CN1797986A - Multi-antenna transmitting/receiving processing method obtaining suboptimized channe/capacity and device thereof - Google Patents

Multi-antenna transmitting/receiving processing method obtaining suboptimized channe/capacity and device thereof Download PDF

Info

Publication number
CN1797986A
CN1797986A CN 200410102070 CN200410102070A CN1797986A CN 1797986 A CN1797986 A CN 1797986A CN 200410102070 CN200410102070 CN 200410102070 CN 200410102070 A CN200410102070 A CN 200410102070A CN 1797986 A CN1797986 A CN 1797986A
Authority
CN
China
Prior art keywords
bit stream
antenna
plurality
channel
amp
Prior art date
Application number
CN 200410102070
Other languages
Chinese (zh)
Inventor
黎海涛
李继峰
Original Assignee
松下电器产业株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下电器产业株式会社 filed Critical 松下电器产业株式会社
Priority to CN 200410102070 priority Critical patent/CN1797986A/en
Publication of CN1797986A publication Critical patent/CN1797986A/en

Links

Abstract

Time division duplexing (TDD) operation mode is adopted in system to adapt MIMO channel. Power is distributed evenly for multiple transmitting antennae at transmitting end without need of updating transmission pre filtering array V and dynamic power distribution. Two processing methods are adopted at tramnstting end: (1) based on minimal principle of mean square deviation of transmitting and receiving signal, first method gives minimal mean-square error (MMSE) solution of received filtering array U; (2) using simple lowest mean square (LMS) adaptive algorithm, second method obtains U in order to track change of channel, and to reduce amount of calculation. Simplified transmitting and receiving process obtains suboptimal MIMO capacity, and reduces influence on capacity caused by error of estimating channel.

Description

获得次优信道容量的多天线发送和接收处理方法和装置 Multi-antenna transmission apparatus and a reception processing method and suboptimal channel capacity

技术领域 FIELD

本发明涉及一种在无线通信系统中获得次优信道容量的低复杂度多天线MIMO发送、接收处理装置及方法。 The present invention relates to multi-antenna MIMO low complexity suboptimal for obtaining transmission channel capacity in a wireless communication system, receiving apparatus and method for processing. 特别是,涉及在时变衰落信道环境下,多天线无线通信系统的发射、接收信号处理方法和装置,能够利用简化的发射、接收处理获得次优MIMO容量并降低信道估计误差对容量的影响。 In particular, when it comes in varying fading channel environments, transmit a multi-antenna wireless communication system, a reception signal processing method and apparatus can be utilized to simplify the transmission, the reception processing suboptimal MIMO capacity and reduce channel estimation errors capacity.

背景技术 Background technique

随着无线网络与因特网的逐渐融合,人们对无线通信业务的类型和质量的要求越来越高。 With the gradual integration of wireless networks and the Internet, people on the type and quality of wireless communication services is increasing. 为满足无线多媒体和高速率数据传输的要求,需要开发新一代无线通信系统。 To meet the requirements of wireless multimedia and high-rate data transmission, a need to develop a new generation of wireless communication systems. 其中在发送和接收端使用多元天线阵列(MEA)的多输入多输出(MIMO)技术受到广泛关注。 Wherein the multi-element antenna array transmitting and receiving ends (MEA) multiple-input multiple-output (MIMO) technology has been widespread concern.

采用MIMO技术能获得空分复用增益,当接收天线大于或等于发送天线数时,Rayleigh衰落下MIMO信道容量与发送天线数成线性关系,在无需耗费额外功率和带宽的条件下大大增加了系统容量,同时能显著提高传输链路质量。 Using MIMO technology can obtain space division multiplexing gain, when the receiving antennas is greater than or equal to the number of transmission antennas, under Rayleigh fading MIMO channel capacity and the number of transmission antennas into a linear relationship, under conditions without consuming additional power and bandwidth greatly increased system capacity, and can significantly improve the quality of the transmission link.

在多天线系统中,目前研究较多是空分复用和空时编码两类。 In the multi-antenna system, the current research is the space division multiplexing and space-time coding categories. 前者通过在每根天线发射不同的符号来提高系统速率,后者通过在不同天线的发送符号间引入编码冗余来提高系统误比特率。 The former by each antenna transmits different symbol rate to improve the system, by which different symbols between the transmission antennas introducing redundancy to improve coding system bit error rate. 二者均是在接收端先进行信道估计,然后对接收的时间进行译码以恢复比特流,信道估计误差将影响系统性能,特别在时变信道环境下误差更大。 Both of which are at the receiving end to perform channel estimation, and time of the received bit stream to recover the decoding, channel estimation error will affect the performance of the system, the error becomes larger the channel environment especially at. 同时,它们均未利用发送端的信道信息,故未获得系统最优容量。 Meanwhile, none of them using the channel side information transmitted, it is not optimal to obtain system capacity.

近来,多天线输入和输出(MIMO)和正交频分复用(OFDM)相结合的MIMO OFDM技术受到广泛关注。 Recently, multiple antenna input and output (MIMO) and orthogonal frequency division multiplexing (OFDM), MIMO OFDM technology combined received extensive attention.

MIMO和OFDM相结合的MIMO OFDM系统具有二者的优点,它通过OFDM调制,将频率选择性MIMO衰落信道分解成一组并行平坦衰落信道,又利用MIMO,提高了系统容量。 Combining MIMO and OFDM MIMO OFDM system has advantages of both, that through OFDM modulation, frequency selective fading MIMO channel is decomposed into a set of parallel flat fading channels, and using MIMO, system capacity is improved.

GJFoschini,于1996年在Bell Labs Tech.J.,vol.1,第41-59页上发表的题为“Layered space-time architecture for wireless communication in afading environment when using multi-element antennas”的文章,以及IETelatar,于1999年在Eur.Trans.Tel.,vol.10,no.6,Nov./Dec.1999,第585-595页发表的题为“多天线高斯信道的容量Capacity of multi-antennaGaussian channels”的文章中揭示了对多天线MIMO信道的研究。 GJFoschini, in 1996, published in the Bell Labs Tech.J., vol.1, pp. 41-59, entitled "Layered space-time architecture for wireless communication in afading environment when using multi-element antennas" articles, as well as IETelatar, in 1999 Eur.Trans.Tel., vol.10, no.6, Nov. / Dec.1999, pp. 585-595, entitled "multi-antenna Gaussian channel capacity capacity of multi-antennaGaussian channels "the article reveals the study of multi-antenna MIMO channel. 其中表明如果发射机、接收机已知信道传输矩阵,可通过特征值分解SVD把MIMO信道分解成并行独立的多个单输入单输出(SISO)信道,然后对每个子信道根据“注水”(WF:Water Filling)原理进行功率分配,从而可获得最优香农(Shannon)容量。 Which means that if the transmitter, receiver channel transfer matrix is ​​known, can be decomposed by SVD eigenvalue decomposition of the MIMO channel into a plurality of separate parallel single-input single-output (SISO) channel, and for each subchannel "water" (WF : Water Filling) principle of power distribution, and thus obtain the most Yuka Agriculture (Shannon) capacity. 但是,在时变信道下,发送端和接收端通常不能同时获得信道的正确估计。 However, when the varying channel, the transmitting and receiving ends can not normally obtain the correct estimate of the channel. 因此,考虑到工程应用和信道的时变特点,需要研究低复杂度的且能获得MIMO容量的发送、接收处理方法。 Thus, when taking into account the varying characteristics of the channel and engineering applications, and can be studied MIMO transmission capacity obtained low complexity, reception processing method.

在基于奇异值分解(SVD)的MIMO传输系统中,通过发送、接收滤波和SVD处理,MIMO信道被分解为一组并行独立的子信道。 In a MIMO transmission system based on singular value decomposition (SVD) of, by transmitting, receiving SVD filtering and processing, MIMO channel is decomposed into a set of parallel independent sub-channels. 这时,利用WF算法对各子信道进行功率分配可获得MIMO信道的最优容量。 In this case, power allocation using for each sub WF algorithm for optimized MIMO channel capacity. 研究表明,当SNR增加到一定值后,采用WF算法不能使信道容量继续增加。 Studies have shown that, when the SNR increases to a certain value, the algorithm can not use WF continues to increase channel capacity. 因为随着SNR的提高,信道衰落减小,功率分配不再是影响容量的一个重要问题。 Because an increase in the SNR, channel fading is reduced, the power distribution is no longer a significant problems affecting capacity.

同时,为获得发送、接收滤波阵,需要估计信道增益矩阵,由于无线信道的时变特征,准确地估计这些参数较为困难。 Meanwhile, in order to obtain the transmission, reception filter array needs to estimate the channel gain matrix, since the time-varying wireless channel characteristics, to accurately estimate these parameters is difficult. 即使估计出这些参数后,把发送预滤波阵反馈到发送端将增加系统开销和带来误差。 Even after these estimated parameters, sends back to the pre-filter array of the transmitting side will increase overhead and cause errors. 发送端功率分配、调整预滤波阵将相应地改变接收滤波阵。 Power allocation transmission side to adjust the pre-filtered array will change accordingly receives the filtered array. 考虑到这些因素的影响,需要一种低复杂度的发射、接收处理技术。 Taking into account these factors, a need for an emission of low complexity, the reception processing techniques. 同时,与最优容量相比,它能够保证系统容量的损失在较小的容许范围之内。 Meanwhile, compared with the optimum capacity, it is possible to ensure that the loss of system capacity in a small allowable range.

发明内容 SUMMARY

本发明的目的在于提供一种多天线无线通信系统中的具有较低复杂度的发送、接收装置和方法,使用该装置和方法能够在时变信道环境下获得次优容量并较好地克服信道估计误差的影响。 Object of the present invention to provide a transmission having a lower complexity multi-antenna wireless communication system, receiving apparatus and method, using the apparatus and method can be suboptimal capacity under time-varying channel environment and to better overcome channel influence of the error estimate.

为了实现本发明的目的,根据本发明的一个方面,提供一种在多天线多输入多输出(MIMO)系统中获得次优容量的方法,包括步骤:在发送端,对多个发送天线中的每一个发送天线均匀分配发送功率,并发送经载波调制后的基带符号;在接收端,由多个接收天线接收所述多个天线发送的载波信号并下变频为基带符号;对经过变频的基带符号进行定时和频率同步;从经过同步的符号中估计信道增益阵H;利用最小均方差(MMSE)算法求解接收滤波矩阵U以获得次优输入多输出容量。 To achieve the object of the present invention, according to one aspect of the present invention, there is provided a method for obtaining a sub-optimal capacity in a multiple antenna multiple input multiple output (MIMO) system, comprising the steps of: at the transmitting end, a plurality of transmit antennas each transmitting antenna even distribution of transmission power, and transmission baseband symbols by carrier modulation; at the receiving end, a received carrier signal from the plurality of antennas transmitted by a plurality of receiving antennas and downconverted to baseband symbol; the baseband through the frequency conversion of symbol timing and frequency synchronization; after synchronization symbol from the estimated channel gain matrix H; using minimum mean square error (MMSE) algorithm to obtain a receive filtering matrix U suboptimal input multiple-output capacity.

根据本发明的另一个方面,提供一种在多天线多输入多输出(MIMO)系统中获得次优容量的方法,包括步骤:在发送端,对多个发送天线中的每一个发送天线均匀分配发送功率,并发送经载波调制后的基带符号;在接收端,由多个接收天线接收所述多个天线发送的载波信号并下变频为基带符号;对经过变频的基带符号进行定时和频率同步;从经过同步的符号中估计信道增益阵H;利用最小均方(LSE)算法求解接收滤波矩阵U以获得次优输入多输出容量。 According to another aspect of the invention, there is provided a method for multiple input multiple output (MIMO) multi-antenna system in a suboptimal volume, comprising the steps of: at the transmitting side, transmitting a uniform distribution of each of the transmission antennas of the plurality of antennas transmission power, and transmission baseband symbols by carrier modulation; at the receiving end, received by a plurality of receiving antennas carrier signals of the plurality of transmission antennas and downconverted to baseband symbol; performs the timing and frequency through the baseband symbol frequency synchronization ; after synchronization symbol from the estimated channel gain matrix H; using minimum mean square (LSE) algorithm to obtain a receive filtering matrix U suboptimal input multiple-output capacity.

根据本发明的再一个方面,提供一种在多天线多输入多输出(MIMO)系统中获得次优容量的装置,包括:功率分配装置,用于对多个发送天线中的每一个发送天线均匀分配发送功率;多个接收装置,用于接收所述多个天线发送的载波信号并下变频为基带符号;同步装置,用于对经过变频的基带符号进行定时和频率同步;信道估计装置,用于从经过同步的符号中估计信道增益阵H;最小均方差接收滤波装置,利用最小均方差(MMSE)算法求解接收滤波矩阵U以获得次优输入多输出容量。 According to a further aspect of the present invention, there is provided a multiple-input multiple-output (MIMO) multi-antenna apparatus suboptimal system capacity obtained, comprising: a power distribution means for uniformly transmitting antennas in each of a plurality of transmitting antennas a allocated transmit power; a plurality of receiving means for receiving a carrier signal transmitted from the plurality of antennas and downconverted to baseband symbol; synchronizing means for synchronizing the timing and frequency of the baseband symbol after converted; channel estimation device, with after the synchronization symbols in the estimated channel gain matrix H; MMSE receiver filtering means, using minimum mean square error (MMSE) algorithm to obtain a receive filtering matrix U suboptimal input multiple-output capacity.

根据本发明的再一个方面,提供一种在多天线多输入多输出(MIMO)系统中获得次优容量的装置,包括:功率分配装置,用于对多个发送天线中的每一个发送天线均匀分配发送功率,并发送经载波调制后的基带符号;多个接收装置,用于接收所述多个天线发送的载波信号并下变频为基带符号;同步装置,用于对经过变频的基带符号进行定时和频率同步;信道估计装置,用于从经过同步的符号中估计信道增益阵H;最小均方接收滤波装置,利用最小均方(LSE)算法求解接收滤波矩阵U以获得次优多输入多输出容量。 According to a further aspect of the present invention, there is provided a multiple-input multiple-output (MIMO) multi-antenna apparatus suboptimal system capacity obtained, comprising: a power distribution means for uniformly transmitting antennas in each of a plurality of transmitting antennas a allocating transmission power, and transmission baseband carrier wave is modulated symbols; a plurality of receiving means for receiving a carrier signal transmitted from the plurality of antennas and downconverted to baseband symbol; synchronizing means for baseband symbol after frequency conversion is performed timing and frequency synchronization; channel estimation means for H from the synchronized symbol estimating a channel gain matrix; least mean square receiving filtering means, using minimum mean square (LSE) algorithm receive filtering matrix U to obtain a suboptimal multiple-input multiple output capacity.

本发明的思想是在多天线通信系统的发射端均匀分配功率,接收端根据MMSE和自适应算法动态调整接收滤波矩阵以获得信道次优容量,并降低信道估计误差影响和工程实现的复杂度。 Thought the present invention is uniform in the transmitting side multi-antenna communication system is allocated power, the receiving-side dynamic adjustment of the reception filter matrix and MMSE adaptive algorithm according to obtain channel sub-optimal capacity while reducing the channel estimation complexity error on and engineering implementation.

附图说明 BRIEF DESCRIPTION

通过阅读和理解下面参考附图对本发明优选实施例所做的详细描述,将使本发明的这些和其它目的、特征、和优点变得显而易见。 Features, and advantages upon reading and understanding the following detailed description made with reference to the accompanying drawings of the preferred embodiments of the present invention, make these and other objects of the present invention, it will become apparent. 其中:图1A和1B是现有技术的多天线系统的发送机和接收机结构的方框图;图2是表示SVD技术的示意图;图3是表示获得最优容量的MIMO系统的发送机和接收机结构的方框图;图4是表示在TDD工作模式下的SVD的示意图;图5A和5B是表示获得次优容量的MIMO系统用于获得接收滤波阵U的最小均方差的发送机和接收机结构方框图;图6A和6B是表示获得次优容量的MIMO系统用于获得接收滤波阵U的最小均方的发送机和接收机结构方框图;图7A至图7C是表示MIMO容量的示意图;图8是表示存在信道估计误差且TX3-RX3的情况下的MIMO容量的示意图。 Wherein: FIGS 1A and 1B are a block diagram showing a configuration of a transmitter and a receiver of a multiple antenna system of the prior art; FIG. 2 is a schematic representation of SVD technique; FIG. 3 shows a transmitter and a receiver to obtain the optimal capacity of a MIMO system a block diagram; Figure 4 is a schematic view of the SVD in the TDD mode of operation; FIGS. 5A and 5B are suboptimal capacity of a block diagram of a system for obtaining a MIMO receive filtering matrix U of minimum mean square error of the transmitter and receiver structures ; FIGS. 6A and 6B are block diagrams showing a transmitter and a receiver receives the filtered array structure obtained minimum mean square U suboptimal capacity for a MIMO system; FIGS. 7A to 7C is a schematic representation of the capacity of MIMO; FIG. 8 shows a schematic MIMO capacity at TX3-RX3-error case channel estimation is present.

具体实施方式 Detailed ways

下面参照附图对本发明的实施例进行详细的说明,在描述过程中省略了对于本发明来说是不必要的细节和功能,以防止对本发明的理解造成混淆。 Omitted below for the present invention in unnecessary detail and functions described with reference to process drawings, embodiments of the present invention will be described in detail, in order to prevent confusion of the understanding of the present invention.

为了更好地理解本发明,首先参考图1描述多天线MIMO系统发送机和接收机的结构和其操作。 For a better understanding of the present invention is first described with reference to FIG multi-antenna MIMO system transmitter and receiver structure 1 and the operation thereof. 图1A和1B表示的是安装Nt根发射天线和Nr根接收天线的空分复用MIMO系统模型。 1A and 1B are represented mounting Nr Nt transmit antennas and receive antennas space division multiplexing MIMO system model.

如图1A所示,多天线MIMO系统的发送机包括串/并变换器11a,信道编码器12a,交织器13a,调制器14a,预滤波器(V)15a,导频序列模块16a,以及发射模块(1…Nt)17a。 1A, the multi-antenna MIMO system transmitter includes a serial / parallel converter 11a, a channel encoder 12a, an interleaver 13a, a modulator 14a, the pre-filter (V) 15a, a pilot sequence module 16a, and a transmit module (1 ... Nt) 17a. 如图1B所示,接收机包括并/串变换器11b,译码器12b,解交织器13b,解调器14b,信号检测器15b,接收滤波(U)16b,信道估计器17b,同步模块18b,和接收模块(1…Nt)19b。 1B, the receiver comprises a parallel / serial converter 11b, the decoder 12b, a deinterleaver 13b, a demodulator 14b, a signal detector 15b, receives the filtered (U) 16b, a channel estimator 17b, a synchronization module 18b, and a receiving module (1 ... Nt) 19b.

下面结合图1A和1B说明空分复用MIMO系统的操作。 Below in connection with FIGS. 1A and 1B illustrate the operating space division multiplexing MIMO system. 串/并变换器11a把输入的比特流复用成Nt个符号子流。 Serial / parallel converter 11a of the input bit streams into Nt symbol substreams. 在每个天线的支路端,采用信道编码器12a对输入的、经过串/并变换的比特流进行信道编码以抗噪声。 In the end of each branch of the antenna, using the channel encoder 12a is input through the serial / parallel converting a bitstream of encoded channel noise. 此后,利用交织器13a对信道编码器12a输出的数据进行交织处理以降低比特流相关性,并将处理后的比特流提供给调制器14a。 Thereafter, data 12a output by the channel interleaver 13a interleaves the coder to reduce the correlation of the bit stream, and supplies the processed bitstream to the modulator 14a. 调制器14a将交织器13a输出的比特流调制为符号流。 Bit stream modulated by a modulator 14a 13a output of the interleaved symbol stream is. 预滤波(发射滤波)器15a对调制的符号流进行多天线发送信号预处理。 Pre-filtered symbol streams (transmitter filter) 15a and the modulated multi-antenna transmission signal preprocessing. 然后,由导频序列模块16a在待发送的符号流中插入用于定时和信道估计的导频序列,并提供给发射(TX)模块17a。 Then, the pilot sequence in the module to be transmitted symbol streams 16a for insertion timing and channel estimation pilot sequence, and to a transmit (TX) module 17a. 然后,发射模块17a把得到的OFDM基带符号经载波调制后发射。 Then, the transmitter module 17a obtained OFDM baseband symbols transmitted after carrier modulation.

在接收端,接收(RX)模块19b把接收到的OFDM载波信号下变频为基带符号后提供给同步模块18b。 At the receiving end, receive (RX) frequency module 18b after the synchronization module is provided to a baseband symbol 19b to the received OFDM carrier signal. 同步模块18b对符号进行定时、频率同步。 Synchronization module 18b symbol timing and frequency synchronization. 信道估计器17b对径同步的符号估计出对信道增益阵。 Channel estimator 17b of the symbol synchronization estimated path channel gain matrix. 接收滤波器(U)16b的功能与预滤波器15a相对应。 Reception filter (U) 16b and the functions corresponding to the pre-filter 15a. 信号检测器15b进行MIMO系统的符号检测,然后由解调器14b对经检测的符号解调。 Signal detector 15b for detecting the symbol MIMO system, and by a demodulator 14b demodulates the detected symbols. 解交织器13b对解调器14b输出的比特流进行解交织,然后由译码器12b对解交织的比特流进行译码。 Deinterleaver 13b bit stream output from the demodulator 14b deinterleaving, and then decoded by the decoder 12b deinterleaved bit streams. 最后,并/串转换器11b把多天线比特流转换为串行输出信息比特流。 Finally, a parallel / serial converter 11b converts the bit stream into a multi-antenna output serial bit stream.

下面对该操作过程中的比特流进行说明。 The bitstream following the operation will be described.

假设发射信号为x=x1···xNtT,]]>经预滤波V预滤波后成为x=Vx,经信道H传输后的信号由下面的表达式(1)表示:y=H x+ w=HVx+ w (1)其中w‾=w1···wNrT]]>为白高斯噪声向量。 Suppose the transmitted signal is x = x1 & CenterDot; & CenterDot; & CenterDot; xNtT,]]> After pre-filtered V prefiltering become x = Vx, signals transmitted via the channel H expressed by the following expression (1): y = H x + w = HVx + w (1) where w & OverBar; = w1 & CenterDot; & CenterDot; & CenterDot; wNrT]]> white Gaussian noise vector.

经接收滤波器(U)16b滤波后的信号向量y=y1···yNrT,]]>且代入上面的表达式(1)得到下面的表达式(2)y=UHy=UH(HVx+ w) (2)其中V为发射预滤波阵,U为接收滤波阵,“T”表示转置,“H”表示矩阵的Hermite转置。 & CenterDot;; & CenterDot; by the receiving filter signal vector = y1 & CenterDot y after (U) 16b filtering yNrT,]]> and substituted into the above expression (1) obtained following Expression (2) y = UHy = UH (HVx + w) (2) where V is the transmit pre-filtering matrix, U is a reception filter array, "T" denotes a transpose, "H" denotes a Hermite transpose matrix. 信道矩阵 Channel matrix 中元素hij为发射天线i到接收天线j的信道衰落系数,它为独立复高斯随机变量。 Hij elements of the transmit antenna i to receive antenna j is the channel fading coefficients, which is an independent complex Gaussian random variables. 如果噪声向量w的协方差阵Rw w=E( w wH)是单位阵的倍数,即Rw‾w‾=σw‾2I,]]>I为单位阵,则可直接从表达式(1)出发处理;如果噪声向量w的协方差阵Rw w=E( w wH)不是单位阵的倍数,则需要在表达式(1)中乘以Rw w-1/2去相关噪声,从而得到表达式(3),即:Rw‾w‾-1/2y‾=Rw‾w‾-1/2Hx‾+Rw‾w‾-1/2w‾---(3)]]>现在设每根天线的发射功率为Pi,发射总功率为PT,在满足功率约束条件E[xHx]=Σi=1NPi≤PT]]>的情况下,为了获得MIMO信道的最优容量,对信道矩阵进行特征值分解,得到H=UΛVH,如图2。 If the noise vector w covariance matrix Rw w = E (w wH) is a unit matrix of multiple, i.e. Rw & OverBar; w & OverBar; = & sigma; w & OverBar; 2I,]]> I is a unit matrix can be directly from the expression (1 ) starting treatment; if the noise vector w multiple covariance matrix Rw w = E (w wH) is not a unit matrix, then multiplied by Rw w-1/2 expression noise decorrelation 1) (to be expressed of formula (3), namely: Rw & OverBar; w & OverBar; -1 / 2y & OverBar; = Rw & OverBar; w & OverBar; -1 / 2Hx & OverBar; + Rw & OverBar; w & OverBar; -1 / 2w & OverBar; --- (3)]]> now provided each antenna the transmit power of Pi, the total transmit power PT, to meet the power constraint E [xHx] = & Sigma; i = 1NPi & le; case PT]]>, in order to obtain the MIMO channel, the optimal capacity of the channel matrix wherein value decomposition to obtain H = UΛVH, as shown in FIG 2. 矩阵U、V满足UUH=I,VVH=I;对角阵Λ=diag(λ1λ2…λk),λ1>λ2>…>λk为H的特征值,代入表达式(3)得到接收滤波器16b的输出由下面的表达式(4)表示。 Matrix U, V satisfies UUH = I, VVH = I; diagonal matrix Λ = diag (λ1λ2 ... λk), λ1> λ2> ...> λk characteristic value H is substituted into the expression (3) obtained in the reception filter 16b output (4) represented by the following expression.

y=UH(UΛVH)(Vx)+UHw=Λx+w (4)式中噪声 y = UH (UΛVH) (Vx) + UHw = Λx + w (4) wherein the noise MIMO系统的信道容量一般表示为:C=log2[det(I+SNRNtHHH)],]]>其中det(·)表示对矩阵求行列式,SNR是每根接收天线的输出信噪比。 MIMO system channel capacity generally expressed as: C = log2 [det (I + SNRNtHHH)],]]> where det (·) denotes the determinant of the matrix, SNR per receive antenna output signal to noise ratio. 利用SVD分解后的系统闭环容量由下面的表达式(5)表示。 Closed-loop system using a capacity after the SVD represented by the following expression (5).

C=Σi=1Klog2(1+Piσw2λi2)---(5)]]>其中K是信道矩阵的秩,K≤min(Nr,Nt),Pi=(μ-σw2/λi2)+,]]>μ满足Σi=1K(μ-σw2/λi2)+=PT,(x)+]]>定义为max{x,0}。 C = & Sigma; i = 1Klog2 (1 + Pi & sigma; w2 & lambda; i2) --- (5)]]> where K is the rank of the channel matrix, K≤min (Nr, Nt), Pi = (& mu; - & sigma; w2 / & lambda; i2) +,]]> μ satisfies & Sigma; i = 1K (& mu; - & sigma; w2 / & lambda; i2) + = PT, (x) +]]> is defined as max {x, 0}.

从上面的运算过程可以看出,经过发送、接收滤波和SVD处理,MIMO信道被分解为一组并行独立的子信道。 As can be seen from the above operation process, after transmission, and SVD receive filtering process, the MIMO channel is decomposed into a set of parallel independent sub-channels. 这时,利用WF(注水)算法对各子信道进行功率分配,可以获得MIMO信道的最优容量。 In this case, using WF (water) power allocation algorithm to each subchannel, the optimal capacity of the MIMO channel can be obtained.

图3示出了能够获得最优容量的MIMO系统结构图。 Figure 3 shows a block diagram of a MIMO system can obtain optimal capacity. 如图3所示,能够获得最优容量的MIMO系统的发送端包括串/并变换器31a,信道编码器32a,交织器33a,调制器34a,预滤波器(V)35a,导频序列模块36a,以及发射模块(1…Nt)37a;接收端包括并/串变换器31b,译码器32b,解交织器33b,解调器34b,信号检测器35b,接收滤波器(U)36b,信道估计器37b,同步模块38b,接收模块(1…Nt)39b,以及功率分配模块30和SVD模块40。 3, it is possible to obtain optimum capacity of a MIMO system transmitting terminal includes a serial / parallel converter 31a, a channel encoder 32a, an interleaver 33a, a modulator 34a, the pre-filter (V) 35a, a pilot sequence module 36a, and a transmission module (1 ... Nt) 37a; receiving end includes a parallel / serial converter 31b, the decoder 32b, a deinterleaver 33b, a demodulator 34b, a signal detector 35b, a reception filter (U) 36b, channel estimator 37b, synchronization module 38b, a receiving module (1 ... Nt) 39b, and a power distribution module 30 and the SVD module 40.

下面说明能够获得最优容量的MIMO系统的操作。 The following describes possible to obtain optimal operation of the MIMO system capacity. 在发送端,串/并变换器31a把输入比特流复用为Nt个符号子流。 In the transmitter, the serial / parallel converter 31a to the input bit stream multiplexed into substreams symbol Nt. 在每个天线支路端,采用编码器32a对输入的比特流进行信道编码以抗噪声。 In each antenna branch end, the encoder 32a using channel coding bit stream input to the anti-noise. 此后,利用交织器33a对信道编码器32a输出的数据进行交织处理以降低比特流相关性,并将处理后的比特流提供给调制器34a。 Thereafter, data 32a output by the channel interleaver 33a interleaves the coder to reduce the correlation of the bit stream, and supplies the processed bitstream to the modulator 34a. 调制器34a将交织器33a输出的比特流调制为符号流。 Bit stream modulated by a modulator 34a 33a output of the interleaved symbol stream is. 预滤波(发射滤波)器35a对根据对信道矩阵进行SVD处理得到的预滤波阵对多天线发送信号预处理。 Pre-filtering (transmitter filter) 35a is prefiltered preconditioning matrix based on SVD processing for a channel matrix obtained by multi-antenna transmission signals. 然后,由导频序列模块36a在待发送的符号流中插入用于定时和信道估计的导频序列。 Guide Then, the pilot sequence module symbol streams to be sent for insertion timing and channel estimation pilot sequence 36a. 功率分配模块30根据信道增益对每根天线进行功率分配,并提供给发射(TX)模块37a。 Power distribution module 30 performs power allocation for each antenna based on channel gain, and supplied to the transmit (TX) module 37a. 然后,发射模块37a把得到的OFDM基带符号经载波调制后发射。 Then, the transmitter module 37a obtained OFDM baseband symbols transmitted after carrier modulation.

在接收端,RX模块39b把接收到的OFDM载波信号下变频为基带符号并输出到同步模块38b。 Converted to a baseband symbol at the receiving end, in RX module 39b converts the received OFDM carrier signal and outputs to the synchronization module 38b. 同步模块38b对输入的基带符号进行定时和频率同步。 Synchronization module 38b of the inputted baseband symbol timing and frequency synchronization. 然后,由信道估计器37b根据被定时和频率同步的符号估计出信道增益阵H,通过由SVD模块40和功率分配模块30组成的反馈链路把信道增益阵H反馈到发送端。 Then, 37b estimated by the channel estimator in accordance with the timing and frequency of the symbol synchronization channel gain matrix H, SVD module through the feedback link 40 and the power distribution module 30, a channel gain matrix H fed back to the transmitting end. SVD模块40对H进行特征值分解以得到预滤波阵U、接收滤波阵V和H的特征值,并通过反馈链路把表征信道增益的H的特征值馈送到功率分配模块30。 SVD module 40 versus H eigendecomposed to obtain a pre-filter array wherein U, receives the filtered characteristic value array V and H, and characterized by the feedback link channel gain H the value of 30 is fed to the power distribution module. 接收滤波器36b的功能与预滤波器35a的功能相对应,它利用U对接收信号进行处理。 Reception filter 36b function as a pre-filter 35a corresponding to a function, which uses the received signal U processing. 信号检测器35b进行MIMO系统的符号检测,然后由解调器34b进行符号解调,并将解调结果输出到解交织器33b。 Signal detector 35b for detecting the symbol MIMO system, symbols then demodulated by a demodulator 34b, and outputs the demodulation result to the deinterleaver 33b. 解交织器33b对来自解调器34b的输出比特流进行解交织。 Deinterleaver 33b of the output bit stream from the demodulator 34b deinterleaved. 此后,译码器32b对解交织的比特流进行译码。 Thereafter, the decoder 32b deinterleaved coded bit stream. 最后,由并/串转换器31b把多天线比特流转换为串行输出信息比特流。 Finally, the parallel / serial converter 31b converts the bit stream into a multi-antenna output serial bit stream.

注水(WF)算法的原理是给衰减小的信道分配大的发射功率,给衰减大的信道分配小的功率。 Principle water (WF) algorithm is a channel allocation attenuation large transmission power, to the attenuation of the channel assignment little power. 研究表明,当SNR增加到一定值后,采用WF算法不能使信道容量继续增加。 Studies have shown that, when the SNR increases to a certain value, the algorithm can not use WF continues to increase channel capacity. 因为随着SNR的提高,信道衰落减小,功率分配不再是影响容量的一个重要问题。 Because an increase in the SNR, channel fading is reduced, the power distribution is no longer a significant problems affecting capacity. 因此,需从其它角度来研究提高MIMO容量的技术。 Thus, the need to improve the technology to study other angles MIMO capacity.

为获得MIMO信道的香农(Shannon)容量,对信道矩阵进行SVD分解时,需要估计出信道矩阵和噪声协方差阵。 When (the Shannon) capacity, SVD of the channel matrix decomposition of the MIMO channel to obtain a Shannon, need estimated channel matrix and the noise covariance matrix. 由于无线信道的时变特征,准确地估计这些参数较为困难。 Since the time-varying characteristics of the wireless channel, it is difficult to accurately estimate these parameters. 接收端估计出这些参数后,需要把它反馈到发送端,这会增加了系统开销并带来误差。 After the receiving side estimate these parameters, it needs to be fed back to the transmission side, which increases the system overhead and cause errors. 在发送端,功率分配和改变预滤波阵将相应地动态调整接收滤波阵。 Sending end, the power distribution and changes dynamically adjust the pre-filter array reception filter array accordingly.

考虑到这些因素的影响,本发明提出低复杂度的TDD(时分双工)MIMO系统,它具有以下特点:·采用TDD工作方式,不需要反馈信道;·对每根发送天线均匀分配功率;·接收端求解出接收滤波阵U的MMSE解或利用自适应算法更新接收滤波阵U。 Taking into account these factors, the present invention provides a low complexity TDD (time division duplex) MIMO system, which has the following characteristics: a TDD mode of operation, no feedback channel; - even distribution of each of the power transmission antennas; · MMSE solution solved receiving end receives the filtered matrix U or the adaptive algorithm updates the reception filter array U.

应用以上方法,降低了系统开销,同时能获得次优容量,下面对此进行详细说明。 Application of the above method, by reducing the overhead, can be obtained while suboptimal capacity, which is described in detail below.

如图4所示,在TDD工作模式下,发射机可以利用接收到的前一帧估计到的信道状态信息(CSI)。 Channel state information (CSI) As shown in the TDD mode of operation, the transmitter 4 can be used before a received estimated to. 与反馈方式相比,TDD方式利用了无线信道的互益性,上行链路和下行链路利用同一信道传输矩阵,下行链路接收滤波(UH)可用作上行链路预滤波(UH),无需额外的反馈信道,降低了系统开销。 Compared with the feedback mode, the TDD mode of use of the mutual benefit of the radio channel, the uplink and downlink transmission using the same channel matrix, downlink reception filter (the UH) pre-filter can be used as an uplink (the UH), No additional feedback channel, reducing system overhead. 但是,它要求用于信道估计的导频序列的更新速率高于反馈方式,适用于低多普勒频移信道环境或短帧系统中,而MIMO系统常应用于低速移动环境下提供高速率业务,故它采用TDD方式较为合适。 However, it requires an update rate for channel estimation pilot sequences than feedback manner, for low Doppler shift in a channel environment or a short frame system, the MIMO system is often used in the low-speed movement environment, provide high-speed services , so it uses the TDD scheme more appropriate.

由前述内容可知,SVD方法虽能获得最优容量,但其缺点是难于实用化。 It is seen from the foregoing, although the optimal capacity of the SVD method can be obtained, but its drawback is difficult practical. 为此,希望寻求能够获得次优容量的简单发送、接收方法和装置。 For this reason, it is desirable to seek simpler suboptimal transmission capacity can be obtained, receiving method and apparatus. 与SVD方法中同时利用发射、接收滤波阵不同,本发明中提出了对每根发送天线均匀分配功率,即,发射滤波阵为单位阵,同时寻求最优接收滤波阵以实现最优检测。 SVD method using simultaneously transmitting, receiving a different filter array, the present invention proposes a uniformly distributed power for each transmission antenna, i.e., the emission filter array unit matrix, while seeking optimum reception filter array for optimal detection. 就是说,求解表达式(6)中的接收滤波阵U的最小均方差(MMSE)解,使发送、接收信号的均方差最小。 That is, the reception filter array solving the expression (6) in a U minimum mean square error (MMSE) solution, the transmission, the received signal are minimum variance.

ε=E[|x-UHy|2] (6)将表达式(6)展开得到ϵ=Rxx-2real(Ry‾xHU)+UHRyy‾U]]>其中Rxx=E[|x|2],Ryx=E[ yxH],Ryy=E[ yyH],由此求得U的MMSE解由下面的表达式(7)表示。 ε = E [| x-UHy | 2] (6) The expression (6) to expand to give & epsiv; = Rxx-2real (Ry & OverBar; xHU) + UHRyy & OverBar; U]]> where Rxx = E [| x | 2] , Ryx = E [yxH], Ryy = E [yyH], U MMSE solution thus obtained represented by the following expression (7).

U=Ryy‾-1Ry‾x---(7)]]>利用下列公式Ryy=E[ yyH]=E[(HVx+ w)(HVx+ w)H]=HVRxxVH+Rw w,Ryx=E[ yxH]=E[(HVx+ w)xH]=HVRxx,Rxx=E[xxH],化简U得U=Ryy‾-1Ry‾x=(HVRxxVHHH+Rw‾w‾)-1HVRxx]]>=Rw‾w‾-1/2(Rw‾w‾-1/2HVRxxVHHHRw‾w‾-1/2+I)-1Rw‾w‾-1/2HVRxx]]>令Rw w-1/2H的SVD为UwΛwVw,设Vw=V,则有U=Rww-1/2(UwΛwRXXΛwHUwH+I)-1UwΛwRxx]]> U = Ryy & OverBar; -1Ry & OverBar; x --- (7)]]> using the following formula Ryy = E [yyH] = E [(HVx + w) (HVx + w) H] = HVRxxVH + Rw w, Ryx = E [yxH ] = E [(HVx + w) xH] = HVRxx, Rxx = E [xxH], simplify U have U = Ryy & OverBar; -1Ry & OverBar; x = (HVRxxVHHH + Rw & OverBar; w & OverBar;) - 1HVRxx]]> = Rw & OverBar; w & OverBar ; -1/2 (Rw & OverBar; w & OverBar; -1 / 2HVRxxVHHHRw & OverBar; w & OverBar; -1 / 2 + I) -1Rw & OverBar; w & OverBar; -1 / 2HVRxx]]> order Rw w-1 SVD / 2H is UwΛwVw, provided Vw = V, there U = Rww-1/2 (Uw & Lambda; wRXX & Lambda; wHUwH + I) -1Uw & ​​Lambda; wRxx]]>

=Rw‾w‾-1/2Uw‾(Λw‾RxxΛw‾H+I)-1Λw‾Rxx]]>故得到表达式(8)UHy‾=RxxΛw‾H(Λw‾RxxΛw‾H+I)-1Uw‾HRw‾w‾-1/2y‾---(8)]]>该式中,先利用Rw w-1/2乘以y去噪声相关,再乘以UwH得到并行子信道,与式(3)相比,该式含有一度量因子,即对角阵RxxΛw‾H(Λw‾RxxΛw‾H+I)-1.]]>本质上说,二者等效。 = Rw & OverBar; w & OverBar; -1 / 2Uw & OverBar; (& Lambda; w & OverBar; Rxx & Lambda; w & OverBar; H + I) -1 & Lambda; w & OverBar; Rxx]]> so to obtain Expression (8) UHy & OverBar; = Rxx & Lambda; w & OverBar; H (& Lambda; w & OverBar; Rxx & Lambda; w & OverBar; H + I) -1Uw & ​​OverBar; HRw & OverBar; w & OverBar; -1 / 2y & OverBar; --- (8)]]> this formula, the first use of Rw w-1/2 times y to noise correlation, multiplied by UwH obtained parallel subchannels, (3) compared to the formula, the formula contains a metric factor, i.e., the diagonal matrix Rxx & Lambda; w & OverBar; H (& Lambda; w & OverBar; Rxx & Lambda; w & OverBar; H + I). -1] ]> essentially, the two are equivalent. 因此,若发送端采用最优预滤波阵,接收滤波阵采用U的最小均方差解,也可以同SVD技术一样,获得MIMO系统的最优容量。 Thus, if the transmission side using the optimal pre-filtering matrix, the minimum mean square error solution U receives the filtered array employed, like SVD technique can obtain the optimal capacity of the MIMO system.

如前所述,考虑到MIMO系统的可实现性,在提出方法中,发送端没有采用最优预滤波阵,而是对每根天线均匀分配功率。 As described above, taking into account of the MIMO system may be implemented in the proposed method, the transmitting end does not use the optimal pre-filtering matrix, but uniformly distributed power for each antenna. 接收滤波阵采用U的最小均方差解,它可获得次优MIMO容量。 U-array receives the filtered solution are minimum variance, it can be obtained suboptimal MIMO capacity. 该方法虽与SVD法不同,但利用了其发送、接收滤波思想,且又与直接从信道传输矩阵出发的最小均方差检测不同,单纯的最小均方差接收仅考虑到信号检测,而没有考虑对系统容量的影响。 Although this method different from the SVD method, but the use of its transmission, reception filtering thought, and because the minimum mean square error detection starting directly from the channel transfer matrix different from mere MMSE receiver considering only to the signal detection, without regard to the affect the system capacity.

下面参考图5A和5B说明根据本发明一个实施例,能够获得次优容量的MIMO系统的结构图。 Referring now to Figures 5A and 5B illustrate an embodiment of the present invention, it is possible to obtain a configuration diagram of a MIMO system is sub-optimal capacity. 如图5A所示,根据本发明一个实施例的MIMO系统的发送端包括串/并变换器51a,信道编码器52a,交织器53a,调制器54a,预滤波器(V)55a,导频序列模块56a,以及发射模块(1…Nt)57a,和均匀功率分配模块58a。 5A, the transmitting side of a MIMO system according to an embodiment of the present invention includes a serial / parallel converter 51a, a channel encoder 52a, an interleaver 53a, a modulator 54a, the pre-filter (V) 55a, a pilot sequence module 56a, and a transmission module (1 ... Nt) 57a, and a uniform power distribution module 58a. 如图5B所示,本实施例的MIMO系统的接收端包括并/串变换器51b,译码器52b,解交织器53b,解调器54b,最小均方差接收滤波器(U)56b,信道估计器57b,同步模块58b,接收模块(1…Nt)59b。 5B, the receiving end of the MIMO system according to the present embodiment includes a parallel / serial converter 51b, the decoder 52b, a deinterleaver 53b, a demodulator 54b, a minimum mean square error reception filter (U) 56b, a channel estimator 57b, synchronization module 58b, a receiving module (1 ... Nt) 59b.

下面说明能够获得次优容量的MIMO系统的操作。 The following describes the operation of the MIMO system can be obtained suboptimal capacity. 在发送端,串/并变换器51a把输入比特流复用为Nt个符号子流,在每个天线支路端,采用信道编码器52a对输入的比特流进行信道编码以抗噪声。 In the transmitter, the serial / parallel converter 51a to the input bit stream is multiplexed sub streams Nt symbols in each antenna branch end 52a using a channel encoder for channel coding bit stream input to the anti-noise. 此后,利用交织器53a对信道编码器52a输出的数据进行交织处理以降低比特流相关性,并将处理后的比特流提供给调制器54a。 Thereafter, data 52a output by the channel interleaver 53a interleaves the coder to reduce the correlation of the bit stream, and supplies the processed bitstream to the modulator 54a. 调制器54a将交织器53a输出的比特流调制为符号流。 Bit stream modulated by a modulator 54a 53a output of the interleaved symbol stream is. 预滤波器55a利用单位阵对多天线发送信号进行预处理(在此,为了对比的目的而画出预滤波器55a,在实际实施中可以省去该模块,因为它不改变信号特性)。 Pre-filter 55a using a single array of multi-antenna transmission signal preprocessing (Here, for comparative purposes drawn pre-filter 55a, the module may be omitted in an actual embodiment, the signal characteristics because it does not change). 导频序列模块56a在发送符号流中插入用于定时和信道估计的导频序列。 Conducting pilot sequence module 56a is inserted in the transmission symbol stream for timing and channel estimation pilot sequence. 功率分配模块58a对每根天线进行均匀的功率分配。 Power distribution module 58a uniform power allocation for each antenna. 此后,TX模块把得到的OFDM基带符号经载波调制后发射。 Thereafter, TX module obtained the OFDM baseband symbols transmitted after carrier modulation.

在接收端,RX模块59b把接收到的OFDM载波信号下变频为基带符号并提供给同步模块58b。 At the receiving end, in RX module 59b converts the received OFDM carriers are downconverted to baseband and supplied to a symbol synchronization module 58b. 同步模块58b对输入的符号进行定时和频率同步。 Synchronization module 58b inputted symbol timing and frequency synchronization. 信道估计器57b从经过同步的符号中估计出信道增益阵H。 Channel estimator 57b estimates the symbol from the synchronized channel gain matrix H. 最小均方差(MMSE)接收滤波器56b利用MMSE准则对接收信号进行滤波处理,求解接收滤波阵U,并将滤波后的信号输入到解调器54b。 Minimum mean square error (MMSE) receive filter 56b by using the MMSE criterion the received signal is filtered, solved receives the filtered array U, and the filtered signal is input to the demodulator 54b. 此后,解调器54b对符号进行解调,然后由解交织器53b对解调器54b输出的比特流进行解交织。 Thereafter, the demodulator demodulates symbols 54b, 53b and 54b of the demodulator output bit streams are deinterleaved by a deinterleaver. 译码器52b对解交织后的比特流进行译码。 52b decoder bit streams deinterleaved decoded. 最后,由并/串转换器51b把多天线比特流转换为串行输出信息比特流。 Finally, the parallel / serial converter 51b converts the bit stream into a multi-antenna output serial bit stream.

从说明的表达式(7)和(8)看到,根据本发明第一实施例的求U的MMSE解的计算量较大。 From Expression (7) described, and (8) seen, the larger the amount of calculation in accordance with a first embodiment of the MMSE solution seeking U embodiment of the present invention.

为降低复杂度,根据本发明的另一个实施例,进一步提出采用简单易行的最小均方(LMS)算法求解式(6),其迭代过程由下面的表达式9表示:U(k+1)=U(k)+2μ y(k)[x(k)-y(k)]H(9)上式中μ>0为步长因子,如果μ<1/E[| y(k)|2],则E[U(k)]收敛为MMSE解。 To reduce the complexity, according to another embodiment of the present invention, it is further raised by using a simple least mean square (LMS) algorithm of formula (6), which the iterative process is represented by the following Expression 9: U (k + 1 ) = U (k) + 2μ y (k) [x (k) -y (k)] H (9) in the above formula μ> 0 is the step size, if μ <1 / E [| y (k) | 2], the E [U (k)] converge to the MMSE solution.

图6A和6B示出了根据本发明另一个实施例,在接收端采用最小均方(LMS)接收滤波器的、能够获得次优容量的MIMO系统的结构图。 6A and 6B show a further embodiment of the invention, at the receiving end using a least mean square (LMS) of the reception filter can be obtained a configuration diagram of a MIMO system is sub-optimal capacity. 如图6A所示,根据本实施例的MIMO系统的发送端的配置与图5A所示的发送端相同,包括串/并变换器61a,信道编码器62a,交织器63a,调制器64a,预滤波器(V)65a,导频序列模块66a,以及发射模块(1…Nt)67a,和均匀功率分配模块68a。 6A, the transmitter side shown in FIG. 5A in the transmitting side of the MIMO system according to the present embodiment is the same as the configuration of FIG, includes a serial / parallel converter 61a, a channel encoder 62a, an interleaver 63a, a modulator 64a, the pre-filtering device (V) 65a, a pilot sequence module 66a, and a transmission module (1 ... Nt) 67a, and a uniform power distribution module 68a. 如图6B所示,本实施例的MIMO系统的接收端包括并/串变换器61b,译码器62b,解交织器63b,解调器64b,LMS接收滤波器(U)66b,信道估计器67b,同步模块68b,接收模块(1…Nt)69b。 Receiving terminal shown in FIG. 6B, MIMO system according to the present embodiment includes a parallel / serial converter 61b, the decoder 62b, a deinterleaver 63b, a demodulator 64b, LMS reception filter (U) 66b, a channel estimator 67b, synchronization module 68b, a receiving module (1 ... Nt) 69b.

下面说明根据本实施例的、能够获得次优容量的MIMO系统的操作。 According to the present embodiment will be described below, it is possible to obtain the suboptimal operating a MIMO system capacity. 在发送端,串/并变换器61a把输入比特流复用为Nt个符号子流,在每个天线支路端,采用信道编码器62a对输入的比特流进行信道编码以抗噪声。 In the transmitter, the serial / parallel converter 61a to the input bit stream is multiplexed sub streams Nt symbols in each antenna branch end 62a using a channel encoder for channel coding bit stream input to the anti-noise. 此后,利用交织器63a对信道编码器62a输出的数据进行交织处理以降低比特流相关性,并将处理后的比特流提供给调制器64a。 Thereafter, data 62a output by the channel interleaver 63a interleaves the coder to reduce the correlation bit stream, and supplies the processed bitstream to the modulator 64a. 调制器64a将交织器63a输出的比特流调制为符号流。 Bit stream modulated by a modulator 64a 63a output of the interleaved symbol stream is. 预滤波器65a利用单位阵对多天线发送信号进行预处理(在此,为了对比的目的而画出预滤波器65a,在实际实施中可以省去该模块,因为它不改变信号特性,)。 Pre-filter 65a using a single array of multi-antenna transmission signal preprocessing (Here, for comparative purposes drawn pre-filter 65a, the module may be omitted in the practical embodiment because it does not change the signal characteristics). 导频序列模块66a在发送符号流中插入用于定时和信道估计的导频序列。 Conducting pilot sequence module 66a is inserted in the transmission symbol stream for timing and channel estimation pilot sequence. 功率分配模块68a对每根天线进行均匀的功率分配。 Power distribution module 68a uniform power allocation for each antenna. 此后,TX模块67a把得到的OFDM基带符号经载波调制后发射。 Thereafter, TX module 67a to obtain the baseband OFDM symbols transmitted after carrier modulation.

在接收端,RX模块69b把接收到的OFDM载波信号下变频为基带符号并提供给同步模块68b。 At the receiving end, in RX module 69b converts the received OFDM carriers are downconverted to baseband and supplied to a symbol synchronization module 68b. 同步模块68b对输入的符号进行定时和频率同步。 68b synchronization module for timing and frequency synchronization of the input symbol. 信道估计器67b从经过同步的符号中估计出信道增益阵H。 Channel estimator 67b of the synchronized symbol from the estimated channel gain matrix H. 最小均方(LMS)接收滤波器66b利用LMS准则对接收信号进行滤波处理,求解接收滤波阵U,并将滤波后的信号输入到解调器64b。 Least mean square (LMS) LMS criterion using the reception filter 66b performs filtering processing on the received signal, receives the filtered array solving U, and the filtered signal is input to the demodulator 64b. 此后,解调器64b对符号进行解调,然后由解交织器63b对解调器64b输出的比特流进行解交织。 Thereafter, the demodulator demodulates symbols 64b, 63b and 64b of the demodulator output bit streams are deinterleaved by a deinterleaver. 译码器62b对解交织后的比特流进行译码。 62b decoder bit streams deinterleaved decoded. 最后,由并/串转换器61b把多天线比特流转换为串行输出信息比特流。 Finally, the parallel / serial converter 61b converts the bit stream into a multi-antenna output serial bit stream.

图3所示的获得最优容量的MIMO系统与图5和6所示的获得次优容量的MIMO系统的区别在于:1)图3所示的获得最优容量的MIMO系统存在反馈链路,它把信道估计获得的信道矩阵进行SVD分解后的预滤波阵、信道增益(特征值)反馈到发送端;而图5和6所示的获得次优容量的MIMO系统中没有反馈装置,复杂度较低;2)图3所示的获得最优容量的MIMO系统的预(发送)滤波阵V和接收滤波阵由信道矩阵H的SVD分解得到,并根据信道增益动态分配每根天线的发射功率;而图5和6所示的获得次优容量的MIMO系统的滤波阵均为单位阵,即对每根天线均匀分配功率,接收滤波分别采用MMSE和LMS算法进行处理。 Capacity difference suboptimal MIMO system of FIG obtain an optimum capacity of a MIMO system shown in FIG. 5 and 6 in that: 1) the presence of the feedback link capacity is shown in FIG obtain optimal MIMO system 3, it is a channel estimation channel matrix obtained by pre-filtering array after the SVD, the channel gain (characteristic value) is fed back to the transmitting end; and suboptimal capacity is shown in FIGS. 5 and 6 MIMO systems without feedback device, the complexity of lower; pre-MIMO system to obtain 2) shown in Figure 3 the optimum capacity (transmission) and the filter receives the filtered array matrix V obtained from SVD of the channel matrix H is decomposed, and dynamic allocation of transmission power of each antenna according to the channel gain ; FIG. 5 and the filter array of suboptimal MIMO system capacity are shown in FIG. 6 unit matrix, i.e. uniform distribution of power to each antenna, and the reception filter respectively LMS algorithm the MMSE processing.

从上面的表达式(2)可以计算出采用本发明的方法获得的系统容量,接收滤波信号为: Can be calculated from the above expression (2) using the system capacity obtained by the method of the present invention, receives the filtered signal:

y=UHHVx+UHw= Hx+UHw定义H=UHHV,则由下面的表达式(10)给出第i个子信道的信噪比(SNR)。 y = UHHVx + UHw = Hx + UHw defined H = UHHV, by the following expression (10) given by the i th sub-noise ratio (SNR).

SNRi=|h&OverBar;ii|2E[|xi|2]&Sigma;i&NotEqual;j|h&OverBar;ij|2E[|xi|2]+&Sigma;j|uij|2E[|wj|2]---(10)]]>根据MIMO信道容量的一般表达式,得到表达式(11)给出的信道容量为,C=&Sigma;ilog2(1+SNRi)---(11)]]>同样,本发明的方法可以推广用于MIMO OFDM系统,这时需计算每个空频子信道的SNR,再计算每个空频子信道的容量,最后计算出系统信道容量。 SNRi = | h & OverBar; ii | 2E [| xi | 2] & Sigma; i & NotEqual; j | h & OverBar; ij | 2E [| xi | 2] + & Sigma; j | uij | 2E [| wj | 2] --- (10 )]]> according to the general expression for the channel capacity of the MIMO channel, to obtain expression (11) is given channel capacity, C = & Sigma; ilog2 (1 + SNRi) --- (11)]]> Similarly, the present invention a method for MIMO OFDM system can be extended, then the need to calculate the SNR for each space-frequency subchannels, and then calculated for each space-frequency subchannel capacity, the system calculates the final channel capacity. 另外,虽然前文为方便起见仅针对单用户而进行了说明。 In addition, although the foregoing for convenience only for a single user and are described. 实际上,本发明的方法同样可以用于多用户MIMO系统中。 Indeed, the method of the present invention is equally applicable to a multi-user MIMO system.

在前面的讨论中,均假设信道估计完美。 In the foregoing discussion, we assume perfect channel estimation. 实际上,总存在一定的信道估计误差,尤其在时变信道环境中更是如此。 In fact, there is always a certain channel estimation errors, especially in the time varying channel environment. 下面讨论信道估计误差的影响。 The following discussion of channel estimation errors.

令信道估计误差阵为ΔH,则存在估计误差的信道矩阵为He=H+ΔH,其SVD则为UeΛeVeH。 Channel estimation error matrix so as ΔH, the channel matrix estimation error is present in an He = H + ΔH, which was SVD UeΛeVeH. 如果Ve=V+ΔV,Ue=U+ΔU,则VeHHeHHeVe=&Lambda;e2=&Lambda;2+&Delta;&Lambda;2,]]>进一步可推出VeH(HeHHe-HHH)Ve=&Delta;&Lambda;2,]]>|ΔΛ2|=|HHΔH+ΔHHH+ΔHHΔH|,高SNR条件下,忽略ΔHHΔH,得|ΔΛ2|=2|HHΔH|,由此得到下面的表达式(12)表示的估计误差上界。 If Ve = V + ΔV, Ue = U + ΔU, the VeHHeHHeVe = & Lambda; e2 = & Lambda; 2 + & Delta; & Lambda; 2,]]> is further introduced VeH (HeHHe-HHH) Ve = & Delta; & Lambda; 2, ]]> | ΔΛ2 | = | HHΔH + ΔHHH + ΔHHΔH | under high SNR conditions, ignoring ΔHHΔH, to give | ΔΛ2 | = 2 | HHΔH |, to obtain the following upper bound of error estimation expression (12) below.

|ΔΛ2|≤2|H||ΔH| (12)虽然该上界是从能够获得最优容量的SVD出发导出的,因本发明的方法能获得次优容量,故它也是本发明提出方法的上界。 | ΔΛ2 | ≤2 | H || ΔH | (12) while the upper bound can be obtained from the SVD optimal starting capacity derived by the method of the present invention can be obtained suboptimal capacity, so it also proposes a method of the present invention Upper Bound.

通过仿真实验验证了本发明提出方法的性能。 Verified by simulation of the performance of the proposed method of the present invention. 图7A至7C示出了在不同数量的发送和接收天线的情况下的仿真结果。 7A to 7C illustrate a simulation result in case of different number of transmit and receive antennas. 其中图7A是发送天线和接收天线的数量分别为2的情况下MIMO系统容量的对比曲线图。 Wherein FIG 7A is the number of transmitting antennas and receiving antennas are comparative graph showing a case where MIMO System 2. 图7B是发送天线和接收天线的数量分别为3的情况下的MIMO系统容量的对比曲线图。 FIG. 7B is the number of transmit and receive antennas, respectively, a graph comparing the capacity of a MIMO system in the case where 3 is. 图7C是发送天线和接收天线的数量分别为4的情况下的MIMO系统容量的对比曲线图。 7C is the number of transmit and receive antennas are respectively a graph comparing the capacity of a MIMO system in four.

应该指出,在图7A至7C中,采用的仿真参数如下:信道矩阵H的各元素为单位增益,服从于独立瑞利衰落;多普勒频移为40Hz,相当于在5.7GHz频段下的步行速度;每根接收天线端的噪声服从IID分布,且功率&sigma;w2=0.02;]]>平均总功率PT=1;信道估计误差功率为0.01。 It should be noted that, in FIGS. 7A to 7C, the simulation used the following parameters: the elements of the channel matrix H is unity gain, subject to independent Rayleigh fading; 40Hz Doppler frequency shift, corresponding to walking frequency band at 5.7GHz speed; each subject receiving antenna end IID noise distribution and the power & sigma; w2 = 0.02;]]> the average total power PT = 1; channel estimation error power is 0.01. 图7A至7C为随着时间变化,三种(即,上面说明的注水法(WF),MMSE和LMS)不同方法获得的信道容量。 7A to 7C is the time-varying three (i.e., water injection (WF) described above, the MMSE and LMS) method to obtain a different channel capacity. 可以看到,在不同发送、接收天线数量的情况下(TX2-RX2,TX3-RX3,TX4-RX4),WF法能获得最优容量,U的MMSE解次之,U的LMS解再次之,但三种方法获得的容量的变化规律较为一致,提出的MMSE、LMS法能较好跟踪信道变化,与前述分析相符;随着天线数的增加,不同方法获得容量差变大。 It can be seen at different transmission, the number of reception antennas (TX2-RX2, TX3-RX3, TX4-RX4), WF method can obtain an optimal capacity, of the MMSE solution followed U, U of the LMS solution again, However, the capacity variation of the three methods to obtain more consistent, the MMSE proposed, the LMS method can better track the channel variations consistent with the analysis; as the number of antennas, a different method of obtaining the capacity becomes large. 本发明的方法更适用于天线数量较少的情况下,如TX2-RX2,TX3-RX3等。 The method of the present invention is more applicable to the case where a small number of antennas, such as TX2-RX2, TX3-RX3 like.

图8表示在存在信道估计误差时,发送和接收天线的数量分别为3的情况下的信道容量。 8 shows the presence of channel estimation errors, the number of transmit and receive antennas, respectively in the case where the channel capacity of 3. 与具有相同天线数量的图7B相比,可以看出,由于算法具有自适应能力,信道估计误差对容量的影响不明显。 7B compared with the same can be seen that the number of antennas of FIG. Since adaptability algorithm, channel estimation errors on the capacity is not obvious.

根据本发明的方法和装置,在发送端均匀功率分配,无需更新发送预滤波阵V和动态分配发射功率。 The method and apparatus according to the invention, uniform power distribution at the transmitting end without renewing the matrix V and the pre-filtering transmitted dynamically allocated transmit power. 接收端根据一定准则和算法求解接收滤波阵U,从而简化了发射、接收处理,可以获得次优MIMO容量。 Receiving end according to certain criteria and algorithms for solving reception filter array U, thereby simplifying the transmission, reception processing can be obtained suboptimal MIMO capacity. 该系统采用TDD工作方式,它利用了无线信道的互益性,无需额外反馈信道,降低了系统开销,且与MIMO信道相适配。 The system uses TDD mode of operation, which utilizes the mutual benefit of the radio channel, no additional feedback channel, by reducing the overhead, and adapted to MIMO channel.

上面已经结合优选实施例对本发明进行了描述。 Above in connection with preferred embodiments of the present invention has been described. 本领域技术人员应该理解,在不脱离本发明的精神和范围的情况下,可以进行各种其它的改变、替换和添加。 It should be understood by those skilled in the art, without departing from the spirit and scope of the present invention, various other changes, substitutions and additions. 因此,本发明的范围不应该被理解为被局限于上述特定实施例,而应由所附权利要求所限定。 Accordingly, the scope of the invention should not be construed as being limited to the specific embodiments described above, but is defined by the appended claims.

Claims (22)

1.一种在多天线多输入多输出(MIMO)系统中获得次优容量的方法,包括步骤:在发送端,对多个发送天线中的每一个发送天线均匀分配发送功率,并发送经载波调制后的基带符号;在接收端,由多个接收天线接收所述多个天线发送的载波信号并下变频为基带符号;对经过变频的基带符号进行定时和频率同步;从经过同步的符号中估计信道增益阵H;利用最小均方差(MMSE)算法求解接收滤波矩阵U以获得次优输入多输出容量。 A multiple input multiple output (MIMO) system capacity suboptimal method in a multiple antenna, comprising the steps of: at the transmitting side transmits a plurality of antennas each transmitting antenna even distribution of transmission power, and sends the carrier the modulated baseband symbol; at the receiving end, receiving a plurality of reception antennas of the plurality of antenna-carrier signals transmitted and downconverted to baseband symbol; performs the timing and frequency through the baseband symbol frequency synchronization; from the synchronized symbol estimating a channel gain matrix H; using minimum mean square error (MMSE) algorithm to obtain a receive filtering matrix U suboptimal input multiple-output capacity.
2.根据权利要求1所述的方法,其中还包括在发送端利用单位阵对要由多天线发送的信号进行预滤波的步骤。 2. The method according to claim 1, further comprising the step of a signal to be transmitted by multiple antennas at the transmit end pre-filtering unit matrix.
3.根据权利要求1或2所述的方法,其中利用最小均方差求解接收滤波矩阵U的解由下面的表达式表示U=Ryy&OverBar;-1Ry&OverBar;x,]]>其中Ry&OverBar;x=E[y&OverBar;xH],]]>Ryy&OverBar;=E[yy&OverBar;H],]]>x=x1&CenterDot;&CenterDot;&CenterDot;xNrT]]>为发射信号,预滤波后为x=vx, y为经信道H传输后的信号,接收滤波阵处理后恢复的信号向量为y=y1&CenterDot;&CenterDot;&CenterDot;yNrT,]]>“T”表示转置,“H'表示矩阵的厄密(Hermite)转置。 3. The method of claim 1 or claim 2, wherein the minimum mean square error calculation by Solutions reception filter matrix U represents U = Ryy & OverBar by the following expression; -1Ry & OverBar; x,]]> wherein Ry & OverBar; x = E [ y & OverBar; xH],]]> Ryy & OverBar; = E [yy & OverBar; H],]]> x = x1 & CenterDot; & CenterDot; & CenterDot; xNrT]]> is the transmitted signal, the pre-filter is x = vx, y is via a channel H signal transmission, signal vector recovery receive the filtered array process for y = y1 & CenterDot; & CenterDot; & CenterDot; yNrT,]]> "T" denotes a transpose, "H 'represents the Hermitian (HERMITE) transpose of a matrix.
4.根据权利要求1所述的方法,其中在发送端还包括下列步骤:对输入比特流进行串/并转换,将其复用为多个天线中的每个天线支路端的符号子流;对输入的比特流进行信道编码以抗噪声;对经过信道编码的比特流进行交织处理以降低比特流相关性;将交织后的比特流调制为符号流;和在发送符号流中插入用于定时和信道估计的导频序列。 4. The method according to claim 1, wherein the sending end further comprises the steps of: the input bit stream for the serial / parallel conversion, multiplexes the plurality of sub-antennas for each symbol in the antenna branch stream end; input bitstream performs channel coding antinoise; performs interleaving processing channel coded bit stream in order to reduce the bit stream correlation; bit stream modulated interleaved symbol stream; and a transmission symbol stream for inserting the timing and a channel estimation pilot sequence.
5.根据权利要求1所述的方法,其中在接收端还包括下列步骤:对利用最小均方差算法求解接收滤波矩阵U的符号进行解调;对经过解调的比特流进行解交织;对解交织后的比特流进行译码;和对经过译码的比特流进行并/串转换,把多天线比特流转换为串行输出信息比特流。 5. The method according to claim 1, wherein the receiving end further comprises the steps of: using a minimum mean square error algorithm for the received symbols is demodulated filter matrix U; for de-interleaving the demodulated bit stream through; solution of interleaved bit stream decoding; and the decoding of the bitstream through the parallel / serial converter, the multi-antenna bit stream into a serial output bit stream.
6.根据权利要求1至5中的任何一项所述的方法,其中所述多天线多输入多输出系统是多天线正交频分复用无线多媒体通信系统。 6. A method according to any one of claims 1 to 5, wherein the multi-antenna MIMO system is a multi-antenna orthogonal frequency-division multiplexing wireless multimedia communication system.
7.一种在多天线多输入多输出(MIMO)系统中获得次优容量的方法,包括步骤:在发送端,对多个发送天线中的每一个发送天线均匀分配发送功率,并发送经载波调制后的基带符号;在接收端,由多个接收天线接收所述多个天线发送的载波信号并下变频为基带符号;对经过变频的基带符号进行定时和频率同步;从经过同步的符号中估计信道增益阵H;利用最小均方(LSE)算法求解接收滤波矩阵U以获得次优输入多输出容量。 7. A method of multiple-input multiple-output (MIMO) multi-antenna system in a suboptimal volume, comprising the steps of: at the transmitting side transmits a plurality of antennas each transmitting antenna even distribution of transmission power, and sends the carrier the modulated baseband symbol; at the receiving end, receiving a plurality of reception antennas of the plurality of antenna-carrier signals transmitted and downconverted to baseband symbol; performs the timing and frequency through the baseband symbol frequency synchronization; from the synchronized symbol estimating a channel gain matrix H; using minimum mean square (LSE) algorithm to obtain a receive filtering matrix U suboptimal input multiple-output capacity.
8.根据权利要求7所述的方法,其中还包括在发送端利用单位阵对要由多天线发送的信号进行预滤波的步骤。 8. The method according to claim 7, further comprising the step of a signal to be transmitted by multiple antennas at the transmit end pre-filtering unit matrix.
9.根据权利要求7或8所述的方法,其中利用最小均方求解接收滤波矩阵U的解,U的迭代过程为U(k+1)=U(k)+2μ y(k)[x(k)-y(k)]H在上面的表达式中,μ>0为步长因子,若μ<1/E[| y(k)|2],则E[U(k)]收敛为其最小均方差的解。 9. A method according to claim 78, wherein the receiving solution were filtered using minimum square solving the matrix U, U is an iterative process U (k + 1) = U (k) + 2μ y (k) [x (k) -y (k)] H in the above expression, μ> 0 is the step size, if μ <1 / E [| y (k) | 2], the E [U (k)] converges its minimum mean square error of the solution.
10.根据权利要求7所述的方法,其中在发送端还包括下列步骤:对输入比特流进行串/并转换,将其复用为多个天线中的每个天线支路端的符号子流;对输入的比特流进行信道编码以抗噪声;对经过信道编码的比特流进行交织处理以降低比特流相关性;将交织后的比特流调制为符号流;和在发送符号流中插入用于定时和信道估计的导频序列。 10. The method according to claim 7, wherein the sending end further comprises the steps of: the input bit stream for the serial / parallel conversion, multiplexes the plurality of sub-antennas for each symbol in the antenna branch stream end; input bitstream performs channel coding antinoise; performs interleaving processing channel coded bit stream in order to reduce the bit stream correlation; bit stream modulated interleaved symbol stream; and a transmission symbol stream for inserting the timing and a channel estimation pilot sequence.
11.根据权利要求7所述的方法,其中在接收端还包括下列步骤:对利用最小均方算法求解接收滤波矩阵U的符号进行解调;对经过解调的比特流进行解交织;对解交织后的比特流进行译码;和对经过译码的比特流进行并/串转换,把多天线比特流转换为串行输出信息比特流。 11. The method according to claim 7, wherein the receiving end further comprises the steps of: using a minimum mean square algorithm filter matrix U received symbols is demodulated; decompresses the bit stream after demodulation interleaving; solution of interleaved bit stream decoding; and the decoding of the bitstream through the parallel / serial converter, the multi-antenna bit stream into a serial output bit stream.
12.根据权利要求7至11中的任何一项所述的方法,其中所述多天线多输入多输出系统是多天线正交频分复用无线多媒体通信系统。 12. A method according to any one of claims 7 to 11, wherein the multi-antenna MIMO system is a multi-antenna orthogonal frequency-division multiplexing wireless multimedia communication system.
13.一种在多天线多输入多输出(MIMO)系统中获得次优容量的装置,包括:功率分配装置,用于对多个发送天线中的每一个发送天线均匀分配发送功率;多个接收装置,用于接收所述多个天线发送的载波信号并下变频为基带符号;同步装置,用于对经过变频的基带符号进行定时和频率同步;信道估计装置,用于从经过同步的符号中估计信道增益阵H;最小均方差接收滤波装置,利用最小均方差(MMSE)算法求解接收滤波矩阵U以获得次优输入多输出容量。 13. A multi-antenna multiple input multiple output (MIMO) system capacity obtained suboptimal apparatus, comprising: a power distribution device, a transmitting antenna for each of the plurality of transmit antennas to evenly distribute power; a plurality of receiving means for receiving a carrier signal transmitted from the plurality of antennas and downconverted to baseband symbol; synchronization means for timing and frequency-converted through the baseband symbol synchronization; channel estimation device for the synchronized symbol from estimating a channel gain matrix H; MMSE receiver filtering means, using minimum mean square error (MMSE) algorithm to obtain a receive filtering matrix U suboptimal input multiple-output capacity.
14.根据权利要求13所述的装置,其中还包括在发送端利用单位阵对要由多天线发送的信号进行预滤波的装置。 14. The apparatus according to claim 13, wherein the transmitting end further comprises a device using a single pre-filtered matrix signals to be transmitted by multiple antennas.
15.根据权利要求13所述的装置,其中在发送端还包括:串/并转换装置,用于对输入比特流进行串/并转换,将其复用为多个天线中的每个天线支路端的符号子流;多个信道编码装置,对输入的比特流进行信道编码以抗噪声;多个交织装置,对经过信道编码的比特流进行交织处理以降低比特流相关性;多个调制装置,用于将交织后的比特流调制为符号流;和导频序列模块,用于在发送符号流中插入用于定时和信道估计的导频序列。 15. The apparatus according to claim 13, wherein the sending end further comprises: a serial / parallel conversion means, the input bit stream for the serial / parallel conversion, each antenna support multiplexing a plurality of antennas symbols of the sub path side stream; plurality of channel encoding apparatus, the bit stream inputted channel coding noise; a plurality of interleaving means for interleaving processing channel coded bit stream in order to reduce the bit stream correlation; a plurality of modulating means for the interleaved bit stream is modulated symbol stream; and the pilot sequence module, configured to transmit symbol streams for inserting timing and channel estimation pilot sequence.
16.根据权利要求13所述的装置,其中在接收端还包括下列步骤:多个解调装置,对利用最小均方差算法求解接收滤波矩阵U的符号进行解调;多个解交织装置,用于对经过解调的比特流进行解交织;多个译码装置,用于对解交织后的比特流进行译码;和并/串转换装置,对经过译码的比特流进行并/串转换,把多天线比特流转换为串行输出信息比特流。 16. The apparatus according to claim 13, wherein the receiving end further comprises the steps of: a plurality of demodulating means of minimum mean square error algorithm using the received symbols to demodulate the filtered matrix U; a plurality of deinterleaving means for in the bit stream demodulated deinterleaved; a plurality of decoding means for bit stream decoding the deinterleaved; and a parallel / serial conversion means, performs decoding of the bit stream through the parallel / serial converter to convert the multi-antenna bit-stream into a serial output bit stream.
17.根据权利要求13至16中的任何一项所述的装置,其中所述多天线多输入多输出系统是多天线正交频分复用无线多媒体通信系统。 17. The apparatus as claimed in any of claim 13 to 16, wherein the multi-antenna MIMO system is a multi-antenna orthogonal frequency-division multiplexing wireless multimedia communication system.
18.一种在多天线多输入多输出(MIMO)系统中获得次优容量的装置,包括:功率分配装置,用于对多个发送天线中的每一个发送天线均匀分配发送功率,并发送经载波调制后的基带符号;多个接收装置,用于接收所述多个天线发送的载波信号并下变频为基带符号;同步装置,用于对经过变频的基带符号进行定时和频率同步;信道估计装置,用于从经过同步的符号中估计信道增益阵H;最小均方接收滤波装置,利用最小均方(LSE)算法求解接收滤波矩阵U以获得次优多输入多输出容量。 18. A multiple-input multiple-output in a multi-antenna (MIMO) systems suboptimal volume obtaining means, comprising: a power distribution device, a transmission antenna for transmitting each of the plurality of antennas even distribution of transmission power, and sends the after carrier modulation baseband symbol; a plurality of receiving means for receiving a carrier signal transmitted from the plurality of antennas and downconverted to baseband symbol; synchronizing means for synchronizing the timing and frequency of the baseband symbol after converted; channel estimation means for H from the synchronized symbol estimating a channel gain matrix; least mean square filtering means receiving, using minimum mean square (LSE) algorithm to obtain a receive filtering matrix U suboptimal MIMO capacity.
19.根据权利要求18所述的装置,其中还包括在发送端利用单位阵对要由多天线发送的信号进行预滤波的装置。 19. The apparatus according to claim 18, wherein the transmitting end further comprises a device using a single pre-filtered matrix signals to be transmitted by multiple antennas.
20.根据权利要求18所述的装置,其中在发送端还包括:串/并转换装置,用于对输入比特流进行串/并转换,将其复用为多个天线中的每个天线支路端的符号子流;多个信道编码装置,对输入的比特流进行信道编码以抗噪声;多个交织装置,对经过信道编码的比特流进行交织处理以降低比特流相关性;多个调制装置,用于将交织后的比特流调制为符号流;和导频序列模块,用于在发送符号流中插入用于定时和信道估计的导频序列。 20. The apparatus according to claim 18, wherein the sending end further comprises: a serial / parallel conversion means, the input bit stream for the serial / parallel conversion, each antenna support multiplexing a plurality of antennas symbols of the sub path side stream; plurality of channel encoding apparatus, the bit stream inputted channel coding noise; a plurality of interleaving means for interleaving processing channel coded bit stream in order to reduce the bit stream correlation; a plurality of modulating means for the interleaved bit stream is modulated symbol stream; and the pilot sequence module, configured to transmit symbol streams for inserting timing and channel estimation pilot sequence.
21.根据权利要求18所述的装置,其中在接收端还包括下列步骤:多个解调装置,对利用最小均方算法求解接收滤波矩阵U的符号进行解调;多个解交织装置,用于对经过解调的比特流进行解交织;多个译码装置,用于对解交织后的比特流进行译码;和并/串转换装置,对经过译码的比特流进行并/串转换,把多天线比特流转换为串行输出信息比特流。 21. The apparatus according to claim 18, wherein the receiving end further comprises the steps of: a plurality of demodulating means for using minimum mean square algorithm for the received symbols to demodulate the filtered matrix U; a plurality of deinterleaving means for in the bit stream demodulated deinterleaved; a plurality of decoding means for bit stream decoding the deinterleaved; and a parallel / serial conversion means, performs decoding of the bit stream through the parallel / serial converter to convert the multi-antenna bit-stream into a serial output bit stream.
22.根据权利要求18至21中的任何一项所述的装置,其中所述多天线多输入多输出系统是多天线正交频分复用无线多媒体通信系统。 22. The apparatus as claimed in any of claim 18 to 21, wherein the multi-antenna MIMO system is a multi-antenna orthogonal frequency-division multiplexing wireless multimedia communication system.
CN 200410102070 2004-12-22 2004-12-22 Multi-antenna transmitting/receiving processing method obtaining suboptimized channe/capacity and device thereof CN1797986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410102070 CN1797986A (en) 2004-12-22 2004-12-22 Multi-antenna transmitting/receiving processing method obtaining suboptimized channe/capacity and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410102070 CN1797986A (en) 2004-12-22 2004-12-22 Multi-antenna transmitting/receiving processing method obtaining suboptimized channe/capacity and device thereof

Publications (1)

Publication Number Publication Date
CN1797986A true CN1797986A (en) 2006-07-05

Family

ID=36818803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410102070 CN1797986A (en) 2004-12-22 2004-12-22 Multi-antenna transmitting/receiving processing method obtaining suboptimized channe/capacity and device thereof

Country Status (1)

Country Link
CN (1) CN1797986A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084602A (en) * 2007-08-16 2011-06-01 Lg电子株式会社 A method for transmitting channel quality information in a multiple input multiple output system
CN101291503B (en) 2007-04-17 2011-11-16 展讯通信(上海)有限公司 Calibrating method and apparatus for radio frequency circuit of time division duplexing MIMO multi-antenna communicating system
CN102315914A (en) * 2011-09-01 2012-01-11 上海交通大学 Robust non-linear transceiver under multiple-input-multiple-output spatial correlation channel
US8553668B2 (en) 2007-08-14 2013-10-08 Lg Electronics Inc. Signal transmission method using CDM against the effect of channel estimation error in transmit diversity system
US8743819B2 (en) 2007-08-14 2014-06-03 Lg Electronics Inc. Method for acquiring resource region information for PHICH and method of receiving PDCCH
US8831042B2 (en) 2007-03-29 2014-09-09 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
US9385792B2 (en) 2007-08-16 2016-07-05 Lg Electronics Inc. Method for transmitting codewords in multiple input multiple output system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8831042B2 (en) 2007-03-29 2014-09-09 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
US9300455B2 (en) 2007-03-29 2016-03-29 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
US9608786B2 (en) 2007-03-29 2017-03-28 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
CN101291503B (en) 2007-04-17 2011-11-16 展讯通信(上海)有限公司 Calibrating method and apparatus for radio frequency circuit of time division duplexing MIMO multi-antenna communicating system
US9877319B2 (en) 2007-08-14 2018-01-23 Lg Electronics Inc. Method for acquiring resource region information for PHICH and method of receiving PDCCH
US8553668B2 (en) 2007-08-14 2013-10-08 Lg Electronics Inc. Signal transmission method using CDM against the effect of channel estimation error in transmit diversity system
CN103281163B (en) * 2007-08-14 2016-11-16 Lg电子株式会社 For the method obtaining the resource region information for PHICH and the method receiving PDCCH
US8743819B2 (en) 2007-08-14 2014-06-03 Lg Electronics Inc. Method for acquiring resource region information for PHICH and method of receiving PDCCH
US8767634B2 (en) 2007-08-14 2014-07-01 Lg Electronics Inc. Method for acquiring resource region information for PHICH and method of receiving PDCCH
US10117243B2 (en) 2007-08-14 2018-10-30 Lg Electronics Inc. Method for acquiring resource region information for PHICH and method of receiving PDCCH
US8964878B2 (en) 2007-08-16 2015-02-24 Lg Electronics Inc. Method for transmitting channel quality information in a multiple input multiple output system
US9148210B2 (en) 2007-08-16 2015-09-29 Lg Electronics Inc. Method for transmitting channel quality information in a Multiple Input Multiple Output system
US8761286B2 (en) 2007-08-16 2014-06-24 Lg Electronics Inc. Method for transmitting channel quality information in a multiple input multiple output system
US9385792B2 (en) 2007-08-16 2016-07-05 Lg Electronics Inc. Method for transmitting codewords in multiple input multiple output system
CN102084602B (en) * 2007-08-16 2014-02-19 Lg电子株式会社 A method for transmitting channel quality information in a multiple input multiple output system
CN102084602A (en) * 2007-08-16 2011-06-01 Lg电子株式会社 A method for transmitting channel quality information in a multiple input multiple output system
CN102315914B (en) * 2011-09-01 2014-04-30 上海交通大学 Robust non-linear transceiver under multiple-input-multiple-output spatial correlation channel
CN102315914A (en) * 2011-09-01 2012-01-11 上海交通大学 Robust non-linear transceiver under multiple-input-multiple-output spatial correlation channel

Similar Documents

Publication Publication Date Title
Zhou et al. Adaptive modulation for multiantenna transmissions with channel mean feedback
Love et al. What is the value of limited feedback for MIMO channels?
ES2396563T3 (en) Procedure and apparatus for using channel status information in a wireless communication system
US8068555B2 (en) Methods and systems for combined cyclic delay diversity and precoding of radio signals
JP4972687B2 (en) Phase transition based precoding method and transceiver supporting the same
EP1608081B1 (en) Apparatus and method for space-frequency block coding/decoding in a communication system
TWI459743B (en) Cooperactive mimo in multicell wireless networks
US9742478B2 (en) Wireless feedback system and method
US7508748B2 (en) Rate selection for a multi-carrier MIMO system
KR101492360B1 (en) Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system
US9484990B2 (en) Spatial mode adaptation at the cell edge using interferer spatial correlation
JP5457357B2 (en) Data transmission / reception method using phase transition based precoding and transmitter / receiver supporting the method
US7782573B2 (en) Trellis-based feedback reduction for multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) with rate-limited feedback
US8023601B2 (en) Weight generation method for multi-antenna communication systems utilizing RF-based and baseband signal weighting and combining
AU2002309674B8 (en) Method and apparatus for processing data in a multiple-input multiple-output (mimo) communication system utilizing channel state information
KR100799901B1 (en) Channel estimation and tracking for multip le transmit antenna
US6987819B2 (en) Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams
AU2003263818B2 (en) System and method for multiple-input multiple-output (MIMO) radio communication
AU2009201306B2 (en) Method and apparatus for implementing space frequency block coding in an orthogonal frequency division multiplexing wireless communication system
US7167526B2 (en) Wireless communication apparatus and method
US20050201307A1 (en) Apparatus and method for transmitting data by selected eigenvector in closed loop mimo mobile communication system
US8824583B2 (en) Reduced complexity beam-steered MIMO OFDM system
JP2009510898A (en) Training signal for selecting antenna and beam in MIMO wireless LAN
Paulraj et al. An overview of MIMO communications-a key to gigabit wireless
KR100955795B1 (en) Wireless communication using multi-transmit multi-receive antenna arrays

Legal Events

Date Code Title Description
C06 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)