CN1801614B - Piezoelectric thin film resonator with mass loading in perimeter - Google Patents

Piezoelectric thin film resonator with mass loading in perimeter Download PDF

Info

Publication number
CN1801614B
CN1801614B CN 200510079662 CN200510079662A CN1801614B CN 1801614 B CN1801614 B CN 1801614B CN 200510079662 CN200510079662 CN 200510079662 CN 200510079662 A CN200510079662 A CN 200510079662A CN 1801614 B CN1801614 B CN 1801614B
Authority
CN
China
Prior art keywords
ring
electrode
resonator
thin film
film bulk
Prior art date
Application number
CN 200510079662
Other languages
Chinese (zh)
Other versions
CN1801614A (en
Inventor
R·沙恩·法斯奇奥
丰红均
保罗·布拉德利
理查德·鲁比
Original Assignee
安华高科技杰纳勒尔Ip(新加坡)私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US61525504P priority Critical
Priority to US60/615,255 priority
Priority to US10/990,201 priority patent/US7280007B2/en
Priority to US10/990,201 priority
Application filed by 安华高科技杰纳勒尔Ip(新加坡)私人有限公司 filed Critical 安华高科技杰纳勒尔Ip(新加坡)私人有限公司
Publication of CN1801614A publication Critical patent/CN1801614A/en
Application granted granted Critical
Publication of CN1801614B publication Critical patent/CN1801614B/en

Links

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezo-electric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezo-electric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezo-electric or electrostrictive materials characterized by a particular shape

Abstract

In an FBAR resonator structure (FBAR) made of electrodes sandwiching a piezoelectric material, the intersection of the two conducting electrodes defines the active area of the acoustic resonator. To improve the Q of the resonator the active area is divided into concentric areas by a frame or annulus near the perimeter of one of the electrodes. The materials chosen are such that the acoustic impedance of the material within the annulus or frame has a first value, the acoustic impedance of the material outside the annulus or frame has a second value and the acoustic impedance of the annulus hasa third value greater than either the first value or the second value., and a central region. This arrangement is said to suppress lateral modes within the resonator.

Description

具有一质量负荷周边的薄膜体声波谐振器 Having a mass load of the surrounding thin film bulk acoustic resonators

技术领域[0001] 无 Technical Field [0001] None

背景技术 Background technique

[0002] 典型的薄膜体声波谐振器(FBAR)是一种包括由(例如)钼制成的一底部电极和一顶部电极的三层装置。 [0002] A typical thin film bulk acoustic resonator (the FBAR) comprises a (e.g.) a bottom electrode made of molybdenum, and a top electrode of the three means. 例如氮化铝(A1N)的压电材料介于所述两个电极之间。 For example, aluminum (A1N) nitride piezoelectric material interposed between the two electrodes. 如Ruby 等人在2000年5月9日颁发的让渡给AgilentTechnologies的美国专利第6, 060, 818 号"SBAR Structures and Method ofFabrication of SBAR/FBAR Film Processing Techniques for the Ma皿facturingof SBAR/FBAR Filters"中所揭示,这个装置放置于一形成于一衬底(例如硅)中的凹陷处或"游泳池"之上,其中以一牺牲材料填充这个凹陷处。 As Ruby et al., US Patent No. 6, 060, 818 in 2000, May 9 issued transfer to AgilentTechnologies of "SBAR Structures and Method ofFabrication of SBAR / FBAR Film Processing Techniques for the Ma dish facturingof SBAR / FBAR Filters" disclosed, the device is placed on a substrate is formed on a (e.g., silicon) on top of the depression or "pool", wherein a sacrificial material to fill the recess. 当去除所述牺牲材料时,在谐振器边缘围绕所述周边固定于硅衬底处产生一"独立式膜"。 When removing the sacrificial material surrounding the edge of the resonator is fixed to the periphery of the silicon substrate is generated at a "stand-alone film." 图l展示一位于池之上并固定在所述池的边缘且接着连接到一垫片的现有技术声波谐振器的一裂开(cleaved)部分。 A split (of cleaved) above shows a portion of Figure l is located at the edge of the pool and the pool is fixed and is then connected to a pad of the prior art acoustic wave resonator.

[0003] 这个谐振器的有效面积由所述顶部电极与底部电极之间的重叠界定。 Active area [0003] The resonator is defined by the overlap between said top and bottom electrodes. 如Ruby 等人在2002年5月7日颁发的让渡给Agilent Technologies的美国专利第6, 384, 697 号"Cavity spanning Bottom Electrode of a Substrate-Mounted BulkAcoustic Resonator"中所揭示,底部电极通常跨过整个游泳池以将机械强度最大化。 Ruby et al., U.S. Patent No. 2002 issued May 7 transfer to the sixth Agilent Technologies, 384, No. 697 "Cavity spanning Bottom Electrode of a Substrate-Mounted BulkAcoustic Resonator" disclosed in, across the bottom electrode is typically the entire pool to maximize the mechanical strength. 如Ruby等人在2002年7月23日颁发的让渡给Agilent Technologies的美国专利第6, 424, 237号"Bulk Acoustic Perimeter Reflection System"中所教示,以将所述系统的Q最大化的量将顶部电极拉进所述游泳池内部(可能的地方)。 U.S. Patent No. 6, 424, 237 as in Ruby et al., Issued July 23, 2002 to transfer to the Agilent Technologies "Bulk Acoustic Perimeter Reflection System" taught in, the system to maximize the amount of Q the top electrode is drawn into the interior of the pool (where possible).

[0004] 谐振器也可以包括一基本覆盖所述顶部电极全部面积的质量负荷层。 [0004] The resonator may also comprise a cover substantially the entire area of ​​the top electrode mass loading layer. 此层降低了所述谐振器的谐振频率。 This layer reduces the resonant frequency of the resonator. 对于使用梯、半梯或点阵类型拓扑结构的滤波器而言,此层允许频率存在差别。 For use ladder filter, the lattice type or semi-ladder topology, the presence of this layer allows frequency differences. 半梯滤波器由级联串联谐振器(seriesresonator)和并联谐振器(shunt resonator)制成。 Semi ladder filter is composed of a cascade series resonator (seriesresonator) and parallel resonators (shunt resonator) is made. 质量负荷降低了与串联谐振器相关的并联谐振器的频率。 Mass load reduces the frequency associated with the series resonators of the parallel resonator. [0005] 为成功使用这些滤波器,包含所述滤波器的每一谐振器的质量因数或Q均须很高。 Or quality factor Q of each resonator [0005] The successful use of these filters, the filter must contain very high. Q是被谐振器以各种方式损耗的能量数量所除的存储在所述谐振器内的射频(rf)能量的数量。 Q is the number of RF resonator amount of energy losses in various ways in addition to the stored in the resonator (rf) energy is. 如果在所述谐振器中不存在能量损耗,那么Q将为无穷大。 If there is no energy loss in the resonator, the Q would be infinite. 存储在这一频率的谐振器中的实际能量是以机械运动的形式而存在的。 The actual energy stored in the resonator of this frequency is in the form of mechanical motion exists. 然而,总是存在一些损耗。 However, there is always some of the losses. 一种损耗机理为热声损耗(thermalacoustic loss),其中转化为热量的机械能(例如,系统作为热量而损耗的能量)不容易再转化为rf能量。 One kind of heat loss mechanism for the acoustic loss (thermalacoustic loss), wherein the mechanical energy is converted to heat (e.g., heat loss of the system as energy) is not readily re-converted to rf energy.

[0006] 边缘处的能量损耗有两个来原。 Energy [0006] There are two edges to the original loss. 第一,转化成侧向模式形式的声能可从所述谐振器侧面泄漏并逸入所述衬底中。 First, the sound is converted into energy in the form of lateral mode can leak from the resonator side and escape into the substrate. 谐振器只恢复了所述能量的极少一部分。 Resonator only a very small part of the recovered energy. 第二,由于这些边缘曝露在各种干式和湿式化学处理中,薄膜边缘的轮廓和质量通常较差。 Second, since the edge is exposed to a variety of these dry and wet chemical treatment, the film quality and the edge contour is usually poor. 侧向模式将对这些粗糙边缘进行"取样"并通过从所述粗糙边缘分散且通过边缘处原子的声迁移(acoustic migration)而损耗能量。 These rough edges lateral mode will be "sampled" by the rough edges and dispersed from the edge of the migration of atoms sound (acoustic migration) and energy loss. 因此,将侧向模式与所述谐振器边缘的相互作用最小化很重要。 Therefore, the lateral mode interaction with the edge of the resonator is important to minimize.

3发明内容 3 SUMMARY OF THE INVENTION

[0007] 通过产生经精密界定的声阻抗失配增加薄膜体声波谐振器(FBAR)中的有损耗侧向模式的Q,例如距离所述FBAR有效面积的边缘大约四分之一波长(或多个四分之一波长)的宽度,使得在对任何缺陷进行"取样"之前,侧向模式已自此边缘反射。 [0007] defined by the precision by generating an acoustic impedance mismatch lateral mode increases Q lossy thin film bulk acoustic resonator (FBAR) is, for example, about a quarter wavelength from the edge of the active area of ​​the FBAR (or quarter wavelength) has a width, such that any defects before "sample", since lateral mode has the edge reflection. 经提高的Q增强了由FBAR谐振器构件所构成的滤波器和双工器的产率。 Q enhanced by increasing the yield by the filters and duplexers FBAR resonator constituted member.

[0008] 通过更好地俘获所述侧向模式并提高这些侧向模式的Q来提高所述谐振器的总Q。 [0008] to increase the total by the resonator Q. better lateral capture mode and the lateral mode of the improved Q 这反过来又提高了包括基谐模式的整个谐振器系统的Q。 This in turn increases the overall resonator system comprises a fundamental mode of Q. 这通过将一环沿界定所述谐振器的有效面积的周边而添加到两个电极中的至少一个来完成。 This is accomplished by defining the periphery of the effective area along the resonator is a ring added to at least one of the two electrodes to complete.

[0009] 谐振器结构(FBAR)由将压电材料夹在中间的两个电极制成。 [0009] The resonator structure (the FBAR) is made of a piezoelectric material sandwiched between two electrodes in the middle. 两个导电电极的相交界定了所述声波谐振器的有效面积。 The intersection of two conductive electrodes defining the effective area of ​​the acoustic wave resonator. 将所述有效面积划分为两个同心区域:一周边或帧及一中心区域。 The effective area is divided into two concentric zones: a frame and a peripheral or central area. 将一环添加到两个导电电极中的一个以提高所述电性能(就Q而言)。 Be a ring added to a two conducting electrodes to increase the electrical performance (in terms of Q).

附图说明 BRIEF DESCRIPTION

[0010] 图1是一现有技术FBAR的横截面的SEM。 [0010] FIG. 1 is a SEM cross-section of a prior art FBAR. 一种早期型式FBAR谐振器的裂开样本的一显微照片。 A photomicrograph of one kind of split samples of the type FBAR resonator early. 在此照片中,所述膜悬于游泳池之上且固定于边缘处。 In this photo, the film suspended over and fixed to the edge of the pool. 新近的型式的膜被支撑在边缘上的几乎每一位置处。 Almost every type of location at a recent film is supported on edge.

[0011] 图2a和2b说明一理想化的Q圆和一变迹谐振器(apodized resonator)在史密斯圆图上的Q圆。 [0011] Figures 2a and 2b illustrate a circle Q Q idealized circular and apodization a resonator (apodized resonator) on the Smith chart. 这些图也标示所述谐振器的Rs、 fs、 Rp和fp以及Qp与Rp和Qs与Rs之间的关系。 The figure also marked Rs of the resonator, the relationship between the FS, and fp and Rp and Rp Qp and Qs and Rs.

[0012] 图3a-c是一独立式FBAR的示意性横截面。 [0012] Figures 3a-c are schematic cross-section of a separate type FBAR. 图3a展示一现有技术FBAR。 Figure 3a shows a prior art FBAR. 图3b展示一具有凹环的现有技术变迹FBAR。 Figure 3b shows the prior art having a concave loop apodization FBAR. 图3c展示本发明。 Figure 3c shows the present invention.

[0013] 图4a是一具有图3a中所给定的横截面的方形谐振器的Q圆。 [0013] FIG 4a is a circle Q having given in Figure 3a a cross-section of a square resonator. 图4b中标绘了r 与频率的关系曲线的幅度。 Figure 4b is plotted versus amplitude r and the frequency.

[0014] 图5a是一具有图3a中所给定横截面的变迹谐振器的Q圆。 [0014] FIG 5a is in FIG. 3a having a given cross-section of the resonator Q apodization circle. 图5b中标绘了r与频率的关系曲线的幅度。 FIG. 5b curve plotted in amplitude r and the frequency.

[0015] 图6是I类和II类压电材料的一图示wk图。 [0015] FIG. 6 is an illustration wk FIG class I and class II piezoelectric material. 一突出I类与II类压电材料之间的差异的图示wk图。 A projection shown in FIG wk difference between the Class I and Class II piezoelectric material. "截止点的频率与fs(外延模式或活塞模式的谐振频率)相同。 [0016] 图7是用于图3a中所示的谐振器的前4个侧向模式(S0、 SI和A0、 Al)的w_k曲线图(通常称为兰姆波)的经测量和调准的数据。 "FS frequency cutoff point (epitaxial mode or piston mode resonance frequency) of the same. [0016] FIG. 7 is a front four lateral mode resonator shown in FIG. 3a for (S0, SI, and A0, Al data measured and aligned) is a graph w_k (commonly referred to as Lamb waves) of.

[0017] 图8a和8b是图3a和3b中所示谐振器(不具有环和具有一凹环)的Q圆。 [0017] Figures 8a and 8b are diagrams resonator 3a and FIG 3b (having no ring and having a concave ring) Q circle. 图8b 中标绘了所述两个横截面的r与频率的关系曲线的幅度。 Figure 8b is plotted versus amplitude r and the frequency of the two cross-section.

[0018] 图9a和9b是图3a和3c中所示谐振器(不具有环和具有一凸环)的Q圆。 [0018] Figures 9a and 9b are shown in Figures 3a and 3c, the resonator (having no ring having a collar) Q circle. 图9b 中标绘了所述两个横截面的r与频率的关系曲线的幅度。 Figure 9b plotted the amplitude versus frequency r of the cross section of the two.

[0019] 图lOa为一半梯(half ladder)滤波器。 [0019] FIG lOa half ladder (half ladder) filter. 图10b展示一全梯(full ladder)滤波器。 Figure 10b shows a ladder whole (full ladder) filter.

[0020] 图11展示一半梯滤波器响应。 [0020] FIG. 11 shows a half ladder filter response.

[0021] 图12a_c展示表示一处于半梯拓扑结构的串联谐振器的Q圆、一具有一个质量负荷厚度(ML1)的并联谐振器和一具有另一质量负荷(ML1和ML2)的并联谐振器。 [0021] FIG 12a_c shows in Q represents a semi-circular series resonator ladder topology, having a thickness of a mass loading (ML1) and the parallel resonators of the parallel resonator having a further mass loading (ML1 and ML2 are) of . 黑箭头指示所述滤波器的通带在Q圆上的位置。 Black arrow indicates the position of the passband of the filter on the Q circle. [0022] 除添加了展示所述凹帧谐振器响应和一凸帧谐振器响应的两个Q圆夕卜,图13a_c 与图12a-c展示相同的内容。 [0022] In addition to the added two Q Bu Xi circular frame shows the concave and a convex resonator response frame in response to the resonator, FIG 13a_c same as FIG. 12a-c show content. 可见,由于在大部分圆上的Q都低于一标准的现有技术FBAR 或具有一凸帧的FBAR,凹帧将显著降低滤波器响应;相反,凸帧则通过相关频率提高了Q。 Visible, since Q in the majority of the circle is below a standard or prior art FBAR FBAR having a convex frame, the frame will significantly reduce recessed filter response; the contrary, the frame projecting through the associated increased frequency Q. [0023] 图14a和14b展示四个滤波器响应。 [0023] Figures 14a and 14b show four filter response. 图14b是所述通带的放大图。 Figure 14b is an enlarged view of the pass band. 该图是在所述并联谐振器上具有及不具有凸帧的两个不同滤波器设计。 Which is a design different filters having two and having no projections on the frame parallel resonator. 两条红色和红紫色的曲线为标准FBAR谐振器,且两条蓝色曲线是其中并联谐振器具有一凸框的两个滤波器设计。 Two red and magenta standard curve FBAR resonators, and two blue curve in which two parallel resonator filter design having a convex frame.

具体实施方式 Detailed ways

[0024] —薄膜体声波谐振器(FBAR)的基谐模式为纵向延伸模式或"活塞"模式。 [0024] - fundamental mode thin film bulk acoustic resonator (the FBAR) is a longitudinal extension mode or "piston" mode. 通过将交流电压应用于处于FBAR谐振频率的两个电极而激发此模式。 This mode is excited by an AC voltage is applied to two electrodes located FBAR resonance frequency. 所述压电材料将电能形式的能量转化为机械能。 The piezoelectric material in the form of energy into electrical energy into mechanical energy. 在一具有无限薄的电极的理想FBAR中,当所应用的频率等于压电媒体的声速除以两倍的所述压电媒体厚度时:f = va。 In an ideal FBAR electrode having infinitely thin, when the applied medium frequency equal to the speed of sound divided by twice the piezoelectric said piezoelectric media thickness: f = va. /(2*T),其中T为所述压电媒体的厚度, 且L为声相速度,发生谐振。 / (2 * T), where T is the thickness of the piezoelectric medium, and L is the acoustic phase velocity, resonance occurs. 对于具有有限厚度电极的谐振器而言,这个等式由所述电极的加权速度和厚度来修改。 For resonator has a finite thickness of the electrode, this equation is modified by the weight and thickness of the electrode speed.

[0025] 我们可以通过在史密斯圆图上标绘出当频率变化时反射能与应用能(r)的比率来从数量与质量方面理解一谐振器的Q。 [0025] We can apply energy to the reflected energy (r) is the ratio of a to be understood that the resonator plotted on the Smith chart when the frequency changes from a quantitative and qualitative aspects Q. 随着应用能的频率增加,FBAR谐振器的幅度/相位在史密斯圆图上扫出(swe印out) —个圆,这个圆称为Q圆。 With the increase of frequency application can, FBAR resonator amplitude / phase sweep-out (SWE printed out) on the Smith chart - a circle, the circle is called Q circle. 所述Q圆第一次与实轴(水平轴)相交处对应于活塞模式的频率fs。 The Q and the first circle (horizontal axis) corresponds to the real axis at the intersection of the piston mode frequency fs. 实际阻抗(以欧姆测量)为Rs。 Actual impedance (measured in ohms) is Rs. 随着Q圆继续围绕史密斯圆图周边,其再次与实轴相交。 With the Q circle continues around the perimeter of the Smith chart, which again intersects the real axis. 所述Q圆与实轴相交的第二个点标示为fp,即FBAR的反谐振频率。 The second point of the real axis Q intersects the circle marked as fp, i.e. anti-resonant frequency of the FBAR. 将所述电阻的剩余实数部分标示为Rp。 The remaining real part of the resistor is denoted Rp. 图2a展示一无寄生谐振的理想FBAR的Q圆。 Figure 2a shows a spurious resonance Q circle over the FBAR. 图2b展示一现有技术FBAR的Q圆。 Figure 2b shows a prior art circular Q of the FBAR. 在Q圆的下部西南四分之一处可见寄生谐振低于fs。 In the lower portion of the southwest quadrant of the circle Q visible parasitic resonance lower than fs. 对于滤波器应用而言,希望最小化Rs而最大化Rp。 For filter applications, it is desirable to minimize Rs maximized Rp. 质量上,所述Q圆"拥抱"史密斯圆图的边越紧,装置的Q越高。 Quality, the Q circle "hug" the tight side of the Smith chart, the higher the Q of the device. 如果存在无损耗谐振器这样的东西,那么所述Q 圆将具有一半径并将位于史密斯圆图的边缘处。 If such a thing is present without loss of the resonator, the Q of the circle and having a radius at the edge of the Smith chart.

[0026] 对于任何压电材料而言,除了活塞模式外还存在侧向模式。 [0026] For any piezoelectric material, in addition to the piston mode there lateral mode. 这些模式很易被激发。 These modes are easily excited. 产生侧向模式谐振的边界条件由谐振器的边缘界定。 Generating lateral mode resonance boundary conditions defined by the edge of the resonator. 图3a是一现有技术FBAR的横截面实施例。 Figure 3a is a cross-section of an embodiment of a prior art FBAR. 虚线描绘这个谐振器的不同区域。 The different areas depicted in dotted line resonator. 图3b说明一在所述电极的顶面上具有一凹陷周边的现有技术FBAR。 Figure 3b illustrates the prior art FBAR having a recess surrounding a top surface of the electrode. 对于两个实例而言,所述FBAR包括II类压电材料,例如A1N。 For both examples, the FBAR comprising a piezoelectric material, class II, for example A1N. [0027] 在图3a中,由所述顶部电极的图案化界定的边缘为侧向模式谐振形成一组边界条件,且所述游泳池的边缘为侧向模式谐振形成另一组边界条件。 [0027] In Figure 3a, defined by the edge of the patterned top electrode is formed in a lateral mode resonance set of boundary conditions, and the edge of the pool to form another set of lateral mode resonant boundary conditions. 侧向模式谐振称为寄生模式,且由于其能够将能量耦合出所述谐振器而一般是所不希望的。 It called lateral mode spurious mode resonance, and because of their energy can be coupled out of the resonator and is generally undesirable.

[0028] 将侧向模式最小化的一个方法是将所述谐振器边缘"变迹"。 [0028] One method of minimizing the lateral mode of the resonator edge is "apodization." 变迹是一组不允许谐振器的任何两个边缘平行的设计规则。 Any apodization is a set of design rules do not allow the two parallel edges of the resonator. 此外,如Larson等人在2001年4月10日颁发的受让给Agilent Technologies的美国专利第6, 215, 375号"Bulk Acoustic wave Resonators with Improved Lateral Mode Suppression"中所教示,"直角"拐角由认真选择的角度所取代,以使得任何谐振均比在一方形或矩形谐振器中所看到的其初始强度减小10%或更多。 In addition, as Larson et al., U.S., 215, 375, assigned to Agilent Technologies 6th, 2001 April 10 issued "Bulk Acoustic wave Resonators with Improved Lateral Mode Suppression" as taught, "right-angle" corner of substituted carefully chosen angle, so that any resonance than its initial strength in a square or rectangular as seen in the resonator is reduced by 10% or more. 图2b展示一个变迹FBAR的Q圆。 Figure 2b shows a circle Q apodization of the FBAR. 请注意,尽管看似已消除了高于fs的离散寄生谐振,但是低于fs的寄生模式仍较明显。 Note that although appears to have eliminated the discrete spurious resonance than fs, but lower than fs parasitic modes still evident. 使用变迹法后,强烈存在的唯一寄生模式是那些频率小于"活塞"模式的谐振fs的模式。 After use apodization, the sole presence of strong spurious mode is less than the resonant frequency fs of those "piston" mode mode. 这反映出A1N是一II类压电材料的事实。 This reflects the fact that a Class II A1N piezoelectric material. [0029] 对于存在高于fs的较弱的侧向声波模式而言,变迹法迫使寄生侧向模式经历来自不平行边缘的许多反射,由此降低基本寄生谐振频率。 [0029] For the present weaker than fs lateral sonic mode, the apodization parasitic lateral mode forced through many reflections from the non-parallel edges, thereby substantially reducing the parasitic resonance frequency. 因此,相关频率(例如,1850到1910MHz传输频带内用于CDMA电话的PCS频带)中存在的谐振处于基本寄生侧向模式的极高谐波。 Thus, the relevant frequencies (e.g., 1850 to 1910MHz PCS frequency band for CDMA telephone transmission band) in the presence of high harmonic resonance in the fundamental lateral mode spurious. 然而,将能量耦合到这些模式中表现为n次谐波的次序的逆。 However, the energy is coupled to the inverse performance of these modes of the n-th order harmonics. 如果人们通过使用变迹法将一va。 If one apodization method by using a va. /2L侧向模式的50次谐波转到10, 000次谐波(假设在谐振器中四处跳动的反射侧向模式的路径长度在完成一个回路前发生了约10, 000次反射),则这个寄生侧向模式的耦合减少了50/10,000 ;其中L是方形谐振器边缘之间的侧向间隔(因为侧向尺寸比垂直厚度的厚度约大50到100倍-此厚度为活塞模式背面的尺寸,所以50次谐波约为适当谐波)。 50th harmonic / 2L to 10 in the lateral mode, harmonic 000 (assuming the path length in the resonator four reflective lateral mode beating occurs around 10, 000 to complete a circuit in front of the reflector), then this parasitic coupling is reduced lateral mode 50 / 10,000; where L is the distance between the lateral edges of the square resonators (because large lateral dimension of about 50 to 100 times greater than the thickness of the vertical thickness - thickness of the back of this mode of the piston size, the appropriate harmonic of about 50 harmonics).

[0030] 这种"涂抹"侧向模式寄生谐振的方法的一个方面是每一侧向模式谐振几乎在每一频率(而非在少数与基本va。/2L的n次谐波相关的离散频率)都损耗少量能量。 [0030] One aspect of this "smear" lateral mode spurious resonance method is that each lateral mode resonant frequency in almost every (rather than a few discrete frequencies associated with the n-th harmonic of the basic va./2L ) have a small amount of energy loss. 在Q圆上使用变迹法的影响是其使经量测的Q圆趋于平滑,但导致Q圆自史密斯圆图边缘向内拉伸,即指示较低的Q。 Apodization affect on the circle Q which is Q was measured by circular tends to smooth, but results from the Smith chart circle Q edge inwardly stretching, i.e., indicating a lower Q.

[0031] 图4a与b展示一方形谐振器的Q圆(4a)及其r与频率的关系曲线(4b)。 [0031] Figures 4a and b show a square of the resonator Q circle (4a) and r and the frequency curve (4b). 图5a 及b展示一变迹谐振器的Q圆(5a)及其r与频率的关系曲线(5b) 。 Figures 5a and b show a resonator Q apodization circle (5a) and r and the frequency curve (5b). r是反射系数。 r is the reflection coefficient. [0032] 在W0106647A1 "Resonator Structure and Filter Comprising a ResonatorStructure"中,Kaitila等人教示了减少由于发生在活塞模式频率附近的侧向模式而导致的寄生模式的方法。 [0032] In W0106647A1 "Resonator Structure and Filter Comprising a ResonatorStructure" in, Kaitila et al., Teaches a method of spurious mode due to the lateral mode occurs at frequencies near the piston mode caused by reduction.

[0033] 图6突出I类与II类压电薄膜(如Kaitila等人所展示)的w_k曲线图。 [0033] FIG. 6 projecting Class I and Class II piezoelectric film (e.g. et al Kaitila shown) of w_k graph. 对于独立式膜而言,Kaitila教示Zn0为I类压电材料,且氮化铝(A1N)为II类压电材料。 For purposes of standing film, Kaitila teachings Zn0 Class I piezoelectric material, and an aluminum nitride (A1N) is a piezoelectric material class II. 在图6中,实线表示压电材料的实际K值,且虚线表示想象的K值。 In FIG. 6, the solid line represents the actual value K of the piezoelectric material, and the dotted line represents a K value imagined. 对于想象的K值而言,传播波是一种按指数规律衰减的波,且与所述讨论无关。 For K values ​​imagined, a wave propagating wave decays exponentially, and independent of the discussion. 对于实际K值而言,所述波是一种行波或驻波。 For the actual value of K, the wave is a traveling wave or standing wave. 图6中k = 0的点表示截止频率且是外延模式或纵向模式的基频。 In FIG. 6 the point k = 0 represents the cutoff frequency and is the portrait mode or extension mode fundamental frequency. 在ZnO的情况下,临界侧向模式以高于活塞模式频率的频率而存在。 In the case of ZnO, the critical lateral mode frequency higher than the frequency of the presence of the piston mode. 在AIN的情况下,临界侧向模式(critical lateral mode) (SI)以低于活塞模式频率的频率而存在。 In the case of AIN, critical lateral mode (critical lateral mode) (SI) mode frequency below the frequency of the piston exists.

[0034] 图7展示对于使用A1N作为压电材料的现有技术FBAR(如图3a中所示),我们有II类压电材料,其中可存在低于截止频率(fs)的强侧向模式。 [0034] FIG. 7 shows the prior art using A1N as FBAR piezoelectric material (shown in FIG. 3A), we have a class II piezoelectric material in which there is a strong lateral mode below the cutoff frequency (fs) of . 此模式为如2004年7月25日至lj30日在Colorado, Golden举行的QNDE会议上由Telschow在"Laser Acoustic Imaging of Film Bulk Acoustic Resonator (FBAR) Lateral Mode Dispersion,,中所教示的SI模式。然而,存在低于和高于截止频率的其它对称模式(S0、S2)和不对称模式(A0、A1、A2)。 应注意这些模式相对较弱。 This mode is as QNDE meeting July 25, 2004 to lj30日在 Colorado, Golden held by the Telschow on the "Laser Acoustic Imaging of Film Bulk Acoustic Resonator (FBAR) Lateral Mode Dispersion ,, in the SI mode as taught. However, , other symmetric modes exist below and above the cutoff frequency (S0, S2) and asymmetric mode (A0, A1, A2). It is noted that these modes is relatively weak.

[0035] Kaitila教示为了减少使用A1N(II类压电材料)的独立式膜的侧向模式寄生谐振,必须使用一凹帧。 [0035] Kaitila teachings to reduce the lateral mode standing film using A1N (Class II piezoelectric material) spurious resonance, a recess must frame. 这个结构在图3b中已展示。 This structure has been shown in Figure 3b.

[0036] 在图8中,我们可以看到所述结构(与无凹帧的相比)在Q圆(图8a)上的效果及r与频率的关系曲线图。 [0036] In Figure 8, we can see that the structure (as compared to non-recessed frame) and a graph of the effect of r on the Q frequency-circle (FIG. 8a),. 如Kaitila所教示,低于fs的寄生谐振(史密斯圆图的西南四分之一处)确实大大减少了。 As Kaitila taught, less than fs spurious resonance (at the southwest quarter of the Smith Chart) indeed greatly reduced.

[0037] 然而,正如图8a中所见,具有凹帧的FBAR的Q圆具有较低的Q。 [0037] However, as seen in Figure 8a, having a rounded concave Q FBAR frame having a lower Q. 在大多处(从9 点处直到大约4点处),具有凹帧的FBAR的Q圆具有显著较低的Q。 At most (at from about 9:00 until 4:00 at a), the recess having a circular frame Q FBAR having significantly lower Q. 如果谐振器的Q在此区域内(9点处到4点处)降低,那么滤波器将严重遭受频率响应的跌落和插入损耗。 If (at the 9:00 to 4:00) Q of the resonator decreases in this region, then the filter will suffer severe drop in frequency response and insertion loss. [0038] Q在此区域内降低的原因是:区域2 (见图3b)中的声阻抗位于谐振器中央区域(区域l)与帧外区域(区域3)的声阻抗之间。 [0038] Q reason in this region is reduced: acoustic impedance region (see FIG. 3b) is positioned between the center of the resonator 2 region (region l) and the outer frame acoustic impedance zone (zone 3). 如果区域2的宽度接近某一宽度,那么凹陷区域可减轻谐振器中央区域和边远区域的声阻抗失配。 If the width of the region close to a width of 2, the recessed region and the central region can reduce the acoustic impedance of the resonator remote areas mismatch. 因此,从中央区域的基本外延模式转化成侧向模式的能量更容易从谐振器"泄漏"。 Thus, the conversion from the fundamental mode of a central region into the epitaxial lateral mode energy from the resonator is easier to "leak." 特定地说,虽然凹帧有助于抑制很强的Sl 侧向模式,但是相对于更高模式的对称和不对称侧向模式,其实际上增加了能量的泄漏。 Specifically said recess while a strong Sl frame helps to suppress lateral mode, but with respect to the symmetric and asymmetric modes higher lateral mode that actually increases energy leakage. [0039] 在本发明中,将一凸帧添加到周边以产生一环,从而使得S1侧向模式显著增强。 [0039] In the present invention, to add a frame to the peripheral projections to generate a ring, so that the lateral mode S1 significantly enhanced. 然而,如图3c中所示,凸帧(假设已正确选择了宽度)充当区域I与区域III之间的声阻抗失配。 However, as shown in FIG 3c, the projection frame (assuming correct choice of the width) acts as an acoustic impedance between the region I and the region III mismatch. 凸帧添加质量来产生所述声阻抗失配。 Convex add frames to generate said mass of acoustic impedance mismatch. 此质量的额外增加可通过添加更多与电极相同的材料或具有更高比重的材料(如钨)或具有更低比重的诸如电介质的材料(例如, Si(^或AlN)来完成。 This additional mass may be (e.g., Si (^ or AlN) is accomplished by adding more of the same electrode material or a material having a higher specific gravity (e.g. tungsten), or a material such as a dielectric having a lower specific gravity.

[0040] 图9a和9b展示周边具有及没有凸帧的变迹谐振器在Q圆上的影响。 [0040] Figures 9a and 9b show no projections and having a peripheral frame apodization influence on the resonator Q circle. 图9a展示两个Q圆的史密斯圆图表示,且图9b展示r与频率的关系曲线。 Figure 9a shows two circles Q represents a Smith chart, and Figure 9b shows the frequency curve r. 如在任一图(a或b)中所见,添加凸帧大大增加了在史密斯圆图西南四分之一处所见的"振动"或"翻跟斗"(loop-de-loops)。 FIG as claimed in any one (a or b) seen in projection to add a frame greatly increases seen in the quadrant of the Smith Tuxi Nan "vibration" or "somersault" (loop-de-loops). 然而,从约"9点"处开始,具有凸帧的FBAR的Q更加紧密地"拥抱" 史密斯圆图的边缘,因此在大部分频率范围之上显示出更高的Q。 However, starting at about "9:00", the Q FBAR having a convex frame more closely "hug" the edge of the Smith chart, and therefore displayed over most of the frequency range higher Q.

[0041] 在这个说明性实例中,对于一个其功能是在1930到1990MHz区域(WCDMA应用) 内传递传输信号的FBAR滤波器而言,所述框的厚度为〜400A且宽度为约5 ym。 [0041] In this illustrative example, for a transfer function of which is in the region of 1930 to 1990MHz (WCDMA applications) the FBAR filter transmission signal, the thickness of the frame ~400A and a width of about 5 ym. 用于所述框和顶部电极的材料是钼。 The material for the frame and the top electrode is molybdenum. 周边环持续将〜1000欧姆添加到PCM 50欧姆谐振器(PCM = 过程控制监控器)的Rp。 Continuous peripheral ring ~ 1000 ohms to add PCM 50 ohms resonator (PCM = process control monitor) is Rp. 人们可在一谐振器的Q圆(如在诸如Agilent 8510网络分析器的一网络分析器上所测量)与史密斯圆图右手侧的实轴第二次相交的点处测量Rp。 It may (as measured on a Agilent 8510 network analyzer such as a network analyzer) in a circle Q resonator at the point of a solid right-hand side of the Smith chart of the second measurement axes intersect Rp. Q圆与实轴相交处的频率为fp,且谐振器阻抗的实数部分为Rp。 The frequency of the real axis and the intersection of the circle Q is fp, and the impedance of the resonator is the real part Rp. 出于完整性考虑,fs和Rs是谐振器与史密斯圆图左手侧实轴第一次相交处的复数阻抗的实数部分的频率和值。 For completeness, fs, and Rs is the frequency value of the complex impedance and the real part of the side resonator real axis of the Smith chart at the intersection of the first hand. Rp通过简单的经实验确定的关系式Rp = 1. 18kt2*Qp*Z。 Rp is determined by a simple experiment the relation Rp = 1. 18kt2 * Qp * Z. 而直接与Q相关,其中kt2为有效耦合系数且Z。 It is directly related to Q, wherein the effective coupling coefficient and kt2 is Z. 为谐振器阻抗,例如50欧姆。 Impedance of the resonator is, for example, 50 ohms. 当比较具有框(图3c)和没有框(图3a)的两个并行的谐振器时,kf对于两个PCM谐振器而言是相同的。 When compared with the frame (Fig. 3c) and two without a frame (FIG. 3a) of the parallel resonator, kf for two PCM resonators is the same. 由于对于两个并行谐振器而言所述区域是相同的,Z。 Since the two parallel resonators for the region are the same, Z. 是相同的,因此Qp是已提高的参数。 It is the same, and therefore have increased Qp is a parameter. 通常,可见在标准PCM谐振器上Rps的范围为1000到2000欧姆,且在具有凸框的PCM谐振器上,Rps的范围为2000到3000欧姆。 Typically, visible on standard PCM resonator Rps range from 1000 to 2000 ohms, and on the PCM resonator having a rim, Rps range of 2,000 to 3,000 ohms. 本发明提高了Rp而不是谐振器在fs处的实电阻Rs。 The present invention improves the Rp but not the real resonator at the resistor Rs fs.

[0042] 图3c说明本发明的一个实施例。 [0042] Figure 3c illustrates an embodiment of the present invention. 薄膜体声波谐振器(FBAR)为一个三层夹层结构, 其包括由钼制成的一个底部电极和一个顶部电极。 Film bulk acoustic resonator (the FBAR) is a three-layer sandwich structure, comprising a bottom electrode made of molybdenum, and a top electrode. 例如氮化铝(A1N)的压电材料介于所述两个电极之间。 For example, aluminum (A1N) nitride piezoelectric material interposed between the two electrodes. 将这个三层夹层结构放置于一形成于一衬底(例如硅)中的凹陷或"游泳池"之上,其中以一牺牲材料填充这个凹陷。 This three-layer sandwich is placed on a form (e.g., silicon) in a recess or "pool" in a substrate, wherein a sacrificial material to fill the recess. 当去除所述牺牲材料时,在谐振器边缘围绕所述周边固定于硅衬底处产生一"独立式膜"。 When removing the sacrificial material surrounding the edge of the resonator is fixed to the periphery of the silicon substrate is generated at a "stand-alone film."

[0043] 将有效面积界定为顶部电极与底部电极的重叠。 [0043] The effective area of ​​overlap is defined as the top and bottom electrodes. 把对应于有效面积周边的环添加到两个电极中的一个。 The ring corresponding to the effective perimeter area added to one of the two electrodes. 环材料可与组成顶部电极与底部电极的材料(例如,钼)相同,但是也可由包括诸如Si02、 AIN或Si3N4的其它电介质的材料制成。 Material and loop material may be a top electrode and a bottom electrode (e.g., molybdenum) the same, but may also be made of a material comprising as Si02, AIN or other dielectric of Si3N4. 或者,也可使用一个外环来代替凸框,所述外环围绕所述有效面积且其厚度与任一电极相同但是由具有更高声阻抗的材料(例如,钨)制成。 Alternatively, an outer ring may be used instead of the rim, the outer ring surrounding the effective area and the thickness of any one electrode with the same but made of a material (e.g., tungsten) having a higher acoustic impedance.

[0044] 环尺寸经选择以提高如在谐振器(或在制成这些谐振器的滤波器上)上所测量的电特性。 [0044] The ring size is selected to improve the electrical characteristics such as the resonator (or filter made in these resonators) on measured. 这可以通过实验法、有限元素建模分析或其它分析解法确定所述帧的宽度与厚度来确定。 This may be by experiment, finite element analysis or other analytical solution modeling determined width to the thickness of the frame is determined.

[0045] 对应于有效面积中央部分的区域1具有活塞模式的谐振频率f。 [0045] The central portion of the region corresponding to the effective area of ​​the piston having a resonant frequency f 1 mode. 和声阻抗ni。 And acoustic impedance ni. 区域2对应于有效面积的周边。 2 corresponds to the region surrounding the effective area. 区域3对应于有效面积的外部区域,而区域4为硅衬底之上的区域。 Region 3 corresponds to the outer region of the active area and the area of ​​the region 4 over the silicon substrate. 对于每一区域而言,都存在相应的谐振频率及声阻抗。 For each region, there is a respective resonance frequency and acoustic impedance. 在区域4中,由于所述衬底的厚度而导致所述基频谐振极低。 In region 4, since the thickness of the substrate to thereby cause said low fundamental resonance.

[0046] 虽然所述说明性实施例展示将环添加到顶部电极的顶部表面,但是所述环可定位于任一电极的顶部或底部表面上。 [0046] While the illustrative embodiments show ring added to the top surface of the top electrode, although the ring may be positioned on either the top or bottom of an electrode surface. 所述环可由导电或介电材料制成。 The ring may be conductive or dielectric material.

[0047] 参看图3c,沿周边增加质量有效增加了区域2的声阻抗。 [0047] Referring to Figure 3c, along the periphery of the increase in mass increases the effective acoustic impedance region 2. 因此,产生了中央区域与中央区域外部之间更大的阻抗失配。 Thus, a larger central region between the central region and the external impedance mismatch.

[0048] 将会出现以下情况:谐振器或使用大量所述谐振器的滤波器需要一种特别平滑的侧向模式自由响应;滤波器响应中的平滑度与所需Q相比较是较小的因数。 [0048] The following will occur: a resonator or resonators of said plurality of filter requires an extra smooth lateral mode free response; filter response and the desired smoothness is small compared to Q factor. [0049] 图10a和10b展示滤波器拓扑结构的两个实例:分别为半梯和全梯。 [0049] FIGS. 10a and 10b show two examples of filter topology: respectively half and full ladder ladder. 本发明可适用于任何需要高Q的滤波器技术。 The present invention is applicable to any technology requiring a high Q filter.

[0050] 图11展示一具有两个"零点"和两个"极点"的典型半梯滤波器的响应。 [0050] FIG. 11 shows a response has two "zero" and two "poles" of a typical semi-ladder filter. 所述零点是两个最小值而所述极点是两个最大值。 The zero point is the minimum value of the two poles are two maxima. 较低频率的零点与并联谐振器的外延谐振("活塞"模式)相关。 0:00 epitaxial resonance and parallel resonator related lower frequency ( "piston" mode). 任何所添加的低于此频率的"翻跟斗"或振动都不会影响通带响应。 Any frequency below this "somersault" added or vibration will not affect the passband response. 由于A1N是II类谐振器,因此由在并联谐振器上添加一帧而增强了Sl所导致的增加的寄生模式都低于并联谐振器的fs。 Since class II A1N resonator is thus made to add a parallel resonator on the enhanced fs increased spurious mode caused Sl are below the parallel resonators.

[0051] 图12a-c是所述通带在Q圆上的位置。 [0051] FIGS. 12a-c is the passband on the Q circle position. 对于图10中所示的串联谐振器而言。 For the series resonator 10 shown in FIG. 在图12a中,通带位于Q圆上"7点"处与约"ll点"处之间。 In Figure 12a, the pass band located on a circle between Q at "7:00" and about the "ll point." 通带中的波纹由于Sl侧向模式而受寄生谐振的消极影响。 Since passband ripple in the side Sl mode by the negative influence of the parasitic resonance.

[0052] 然而,如果观察位于表示并联谐振器(图12b和12c)的Q圆上的通带频率处,可明白对于一种质量负荷而言,通带频率的范围是从约"IO点"处到约"4点"处,而对于另一种质量负荷而言,所述通带频率的范围是从"l点"处到"5点"处。 [0052] However, if the observation is located at the pass band frequency represented on the parallel resonator Q circle (FIG. 12b and 12c), the mass load can be understood for one, the pass band frequency range is about "IO point" from at approximately to the "4:00", and for other purposes of mass load, the pass band frequency range is from "l point" to the "5:00" Office. 在所有情况下,低于fs 的额外"振动"都不会影响滤波器。 In all cases, lower than fs additional "vibration" will not affect the filter.

[0053] 图13a_c展示突出凹帧与凸帧的Q圆。 [0053] FIG 13a_c shows frame projecting recess Q of the convex circular frame. 显然凹帧可引起滤波器响应降低。 Obviously recess filter response frame may cause decreased. 这一点在图14a及14b中可以看出。 This can be seen in FIGS. 14a and 14b. 两个半梯设计展示为在并联谐振器上具有和没有凸帧(因此有4条曲线)。 Two half ladder is shown as designed in the parallel resonator having no projection and the frame (4 therefore curve). 对于两个设计而言,帧的添加显著有助于滤波器的插入损耗及通带响应。 For both designs, the added frame insertion loss and contributes significantly to the passband response of the filter.

8 8

Claims (16)

  1. 一种薄膜体声波谐振器,其包含:一第一电极;一定位于所述第一电极附近及上方的第二电极;所述第一电极与所述第二电极的重叠界定一有效面积;一插入所述第一电极与所述第二电极之间的压电薄片;一定位于所述第一电极和第二电极中的一个的一表面上的环;其中所述环内的区域具有一第一声阻抗,所述环具有一第二声阻抗,且所述环外的区域具有一第三声阻抗;和所述第二声阻抗大于所述第一和所述第三声阻抗。 A thin film bulk acoustic resonator, comprising: a first electrode; necessarily positioned near the first and the second electrode over the electrode; overlaps the first electrode and the second electrode defining an effective area; a the piezoelectric sheet is inserted between the first electrode and the second electrode; said ring must lie on the surface of a first electrode and a second electrode; wherein the inner region of the ring having a first sound impedance, said ring having a second acoustic impedance, and said outer ring region having a third acoustic impedance; and said second acoustic impedance is greater than said first and third acoustic impedances.
  2. 2. 根据权利要求1所述的薄膜体声波谐振器,其中所述环沿所述第二电极的外围定位。 The thin film bulk acoustic resonator according to claim 1, wherein said positioning ring along the periphery of the second electrode.
  3. 3. 根据权利要求1所述的薄膜体声波谐振器,其中所述环定位于所述第一电极内并与所述第二电极的外围直接相对。 3. The film bulk acoustic resonator as claimed in claim in claim 1, wherein said ring is positioned within said first electrode and directly opposite the periphery of the second electrode.
  4. 4. 根据权利要求1所述的薄膜体声波谐振器,其中所述环集成在所述第一和所述第二电极中的所述一个内。 The thin film bulk acoustic resonator according to claim 1, wherein said ring is integrated within said one of said first and second electrodes.
  5. 5. 根据权利要求1所述的薄膜体声波谐振器,其中: 所述第一和第二电极中的所述一个具有一第一比重;禾口所述环具有一大于所述第一比重的第二比重。 The thin film bulk acoustic resonator according to claim 1, wherein: said first and said second electrodes having a first specific gravity; Wo port of the ring having a specific gravity greater than the first second proportion.
  6. 6. 根据权利要求1所述的薄膜体声波谐振器,其中: 所述第一和第二电极中的所述一个具有一第一比重;禾口所述环具有一小于所述第一比重的第二比重。 The thin film bulk acoustic resonator according to claim 1, wherein: said first and said second electrodes having a first specific gravity; Wo port of the first ring having a specific gravity less than the second proportion.
  7. 7. 根据权利要求6所述的薄膜体声波谐振器,所述环包含一介电材料。 7. The thin film bulk acoustic resonator as claimed in claim claim 6, said ring comprising a dielectric material.
  8. 8. 根据权利要求6所述的薄膜体声波谐振器,所述环包含一金属材料。 According to claim thin film bulk acoustic resonator of claim 6, said ring comprising a metallic material.
  9. 9. 根据权利要求1所述的薄膜体声波谐振器,其进一步包含一在一表面中具有一空腔的衬底,所述第一电极桥接所述空腔。 The thin film bulk acoustic resonator according to claim 1, further comprising a substrate having a cavity, the cavity of the first electrode in a bridge surface.
  10. 10. 根据权利要求9所述的薄膜体声波谐振器,其中所述环沿所述第二电极的外围定位。 Claim 10. The thin film bulk acoustic resonator of claim 9, wherein said positioning ring along the periphery of the second electrode.
  11. 11. 根据权利要求9所述的薄膜体声波谐振器,其中所述环定位于所述第一电极内且与所述第二电极的外围直接相对。 Claim 11. The thin film bulk acoustic resonator of claim 9, wherein said ring is positioned within the first electrode and directly opposite the periphery of the second electrode.
  12. 12. 根据权利要求9所述的薄膜体声波谐振器,其中所述环集成在所述第一和所述第二电极中的所述一个内。 Claim 12. The thin film bulk acoustic resonator of claim 9, wherein said ring is integrated within said one of said first and said second electrodes.
  13. 13. 根据权利要求9所述的薄膜体声波谐振器,其中: 所述第一和第二电极中的所述一个具有一第一比重;禾口所述环具有一大于所述第一比重的第二比重。 13. The thin film bulk acoustic resonator of claim 9, wherein: said first and said second electrodes having a first specific gravity; Wo port of the ring having a specific gravity greater than the first second proportion.
  14. 14. 根据权利要求9所述的薄膜体声波谐振器,其中: 所述第一和第二电极中的所述一个具有一第一比重;禾口所述环具有一小于所述第一比重的第二比重。 14. The thin film bulk acoustic resonator of claim 9, wherein: said first and said second electrodes having a first specific gravity; Wo port of the first ring having a specific gravity less than the second proportion.
  15. 15. 根据权利要求14所述的薄膜体声波谐振器,所述环包含一介电材料。 15. The film bulk acoustic resonator as claimed in claim claim 14, said ring comprising a dielectric material.
  16. 16. 根据权利要求14所述的薄膜体声波谐振器,所述环包含一金属材料。 16. The film bulk acoustic resonator as claimed in claim claim 14, said ring comprising a metallic material.
CN 200510079662 2004-10-01 2005-06-24 Piezoelectric thin film resonator with mass loading in perimeter CN1801614B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US61525504P true 2004-10-01 2004-10-01
US60/615,255 2004-10-01
US10/990,201 US7280007B2 (en) 2004-11-15 2004-11-15 Thin film bulk acoustic resonator with a mass loaded perimeter
US10/990,201 2004-11-15

Publications (2)

Publication Number Publication Date
CN1801614A CN1801614A (en) 2006-07-12
CN1801614B true CN1801614B (en) 2010-06-16

Family

ID=35395169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510079662 CN1801614B (en) 2004-10-01 2005-06-24 Piezoelectric thin film resonator with mass loading in perimeter

Country Status (5)

Country Link
JP (1) JP5005903B2 (en)
KR (1) KR20060053994A (en)
CN (1) CN1801614B (en)
GB (1) GB2418791A (en)
TW (1) TWI365603B (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275292B2 (en) 2003-03-07 2007-10-02 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Method for fabricating an acoustical resonator on a substrate
US7388454B2 (en) * 2004-10-01 2008-06-17 Avago Technologies Wireless Ip Pte Ltd Acoustic resonator performance enhancement using alternating frame structure
US8981876B2 (en) * 2004-11-15 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Piezoelectric resonator structures and electrical filters having frame elements
US7202560B2 (en) 2004-12-15 2007-04-10 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Wafer bonding of micro-electro mechanical systems to active circuitry
US7791434B2 (en) 2004-12-22 2010-09-07 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator performance enhancement using selective metal etch and having a trench in the piezoelectric
US7369013B2 (en) 2005-04-06 2008-05-06 Avago Technologies Wireless Ip Pte Ltd Acoustic resonator performance enhancement using filled recessed region
US7868522B2 (en) 2005-09-09 2011-01-11 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Adjusted frequency temperature coefficient resonator
US7737807B2 (en) 2005-10-18 2010-06-15 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic galvanic isolator incorporating series-connected decoupled stacked bulk acoustic resonators
US7675390B2 (en) 2005-10-18 2010-03-09 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic galvanic isolator incorporating single decoupled stacked bulk acoustic resonator
US7463499B2 (en) 2005-10-31 2008-12-09 Avago Technologies General Ip (Singapore) Pte Ltd. AC-DC power converter
US7746677B2 (en) 2006-03-09 2010-06-29 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. AC-DC converter circuit and power supply
US7479685B2 (en) 2006-03-10 2009-01-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Electronic device on substrate with cavity and mitigated parasitic leakage path
JP2008182543A (en) * 2007-01-25 2008-08-07 Ube Ind Ltd Thin film piezoelectric resonator and thin film piezoelectric filter using the same
JP5080858B2 (en) * 2007-05-17 2012-11-21 太陽誘電株式会社 Piezoelectric thin film resonator and filter
WO2009011022A1 (en) 2007-07-13 2009-01-22 Fujitsu Limited Piezoelectric thin film resonant element and circuit component using the same
JP5172844B2 (en) 2007-08-24 2013-03-27 太陽誘電株式会社 Piezoelectric thin film resonator, filter using the same, duplexer using the filter, and communication device using the filter or the duplexer
US7791435B2 (en) 2007-09-28 2010-09-07 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Single stack coupled resonators having differential output
JP5563739B2 (en) 2008-02-20 2014-07-30 太陽誘電株式会社 Piezoelectric thin film resonator, filter, duplexer, communication module, and communication device
EP2277265A1 (en) 2008-04-29 2011-01-26 Nxp B.V. Bulk acoustic wave resonator
US7732977B2 (en) 2008-04-30 2010-06-08 Avago Technologies Wireless Ip (Singapore) Transceiver circuit for film bulk acoustic resonator (FBAR) transducers
US7855618B2 (en) 2008-04-30 2010-12-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator electrical impedance transformers
US8854156B2 (en) 2009-02-20 2014-10-07 Ube Industries, Ltd. Thin-film piezoelectric resonator and thin-film piezoelectric filter using the same
US8248185B2 (en) 2009-06-24 2012-08-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure comprising a bridge
US8902023B2 (en) 2009-06-24 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US8193877B2 (en) 2009-11-30 2012-06-05 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Duplexer with negative phase shifting circuit
US9243316B2 (en) 2010-01-22 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating piezoelectric material with selected c-axis orientation
JP2011160232A (en) * 2010-02-01 2011-08-18 Ube Industries Ltd Thin-film piezoelectric resonator, and thin-film piezoelectric filter using the same
US8962443B2 (en) 2011-01-31 2015-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US9154112B2 (en) 2011-02-28 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US9203374B2 (en) 2011-02-28 2015-12-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator comprising a bridge
US9083302B2 (en) 2011-02-28 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
US9148117B2 (en) 2011-02-28 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
US9136818B2 (en) 2011-02-28 2015-09-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked acoustic resonator comprising a bridge
US9048812B2 (en) 2011-02-28 2015-06-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
US8575820B2 (en) 2011-03-29 2013-11-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator
JP2012244616A (en) 2011-05-24 2012-12-10 Taiyo Yuden Co Ltd Piezoelectric thin film resonator, filter, and module
US8350445B1 (en) 2011-06-16 2013-01-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer and bridge
US8922302B2 (en) 2011-08-24 2014-12-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator formed on a pedestal
US8796904B2 (en) 2011-10-31 2014-08-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising piezoelectric layer and inverse piezoelectric layer
JP5918522B2 (en) 2011-12-12 2016-05-18 太陽誘電株式会社 Filters and duplexers
CN104321965B (en) * 2012-05-22 2017-04-12 株式会社村田制作所 Bulk wave resonator
US9425764B2 (en) 2012-10-25 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having composite electrodes with integrated lateral features
US9444426B2 (en) 2012-10-25 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having integrated lateral feature and temperature compensation feature
JP6085147B2 (en) 2012-11-15 2017-02-22 太陽誘電株式会社 Elastic wave device and manufacturing method thereof
JP6336712B2 (en) 2013-01-28 2018-06-06 太陽誘電株式会社 Piezoelectric thin film resonator, filter and duplexer
CN103296993A (en) * 2013-04-11 2013-09-11 天津大学 Resonator and manufacturing method thereof
JP5591977B2 (en) * 2013-04-30 2014-09-17 太陽誘電株式会社 Piezoelectric thin film resonator, filter, duplexer, communication module, and communication device
JP6185292B2 (en) 2013-06-10 2017-08-23 太陽誘電株式会社 Elastic wave device
JP6325798B2 (en) 2013-11-11 2018-05-16 太陽誘電株式会社 Piezoelectric thin film resonator, filter and duplexer
JP6333540B2 (en) 2013-11-11 2018-05-30 太陽誘電株式会社 Piezoelectric thin film resonator, filter, and duplexer
JP6325799B2 (en) 2013-11-11 2018-05-16 太陽誘電株式会社 Piezoelectric thin film resonator, filter and duplexer
JP6371518B2 (en) 2013-12-17 2018-08-08 太陽誘電株式会社 Piezoelectric thin film resonator, method for manufacturing the same, filter, and duplexer
US9401691B2 (en) * 2014-04-30 2016-07-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator device with air-ring and temperature compensating layer
JP2016096466A (en) 2014-11-14 2016-05-26 太陽誘電株式会社 Piezoelectric thin film resonator, filter and duplexer
JP6441761B2 (en) 2015-07-29 2018-12-19 太陽誘電株式会社 Piezoelectric thin film resonator and filter
JP6423782B2 (en) 2015-12-09 2018-11-14 太陽誘電株式会社 Piezoelectric thin film resonator and filter
JP6368298B2 (en) 2015-12-14 2018-08-01 太陽誘電株式会社 Piezoelectric thin film resonator, filter and duplexer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1256809A (en) 1998-01-16 2000-06-14 三菱电机株式会社 Thin-film pietoelectric element
WO2001006647A1 (en) 1999-07-19 2001-01-25 Nokia Corporation Resonator structure and a filter comprising such a resonator structure
EP1249932A2 (en) 2001-04-12 2002-10-16 Nokia Corporation Method of producing thin-film bulk acoustic wave devices
EP1258989A2 (en) 2001-04-27 2002-11-20 Nokia Corporation Method of tuning baw resonators

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692279A (en) * 1995-08-17 1997-12-02 Motorola Method of making a monolithic thin film resonator lattice filter
US6111341A (en) * 1997-02-26 2000-08-29 Toyo Communication Equipment Co., Ltd. Piezoelectric vibrator and method for manufacturing the same
JP2000295065A (en) * 1999-04-09 2000-10-20 Toyo Commun Equip Co Ltd Piezoelectric vibrator and its frequency adjusting method
JP2003332872A (en) * 2002-05-14 2003-11-21 Seiko Instruments Inc Piezoelectric vibrator, and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1256809A (en) 1998-01-16 2000-06-14 三菱电机株式会社 Thin-film pietoelectric element
WO2001006647A1 (en) 1999-07-19 2001-01-25 Nokia Corporation Resonator structure and a filter comprising such a resonator structure
EP1249932A2 (en) 2001-04-12 2002-10-16 Nokia Corporation Method of producing thin-film bulk acoustic wave devices
EP1258989A2 (en) 2001-04-27 2002-11-20 Nokia Corporation Method of tuning baw resonators

Also Published As

Publication number Publication date
GB2418791A (en) 2006-04-05
TW200620820A (en) 2006-06-16
TWI365603B (en) 2012-06-01
KR20060053994A (en) 2006-05-22
GB0520078D0 (en) 2005-11-09
CN1801614A (en) 2006-07-12
JP2006109472A (en) 2006-04-20
JP5005903B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
CN1599244B (en) Piezoelectric resonator, filter, and duplexer
US7276994B2 (en) Piezoelectric thin-film resonator, piezoelectric filter, and electronic component including the piezoelectric filter
EP0973256B1 (en) Thin film piezoelectric element
US6943647B2 (en) Bulk acoustic wave filter with a roughened substrate bottom surface and method of fabricating same
KR100863876B1 (en) Piezoelectric resonator structures and electrical filters
KR100904621B1 (en) Piezoelectric thin film resonator
CN1208898C (en) Stable fixed multipe resonator bulk acoustic wave filter with composition acoustic reflector
CN1205745C (en) Bulk acoustic wave device
JP4523637B2 (en) Duplexer for coupling baw resonator based
US7515018B2 (en) Acoustic resonator
KR101130145B1 (en) Resonator structure and method of producing it
US20020079986A1 (en) Bulk acoustic resonator perimeter reflection system
US6476536B1 (en) Method of tuning BAW resonators
CN101079610B (en) Bulk acoustic wave device and bulk acoustic wave filter
CN100492896C (en) Improvements to filters
EP1196989B1 (en) Resonator structure and a filter having such a resonator structure
US6556103B2 (en) Piezoelectric resonator with electrode radius related to resonator thickness and vibration mode, and filter using the same
US7649304B2 (en) Piezoelectric resonator and piezoelectric filter
US8058768B2 (en) Bulk acoustic wave resonator device
US9203374B2 (en) Film bulk acoustic resonator comprising a bridge
JP4721779B2 (en) Acoustic resonator
US20060071736A1 (en) Acoustic resonator performance enhancement using alternating frame structure
US6107721A (en) Piezoelectric resonators on a differentially offset reflector
DE102012219838A1 (en) Planarized electrode for improved performance in bulk acoustic resonators
JP5648695B2 (en) Elastic wave device and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
C41 Transfer of patent application or patent right or utility model
C10 Entry into substantive examination
C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model
ASS Succession or assignment of patent right

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) CORPORAT

Free format text: FORMER OWNER: AVAGO TECHNOLOGIES IP PRIVATE CO.

Effective date: 20130522

TR01