a received signal vector Y (Y1, Y2, ..., YL), and the received signal vector Y output control unit 705 to the receiving antenna.

下面,参照图9来说明天线接收控制单元705的细节。 Next, the details will be described with reference to FIG. 9 received by the antenna control unit 705. 在考虑到从CODEC单元701和解调单元704中获得的参数的情况下,加权计算单元709使用公式3或公式6来计算加权矩阵Wm。 Taking into account the parameters obtained from the CODEC unit 701 and the demodulation unit 704, the weight calculation unit 709 using Equation 3 or Equation 6 to calculate the weight matrix Wm.

天线接收控制单元705将加权矩阵Wm(q11,q12,...,q1L,qL2,...,qLL)与接收到的信号向量Y相乘,以产生估计的发送向量X'(X'1,X'2,...,X'L)。 The control unit 705 receiving the antenna weight matrix Wm (q11, q12, ..., q1L, qL2, ..., qLL) to the received signal vector Y is multiplied to generate an estimate of the transmit vector X '(X'1 , X'2, ..., X'L).

天线接收控制单元705将估计的发送向量X'减少为包括消除干比的子载波信号的K个元素的向量,以便将其结果输出到解调单元704中。 The antenna control unit 705 receives the estimated transmit vector X 'is reduced to eliminate vectors comprising subcarrier signal to interference ratio of K elements, to output the result to the demodulation unit 704. 解调单元704对该结果进行组成全部子载波的多载波解调,并产生K个接收帧。 Demodulation unit 704 of the results of all the subcarriers composition multicarrier demodulation, and generates K received frames.

上面说明了从基站4到第二终端2的过程。 The above described process from the base station 4 to the second terminal 2. 省略了对从第二终端2到基站4的过程的说明,这是因为它们与以上所述几乎相同。 Omitted from the description of the process of the second terminal 2 to the base station 4, because they are almost the same as the above.

下面,将要说明估计传播特性矩阵H的方法。 Hereinafter, the method will be described of estimating the propagation characteristic matrix H. 如图10所示,终端1、2和3的天线单元Bj(j=1,2,...,10)顺序地和分别地向基站4的天线单元A1,A2,...,A6中的每一个发送用于估计传递函数值(h1_j,h2_j,h3_j,h4_j,h5_j,h6_j)的导频信号。 10, the terminal 2 and the antenna unit Bj 3 (j = 1,2, ..., 10) sequentially and separately to the base of the antenna unit A1 4, A2, ..., A6 of each transmission for estimating a transfer function value (h1_j, h2_j, h3_j, h4_j, h5_j, h6_j) pilot signal. 因此,基站4的导频信号处理单元609能够集中计算传播特性矩阵H。 Thus, the base station pilot signal processing unit 4 calculates the propagation 609 to focus characteristic matrix H.

导频信号可以是未调制信号、伪随机信号(例如,伪噪声码),等等。 Pilot signal may not be a signal, the pseudo random signal (e.g., pseudo noise code), and the like modulation. 在终端1、2和3发生移动以改变它们的传播路径特性时,终端1、2和3的导频信号产生单元710可以向基站4发送导频信号。 When moved to change their propagation path characteristics in the terminal 1, 2 and 3, terminals 1, 2 and 3, a pilot signal generating unit 710 may transmit a pilot signal to the base 4.

下面,参照图11来说明在整个系统上从基站4的导频信号请求到空分复用通信的建立的过程。 Next, with reference to FIG. 11 will be described on the overall system request pilot signal from base station 4 to the space division multiplexing communication establishing process. 在周期T1中,基站4向第一终端1发送导频信号请求,并从第一终端1的天线单元B1-B3依次发送导频信号。 In the period T1, base station 4 transmits a first conduction terminal to request a pilot signal, and sequentially transmits a pilot signal from a first antenna unit terminal of B1-B3 1.

在周期T2中,基站4向第二终端2发送导频信号请求,并从第二终端2的天线单元B4-B7依次发送导频信号。 In the period T2, the second terminal 2 to the base station 4 transmits a pilot request signal, and B4-B7 are sequentially transmits a pilot signal from the second terminal of the antenna unit 2.

在周期T3中,基站4向第三终端3发送导频信号请求,并从第三终端3的天线单元B8-B10依次发送导频信号。 In the period T3, the third terminal 3 to the base station 4 transmits a pilot request signal and sequentially transmits the pilot signal from the third terminal 3 of the antenna element B8-B10.

在周期T4中,基站4估计传播特性矩阵H,并对正交波束进行波束成形。 In the period T4, the base station 4 estimates the propagation characteristic matrix H, beamforming and orthogonal beams. 在周期T5中,基站4将估计的传播特性矩阵H通知给终端1、2和3。 In the period T5, the base station 4 the estimated propagation characteristic matrix H to the terminal 1, 2 and 3.

在周期T6中,终端1、2和3中的每一个都对正交波束进行波束成形。 In the period T6, the terminals 1, 2 and 3 each have a pair of orthogonal beams for beam shaping. 在周期T7中,进行空分复用通信。 In the cycle T7, the space division multiplex communication.

在该实施例中,由于作为中心的基站4进行与终端1、2和3的点对多点的空分复用通信,因而,不从基站4向终端1、2和3发送导频信号,而是从终端1、2和3向基站4发送导频信号。 In this embodiment, since the point to multipoint 4 with a terminal space division multiplexed, 2 and 3 of the communication station as a center, and therefore, not from the base station 2 and the terminal 4 transmits a pilot signal to 3, but guide the base station transmits a pilot signal from the terminal 1, 2 and 4 3. 因此,能够容易地估计传播特性矩阵H。 Accordingly, it is possible to easily estimate the propagation characteristic matrix H.

假设值“N”是基站4的天线单元的数目,值“M”是用于空分复用通信的传播路径的数目。 Suppose the value "N" is the number of base station antenna element 4, the value of "M" is the number of multiplexed channel for communicating air separation. 这里,在M>N的一些情况下,存在传播路径的分离程度可能会下降并可能损坏零控制的精确度的可能性。 Here the possibility of precision, in some cases, M> N, the degree of separation of the presence of the propagation path may be decreased and may damage the zero control.

因此,如图12所示,最好限制由基站4接收的导频信号的数目,以便利用满足条件M<N的矩阵H来形成波束。 Thus, as shown in FIG. 12, it is preferable to limit the number of base station 4 by the pilot received pilot signal, so as to satisfy the condition using M <N matrix H to form a beam. 从而能够很好地保持零控制的精确度。 It can be well controlled to maintain the accuracy of zero.

更具体地说,最好在矩阵H的传递函数值的一部分中插入零,以便减少矩阵H的秩(rank)M,从而限制导频信号的数目。 More specifically, preferably zero is inserted in a portion of the transfer function matrix H value in order to reduce the rank of the matrix H (rank) M, thus limiting the number of pilot signals. 可以根据分配给终端1、2和3的信道优先级来确定导频信号。 It may be determined according to the pilot signal channel allocated to the terminal 1, 2 and 3 priority.

[公式8]H=h1_1,h1_2,h1_3,&CenterDot;&CenterDot;&CenterDot;,h1_10h2_1,h2_2,&CenterDot;&CenterDot;&CenterDot;,h2_10h3_1,h3_2,&CenterDot;&CenterDot;&CenterDot;,h3_100,0&CenterDot;&CenterDot;&CenterDot;,00,0&CenterDot;&CenterDot;&CenterDot;,00,0&CenterDot;&CenterDot;&CenterDot;,0]]>下面,将要说明使终端1、2和3中的波束方向图伪正交化的方法。 [Formula 8] H = h1_1, h1_2, h1_3, & CenterDot; & CenterDot; & CenterDot;, h1_10h2_1, h2_2, & CenterDot; & CenterDot; & CenterDot;, h2_10h3_1, h3_2, & CenterDot; & CenterDot; & CenterDot;, h3_100,0 & CenterDot; & CenterDot; & CenterDot ;, 00,0 & CenterDot; & CenterDot; & CenterDot;, 00,0 & CenterDot; & CenterDot; & CenterDot;, 0]]> next, will be described so that the terminal 1, 2 and 3 of the pseudo-orthogonal beam pattern method. 在该实施例中,如图1所示,即使在终端1、2和3彼此空间分离时也能够进行通信,并且在不通过基站4中继的情况下,终端1、2和3不能相互通信。 In this embodiment, as shown in FIG. 1, it is possible to communicate even when the terminals 1, 2 and 3 spaces separated from each other, and without passing through the relay station 4, the terminals 1, 2 and 3 can not communicate with each other .

换句话说,在此情况下,终端1、2和3中的一个终端不能共享终端1、2和3中的其它两个终端的一个或多个多波束天线。 In other words, in this case, one terminal of the terminals 2 and 3 not shared terminals 1, 2 and the other two terminals of a 3 or more multi-beam antennas.

因此,如图5所示,在基站4和终端1、2和3进行空分复用通信的情况下,终端1、2和3中的任何一个都不能检测全部的接收信号向量Y,并且不能够形成严格的正交性。 Thus, as shown, with the space division multiplexing communication, the terminals 1, 2 and 3, any one can not detect all of the received signal vector Y in the base station and the terminal 1, 2, 4 and 35, and do not capable of forming a strict orthogonality.

在该实施例中,利用迫零法和最大似然估计法中的至少一个来对波束方向图进行伪正交化。 In this embodiment, by using the zero-forcing method and the maximum likelihood estimation method and then at least one of the beam pattern of the pseudo orthogonalized. “伪正交化”是指将传播路径限于具有高路径增益的路径,但是,路径的数目在可形成的零点的数目之内。 "Pseudo-orthogonal" refers to a path having high propagation channel path gains limited, but the number of zero crossings of the number of paths that can be formed in the. 因此,虽然丧失了严格的和数学上的正交性,但是,空分复用通信系统实质上保持了正交性。 Thus, while the loss of orthogonality on the stricter and mathematics, however, the space division multiplexing communication system is essentially maintaining orthogonality.

由于下面的理由,伪正交化是有效的。 For the following reasons, pseudo-orthogonal is effective.

(1)终端1、2和3中的任何一个有少量的去向基站4的传播路径就足够了,即,K<M。 Any one of 1, 2 and 3 (1) a small amount of the whereabouts of the terminal station channel 4 is sufficient, i.e., K <M.

(2)如果终端1、2和3中的任何一个的扩展角θ足够大,其中由去向终端自身的一对传播路径形成该角θ,即便使用具有少量单元的天线,也能减少这一对传播路径之间的干扰。 (2) if any terminal in the spread angle [theta] 1, 2 and 3 of a sufficiently large, wherein the destination terminal itself a propagation path forming the angle [theta], even with a small antenna having a unit that can be reduced to interference between propagation paths.

现在将用在图1的基站4和第二终端2之间进行空分复用通信的情况来具体说明伪正交化方法。 It will now be used in a space division multiplexing method using pseudo-orthogonal to specify the communication between base station 4 and the second terminal of FIG.

假设基站4已利用普通的逆矩阵或特征值/特征向量法确定了加权矩阵Wb,并且波束方向图己正被交化了。 4 has assumed that the base station using a common inverse matrix or eigenvalue / eigenvector method to determine the weighting matrix Wb, and the beam pattern of the cross-hexyl being.

参照图13来说明第二终端2利用迫零法或最大似然估计法的过程。 The second terminal 2 will be described using the zero-forcing process or maximum likelihood estimation method 13 with reference to FIG. 在图13中,假设向量“X”是一个由输入到基站4中的分量组成的发送信号向量,矩阵“Wb”是一个要与发送信号向量X相乘的加权矩阵,而矩阵“H2T”是在基站4和第二终端2之间的传播特性矩阵。 In FIG 13, assuming the vector "X" is a component from the input to the base 4 composed of a transmission signal vector, the matrix "Wb" is a weight matrix to be multiplied with the transmission signal vector X, while the matrix "H2T" is matrix propagation characteristics between base station 4 and the second terminal.

此外,向量“Y”是一个由第二终端2接收的接收信号向量,矩阵“W2m”是一个要与接收信号向量Y相乘的加权矩阵,值“δ”是一个根据接收信号向量Y的误差范数(error norm),而向量“X”是一个由基站4估计的发送信号向量。 Furthermore, the vector "Y" is received by the second terminal 2 receives the signal vector, the matrix "W2m" is a weight matrix to the received signal vector Y is multiplied by the value of "δ" is a reception signal vector Y based on the error norm (error norm), and the vector "X" is estimated by the base station 4 a transmission signal vector.

这里,用公式9来表达传播特性矩阵H2。 Here, Equation 9 is expressed by the propagation characteristic matrix H2. 传播特性矩阵H2是公式1的矩阵H的一个局部矩阵,第二终端2能够根据来自基站4的通知获取传播特性矩阵H2的信息。 H2 propagation characteristic matrix is ​​a partial matrix of the matrix H of equation 1, the second terminal 2 can acquire the information of the propagation characteristic matrix H2 of the notification from the base station 4.

[公式9]H2=h1_4,h1_5,h1_6,h1_7h2_4,h2_5,h2_6,h2_7h3_4,h3_5,h3_6,h3_7h4_4,h4_5,h4_6,h4_7h5_4,h5_5,h5_6,h5_7h6_4,h6_5,h6_6,h6_7]]>在使用迫零法时,公式10是第二终端2使部分矩阵H2对角线化的一个公式。 [Equation 9] H2 = h1_4, h1_5, h1_6, h1_7h2_4, h2_5, h2_6, h2_7h3_4, h3_5, h3_6, h3_7h4_4, h4_5, h4_6, h4_7h5_4, h5_5, h5_6, h5_7h6_4, h6_5, h6_6, h6_7]]> using zero forcing when law, equation 10 is the second terminal portion 2 so that a formula of the diagonal matrix H2. 进而,第二终端2能够利用由公式11表达的加权矩阵W2m来估计发送信号向量X'。 Further, the second terminal 2 can be utilized by the weighting matrix expressing Equation 11 W2m estimated transmission signal vector X '.

[公式10]X'=W2mH2TWbX[公式11]W2m=(H2TWb)-1在使用最大似然估计法时,第二终端2能够通过像循环赛(round robin)那样计算发送信号向量X'可能进行(take)的所有情况来发现误差范数δ最小的情况,来估计发送信号向量X'。 [Formula 10] X '= W2mH2TWbX [Equation 11] W2m = (H2TWb) -1 when using a maximum likelihood estimation method, the second terminal 2 through the transmission signal vector X is calculated as round-robin like (round robin)' may be ( Take all cases) to discover where the error δ minimum norm estimates the transmission signal vector X '. 在公式12中,符号“‖-‖”表示一个范数。 In Formula 12, symbol "‖-‖" denotes a norm.

[公式12]δ=‖Y-H2TWbX'‖ [Equation 12] δ = ‖Y-H2TWbX'‖

类似地,终端1和3能够伪正交化波束方向图。 Similarly, terminals 1 and 3 of the beam can be pseudo-orthogonal directions in FIG.

下面将说明在基站4未完全正交化波束方向图时的空分复用。 It will be explained when the space division multiplexing in the base station of FIG. 4 are not completely orthogonal to the direction of the beam.

如图14所示,当从基站4上来看相邻的传播路径之间的扩展角θ小的时候,可能发生这种情况。 As shown, when the spread angle between adjacent base stations 4 from the point of view θ small channel, it may happen that 14. 例如,在图17(b)中的六元阵列天线具有波束方向图,该波束方向图包括主波束100的中心点以及两个与其相邻的零点101。 For example, in FIG. 17 (b) a six-membered array antenna having the beam pattern, the beam pattern includes a main beam and the center point of two adjacent zeros of 101,100. 由中心点和两个零点101之一形成的角大约为15度。 Angle formed by the center point and one of the two zeros 101 is approximately 15 degrees.

即,在两个传播路径形成一个小于15度的角时,除非增加天线单元的数目,否则不能避免相互干扰。 That is, an angle of less than 15 degrees in the two propagation paths, unless the number of antenna elements is increased, or can not avoid mutual interference. 在此情况下,经管终端1、2和3中的一个或多个已经根据公式10、11和12使波束方向图正交化了,但是仍可出现由干扰而引起的传输错误。 In this case, administered one or more terminals 1, 2 and 3 according to the formula 10, 11 and 12 has a beam pattern of the orthogonal, but are still caused by the interfering transmission error occurs.

在该实施例中,由于基站4已经知道了传播特性矩阵H,所以干扰量估计单元612能够估计基站4的正交波束影响终端1、2和3中的某个终端的接收信号向量Y的干扰量。 In this embodiment, since the base station already knows the 4 propagation characteristic matrix H, so that the interference amount estimating unit 612 can estimate the interference in the received signal vector orthogonal beams impact the base station 4, 2 and 3 terminals a terminal Y, the amount. 在检测到干扰大于确定值的电平的波束方向图时,要从空分复用中排除此波束方向图。 When the beam direction is detected interference level is greater than the value determined in FIG, from this space division multiplexing beam patterns with the excluded.

在传输特性足够缓慢地改变时,干扰量估计单元612能够利用公式13来估计干扰量。 When the transmission characteristic changes slowly enough, the interference amount estimating unit 612 using Equation 13 can be estimated amount of interference.

[公式13]Y=HWmX参照图15来说明使用该估计的一个例子。 [Equation 13] Y = HWmX will be explained using one example of the estimation with reference to FIG 15. 如图15所示,在基站4已估计了第二终端2的干扰量并且一对主波束23和24的干扰量超过了确定值的情况下,基站4就从用于空分复用的该束主波束中排除掉主波束24。 15, the base station 4 has been estimated in the interference amount of the second terminal 2 and the amount of interference a pair of main beams 23 and 24 exceeds a determined value, from the base station 4 on the space division multiplexing beam in the main beam of the main beam 24 excluded.

根据此排除方法,虽然牺牲了某些空间相重性,但是能够有效地减少传播路径之间的干扰以减少传输错误,从而改善通信的可靠性。 The method of this exclusion, although at the expense of some heavy phase space, it is possible to effectively reduce interference between the propagation path to reduce transmission errors, thereby improving the reliability of communication.

在将此排除方法应用到多个终端时,传播路径的总数M增加了,同时也增加了相互干扰的传播路径对。 When this method is applied to a plurality of negative terminals, the total number of M channel increases, also increases the propagation paths interfere with each other pair.

随后,最好进行下面的过程:首先,对于每个波束方向图,计算终端1、2和3的总干扰量;其后,依次排除具有最大总干扰量的波束方向图,除非该干扰量小于确定值。 Subsequently, the following procedure is preferably carried out: First, for each beam pattern, the total amount of interference computing terminal 1, 2 and 3; and thereafter, sequentially exclude a maximum total amount of interference in the beam pattern, interference unless the amount is less than determine the value. 尽管此排除方法的过程是复杂的,但是由于这些过程而使得在整体上能够获得最大的空间多重性。 Although this method of exclusion process is complex, but because these processes make on the whole can get the most space for multiplicity.

为了使用比较容易的过程来防止干扰,选择传播路径使得所有扩展角θ都有足够大的值也是有效的。 In order to use relatively easy procedure to prevent interference, propagation path selected such that all the spread angle θ has a sufficiently large value is also effective.

由于要排除的波束方向图是根据传输特性而随机选择的,在QoS(服务质量)是必需的时,可以根据终端1、2和3的优先级来选择波束方向图。 Since the beam pattern to exclude the transfer characteristics is randomly selected, the QoS (Quality of Service) is required, the beam pattern may be selected based on priority of terminals 1, 2 and 3.

下面,将说明给终端1、2和3分配优先级的方法。 Hereinafter, a method will be described priority assigned to the terminals 1, 2 and 3. 在进行空分复用通信时,可以假设基站4通常处于非移动状态下。 When performing space division multiplex communication, generally it can be assumed that the base station 4 is in a non-moving state. 然而,终端1、2和3中的任何一个都可以处于非移动状态或移动状态下。 However, the terminal 1, 2 and 3 of any one can be in a non-moving state or a moving state.

在存在处于移动状态的终端时,基站4必须在估计移动状态下的终端的移动速度之后,估计传播特性矩阵H。 In the presence of the terminal is in a moving state, the base station 4 must be after the moving speed of the mobile terminal in the state estimation, estimates the propagation characteristic matrix H. 在某些情况下,在扩展角θ改变时,不能进行整体零控制。 In some cases, when the spread angle θ changes, the whole can not be controlled to zero.

因此,在该实施例中,通过使用表示终端1、2和3中的相应终端的移动程度的迁移率的参数来分配优先级,从而有效地形成基站4的正交波束。 Thus, in this embodiment, by using a parameter indicating the degree of mobility of a mobile terminal in a corresponding terminal 2 and 3 assign priorities, effectively forming orthogonal beams 4 of the base station.

例如,如图16所示,在第一终端1处于移动状态下、第二和第三终端2和3处于非移动状态下的情况下,基站4根据传递函数值的基于时间变化的信息来检测终端1、2和3的状态。 For example, as shown in FIG 16, at a first terminal 1 is in a moving state, the second and third terminals 2 and 3 in the case of a non-moving state, the base station 4 detected based on information based on time variation of transfer function values 2 and 3 of the terminal state. 传递函数值是传播特性矩阵H的矩阵元素。 Transfer function value is a propagation characteristic matrix of the matrix elements of H. 然后,基站4将高迁移率分配给第一终端1,而将低迁移率分配给第二终端2和第三终端3。 Then, the base station 4 assigns a high mobility to the first terminal 1, and the low mobility assigned to the second terminal 2 and the third terminal 3.

对于每种应用可以不同地设置优先级。 For each application can be set differently priority. 例如,在以高速几乎实时地发送数据以便只允许在几秒钟之内的传输延迟时间的情况下,最好将较高的优先级分配给具有低迁移率的终端。 For example, in a case where the transmission data almost in real time at high speed in order to allow transmission of only a few seconds delay time, the higher priority is preferably assigned to a terminal having a low mobility.

从而,减少了影响正交波束的动态干扰因素并将高优先级分配给难于移动的波束。 Thus, reducing the dynamic interference factors and orthogonal beams of high priority is assigned to the beams are difficult to move. 结果,通过防止实时通信的中断(outage),能够稳定地确保整个系统的空间多重性。 As a result, by preventing real-time communication interruption (outage), the entire system can ensure space multiplicity stable. 在图16中,在出现干扰时,从空分复用中排除去向第一终端1的主波束21。 In FIG. 16, when the interference occurs, excluded from the space division multiplexing, a first destination terminal main beam 1 21.

最好给终端1、2和3中的任何一个分配一个迁移率标识符(例如,仅整数值)。 Preferably any assigned to the terminal 2 and 3 a mobility identifier (e.g., only integer values). 然后,基站4只通过参照迁移率标识符,能够省略用于检查终端1、2和3的状态的过程。 Then, the base station 4 by referring to the identifier of the mobility, status checking process can be omitted, 2 and 3 terminals.

进而,最好根据其大量使用形式将固定迁移率标识符分配给终端1、2和3中的任何一个,在终端1、2和3的每个CODEC单元701中存储所分配的固定迁移率标识符。 Further, preferably according to their extensive use in the form of fixed mobility identifier assigned to the terminal 1, 2 and 3 of any one of the fixed terminals 2 and the mobility in each CODEC unit 3 stores the assigned identifier 701 symbol. 终端1、2和3的每一个都及时向基站4发送它的迁移率标识符,基站4的迁移率识别单元611识别所发送的迁移率标识符,并且基站4将所识别的迁移率标识符反映到优先级控制上。 Terminals 1, 2 and 3 are each in a timely manner to the base station 4 transmits its identifier mobility, the mobility of the mobility base station identification 611 identifying unit 4 of the transmitted identifier, the base station 4 and the mobility of the identified identifier reflected in the priority control.

最好,在终端1、2和3之一发生移动时,这个终端向基站4发送用于估计在该终端与基站4之间的无线电波传播特性的移动导频信号。 Preferably, when one of the terminals 2 and 3 moves, the mobile terminal transmits the pilot for estimating a propagation characteristic between the terminal and the base station 4 to the base station radio wave frequency signals 4. 基站4接收此移动导频信号,并重新计算与这个终端有关的传递函数值。 The mobile station 4 receives the pilot signal, and recalculating the value of the transfer function relating to this terminal. 然后,基站4根据重新计算的传递函数值来使基站多波束天线的波束方向图正交化。 Then, the base station 4 from the transfer function values ​​recalculated for the base station to the multi-beam antenna beam pattern of FIG orthogonalization.

这里,基站4可以重新计算与一个或多个没有移动的终端有关的传递函数值。 Here, base station 4 can re-calculated transfer function value with the one or more mobile terminals not relevant. 或者,基站也可以不重新计算与一个或多个没有移动的终端有关的传递函数值。 Alternatively, the base station may not be re-calculated transfer function value with the one or more mobile terminals not relevant.

产业上的可应用性最好,将本发明的无线通信系统用于具有点对多点网络拓扑结构的无线局域网和无线音频视频流等技术领域中。 Industrial Applicability Preferably, the radio communication system of the present invention is used in the field of wireless LAN technology wireless audio and video streams with the multipoint network topology.

上面已参照附图说明了本发明的优选实施例,应当了解的是,本发明并不限于这些明确的实施例,在不偏离如所附的权利要求中所定义的本发明的范围或精神的情况下,本领域技术人员可以进行各种变更和修改。 The above has been described with reference to the accompanying drawings of the preferred embodiment of the present invention, it should be understood that the present invention is not limited to those precise embodiments, the scope or spirit of the present invention without departing from the appended claims as defined case, those skilled in the art may make various changes and modifications.

Claims (23)

1.一种无线通信系统,包括:基站;多个终端;和控制单元,其中,所述基站和所述多个终端中的每一个用于使用相同的频率来同时进行信息的空分复用无线传输,其中,所述多个终端中的至少一个通过多个传播路径与所述基站通信,其中,所述基站包括用于空分复用无线传输的基站多波束天线,其中,所述基站多波束天线包括多个基站天线单元,其中,所述多个终端中的每一个都包括用于空分复用无线传输的终端多波束天线,其中,所述终端多波束天线包括多个终端天线单元,以及其中,所述控制单元用于使所述基站多波束天线的波束方向图正交化,从而控制空分复用无线传输。 A wireless communication system, comprising: a base station; a plurality of terminals; and a control unit, wherein the base station and the plurality of terminals in a space for each of the same frequency at the same time using the information division multiplexing radio transmission, wherein said plurality of terminals in at least one of the plurality of propagation paths communicate with the base station, wherein the base station comprises a base station for a wireless transmission space division multiplexing multi-beam antenna, wherein the base station multibeam antenna base comprising a plurality of antenna elements, wherein each of said plurality of terminals includes a terminal space division multiplex wireless transmission of multi-beam antenna, wherein, said terminal comprising a plurality of multi-beam antenna terminal antenna unit, and wherein said base station control means for causing the multi-beam antenna beam pattern of FIG orthogonalization, thereby controlling the wireless transmission space division multiplexing.
2.如权利要求1所述的无线通信系统,其中,所述控制单元根据多个传递函数值来使所述基站多波束天线的波束方向图正交化,所述传递函数值用于确定在所述多个基站天线单元和所述多个终端天线单元之间的无线电波传播特性。 2. The wireless communication system according to claim 1, wherein the control unit so that the beam direction of the base station according to a plurality of multi-beam antenna of FIG orthogonalization transfer function value, the transfer function is used to determine the said plurality of radio wave propagation characteristics between the base station antenna elements and said plurality of terminal antenna units.
3.如权利要求1所述的无线通信系统,其中,所述基站天线单元的数目大于在所述多个终端中的所述终端天线单元的最大数目。 The maximum number of wireless communication system according to claim 1, wherein the number of antenna elements is greater than the base of said plurality of terminals in the terminal antenna unit.
4.如权利要求2所述的无线通信系统,其中,所述多个终端中的每一个都向所述基站发送用于估计在所述多个终端中的每一个和所述基站之间的无线电波传播特性的导频信号,其中,所述基站接收导频信号,以及其中,所述控制单元根据导频信号来计算多个传递函数值。 4. The wireless communication system according to claim 2, wherein said plurality of terminals each transmits to the base station estimated to be between the plurality of terminals and each of the base station radio wave propagation characteristics pilot frequency signal, wherein the base station receives the pilot signal, and wherein said control means calculates a plurality of transfer function values ​​based on the pilot signal.
5.如权利要求2所述的无线通信系统,其中,所述控制单元计算信道矩阵的特征向量,该信道矩阵的矩阵元素由多个传递函数值组成,以及其中,所述控制单元利用信道矩阵的特征向量来控制一组要施加到所述多个基站天线单元上的加权。 5. The wireless communication system according to claim 2, wherein the control feature vector calculating unit channel matrix, the matrix elements of the channel matrix composed of a plurality of transfer function values, and wherein said control unit uses the channel matrix feature vector to a set of weighted control on the plurality of base stations to be applied to the antenna units.
6.如权利要求2所述的无线通信系统,其中,所述控制单元计算信道矩阵的多个对角线元素,该信道矩阵的矩阵元素由多个传递函数值组成,以及其中,所述控制单元使用该信道矩阵的多个对角线元素来控制一组要施加到所述多个基站天线单元上的加权。 6. The wireless communication system according to claim 2, wherein said controlling the plurality of diagonal elements of the channel matrix calculation unit, the matrix elements of the channel matrix by a plurality of transfer function values ​​composition, and wherein said control units using the channel matrix to control the plurality of diagonal elements of a set of weights on the plurality of base stations to be applied to the antenna units.
7.如权利要求2所述的无线通信系统,其中,当所述多个终端之一发生移动时,所述多个终端之一向所述基站发送移动导频信号,该移动导频信号用于估计在所述多个终端之一和所述基站之间的无线电波传播特性,所述基站接收该移动导频信号,所述控制单元重新计算与所述多个终端之一有关的多个传递函数值,并且,所述控制单元根据多个重新计算的传递函数值来使所述基站多波束天线的波束方向图正交化。 7. The wireless communication system according to claim 2, wherein, when one of the plurality of terminals moves, one of the plurality of mobile terminals transmits to the base station pilot signal, the pilot signal for the mobile estimating the radio wave propagation characteristics between one of the plurality of terminals and the base station, the mobile station receives the pilot signal, a plurality of transmission associated with one of said plurality of terminal control unit recalculates function value, and the control unit to cause the beam direction of a multibeam antenna of the base station according to a plurality of transfer function values ​​recalculated orthogonalization FIG.
8.如权利要求7所述的无线通信系统,其中,所述控制单元重新计算与一个或多个未移动的终端有关的多个传递函数值,该一个或多个未移动的终端属于所述多个终端。 8. The wireless communication system according to claim 7, wherein the control unit re-calculates a plurality of transfer function values ​​to one or more mobile terminals are not associated, the one or more mobile terminals not belonging to the a plurality of terminals.
9.如权利要求7所述的无线通信系统,其中,所述控制单元不重新计算与一个或多个未移动的终端有关的多个传递函数值,该一个或多个未移动的终端属于所述多个终端。 9. The wireless communication system according to claim 7, wherein said control unit does not recalculate the plurality of transfer function values ​​to one or more mobile terminals are not associated, the one or more mobile terminals not belonging to the said plurality of terminals.
10.如权利要求7所述的无线通信系统,其中,所述控制单元利用作为表示所述多个终端之一在单位时间内、在空间中移动的程度的参数的迁移率来确定所述基站多波束天线的正交化的优先级。 10. As represented by the one of the plurality of terminals in a unit time, the degree of movement in space mobility parameters to determine the base station of the plurality of wireless communication system as claimed in claim 7, wherein said control unit uses priority orthogonalization beam antenna.
11.如权利要求10所述的无线通信系统,其中,所述控制单元确定所述基站多波束天线的正交化的优先级,以使得具有特定迁移率的所述多个终端之一的优先级高于具有大于该特定迁移率的迁移率的所述多个终端中的另一个的优先级。 11. The wireless communication system of claim 10, wherein the control unit determines the priority of the base station of the orthogonal multi-beam antenna, so that the priority of the one of the plurality of terminals having a specific mobility another level is higher than the plurality of terminals having a mobility greater than the specific mobility of priority.
12.如权利要求10所述的无线通信系统,其中,根据给所述多个终端的各个标识符来表达所述多个终端的迁移率,所述多个终端向所述基站发送各个标识符,所述控制单元接收由所述多个终端发送的各个标识符,并且,所述控制单元根据从所述基站接收的各个标识符来确定所述基站多波束天线的正交化的优先级。 12. The wireless communication system of claim 10, wherein each of the plurality of identifiers of the terminals to be expressed mobility of the plurality of terminals based on the identifier of each of the plurality of terminals transmits to the base station , the control unit receives the identifier transmitted by each of the plurality of terminals, and the control unit determines the priority of the base station orthogonal multibeam antenna according to each identifier received from the base station.
13.如权利要求1所述的无线通信系统,其中,在所述基站中提供所述控制单元。 13. The wireless communication system according to claim 1, wherein said control unit is provided in the base station.
14.一种用于无线通信系统的基站,该无线通信系统包括所述基站和多个终端,所述基站和所述多个终端利用相同的频率同时进行信息的空分复用无线传输,所述多个终端中的每一个都包括多个终端天线单元,所述基站包括:由多个基站天线单元组成的基站多波束天线;以及天线控制单元,用于通过所述多个基站天线单元来控制空分复用无线传输,其中,所述天线控制单元计算多个传递函数值,所述传递函数值用于确定在所述多个基站天线单元和所述多个终端天线单元之间的无线电波传播特性,以便根据所确定的无线电波传播特性来使所述基站多波束天线的波束方向图正交化。 14. A base station for a wireless communication system, the wireless communication system comprises a frequency of the base station and multiple terminals, the base station and the plurality of terminals simultaneously using the same radio transmission space division multiplexing information, the each of said plurality of terminals includes a plurality of terminals of antenna elements, said base station comprising: a plurality of base station antennas by a multibeam antenna units; and an antenna control unit, through said plurality of base station antenna units control space division multiplexing wireless transmission, wherein a plurality of the antenna control unit calculates the value of a transfer function, said transfer function value for determining the radio between base stations of the plurality of antenna elements and said plurality of antenna elements of the terminal wave propagation characteristics, the base station so as to cause the multi-beam antenna beam pattern in accordance with FIG orthogonalization radio wave propagation characteristics determined.
15.如权利要求14所述的基站,其中,所述基站还包括:干扰量估计单元,用于估计在所述多个终端和所述基站之间的一对传播路径中的干扰量,其中,所述天线控制单元根据由所述干扰量估计单元所估计的干扰量来确定所述基站多波束天线的波束方向图。 15. The base station according to claim 14, wherein the base station further comprises: interference amount estimating means for estimating the amount of interference in the propagation path between a pair of said plurality of terminals and the base station, wherein the control unit determines the antenna beam pattern of the base station of a multibeam antenna according to the interference amount estimated by the interference amount estimation unit.
16.如权利要求14所述的基站,其中,所述基站还包括:迁移率识别单元,用于识别所述多个终端中的每一个的迁移率,该迁移率表示所述多个终端之一在单位时间内、在空间中移动的程度,其中,所述天线控制单元根据由所述迁移率识别单元所识别的迁移率来确定所述基站多波束天线的波束方向图。 16. The base station according to claim 14, wherein the base station further comprising: a mobility identification unit for identifying the mobility of each of the plurality of terminals, which is represented by mobilities of the plurality of terminals in a unit of time, the degree of movement in space, wherein the control unit determines the antenna base multi-beam antenna beam pattern in accordance with the mobility of the mobility of the identification unit.
17.一种用于无线通信系统的终端,该无线通信系统包括基站和多个终端,所述多个终端中的每一个都包括所述终端,所述多个终端和所述基站利用彼此相同的频率同时进行信息的空分复用无线传输,所述终端包括:由多个终端天线单元组成的终端多波束天线;以及导频信号产生单元,用于产生用于估计在所述基站和所述终端之间的无线电波传播特性的导频信号,其中,所述终端多波束天线向所述基站发送由所述导频信号产生单元产生的导频信号。 17. A terminal in a wireless communication system, the wireless communication system including a base station and a plurality of terminals, said plurality of terminals of said terminal each comprise a plurality of terminals and the base to each other with the same the frequency at which space division multiplex wireless transmission of information, said terminal comprising: a terminal used by a plurality of antenna elements of the terminal multibeam antenna; and a pilot signal generating means for generating in the base station and for estimating the guiding a radio wave propagation characteristics between the terminals of said pilot signal, wherein the multi-beam antenna transmits from the terminal to the base station generates a pilot signal pilot signal generation unit.
18.如权利要求17所述的终端,其中,所述终端还包括:天线控制单元,用于通过所述多个终端天线单元来控制无线通信,以及其中,在所述基站已使其波束方向图正交化之后,所述天线控制单元利用迫零法和最大似然估计法中的至少一个来消除干扰波。 18. The terminal according to claim 17, wherein said terminal further comprises: an antenna control unit for controlling the plurality of radio communication terminals through the antenna units, and wherein, in said base station so that it has a beam direction FIG after orthogonalization, the antenna control unit using the zero forcing method and the maximum likelihood estimation method to eliminate at least one of the interference waves.
19.一种用于在基站和多个终端之间使用相同的频率同时进行信息的空分复用无线传输的无线通信方法,该基站包括含有多个基站天线单元的基站多波束天线,多个终端中的每一个都包括含有多个终端天线单元的终端多波束天线,所述方法包括:通过多个传播路径在多个终端中的至少一个和基站之间进行通信;从多个终端中的每一个向基站发送用于估计无线电波传播特性的导频信号;根据导频信号计算在基站的多个基站天线单元和多个终端的多个终端天线单元之间的无线电波传播特性的多个传递函数值;以及根据无线电波传播特性的多个传递函数值来使基站多波束天线的波束方向图正交化。 19. A between a base station and a plurality of terminals simultaneously use the same frequency multiplexing wireless communication method of a wireless transmission space division information, the base station including a base station comprising a plurality of multi-beam antenna of antenna elements, a plurality of each terminal includes a terminal end containing a plurality of multi-beam antenna of antenna elements, the method comprising: communicating via a plurality of propagation paths in the plurality of terminals and at least between a base station; a plurality of terminals from transmitting each pilot signal for estimating a radio wave propagation characteristics of the base station; a plurality of propagation characteristics of the pilot signal is calculated between the plurality of terminals a plurality of antenna units and a base station antenna units of the plurality of terminals of the radio wave transfer function value; and the plurality of transfer functions for the base station according to the radio wave propagation characteristic value of the multi-beam antenna beam pattern of FIG orthogonalization.
20.如权利要求19所述的无线通信方法,其中,基站天线单元的数目大于多个终端中的终端天线单元的最大数目。 20. The wireless communication method according to claim 19, wherein the number of antenna elements of the base station a maximum number of the plurality of terminals in the cell is greater than the antenna.
21.权利要求19提出的无线通信方法,其中,所述计算包括:计算信道矩阵的特征向量,所述信道矩阵的矩阵元素由多个传递函数值组成,以及其中,所述正交化包括:利用信道矩阵的特征向量来控制一组要施加到多个基站天线单元上的加权。 21. The wireless communication method claimed in claim 19, wherein said calculating comprises: calculating the eigenvectors of the channel matrix, the matrix elements of the channel matrix composed of a plurality of transfer function values, and wherein said orthogonalization comprising: using the channel matrix to control a set of eigenvectors in the plurality of weights to be applied to the base station antenna elements.
22.如权利要求19所述的无线通信方法,其中,所述计算包括:计算信道矩阵的多个对角线元素,该信道矩阵的矩阵元素由多个传递函数值组成,以及其中,所述正交化包括:利用信道矩阵的多个对角线元素来控制一组要施加到多个基站天线单元上的加权。 22. The wireless communication method according to claim 19, wherein said calculating comprises: calculating a plurality of diagonal elements of the channel matrix, the matrix elements of the channel matrix composed of a plurality of transfer function values, and wherein said orthogonalization comprising: using a plurality of diagonal elements of the channel matrix to a set of weighted control on the plurality of base stations to be applied to the antenna units.
23.如权利要求19所述的无线通信方法,还包括:在多个终端之一发生移动时,从所述多个终端之一向所述基站发送用于估计在所述多个终端之一和所述基站之间的无线电波传播特性的移动导频信号;接收移动导频信号;重新计算与所述多个终端之一有关的多个传递函数值;以及根据多个重新计算的传递函数值来使基站多波束天线的波束方向图正交化。 23. The wireless communication method according to claim 19, further comprising: when one of the plurality of terminals moves from one of said plurality of terminal for estimating a transmission in one of the plurality of terminals to the base station and the movement guide radio wave propagation characteristics between base station pilot signal; receiving mobile pilot signal; a plurality of transfer functions recalculated value associated with one of said plurality of terminals; and a plurality of transfer function values ​​recalculated for the base station to the multi-beam antenna beam pattern of FIG orthogonalization.
CN 200480015806 2003-11-14 2004-11-11 Space division multiplex wireless communication system, device and method for the same CN1802800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384894 2003-11-14

Publications (1)

Publication Number Publication Date
CN1802800A true CN1802800A (en) 2006-07-12

Family

ID=34587340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200480015806 CN1802800A (en) 2003-11-14 2004-11-11 Space division multiplex wireless communication system, device and method for the same

Country Status (3)

Country Link
JP (1) JP2007515091A (en)
CN (1) CN1802800A (en)
WO (1) WO2005048485A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933270A (en) * 2008-02-05 2010-12-29 松下电器产业株式会社 Base station device, terminal device, and wireless communication system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080227387A1 (en) * 2005-07-04 2008-09-18 Andersson Mats H Los Mimo Beamforming
JP2007074189A (en) * 2005-09-06 2007-03-22 Mitsubishi Electric Corp Radio communication system, user terminal and base station
JP4602225B2 (en) * 2005-10-28 2010-12-22 三菱電機株式会社 Wireless communication apparatus and multi-user MIMO system
JP4584155B2 (en) * 2006-02-10 2010-11-17 日本電信電話株式会社 Wireless communication method and wireless communication apparatus
JP2007251739A (en) * 2006-03-17 2007-09-27 Hitachi Kokusai Electric Inc Antenna control method of transmission apparatus
US8885744B2 (en) 2006-11-10 2014-11-11 Qualcomm Incorporated Providing antenna diversity in a wireless communication system
JP4903593B2 (en) * 2007-02-01 2012-03-28 三洋電機株式会社 Receiving method and apparatus
US8325842B2 (en) 2007-05-10 2012-12-04 Alcatel Lucent Method and apparatus for pre-processing data to be transmitted in multiple-input communication system
WO2008146402A1 (en) * 2007-06-01 2008-12-04 Mitsubishi Electric Corporation Communication system
JP4607982B2 (en) * 2008-03-28 2011-01-05 日本電信電話株式会社 Radio transmission method, base station apparatus, radio communication method, and radio communication system
JP5538738B2 (en) 2009-03-12 2014-07-02 キヤノン株式会社 Wireless communication apparatus, control method therefor, and program
JP2012050131A (en) * 2011-10-31 2012-03-08 Mitsubishi Electric Corp Communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631698B2 (en) * 2001-04-09 2005-03-23 日本電信電話株式会社 OFDM signal transmission system, OFDM signal transmitter and OFDM signal receiver
DE10223564A1 (en) * 2002-05-27 2003-12-11 Siemens Ag Method for transmitting information in a radio communication system with a transmitting station and receiving stations, each with an antenna with a plurality of antenna elements and a radio communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933270A (en) * 2008-02-05 2010-12-29 松下电器产业株式会社 Base station device, terminal device, and wireless communication system
US8620221B2 (en) 2008-02-05 2013-12-31 Panasonic Corporation Base station device, terminal device, and wireless communication system

Also Published As

Publication number Publication date
JP2007515091A (en) 2007-06-07
WO2005048485A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
Xie et al. A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis expansion model
CN1307807C (en) Radio communication system
US9288800B2 (en) Wireless communications system that supports multiple modes of operation
CN1196277C (en) Transmit diversity method and system
KR101923200B1 (en) Method and system for alternate feedback types for downlink multiple user mimo configurations in a communication network
US7096041B2 (en) Beam forming method
TWI530110B (en) Method and apparatus for supporting multi-user and single-user mimo in a wireless communication system
US8693566B2 (en) Methods and systems for combined cyclic delay diversity and precoding of radio signals
JP4604798B2 (en) Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
KR101381130B1 (en) Multi-user precoding and scheduling method and base station for implementing the method
US20050141624A1 (en) Multiantenna communications apparatus, methods, and system
CN102484554B (en) Flexible sdma and interference suppression
Shang et al. Multiuser MISO interference channels with single-user detection: Optimality of beamforming and the achievable rate region
TWI443989B (en) Method, apparatus and system for communicating in a wireless network and article of manufacture therefor
Ngo et al. Cell-free massive MIMO versus small cells
US20090066577A1 (en) Method and System for Beamforming in a Multiple User Multiple Input Multiple Output (MIMO) Communication System Using a Codebook
Vaze et al. The degree-of-freedom regions of MIMO broadcast, interference, and cognitive radio channels with no CSIT
KR100575993B1 (en) Method and apparatus for scheduling multi-user in wireless communication system using multiple transmit/receive antenna
Chen et al. Multi-antenna relay aided wireless physical layer security
Zorzi et al. Cross-layer issues in MAC protocol design for MIMO ad hoc networks
US8593976B2 (en) Wireless base station and terminal equipment
JP4559477B2 (en) Beam forming apparatus and method in multiple antenna system
CN100555906C (en) Method and apparatus based on MIMO communication system
EP1598955A2 (en) Beamforming method for a MIMO space division multilplexing system
US7006579B2 (en) ISI-robust slot formats for non-orthogonal-based space-time block codes

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)