CN1708999A - Uplink pilot and signaling transmission in wireless communication systems - Google Patents

Uplink pilot and signaling transmission in wireless communication systems Download PDF

Info

Publication number
CN1708999A
CN1708999A CN 200380102367 CN200380102367A CN1708999A CN 1708999 A CN1708999 A CN 1708999A CN 200380102367 CN200380102367 CN 200380102367 CN 200380102367 A CN200380102367 A CN 200380102367A CN 1708999 A CN1708999 A CN 1708999A
Authority
CN
China
Prior art keywords
sub
terminal
subbands
pilot signal
band
Prior art date
Application number
CN 200380102367
Other languages
Chinese (zh)
Other versions
CN1708999B (en
Inventor
兰加纳坦·克里希南
拉吉夫·维贾亚恩
塔梅尔·卡多斯
Original Assignee
高通股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US42236802P priority Critical
Priority to US42236202P priority
Priority to US60/422,362 priority
Priority to US60/422,368 priority
Priority to US10/340,507 priority patent/US6928062B2/en
Priority to US10/340,507 priority
Application filed by 高通股份有限公司 filed Critical 高通股份有限公司
Priority to PCT/US2003/034507 priority patent/WO2004040827A2/en
Priority claimed from CN201010106823.4A external-priority patent/CN101848531B/en
Publication of CN1708999A publication Critical patent/CN1708999A/en
Application granted granted Critical
Publication of CN1708999B publication Critical patent/CN1708999B/en

Links

Abstract

在OFDM系统中通过上行链路更高效地传输导频信号和信令的技术。 Technical pilot signals and signaling transmitted more efficiently through the uplink OFDM system. 通过子带复用,系统中的M个可用子带被分为Q个不相交的子带组。 By subband multiplexing, system, the M usable subbands are divided into Q disjoint subband groups. 每个子带组可以被分配给不同的终端,以进行上行链路导频信号传输。 For each subband group may be allocated to different terminals for uplink pilot signal transmission. 多个终端可以在分配给它们的子带上同时发射信号。 Multiple terminals may simultaneously transmit band signal sub-assigned to them. 可以将用于导频信号的发射功率调高,使得:即使每个终端使用S、而非M个子带来用于导频信号传输时,也可以达到相同的总的导频信号能量。 The transmit power may be used to increase the pilot signal, such that: even when each terminal uses S, M sub not bring used for pilot signal transmission, can achieve the same total pilot signal energy. 接收从这些终端发射的导频信号,并且根据在所分配的这些子带上接收的导频信号来获取对各终端的信道估计。 Receiving a pilot signal transmitted from the terminal, and acquires a channel estimate for each terminal based on the allocated sub-band of the received pilot signal. 该信道估计包括不属于所分配的组中的附加子带的响应。 The channel response estimation comprises the additional sub-bands belonging to the group is not allocated in. 子带复用也可用于上行链路信令传输。 Subband multiplexing may also be used for uplink signaling.

Description

无线通信系统中的上行链路导频信号和信令传输 Uplink pilot in a wireless communication system, a pilot signal and the signaling,

相关申请本申请要求2002年10月29日提交的、题为“Uplink Pilot AndSignaling Transmission In Wireless Communication Systems”的美国临时专利申请60/422368和2002年10月29日提交的、题为“ChannelEstimation for OFDM Communication Systems”的美国临时专利申请60/422362的优先权,这两篇申请并入此处,作为参考。 US Provisional Patent Application This application claims related to October 29, 2002, filed, entitled "Uplink Pilot AndSignaling Transmission In Wireless Communication Systems" in 2002 and 60/422368 filed October 29, titled "ChannelEstimation for OFDM U.S. provisional Patent Communication Systems "application No. 60/422362, which both applications are incorporated herein by reference.

发明领域本发明一般涉及数据通信,尤其涉及在无线通信系统中通过上行链路传输导频信号和信令(如速率控制)信息的技术。 Field of the Invention The present invention relates generally to data communications and more particularly relates to a pilot signal and signaling (e.g. Rate Control) information through an uplink pilot transmissions in a wireless communication system.

技术背景无线通信系统广泛用于提供各种类型的通信,如语音、分组数据等。 BACKGROUND OF THE INVENTION Wireless communication systems are widely deployed to provide various types of communication such as voice, packet data, and so on. 这些系统可以是能够通过共享可用系统资源而支持与多个用户顺序或同时通信的多址系统。 These systems may be capable of sharing the available system resources supported by a plurality of users sequentially or simultaneously with a multiple-access communication system. 这些系统的例子包括:码分多址(CDMA)系统、时分多址(TDMA)系统和正交频分多址(OFDMA)系统。 Examples of such systems include: Code Division Multiple Access (CDMA) systems, time division multiple access (TDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems.

OFDM系统采用正交频分复用(OFDM),将整个系统带宽有效地分为数个(N个)正交子带。 OFDM system utilizes orthogonal frequency division multiplexing (OFDM), the overall system bandwidth into several effective of (N) orthogonal subbands. 这些子带也被称为音(tones)、频率段(frequency bins)和频率子信道。 These subbands are also called tones (tones), the frequency band (frequency bins), and frequency subchannels. 可将各子带视为可以用于传输数据的独立传输信道。 Each subband may be treated as an independent transmission channels may be used for data transmission.

在无线通信系统中,来自发射机的RF调制信号经由多个传播路径到达接收机。 In a wireless communication system, RF modulated signals from a transmitter arrives at the receiver via multiple propagation paths. 由于很多因素,传播路径的特征通常随时间而变化。 Due to many factors, generally the propagation path characteristic varies with time. 对于OFDM系统来说,这N个子带会经历不同的信道状况,获得不同的信噪比(SNR)。 For an OFDM system, the N subbands different experience channel conditions, achieve different signal to noise ratio (SNR).

为了在可用子带上有效地传输数据,通常需要准确地估计发射机和接收机之间的无线信道响应。 In order to efficiently transmit data in band available sub often necessary to accurately estimate the wireless channel response between the transmitter and the receiver. 通常情况下,信道估计是通过从发射机发送导频信号和在接收机测量该导频信号而执行的。 Typically, the channel estimation is performed by transmitting a pilot signal from the transmitter and measuring the pilot at the receiver signal. 由于导频信号是由接收机先验得知的符号构成,所以,可以将信道响应估计为收到的导频符号与发射的导频符号的比。 Since the pilot signal is composed of symbols known a priori by the receiver, the channel response can be estimated as the ratio of the received pilot symbols with the pilot transmitted pilot symbols.

导频信号传输代表着无线通信系统中的开销(overhead)。 Pilot signal transmission represents overhead in a wireless communication system (overhead). 因此,希望将导频信号传输降低到尽可能小的程度。 Accordingly, it is desirable to reduce the pilot signal transmission to the possible extent. 但是,由于无线信道中存在噪音和其他干扰(artifacts),为了使接收机对信道响应获得相当准确的估计,需要发送足够量的导频信号。 However, due to the presence of noise and other interference (Artifacts) radio channel, in order to enable the receiver to obtain reasonably accurate channel response estimation, we need to send a sufficient amount of pilot signals. 此外,由于传播路径对信道响应的影响以及传播路径本身通常随时间而变化,因此需要重复导频信号发射。 Further, the propagation path and the propagation path affect the channel response itself typically change over time, requiring repeated pilot signal transmission. 将无线信道假设为相对稳定的持续时间常被称为信道相干时间(channel coherence time)。 The wireless channel is assumed to be relatively stable duration often referred to as the channel coherence time (channel coherence time). 为了维持较高的系统性能,重复发射导频信号的间隔应明显小于信道相关时间。 In order to maintain high system performance, repeated transmission of the pilot signal should be significantly less than the channel interval of relevant time.

在无线通信系统的下行链路中,多个终端使用从一个接入点(或一个基站)发射的单个导频信号,来估计从该接入点到各终端的不同信道的响应。 In the downlink in a wireless communication system, a plurality of terminals using a single pilot transmission from an access point (or base station) pilot signal, from the access point to estimate the response of the different channels of each terminal. 在上行链路中,通常需要通过从各终端发射的单独导频信号,对从各终端到该接入点的信道进行估计。 In the uplink, a pilot signal is typically required by a separate pilot transmitted from each terminal, for each terminal from the access point to estimate the channel.

所以,对于无线通信系统来说,多个终端各需要通过上行链路向接入点发射导频信号。 Therefore, for a wireless communication system, each terminal needs to transmit a plurality of pilot signals through the uplink to the access point. 此外,信令信息,如速率控制信息和对下行链路发射的确认,也需要通过上行链路发送。 In addition, the signaling information, such as the rate control and acknowledgment information for downlink transmission, but also needs to be transmitted via uplink. 如果以时分复用(TDM)方式执行上行链路发射,则可以为各终端分配不同的时隙,然后在所分配的时隙中发射其导频信号和信令信息。 If you are performing uplink transmission in time division multiplexed (TDM) manner, each terminal that can be assigned different time slots, and then transmits its pilot signal and the signaling information in the assigned time slot. 根据活动终端的数量和时隙的持续时间,相当大部分的上行链路传输时间会被导频信号和信令传输占用。 The duration and number of time slots of active terminals, a substantial portion of the uplink transmission timing signal is a pilot and signaling transmission occupies. 导频信号和信令信息的上行链路传输中的这种低效率在OFDM系统中被进一步恶化,在OFDM系统中,最小的传输单位(通常为一个OFDM符号)的数据承载能力可能会很大。 Uplink pilot signal is transmitted and the signaling information in this inefficiency is further deteriorated in the OFDM system, in an OFDM system, the minimum transmission unit data-carrying capacity (typically one OFDM symbol) can be large .

因此,本领域需要在无线通信系统(如OFDM系统)中更高效地传输导频信号和信令信息的技术。 Accordingly, the present need in the art to more efficiently transmit pilot and signaling information technology pilot signal in a wireless communication system (e.g., OFDM system).

发明内容 SUMMARY

这里提供的技术用于在无线通信系统中通过上行链路更高效地传输导频信号和信令。 Technology provided herein in a wireless communication system by more efficiently transmit uplink pilot signals and signaling. 通过子带复用,系统中M个可用子带可以被分为Q个不相交的子带组,其中,如果任一子带包含于某组,则它只包含于唯一一个组内。 By subband multiplexing, M usable subbands in the system band may be divided into Q disjoint subband groups, wherein, if any sub-band comprising a particular group, then it contains only one group within. 然后,可以将各子带组分配给不同的终端。 Then, each sub-band may be assigned to different groups of terminals. 多个终端可以在分配给它们的信道上同时发射信号。 Multiple terminals may simultaneously transmit signals in channels assigned to them.

通过子带复用,各终端只根据在可用子带的一个小的子集中传输的上行链路导频信号,就可获得对全部可用频带的准确信道估计。 By subband multiplexing, each terminal only focus on the transmission of the uplink pilot signal according to a small subset of the usable subbands, it is possible to obtain accurate channel estimates of all available frequency band. 如果维持用于在S个子带上发射导频信号的总能量,使其等于用于在所有M个可用子带上发射导频信号的总能量,那么,只使用在S个子带上传输的导频信号,就可以准确地插入其他MS个子带的信道响应。 If S is maintained at a total energy of subbands transmit a pilot signal to be equal to the total energy band for transmitting the pilot signals in all M usable subbands, then only the transmitted pilot subbands S frequency signal, can be inserted into other subbands MS channel response accurately.

一个实施例提供了一种在具有多个子带的无线通信系统(如OFDM系统)中通过上行链路传输导频信号的方法。 The method of a pilot signal through an uplink pilot transmission embodiments provide a wireless communication system having a plurality of subbands (e.g., OFDM system). 根据该方法,M个适用于在系统中进行数据传输的可用子带初始时被分为Q个不相交的子带组。 According to this method, M is suitable for a data transmission system is available sub-divided into Q disjoint subband sets initial belt. 这Q个组包括的子带数量可以相同或不同,并且各组中的子带可以均匀或不均匀地分布在这M个可用子带中。 This Q group comprises a number of subbands may be the same or different, and the subbands in each group may be uniformly or non-uniformly distributed across the M usable subbands. 为一个或多个终端的每一个终端分配不同的子带组,以用于上行链路导频信号传输。 Assigned a different group of subbands or a plurality of terminals each terminal, for an uplink pilot signal transmission. 然后,在所分配的子带组上,接收来自所述一个或多个终端发射的导频信号。 Then, on the group of subbands assigned to the one or more terminals transmit pilot signals received from. 对于各个终端,可以将各子带中的导频信号发射功率调高(例如,倍数为Q),从而,即使在S、而非M个子带上传输导频信号的情况下,也可以达到相同的总导频信号能量。 For each terminal, each pilot subband can increase the transmission power of the pilot signal (e.g., a factor of Q), so that, even if the S, M subbands rather than the case where the transmission pilot signals, same can also be achieved the total pilot signal energy. 执行功率调整,从而使得在各终端观测到该可用的总发射功率、满足发射功率约束(如调整约束)以及将硬件部分的成本增加量最小化(如果成本增加的话)。 Performs power adjustment, so that each terminal in the transmit power of the observed total available transmit power to meet the constraint (constraint such as adjusting) the amount of hardware and increased costs to minimize the portion (if it increases the cost). 然后,各个终端根据在分配给该终端的子带上接收的导频信号,获得信道估计。 Then, each terminal in accordance with the sub-band allocated to the terminal received pilot signal, a channel estimate is obtained. 各终端的信道估计可以覆盖不包含于分配给该终端的组中的一个或多个其他子带。 Each channel estimate for the terminal may be covered in a group containing the terminal assigned to one or more other sub-bands. 例如,该信道估计可以包括对所有M个可用子带的响应。 For example, the channel estimate may include a response for all M usable subbands.

也可以使用子带复用,在上行链路上传输信令信息。 It may also be used subband multiplexing, signaling information transmitted on the uplink. 信令信息可以包括:用于下行链路数据传输的速率控制信息、对在下行链路上接收数据的确认等。 Signaling information may include: a data transmission rate of the downlink control information, acknowledgment of received data on the downlink like.

下面对本发明的各方面和实施例做出进一步详细的描述。 Hereinafter, various aspects and embodiments of the present invention is described in further detail be made.

附图简述通过参考以下结合附图的说明,本发明的特征、本质和优点将变得更加显而易见,在附图中,相同的标号表示相似或相应的功能和特征,其中:图1示出了支持多个用户的OFDM系统;图2、3和4分别示出了帧结构、OFDM子带结构和支持子带复用的OFDM子带结构;图5示出了使用子带复用发射上行链路导频信号的过程;图6示出了支持上行链路导频信号和信令传输的子带复用的帧结构;图7是OFDM系统中接入点和终端的框图;以及图8A到8C示出了通过用于上行链路导频信号和信令传输的子带复用而实现的潜在节约的示意图。 BRIEF DESCRIPTION by reference to the following description in conjunction with the accompanying drawings, the present invention features, nature, and advantages will become more apparent in the drawings, like reference numerals indicate like or corresponding functions and features, wherein: Figure 1 shows a OFDM supporting multiple users of the system; Figures 2, 3 and 4 show a frame structure, and the OFDM subband structure supports subband multiplexing OFDM subband structure; Figure 5 illustrates a multiplexed transmission using an uplink subband process link pilot signal; FIG. 6 shows a support uplink pilot signal and the pilot sub-band signaling transmitted multiplexed frame structure; FIG. 7 is a block diagram of an OFDM system and a terminal access point; and 8A 8C shows a schematic view of the potential savings is achieved by a sub-pilot signal and an uplink signaling transmitted with multiplexing.

发明详述这里使用“示例性的”一词用于表示“作为一个例子、实例或例证”。 Detailed Description of the invention As used herein, "exemplary" is used to mean "serving as an example, instance, or illustration." 这里被描述为“示例性的”的实施例或设计并不意味着较其他实施例或设计优选或有优势。 Herein described embodiments or designs as "exemplary" is not meant embodiments or designs or advantageous over other embodiments.

可以在各种类型的无线通信系统中使用这里描述的用于发射导频信号和信令信息的技术。 Technical pilot signal transmit pilot and signaling information can be used herein in various types of wireless communication system is described for. 例如,这些技术可用于CDMA、TDMA、FDMA和OFDM系统。 For example, these techniques may be used for CDMA, TDMA, FDMA and OFDM systems. 这些技术也可用于混合系统,如OFDM TDM系统,混合系统用时分复用传输导频信号/信令和业务数据,其中,OFDM用于传输导频信号/信令,另一种传输机制用于传输业务数据。 These techniques may also be used in hybrid systems, signal / signaling and data traffic, such as OFDM TDM system, a hybrid system using a frequency-division multiplexing transmission guides, wherein, the OFDM signal for transmitting a pilot / signaling, another transport mechanism for data transmission services. 为清楚起见,下面针对OFDM系统具体描述这些技术。 For clarity, the following detailed description of the system for OFDM techniques.

图1示出了支持多个用户的OFDM系统100。 FIG 1 shows a OFDM system supporting multiple users 100. OFDM系统100包括多个支持与多个终端(T)120进行通信的接入点(AP)110。 OFDM system 100 includes a plurality of support and a plurality of terminals (T) 120 for communication with an access point (AP) 110. 为简单起见,图1只示出了一个接入点。 For simplicity, FIG. 1 shows only one access point. 接入点也被称为基站或其他术语。 Also referred to as an access point base station or some other terminology.

终端120可以分布于该系统中。 Terminal 120 may be distributed in the system. 终端也被称为移动台、远程台、接入终端、用户设备(UE)、无线设备或其他术语。 A terminal can also be called a mobile station, remote station, access terminal, user equipment (the UE), a wireless device, or some other terminology. 每个终端都是一个固定或移动终端,可以在任何给定时间,通过下行链路和/或上行链路与一个或可能多个接入点进行通信。 Each terminal is a fixed or mobile terminal, may communicate via the downlink and / or uplink with one or possibly multiple access points at any given time. 下行链路(或forward link前向链路)指的是从接入点到终端的传输,而上行链路(或reverselink,反向链路)指的是从终端到接入点的传输。 (Front link or forward link) refers to transmission downlink from the access points to the terminals, and the uplink (or ReverseLink, reverse link) refers to transmission from the terminal to the access point.

在图1中,接入点110经由上行链路和下行链路与用户终端120a到120f进行通信。 In Figure 1, the access point 110 communicating via an uplink and downlink and the user terminals 120a to 120f. 根据OFDM系统的具体设计,接入点可以与多个终端同时(如经由多个子带)或顺序地(如经由多个时隙)进行通信。 Simultaneously with a plurality of terminals depending on the design of an OFDM system, an access point (e.g., via a plurality of sub-bands) or sequentially (e.g., via multiple time slots) to communicate.

图2示出了当上行链路和下行链路都使用单一频带时OFDM系统可以使用的帧结构200。 FIG 2 shows a frame structure when the uplink and downlink use the single-band OFDM system 200 may be used. 在这种情况下,下行链路和上行链路可以使用时分复用(TDD)共享相同的频带。 In this case, the downlink and uplink may use time division multiplexing (TDD) share the same frequency band.

如图2所示,上行链路和下行链路传输是以“MAC帧”为单位而进行的。 2, the uplink and downlink transmissions is a "MAC frame" is performed in units. 可将每个MAC帧定义为覆盖特定的持续时间。 Each MAC frame may be defined to cover a particular time duration. 每个MAC帧被分为下行链路阶段210和上行链路阶段220。 Each MAC frame 210 is divided into a downlink phase and uplink phase 220. 可以在下行链路阶段使用时分复用(TDM),将向多个终端的下行链路传输进行复用。 Can use time division multiplexing (TDM) in the downlink phase, it will be multiplexed with a plurality of terminals for downlink transmission. 同样,可以在上行链路阶段使用TDM,将来自多个终端的上行链路传输进行复用。 Similarly, TDM may be used in the uplink phase, the uplink transmissions from a plurality of terminals multiplexed. 对于图2所示的具体TDM实现,各阶段被进一步分为多个时隙(或简称为隙)230。 For the particular TDM shown in FIG 2 implements, each phase is further divided into a plurality of time slots (or simply referred to as gap) 230. 这些时隙的持续时间可以是固定的或可变的,并且上行链路和下行链路阶段的时隙的持续时间可以相同或不同。 The duration of these time slots may be fixed or variable, and the duration of the uplink and downlink stages of the slot may be the same or different. 对于该具体的TDM实现,上行链路阶段中每个时隙230包括导频信号段232、信令段234和数据段236。 For this particular TDM implementation, each slot in an uplink phase 230 includes a pilot signal section 232, a signaling segment 234 and data segments 236. 段232用于将上行链路导频信号从终端发送到接入点,段234用于发送信令(如速率控制、确认等),而段236用于发送数据。 Section 232 for the uplink pilot signal is transmitted from the terminal to the access point section 234 for transmitting signaling (e.g. rate control, acknowledgment, etc.), and the section 236 for transmitting data.

每个MAC帧上行链路阶段中的时隙可以被分配给一个或多个终端,以进行上行链路传输。 Each MAC frame phase uplink slot may be assigned to one or more terminals to perform uplink transmission. 然后,各终端通过分配给它的时隙发射信号。 Then, each terminal to transmit its signal through the dispensing slot.

帧结构200表示当只有一个频带可用时OFDM系统使用的一个具体实现。 200 indicates the frame structure to achieve a particular OFDM system for use when only one frequency band is available. 如果有两个频带可用,则可以使用频分复用(FDD),通过不同的频带进行上行链路和下行链路传输。 If two frequency bands are available, you can use frequency division multiplexing (the FDD), uplink and downlink transmissions by different frequency bands. 在这种情况下,可以在一个频带上实现下行链路阶段,而在另一个频带上实现上行链路阶段。 In this case, the stage can be implemented in a downlink frequency band, the uplink phase is achieved in another frequency band.

基于TDD和基于FDD的帧结构都可使用这里描述的导频信号和信令传输技术。 Signals and signaling transmission techniques described herein may be used based on the FDD and TDD-based frame structure pilot. 为简便起见,具体针对基于TDD的帧结构来描述这些技术。 For simplicity, specific to the TDD frame structure will be described based on these technologies.

图3示出了OFDM系统使用的OFDM子带结构300。 Figure 3 shows an OFDM subband structure 300 OFDM systems. 该OFDM系统的总系统带宽为W MHz,通过使用OFDM,总系统带宽被分为N个正交的子带。 The overall system bandwidth of an OFDM system W MHz, OFDM, a total system bandwidth is divided into N orthogonal subbands of. 各子带的带宽为W/N MHz。 The bandwidth of each subband of W / N MHz. 在这总共N个子带中,只有M个子带用于数据传输,其中M<N。 In this N total subbands, only M subbands used for data transmission, where M <N. 剩余的NM个子带没有被使用,它们作为防护频带(guard bands),从而使OFDM系统满足其频谱屏蔽(spectral mask)要求。 The remaining NM subbands are not used, they are used as guard band (guard bands), so that the OFDM system to meet spectral mask its (spectral mask) requirements. 这M个“可用”子带包括子带F到M+F-1。 The M "Available" sub-band comprises the sub-band F M + F-1.

对于OFDM来说,首先使用为各子带选用的特定调制方案,将各子带上待传输的数据进行调制(即符号映射)。 For OFDM, first using a particular modulation scheme selected for the sub-bands, each sub-band data to be transmitted is modulated (i.e., symbol mapped). 对于这NM个未使用的子带,信号值被置为0。 For the NM sub-bands unused, the signal value is set to 0. 对于每个符号周期,使用快速傅立叶反变换(IFFT),将这所有N个子带的M个调制符号和NM个零变换到时域,从而获得变换后的符号,其包括N个时域采样。 For each symbol period, using inverse fast Fourier transform (the IFFT), these all N subbands NM M modulation symbols and zeros to the time domain to obtain a transformed symbol that comprises N time-domain samples. 变换后的各符号的持续时间与各子带的带宽成反比。 Bandwidth is inversely proportional to the duration of each symbol after conversion of each sub-band. 例如,如果系统带宽为W=20MHz,N=256,那么每个子带的带宽为78.125KHz,变换后的每个符号的持续时间为12.8μs。 For example, if the system bandwidth is W = 20MHz, N = 256, then the bandwidth of each subband is a 78.125 kHz, duration of each symbol after conversion to 12.8μs.

OFDM可以提供某些优点,如抑止频率选择性衰落的能力,其特征在于整个系统带宽的不同频率具有不同的信道增益。 OFDM can provide certain advantages, such as the ability to suppress the frequency selective fading, which is characterized by different frequencies of the overall system bandwidth having different channel gains. 众所周知,频率选择性衰落会产生符号间干扰(ISI),在这种现象中,接收信号中各符号会使接收信号中的后续符号失真。 Well it is known that frequency selective fading is generated inter-symbol interference (the ISI), a phenomenon in which, the received signal will each symbol subsequent symbols received distorted signal. ISI失真影响正确检测接收符号的能力,所以导致性能降低。 ISI distortion effects correctly detect the received symbols capacity, resulting in reduced performance. 通过将变换后的每个符号的一部分进行重复(或向其附加一个循环前缀)以形成一个相应OFDM符号然后将其发送,可以用OFDM方便地抑止频率选择性衰落。 By a portion of each transformed symbol is repeated after (or attached thereto a cyclic prefix) to form a corresponding OFDM symbol is then transmitted, it can be easily suppressed OFDM frequency selective fading.

每个OFDM符号循环前缀的长度(即重复量)取决于无线信道的延迟扩展(delay spread)。 The length of each OFDM symbol cyclic prefix (i.e., amount of repetition) depending on a wireless channel delay spread (delay spread). 对于一个给定的发射机,所述延迟扩展是对于该发射机发射的信号,在接收机处最早和最晚到达信号实例的差。 For a given transmitter, the signal delay for this extension is transmitted by the transmitter, at the receiver the difference between the earliest and latest arrival signal instances. 系统的延迟扩展是该系统中所有终端预期最坏情况下的延迟扩展。 Delay spread is the system delay spread for all terminals in the system is the expected worst case. 为了有效地抑止ISI,循环前缀应该比延迟扩展长。 In order to effectively suppress ISI, the cyclic prefix should be longer than the delay spreading.

每个变换后符号的持续时间为N个采样周期,其中每个采样周期的持续时间为(l/W)μs。 The duration of each symbol is converted into N sampling periods, wherein the duration of each sample period (l / W) μs. 可以将循环前缀定义为包括Cp个采样,其中,Cp是根据系统的预期延迟扩展而选择出的整数。 The cyclic prefix may be defined to include Cp samples, where, Cp is based on the expected delay spread of the system selected integer. 具体地讲,选择Cp大于或等于无线信道冲激响应的抽头数(L),(即,Cp≥L)。 Specifically, equal to or greater than Cp selected radio channel in response to the number of taps (L) of the impulse, (i.e., Cp≥L). 这种情况下,每个OFDM符号将包括N+Cp个采样,并且每个符号周期为N+Cp个采样周期。 In this case, each OFDM symbol would include N + Cp samples, and each symbol period N + Cp sample periods.

上行链路导频信号传输在一些OFDM系统中,终端通过上行链路发射导频信号,以让接入点估计上行链路信道。 Uplink pilot signal transmission in some OFDM systems, the terminal transmits a pilot signal through an uplink to allow the access point estimates the uplink channel. 如果使用图2所示的TDD-TDM帧结构,则各终端可以在分配给它的时隙的导频信号段中传输其上行链路导频信号。 If FIG. 2 TDD-TDM frame structure, each terminal can transmit its signal segment uplink pilot signal in the frequency assigned to it in the guide slot. 通常情况下,各终端在所有M个可用子带中以全功率(fullpower)传输上行链路导频信号。 Typically, each of the terminals in all of the M usable subbands to full power (Fullpower) transmitting uplink pilot signal. 这样,接入点就可以估计全部可用频带的上行链路信道响应。 Thus, the access point can estimate the uplink channel all available frequency band response. 尽管该上行链路导频信号传输机制是有效的,但其效率却是很低的,因为所有活动终端都可能将相当大部分的上行链路阶段用于导频信号传输。 Although the uplink pilot signal transmission mechanism is effective, but its efficiency is low, because all active terminals may be a substantial portion of the uplink pilot signal transmission for the phase. 所有活动终端的导频信号段可能包括很大部分的上行链路阶段。 The pilot signal segments all active terminals may include a large proportion of the uplink phase.

这里提供的技术可以在OFDM系统中更高效地通过上行链路传输导频信号。 Techniques provided herein may be an uplink pilot signal is transmitted in an OFDM system by more efficiently. 为了更加有效,导频信号传输机制需要被设计为:根据从终端发射的上行链路导频信号,每个活动终端都可以实现准确的信道估计。 To be effective, the pilot signal transmission scheme needs to be designed: the uplink pilot signal transmitted from the terminal guide, each active terminal may achieve accurate channel estimation. 但是,已经发现信道估计的质量通常取决于导频信号的总能量,而不是导频信号传输机制的具体细节。 However, it has been found that the quality of the channel estimate depends on the conductivity of the total energy of typically pilot signal, rather than the details of a pilot signal pilot transmission scheme. 导频信号总能量等于用于导频信号的发射功率乘以导频信号传输的持续时间。 Pilot signal energy is equal to the total transmit power of the pilot signal by the pilot signal transmission duration of the pilot.

根据仅S个子带上传输的导频信号,就可以实现对全部可用频带准确的信道估计,其中,选择S,使得Cp≤S<M,并且,S通常远小于M。 The only S subbands transmitted pilot signal estimation can be achieved for all available bands accurate channel, wherein the selected S, such Cp≤S <M, and, usually much less than M. S 上述序号为60/422368的美国临时专利申请、序号为60/422362的美国专利申请和案卷号为020718的美国专利申请中描述了一种这样的信道估计技术。 The above-mentioned U.S. Provisional Patent Application Serial No. 60/422368 and Serial No. 60/422362 and U.S. Patent Application U.S. Patent Application Docket No. 020718 is described such a channel estimation technique. 实际上,可以看出,如果在这S个子带上用于发射导频信号的总能量等于在所有M个子带上用于导频信号发射的总能量,那么,就可以使用上述信道估计技术,根据这S个子带上传输的导频信号,准确地插入其他MS个子带的信道响应。 In fact, it can be seen that if the S sub-band for transmitting the pilot signal is equal to the total energy in all M subbands for pilot signal transmission of the total energy, then, using the above techniques can be estimated channel, this belt transmission according to the pilot signal S sub accurately inserted into the channel in response to other MS subbands. 换言之,如果导频信号总能量相同,那么,插入的MS个子带的信道响应通常与根据所有M个子带上传输的导频信号而获得的信道估计具有相同的质量(如,相同的平均方差)。 In other words, if the signal total energy pilot same, then the channel insertion of MS subbands response usually estimate the channel according to the pilot signal for all M subbands transmission obtained with the same quality (e.g., the same average variance) .

可以通过子带复用,使多个终端在上行链路上同时发射导频信号。 By subband multiplexing, a plurality of terminals simultaneously transmit pilot signals on the uplink. 为了实现子带复用,这M个可用子带可被分为Q个不相交的子带组,使得如果任一可用子带出现于某个组,则它只出现在一个组中。 In order to achieve subband multiplexing, M usable subbands that may be divided into Q disjoint subband sets, such that if any of a usable subbands appear in a group is present in only one group. 这Q个组包括的子带数量可以相同或不同,并且每个组中的子带可以均匀或不均匀地分布于这M个可用子带中。 This Q group comprises a number of subbands may be the same or different, and each group of subbands may be uniformly or non-uniformly distributed within the M usable subbands. 也不必使用这Q个组中的所有M个子带(即,一些可用子带可以不用于导频信号传输)。 You do not have to use all M subband groups in which Q (i.e., some of the available subbands may not be used for pilot signal transmission).

在一个实施例中,每个组包括S个子带,其中, In one embodiment, each group including S subbands, wherein 且S≥Cp,其中, And S≥Cp, which, 表示下取整运算符。 It represents rounding operator. 每个组中的子带数量应等于或大于延迟扩展Cp,从而可以降低ISI的影响,并且可以实现更准确的信道估计。 Number of subbands in each set should be equal or greater than the delay spread Cp, thereby reducing the influence of ISI, and can achieve more accurate channel estimation.

图4示出了可用于0FDM系统且支持子带复用的OFDM导频信号结构400的一个实施例。 Figure 4 shows a system that may be used 0FDM guide and supporting OFDM subband multiplexed pilot signal structure of an embodiment 400. 在该实施例中,M个可用子带初始时被分为S不相交的集合,每个集合包括Q个连续的子带。 In this embodiment, M is the set of available sub-divided into S disjoint initial belt, each set including Q consecutive subbands. 每个集合中的Q个子带被分配给Q个组,使得每个集合中的第i个子带被分配给第i个组。 Each set Q Q subbands are assigned to groups, so that each set of the i th sub-band is allocated to the i-th group. 这样,每个组中的S个子带均匀地分布于这M个可用子带中,从而使得该组中的连续子带被Q个子带分开。 Thus, each group of S subbands are uniformly distributed in the M usable subbands such that the subband set is continuously separated Q sub-band. 也可以通过其他方式,将这M个子带分配给这Q个组,这同样落入本发明的保护范围内。 May also be by other means, these M subbands assigned to these Q groups, which also fall within the scope of the present invention.

可将这Q个子带组分配给最多Q个终端以进行上行链路导频信号发射。 These may be assigned Q subband groups up to Q terminals for uplink pilot signal transmission. 然后,每个终端在分配给它的子带上发射导频信号。 Then, each terminal is assigned to its sub-band pilot signal is transmitted. 通过子带复用,最多Q个终端可以在最多M个可用子带上通过上行链路同时发射导频信号。 By subband multiplexing, up to Q terminals may transmit pilot signals simultaneously tape by uplink up to M usable subbands. 这可以大大降低传输上行链路导频信号所需的时间量。 This can greatly reduce the amount of time required to transmit the uplink pilot signal.

为了使接入点获得高质量的信道估计,每个终端都可以将每子带的发射功率提高Q倍。 To enable the access point to obtain high quality channel estimates, each terminal may transmit power per subband increase Q times. 这使得所分配的这S个子带上传输的导频信号的导频信号总能量与所有M个子带都用于导频信号传输的情况相同。 This pilot signal is such that the S subbands assigned to that transmitted a pilot signal and the total energy of all M subbands are used for the same pilot signal transmission. 由于导频信号总能量相同,所以,接入点可以根据这M个可用子带的一个子集,估计全部可用频带的信道响应,而质量损耗却很小或没有,后面还将对此进行描述。 Since the pilot signal is the same as the total energy, so that the access point according to a subset of the M usable subbands of all available frequency band is estimated channel response, and has little or no loss of quality, will be described later .

OFDM系统可以在每MHz的功率约束为P dBm/MHz和总功率约束为P·W dBm的频带中工作。 OFDM systems may be P dBm / MHz band and total power constraint P · W dBm work as per MHz power constraint. 例如,5GHz UNII频带包括三个20MHz的频带,分别被表示为UNII-1、UNII-2和UNII-3。 For example, 5GHz UNII band includes three 20MHz band, are expressed as UNII-1, UNII-2 and UNII-3. 这三个频带的总发射功率限制分别为17、24和30dBm,并且每MHz的功率约束分别为4、11和17dBm/MHz。 The three band-limited total transmit power of 30dBm, respectively 17, 24 and is, per MHz power constraint and respectively 4,11 and 17dBm / MHz. 根据这三个频带的最低功率约束,可以选择每终端的功率约束,从而使每MHz的功率约束为P=4dBm/MHz,并且总功率约束为P·W=17dBm。 The lowest of the three bands power constraints, power constraints may be selected for each terminal, so that the per MHz power constraint of P = 4dBm / MHz, and the total power constraint of P · W = 17dBm.

形成这些子带组,从而,即使对各终端施加每MHz的功率约束和总功率约束,也可以使用全发射功率进行上行链路导频信号发射。 These sub-band group is formed, so that, even when applied per MHz power constraint and a total power constraint for each terminal, full transmit power may be used for the uplink pilot signal transmission. 具体地讲,如果每个组中子带之间的间隔约是1MHz,那么,每个终端都可以在每子带的功率为P dBm的情况下在分配给它的所有S个子带中发射上行链路导频信号,并且仍遵循所述每MHz的功率约束。 Specifically, if the spacing between the subbands in each group is about 1MHz, then, each terminal can be assigned to all of its S subbands in the case of an uplink transmit power for each subband of P dBm link pilot signal, and still follow the power constraint for each MHz. 于是,这S个子带的总发射功率将等于P·S dBm,由于1MHz的间隔,S≈W,所以,其约等于P·W dBm。 Thus, the total transmit power which is equal to S subbands P · S dBm, due 1MHz intervals, S≈W, therefore, which is approximately equal to P · W dBm. 通常情况下,只要S>W,适当的调节就可以满足每MHz的功率约束和总功率约束,其中,W是以MHz为单位给出的。 Typically, as long as S> W, appropriately adjusted to meet the per MHz power constraint and a total power constraint, wherein, W is given in MHz.

在一个示例性的OFDM系统中,系统带宽为W=20MHz、N=256和M=224。 In one exemplary OFDM system, the system bandwidth is W = 20MHz, N = 256 and M = 224. OFDM导频信号结构包括Q=12个组,每个组包括S=18个子带。 Structure comprising OFDM pilot signal Q = 12 groups, each group including S = 18 subbands. 对于该导频信号结构,224个可用子带中的216个子带可同时用于上行链路导频信号传输,剩余的8个子带没有被使用。 For the pilot signal structure 224 usable subbands are subbands 216 can be used for both the uplink pilot signal transmission, the remaining eight subbands are not used.

通常,每个组中每个子带使用的发射功率量取决于各种因素,例如:(1)每MHz的功率约束和总功率约束,以及(2)每个组中的子带分布。 Generally, the amount of transmit power for each subband in each group is used depends on various factors, for example: (1) a per MHz power constraint and a total power constraint, and (2) in each group of sub-band profile. 即使子带之间的间隔不均匀和/或小于1MHz,终端也可以全功率发射上行链路导频信号。 Even non-uniform spacing between the sub-bands and / or less than 1MHz, the full power of the terminal may transmit the uplink pilot signal. 然后,根据这Q个组中的子带分布,可以确定用于这些子带的具体功率量。 Then, according to which Q groups of subbands distribution may be determined for a particular amount of power in these subbands. 为简单起见,假设每个组中的S个子带被所需的最小间隔(如,至少1MHz)均匀地分隔和分开。 For simplicity, assume that the minimum interval of each group of S subbands are required (e.g., at least 1MHz) and evenly spaced apart.

图5是使用子带复用传输上行链路导频信号的过程500的一个实施例的流程图。 FIG 5 is a subband of a flowchart of one embodiment 500 multiplexing process transmitting uplink pilot signal. 最初,M个可用子带被分为Q个不相交的子带组(步骤512)。 Initially, M usable subbands are divided into Q disjoint subband sets (step 512). 可以根据OFDM系统中的预期负载,执行一次该划分。 Depending on the expected load in an OFDM system, the division performed once. 或者,也可以在系统负载发生改变时,将这M个可用子带动态地划分。 Alternatively, when the system load changes, these M usable subbands dynamically divided. 例如,在系统负载轻时,形成较少的组,而在峰值系统负载时,形成较多的组。 For example, when the system load is light, the group formed is less, but at peak load the system, formation of more groups. 在各种情况下,分区都使得每个组都满足条件S≥Cp。 In each case, such that each partition are set to satisfy the condition S≥Cp.

将一个子带组分配给各活动终端,以进行上行链路导频信号发射(步骤514)。 The one subband group is assigned to each active terminal for uplink pilot signal transmission (step 514). 可以在呼叫建立时或以后确定子带分配,并将其传送给终端。 It may determine subband allocation, and transmits it to the terminal at call setup or later. 然后,每个终端在分配给它的子带中通过上行链路发射信号(步骤522)。 Then, each terminal in its assigned sub-band transmit signal through an uplink (Step 522). 每个终端可以用根据上述各种因素确定的用于各子带的发射功率量,调高用于上行链路导频信号发射的发射功率。 Each terminal may be determined according to the above factors the amount of transmit power for each subband, the increase in transmit power for the uplink pilot signal transmission. 接入点也可以指定用于各子带(或各子带组)的发射功率量,并将其随同子带分配一起传送到终端。 The access point may transmit the amount of power in each sub-band (or each sub-band set) designated for, along with sub-band assigned and transmitted to the terminal together.

接入点在所有M个可用子带或其一个子集上,接收从所有活动终端发射的上行链路导频信号(步骤532)。 The access point to all M usable subbands or a subset of the set, the receiving uplink pilot transmitted from all active terminals pilot signal (step 532). 然后,接入点处理收到的信号,以获取对分配给各活动终端的子带的每子带的信道估计(步骤534)。 Then, the access point processing the received signal to obtain each sub-sub-assigned to each active terminal with a channel estimation band (step 534). 对于各活动终端,可以根据对各分配子带获得的每子带的信道估计,获取对全部可用频带的信道估计(步骤536)。 For each active terminal, according to each sub-channel assigned to each sub-band obtained with the estimated access to all available frequency band channel estimation (step 536). 可以使用各种技术,从对一部分可用子带的信道估计中获取对全部可用频带的信道估计。 You may use various techniques to obtain estimates of all available frequency channels from the channel portion of the available subbands estimates. 上述序号为60/422368的美国临时专利申请、序号为60/422362的美国临时专利申请和案卷号为020718的美国专利申请中描述了一种这样的信道估计技术。 The above-mentioned U.S. Provisional Patent Application Serial No. 60/422368 and Serial No. 60/422362 and U.S. Provisional Patent Application U.S. Patent Application Docket No. 020718 is described such a channel estimation technique. 也可以通过插入对可用子带的一个子集的每子带的信道估计,来获取对全部可用频带的信道估计。 You may be inserted through a pair of each of the sub-subset of the available subbands with channel estimates to obtain an estimate of all the channels available frequency band.

对于各活动终端来说,然后,对全部可用频带的信道估计就可用于向/来自该终端的下行链路和/或上行链路数据传输(步骤538)。 For each active terminal is then, for all available frequency band can be used for channel estimation to / from the terminal downlink and / or uplink data transmission (step 538). 在一次通信会话期间中,通常连续不断地执行上行链路导频信号发射和信道估计,从而获得最新的信道估计。 During a communication session, usually continuously perform uplink pilot signal transmission and channel estimation to obtain the latest channel estimate.

OFDM系统模型可表示为:r=Hox+n, 公式(1) OFDM system model can be expressed as: r = Hox + n, Equation (1)

其中,r是具有N个项的向量,用于表示在这N个子带上接收的符号;x是具有N个项的向量,用于表示在这N个子带上传输的符号(一些项可能包括零);H是一个(N×1)向量,用于表示接入点和终端之间的信道频率响应;n是这N个子带的加性高斯白噪声(AWGN)向量;并且“o”表示Hadmard乘积(即点乘,其中,r的第i个元素是x和H的第i个元素的乘积)。 Where, r is a vector with N entries for the symbols representing the N subbands received; x is a vector with N entries for the symbols transmitted in the band representing the N sub (Some items may include zero); H is an (N × 1) vector representing the channel frequency is used between the terminal and the access point in response; n is an additive white gaussian noise in the N subbands (AWGN) vector; and "o" represents Hadmard product (i.e., dot, wherein the i-th element of r is the product of the i-th elements of x and H).

假设噪声n的均值为0,方差为σ2。 Suppose the mean noise n is 0 and variance σ2.

通过子带复用,每个活动终端在导频信号发射间隔内,在分配给它的S个子带上发射导频信号。 By subband multiplexing, each active terminal in the pilot signal transmission interval, assigned to it in the S subbands pilot signal is transmitted. 每个终端发射的导频信号都可表示为一个(N×1)向量xi,其包括所分配的S个子带中每一个子带的导频符号和其他所有子带的0。 Each terminal transmits a pilot signal can be expressed as an (N × 1) vector xi, the pilot symbols of each other 0 subband and comprising all subbands assigned S subbands. 在所分配的各子带上导频符号的发射功率可表示为PUL=xi,j2,]]>其中,xi,j是终端i在第j个子带上发射的导频符号。 In each sub-band of the allocated pilot symbol transmit power can be expressed as PUL = xi, j2,]]> where, xi, j is the pilot symbol at the terminal i j subbands emitted.

终端i的每子带的信道估计 Each sub-channel estimate for terminal i with 可表示为: It can be expressed as: 公式(2)其中, Equation (2) wherein, 是一个(S×1)向量,ai/bi=[a1/b1……as/bs]T,其包括分配给终端i的S个子带的比率。 It is a (S × 1) vector, ai / bi = [a1 / b1 ...... as / bs] T, which comprises a ratio assigned to terminal i S subbands. 终端i的每子带的信道估计 Each sub-channel estimate for terminal i with 由接入点根据分配给该终端的S个子带各自接收和发射的导频符号而确定。 Each receive and transmit according to the allocation to the terminal S subbands by the access point pilot symbols is determined. 所以,每子带的信道估计 Therefore, the channel estimates for each sub-band 表示所分配的S个子带对于终端i的信道频率响应。 It represents S subbands assigned to terminal i is the channel frequency response.

可以使用很多技术从每子带的信道估计 Many techniques can be used for each sub-band from channel estimation 中获取公式(1)中对H的估计。 Obtaining Equation (1) in the estimate of H. 如上所述,在序号为60/422368的美国临时专利申请、序号为60/422362的美国临时专利申请和案卷号为020718的美国专利申请中描述了一种这样的技术。 As described above, and in U.S. Provisional Patent Application Serial No. Docket No. 60/422368 of U.S. Provisional Patent Application Serial No. 60/422362 to U.S. Patent Application 020 718 it is described one such technique.

如果N个子带全部用于数据传输(即M=N),则可以看出,如果满足以下条件,使用上述序号为60/22368的美国临时专利申请、序号为60/422362的美国临时专利申请和案卷号为020718的美国专利申请中描述的技术,根据仅S个子带上的导频信号传输获得的信道估计的均方误差(MSE)与根据全部N个子带上传输的导频信号获得的信道估计的MSE是相同的:1、选择S≥Cp且S≥W;2、这S个子带均匀地分布于全部N个子带的各个组中;3、将所分配的这S个子带中每一个子带的发射功率设置为高于如下定义的平均发射功率Pavg的N/S倍。 If all N subbands used for data transmission (i.e., M = N), it can be seen, if the following conditions are satisfied, the above-mentioned U.S. Provisional Patent Application Serial No. 60/22368, and U.S. Provisional Serial No. 60/422362 Patent Application and Docket No. art U.S. Patent application 020,718 described, a signal is obtained in accordance with the channel only S subbands of the pilot signal transmission to obtain estimates of the mean square error (MSE) and the frequency according turned N total subbands transmission channel estimation MSE is the same: 1, and select S≥Cp S≥W; 2, S subbands that are uniformly distributed over all N subbands for each group; and 3, it will be assigned S subbands in each transmit power is set higher than the sub-band defined below the average transmit power Pavg N / S times.

终端进行发射所使用的总发射功率通常受以下较小者的约束:(1)终端的总发射功率Ptotal(由终端的功率放大器限制)和(2)工作频带的总功率约束P·W。 Terminal used to transmit the total transmit power is typically constrained by the lesser of the following: total transmitting power Ptotal is (amplifier limited by terminal) (1) and the terminal (2) operating band total power constraint P · W. 于是,平均发射功率Pavg等于Ptotal/N和P·W/N中的较小者。 Thus, the average transmit power Pavg equal Ptotal / N and P · W / N is smaller. 例如,如果终端使用的总发射功率受限于调整约束,则Pavg=P·W/N。 For example, if the total transmit power used by the terminal is limited by the adjustment constraints, Pavg = P · W / N.

如果总共N个子带中只有一个子集用于数据传输(即M<N),在这种情况下,一些子带被用作保护频带,那么,只有S=M,才能达到最小均方误差(MMSE)。 If the N total subbands, only a subset of the data for transmission (i.e., M <N), in this case, some subbands are used as guard bands, then only S = M, in order to achieve minimum mean square error ( MMSE). 但是,上述序号为60/422368的美国临时专利申请、序号为60/422362的美国临时专利申请和案卷号为020718的美国专利申请中已经发现:如果S≈1.1Cp,则MSE接近MMSE。 However, the above-mentioned U.S. Provisional Patent Application Serial No. 60/422368, and U.S. Provisional Patent Application Serial No. Docket No. 60/422362 and US Patent Application 020,718 have been found: If S≈1.1Cp, the MSE close MMSE. 因此,在S≤M<N的情况下,如果满足以下条件,则根据仅在S个子带上的导频信号传输而获得的信道估计的MSE是最小的:1、选择S≈1.1Cp且S>W;2、S个子带均匀地分布于总共N个子带的各个组中;3、将所分配的S个子带中每一个子带的发射功率设置为高于上述平均发射功率Pavg的N/S倍。 Thus, in the case where S≤M <N if the following conditions are satisfied, according to a channel in the pilot signal transmission only S subbands obtained estimated minimum MSE are: 1, and S select S≈1.1Cp > W; 2, S subbands uniformly distributed with N total subbands in each group; 3, the transmit power for each subband assigned S subbands is set higher than the above average transmission power Pavg of N / S times.

上行链路信令发射在很多无线系统中,终端需要通过上行链路向接入点发送信令信息。 Many uplink signaling transmitted in a wireless system, the terminal needs to send signaling information to the access point through an uplink. 例如,终端可能需要将用于下行链路数据传输的速率告知接入点、发送对收到的数据分组的确认等。 For example, the terminal may need to be used for data transmission rates of the downlink informs the access point transmits an acknowledgment of the received data packets and the like. 信令信息通常包括很少量的数据,但需要及时且可能定期地被发送。 The signaling information typically includes a very small amount of data, but requires timely and may be periodically transmitted.

在一些系统中,可能需要通过上行链路发送速率控制信息,以指出在一个或多个传输信道中每一个信道的下行链路上使用的速率。 In some systems, it may be necessary to control the uplink transmission rate information to indicate the rate used on the downlink one or more transmission channels for each channel. 每个传输信道可能对应于多进多出(MIMO)系统中的一个空间子信道(即特征模式)、OFDM系统中的一个子带或频率子信道、TDD系统中的一个时隙等。 Each transport channel may correspond to a multi-input multiple-output (MIMO) system, a spatial subchannel (i.e., a characteristic pattern), a sub-band OFDM system or the frequency sub-channels, a time slot in a TDD system and the like. 每个终端可以估计下行链路信道,并确定各传输信道可以支持的最高速率。 Each terminal can estimate the downlink channel, and determines each transmission channel can support the highest rate. 然后,可以将传输信道的速率控制信息送回接入点,并用它确定传输到终端的下行链路数据的传输速率。 Then, the transmission rate of the control channel information may be sent back to the access point, and use it to determine the transmission rate of downlink transmission data to the terminal. 速率控制信息的形式可以是一个或多个速率代码,各代码可以被映射为代码速率、调制方案等的具体组合。 Rate control information may be in the form of one or more rate codes, each code can be mapped to specific combinations of the code rate, modulation scheme and the like. 或者,可以其他形式提供速率控制信息(如,各传输信道的接收SNR)。 Alternatively, other forms may provide rate control information (e.g., each transmission channel received SNR). 在任何情况下,每个传输信道的速率控制信息包括3至4个比特,并且所有传输信道的速率控制信息可能总共包括15个比特。 In any case, each transport channel rate control information comprises three to four bits, and the rate of all transport channels control information may include a total of 15 bits.

作为另一个示例,需要将信道响应或频率选择性信息报告回到接入点。 As another example, the channel response needs to be frequency-selective or report back to the access point information. 信道响应或频率选择性信息所需的比特数取决于被发送信息的粒度(如,每子带或每第n个子带)。 Channel response or the number of bits required depends on the granularity of the frequency of the selective information to be transmitted (e.g., each subband or subband every n).

这里还提供了在OFDM系统中通过上行链路更高效地传输信令信息的技术。 There is further provided a technology to efficiently transmit signaling information in the OFDM system is more of an uplink. 可以将M个可用子带分为QR个不相交的组,每个可用子带如果出现于某组的话,则只出现于一个组中。 M usable sub-band may be divided into disjoint sets QR, each available if there is a particular sub-band group, it appears in only one group. 这QR个组包括的子带数量可以相同或不同。 This QR group comprising a number of subbands may be the same or different. 对用于上行链路信令信息的可用子带的分组和对用于上行链路导频信号传输的可用子带的分组可以相同或不同。 It may be the same or different sub-packets available for uplink signaling information of available bands and sub-packets for the uplink pilot signal transmission band. 可以将各子带组分配给一个终端,用于上行链路信令发射。 Each sub-band may be assigned to a group of terminals, for transmitting uplink signaling. 多个终端可以在分配给它们的子带上同时发射信令信息。 Multiple terminals may simultaneously transmit band signaling information assigned to them child.

通过子带复用传输上行链路信令信息具有各种优点。 By multiplexing the subband having various advantages by transmitting uplink signaling information. 由于OFDM符号的数据承载能力相对较大,所以,当只需要发送少量数据时,将整个OFDM符号分配给活动终端可能导致效率极低。 Since the data-carrying capacity of the OFDM symbol is relatively large, when only a small amount of data transmission, OFDM symbols are allocated to the entire active terminals may result in low efficiency. 通过子带复用,分配给各活动终端的子带数量与需发送的数据量成比例。 Number of subbands and the amount of data to be transmitted by using subband multiplexing, allocated to each active terminal in proportion.

如果每子带的发射功率的增加量是相同时间间隔内复用的终端的数量,那么子带复用带来的节约就更大。 If the increased amount of transmit power per subband is the number of terminals multiplexed within the same time interval, then the sub-band multiplexed brought even greater savings. 每子带的发射功率越高,接入点的接收SNR就越高,这可以支持更高阶的调制方案。 The higher transmit power per subband, the higher received SNR access point, which supports higher order modulation schemes. 这样,就可以在各子带上传输更多的数据或信息比特。 Thus, the transmission can take more data or information bits in each sub. 或者,可以给各终端分配较少的子带,从而在相同的时间间隔内可以复用更多的终端。 Alternatively, each terminal may be allocated subbands less, so that more terminals may be multiplexed within the same time interval. 如果使用更高阶的调制方案,那么,较少的子带就可以提供所需的数据承载能力。 If a higher order modulation scheme, fewer subbands can provide required data carrying capacity.

子带复用也可用于通过上行链路传输确认信息。 Subband multiplexing may also be used for acknowledgment information transmitted through an uplink. 对于一些系统,接收机需要发送确认信息,以确认对接收机收到的各组的检测是正确或错误的。 For some systems, the receiver needs to send confirmation information to confirm the detection of each group received by the receiver is right or wrong. 通过降低用于传输确认信息的资源的分配粒度(即,将一个子带组、而不是整个OFDM符号分配给各终端)可以提高系统效率。 By reducing the particle size allocated for transmission of the acknowledgment resource information (i.e., a sub-band group, rather than the entire OFDM symbol is allocated to each terminal) can improve system efficiency.

为确认所发送的数据量随终端而不同,也随帧而不同。 To confirm the amount of data transmitted with different terminals, but also with different frames. 原因在于:各终端通常只发送对在当前/前一个MAC帧内接收数据包的确认信息,并且发送给各终端的数据包的数量随终端和时间而不同。 The reason is that: each terminal typically transmits only and the number of packets sent to each terminal of the terminal over time and at different current / previous frame profile received MAC packets. 相比之下,为速率控制而发送的数据量通常较恒定。 In contrast, the amount of data transmitted to the rate control is generally relatively constant.

可以使用多种子带分配方案,在活动终端之间通过上行链路传输可变量的信令(如确认信息)。 The multiple-seed may be used with a distribution scheme between an active terminal uplink transmission by the signaling variable (e.g., confirmation message). 在一种方案中,M个可用子带被分为QA个不相交的组。 In one embodiment, M usable subbands are divided into disjoint QA group. 这QA个组包括的子带数量可以相同或不同。 This QA group comprising a number of subbands may be the same or different. 可以为各个活动终端分配可变数量的子带,用于确认信息传输。 It can be assigned a variable number of sub-bands for each active terminal, for transmitting acknowledgment information. 对于这种方案,分配给特定终端的子带数量可以与发送给该终端的组数量成比例。 For this embodiment, the number of subbands allocated to a particular terminal may be proportional to the number of the group is sent to the terminal.

在另一种方案中,分配给各活动终端的、用于传输确认信息的子带数量是固定的。 In another embodiment, each assigned to active terminals, the number of sub-band for transmitting acknowledgment information is fixed. 但是,每个终端使用的调制方案并不固定,而是可以根据信道状况进行选择的。 However, each modulation scheme used by the terminal are not fixed, but may be selected in accordance with channel conditions. 对于互补信道(reciprocal channel),其上行链路和下行链路是高度关联的,下行链路和上行链路传输容量也相关。 For a complementary channel (reciprocal channel), its uplink and downlink are highly correlated, the downlink and uplink transmission capacity is also associated. 因此,如果由于信道状况提高而可以在特定时间段内通过下行链路发送更多的数据包,则同样的信道状况可以支持在特定时间间隔内通过上行链路传输更多的信息比特。 Thus, if the data packets can be transmitted more channel conditions due to the improvement in a specific time period by the downlink, the same channel conditions may support uplink transmission by more within a specific time interval information bits. 这样,通过将固定数量的子带分配给各活动终端、但允许调制根据信道状况进行适应,可以在需要的时候发送更多的确认比特。 Thus, by fixing the number of sub-band allocated to each active terminal, but allow adaptation modulated according to channel conditions, more acknowledgment bits can be transmitted when needed.

为了简化将子带分配给活动终端,可以将子带分为多个组,然后,可以将子带组、而非单个子带分配给这些终端。 To simplify the subbands assigned to the active terminals, the sub-band may be divided into a plurality of groups, may then be sub-band group, instead of a single sub-band assigned to the terminal. 通常情况下,每个组可以包括任意数量的子带,这取决于子带分配的预期粒度。 Typically, each group may include any number of subbands, subband depending on the intended particle size distribution. 作为一个示例,可以形成37个子带组,每个组包括6个子带。 As one example, may be formed of 37 subband groups, each group including 6 subbands. 然后,根据数据需求,为给定的终端分配任意数量的子带组。 Then, according to the data requirements, any number of subbands assigned to a given terminal group.

对于一个具体的OFDM系统设计,在系统支持的速率范围内,可以在两个OFDM符号中发送150至2000个比特。 For a particular design of an OFDM system, within the range of rates supported by the system, may be sent 150 to 2000 bits in the two OFDM symbols. 该比特率范围的取得基于这样的假设:通过子带复用,各子带使用更高的发射功率。 It acquires the bit rate range based on the assumption that: the transmission power used by subband multiplexing, each subband using higher. 然后,根据信道状况,上述示例中描述的37个子带组的每一个组可用于发送150/37至2000/37个确认比特。 Then, according to the channel conditions, each group 37 subband groups described in the examples above may be used to send acknowledgment bits 2000/37 to 150/37. 因此,每个组中固定数量的子带可以发送可变数量的确认比特,这取决于所选用的速率,而该速率取决于信道状况。 Thus, in each group a fixed number of subbands may be sent a variable number of acknowledgment bits, depending on the selected rate, and the rate is dependent on the channel conditions.

在有些情况下,每子带的发射功率需要维持在与数据传输相同的水平。 In some cases, the transmission power of each sub-band data transmission needs to be maintained at the same level. 例如,如果将所有可用子带都分配给单个终端,则可能会出现这种情况。 For example, if all of the available subbands are allocated to a single terminal, this situation may occur. 但是,当子带的数据承载能力较低时,对它的要求也相应地降低。 However, when a lower data carrying capacity of the sub-band, what is required is correspondingly reduced. 对于期望的所有信道配置来说,两个OFDM符号用于确认数据就足够了。 For all the desired channel configuration, the two OFDM symbols for confirmation data is sufficient.

在另一种方案中,确认数据与上行链路分组数据一起发送。 In another embodiment, the acknowledgment data packet and the uplink data transmitted together. 如果确认数据需要等待通过上行链路发送分组数据,就会产生附加的延时。 If the acknowledgment data packet to wait for data transmission on the uplink, will produce additional delay. 如果附加的延时是可以容忍的,则发送确认数据几乎没有开销,因为确认数据量通常很小,并且很可能适合上行链路数据分组的填充部分。 If the additional delay can be tolerated, it sends an acknowledgment almost no overhead data, since data is usually acknowledged amount is small, and it may be suitable to fill the portion of the uplink data packet.

在另一种方案中,确认数据与速率控制信息一起发送。 In another embodiment, the acknowledgment data rate control information transmitted together. 分配给各活动终端进行速率控制传输的子带组具有的数据承载容量可能高于发送速率控制信息所需的数据承载容量。 Allocated to each active terminal transmitting rate control subband set having data-carrying capacity may be higher than the transmission rate control information necessary for data-carrying capacity. 在这种情况下,可以在分配用于速率控制的子带的过量数据承载容量中发送确认数据。 In this case, excess data may be allocated for rate control in subbands carrying capacity of the transmission confirmation data.

当使用子带复用通过上行链路传输信令信息时,接入点可以处理收到的信号,以逐个地恢复各终端发送的信令(如速率控制和确认)。 When using subband multiplexing transmission through an uplink signaling information, the access point may process the received signals to recover one by signaling (e.g., rate control and acknowledgment) sent by each terminal.

子带复用的帧结构示例图6示出了支持上行链路导频信号和信令传输的子带复用的帧结构600的一个实施例。 A frame structure example of multiplexed subband FIG. 6 shows a support for the uplink pilot signal and the pilot sub-band signaling transmission multiplex a frame structure 600 of the embodiment. MAC帧被分为一个下行链路阶段610和一个上行链路阶段620。 MAC frame is divided into a downlink phase and an uplink phase 610 620. 上行链路阶段进一步被分为一个导频信号段622、一个信令段624和多个时隙630。 Uplink phase is further divided into a plurality of segments 624 and slots 630 a pilot signal section 622, a signaling. 段622可使用子带复用,使多个终端在该段中通过上行链路可以同时发射导频信号。 Segment 622 may be used subband multiplexing, a plurality of terminals may transmit a pilot signal through an uplink at the same time in the segment. 同样,段624也可以使用子带复用,使多个终端在该段中通过上行链路可以同时发射信令(如速率控制信息、确认等)。 Similarly, section 624 may also be used subband multiplexing, a plurality of terminals in the segment may be transmitted simultaneously through an uplink signaling (e.g. rate control information, acknowledgment, etc.). 时隙630可用于传输分组数据、消息和其他信息。 Slot 630 may be used to transmit packet data, messaging, and other information. 可以使用子带复用或不使用子带复用,将各时隙630分配给一个或多个活动终端。 Subband multiplexing may be used with or without subband multiplexing, each slot 630 assigned to one or more active terminals. 各个时隙630也可用于向多个终端发送开销消息。 Each slot 630 can also be used to send overhead message to a plurality of terminals.

也可以设计使用其他各种帧结构,而这也落入本发明的保护范围之内。 It may be designed using various other frame structures, which also fall within the scope of the present invention. 例如,上行链路阶段包括用于发送速率控制信息的速率控制段和用于发送确认数据的确认段。 For example, the uplink phase rate comprises a rate control for transmitting control information segment acknowledgment segment for transmitting the acknowledgment data. 作为另一个例子,可以将该帧分为多个上行链路和下行链路阶段,并且不同的阶段可以用于不同类型的传输,如业务数据、导频信号、速率信令和确认。 As another example, the frame may be divided into a plurality of uplink and downlink stages, different stages can be used and different types of transmission such as traffic data, pilot signals, and acknowledgment signaling rate.

实现考虑子带复用可以很大程度上减少用于支持在上行链路上传输导频信号和信令所需的资源量,下面将进行量化。 Implementation considerations subband multiplexing may be used to support greatly reduces the amount of resources on the uplink pilot signal transmission and signaling required, will be quantized. 但是,在实现子带复用时需考虑各种因素,如:(1)用于将子带分配给终端的开销信令;(2)从终端接收的上行链路传输之间的时间偏移;(3)来自终端的上行链路传输之间的频率偏移。 However, when implemented subband multiplexing to consider various factors such as: (1) for overhead signaling to the terminal the allocated subbands; (2) from the time offset between the uplink transmission received by the terminal ; (3) a frequency offset between the uplink transmission from the terminal. 下面将详细描述这些因素中的每一个因素。 Each of these factors will be described in detail below.

开销信令传递各个终端的子带分配需要开销信令。 Overhead signaling sub-band assignment for each terminal transmitting overhead signaling needed. 对于导频信号和速率控制信息来说,可以给每个活动终端分配一个特定的子带组,用于这两种类型的上行链路传输中的每一种或两种。 For the pilot signal and the rate control information, it can be assigned a specific subband set for each active terminal, for each of one or both of these two types of uplink transmission in. 可以在呼叫建立期间做出这样的分配,并且对于每个MAC帧,所分配的子带通常不必重复或改变。 Such allocation may be made during call establishment, and for each MAC frame allocated subbands are changed or need not be repeated.

如果有24个子带组用于最多24个终端,那么,5个比特就足以标识分配给某个终端的具体子带组。 If there are 24 subband groups for up to 24 terminals, then 5 bits are sufficient to identify a specific group of subbands assigned to a terminal. 这5个比特可以包含在发送给终端、以使其进入活动状态的控制消息中。 These five bits may be included in the transmission to the terminal, to make it into an active state control message. 如果控制消息的长度为80比特,那么,用于表示子带分配的5个比特将使消息长度增加约6%。 If the control message length is 80 bits, then the sub-band allocated to 5 bits of the message will increase the length of about 6%.

如果可以灵活地形成子带组并且/或者如果可以将组动态地分配给终端,则开销信令的量会更大。 If the flexibility to form groups of subbands and / or if the group can be dynamically allocated to the terminal, the greater will be the amount of signaling overhead. 例如,如果分配用于确认传输的子带数量可以随帧而变化,那么,传递子带分配所需要的开销信令的量会更大。 For example, if the number of subbands allocated for acknowledgment transmission may vary with the frame, then the transfer amount of overhead signaling needed to assign the subbands will be greater.

上行链路定时经由子带复用同时发射信号的多个终端可能散布于整个系统内。 A plurality of terminals via an uplink timing multiplexed subband signals simultaneously transmitted may be scattered throughout the system. 如果这些终端到接入点的距离不同,那么,从这些终端发射的信号的传播时间就不同。 If the distance from the terminal to the access point is different, then, emitted from these terminals signal propagation time is different. 在这种情况下,如果终端同时发射信号,那么,接入点将在不同的时间收到来自这些终端的信号。 In this case, if the terminals simultaneously transmit signals, then the access point receives signals from the terminals at different times. 最早和最晚到达接入点的信号的差异取决于终端相对于接入点的往返(round trip)延时的差异。 The first difference signal and the latest arriving access point depends on the difference with respect to the terminal and from the access point (round trip) delay.

来自不同终端的信号的到达时间的差异会侵犯(cut into)更远的终端的延时扩展容差。 Difference in arrival time of signals from different terminals would violate (cut into) the extension terminal further delay tolerance. 例如,对于具有半径为50米的覆盖区域的接入点,最早和最晚到达信号之间的到达时间的最大差值约是330ns,这将占用800ns循环前缀的很大一部分。 For example, for a 50 m radius of the coverage area of ​​the access points, the maximum difference between the earliest and latest arrival time between the signals is about 330ns, 800ns which will occupy a large part of the cyclic prefix. 此外,对于处在覆盖区域边缘的终端而言,降低的延时扩展容差的影响是最糟糕的,这些终端非常需要适应多径延时扩展。 Furthermore, for the terminal at the edge of the coverage area, to reduce the influence of delay spread tolerance is the worst, these terminals is highly desirable to adapt the multipath delay spread.

在一个实施例中,为了说明活动终端之间往返延时的差异,调整各活动终端的上行链路定时,从而使其信号在特定的时窗(timewindow)内到达接入点。 In one embodiment, the round trip delay to illustrate the differences between the active terminal, uplink timing adjustment for each active terminals, so that it reaches the access point signal within a particular time window (timewindow). 为每个活动终端维持一个定时调整环路,并且估计该终端的往返延时。 A timing adjustment loop is maintained for each active terminal, and the estimated round trip delay of the terminal. 然后,根据估计的往返延时确定的量,将终端的上行链路发射提前或延迟,从而使所有活动终端的上行链路发射都能在特定的时窗内到达该接入点。 Then, based on the amount of the estimated round trip delay is determined, the uplink transmission advance or retard the terminal, such that the uplink transmit all active terminals can reach the access point within a particular time window.

可以根据来自终端的导频信号或一些其他上行链路发射,获取各个活动终端的定时调整。 The pilot signal may be from a terminal or some other uplink transmission, each active terminal acquires timing adjustment. 例如,可以将上行链路导频信号与接入点的导频信号副本进行关联。 For example, the guide uplink pilot signal to an access point pilot signal replica may be associated. 关联结果表示收到的导频信号比来自其他终端的导频信号早或晚。 Correlation result indicates a signal received earlier or later than the pilot signal of the pilot frequency from other terminals. 然后,可以将一个1比特的定时调整值发送给该终端,以指示其将时间提前或延迟特定的量(如,±一个采样周期)。 Then, the transmission timing adjustment value may be a bit 1 to the terminal to indicate that a specific amount (e.g., ± a sample period) will be advanced or delayed time.

频率偏移如果子带复用用于使多个终端在分配给它们的子带上同时发射信号,那么,在所有终端都以全功率发射信号的情况下,来自附近终端的信号会对来自远方终端的信号产生很大的干扰。 If the subband frequency offset multiplexing for a plurality of terminals in their assigned subband signals transmitted simultaneously, then, in the case where all terminals are at full power transmission signal, the signal from a nearby terminal will from a distance terminal signal generating great interference. 具体地讲,可以看出,终端间的频率偏移会产生子带间干扰。 Specifically, it can be seen, the frequency offset between the terminals generate interference between sub-bands. 这种干扰会导致从上行链路导频信号获取的信道估计恶化,并且/或者会增加上行链路数据传输的误码率(BER)。 This interference will result from the uplink pilot channel estimation deterioration of signal acquisition, and / or increase the bit error rate of uplink data transmission (BER). 为了降低子带间干扰的影响,对终端进行功率控制,从而使附近终端不对远方终端产生过度的干扰。 To reduce the effect of inter-subband interference, the terminal power control so that the vicinity of the far end terminal does not cause excessive interference.

对来自附近终端的干扰影响进行研究,发现可以粗略地使用功率控制,以降低子带间干扰影响。 Studies interference from nearby terminals on, can be found roughly power control, to reduce the impact of interference between the sub-band. 具体地讲,发现如果终端之间的最大频率偏移为300Hz或更低,那么,通过将附近终端的SNR限制在40dB或更低,则其他终端的SNR的损失为1dB或更少。 In particular, it found that if the maximum frequency offset among the terminals is 300Hz or less, then, by the terminal is limited to the vicinity of SNR 40dB or less, the SNR loss for the other terminals 1dB or less. 如果终端之间的频率偏移为1000Hz或更低,那么,为了保证其他终端的SNR的损失为1dB或更少,需要将附近终端的SNR限制在27dB。 If the frequency offset between terminals 1000Hz or less, then, in order to ensure the loss of SNR other terminal is 1dB or less, the terminal needs to be near the SNR is limited to 27dB. 如果用于实现OFDM系统支持的最高速率所需的SNR小于27dB,那么,将附近终端的SNR限制在27dB(或40dB),不会对附近终端所支持的最高数据速率产生任何影响。 If required the highest rate supported by an OFDM system for implementing the SNR is less than 27dB, then, near the end of the limited SNR 27dB (or 40dB), no effect on the near end supported at the highest data rate.

可以用慢功率控制环路(slow power control loop)实现上述粗功率控制(coarse power control)需求。 This may be achieved coarse power control (coarse power control) power control loop needs a slow (slow power control loop). 例如,当需要调整附近终端的上行链路功率时(如,当这些终端由于移动而导致功率电平改变时),可以发送控制消息。 For example, when it is necessary to adjust the uplink power of nearby terminals (e.g., when the terminals due to movement caused by the power level change), the control message may be sent. 当接入系统时(呼叫建立的一部分),各终端可以得知用于上行链路的初始发射功率电平。 When the access system (part of the call set-up), each terminal can know the initial transmit power level for the uplink.

可以将子带组以降低子带间干扰影响的方式分配给活动终端。 The sub-band allocation may be set to reduce the impact of interference between the sub-bands to the active terminal. 具体地讲,为具有高接收SNR的终端分配相邻的子带。 In particular, neighboring subbands allocated to a terminal having high reception SNR. 为具有低SNR的终端分配相邻的子带,但这些子带却远离那些被分配给具有高接收SNR的终端的子带。 A terminal having a low SNR distribution neighboring subbands, but that is far from the sub-band sub-band is allocated to a terminal having a high reception SNR.

子带复用的开销节约同时进行最多Q个上行链路导频信号传输的能力将导频信号开销降低了最多Q倍。 Subband multiplexing overhead savings simultaneously up to the Q ability uplink pilot signal transmission pilot signal overhead is reduced up to Q times. 由于上行链路导频信号传输会占用上行链路阶段的很大部分,所以,改善是非常可观的。 Since the uplink pilot signal transmission will occupy a large part of the uplink phase, therefore, improvement is very significant. 可以通过一个示例性的OFDM系统将改善量进行量化。 It can be quantified by an exemplary OFDM system improvement amount.

在该示例性OFDM系统中,系统带宽为W=20MHz且N=256。 In the exemplary OFDM system, the system bandwidth is W = 20MHz, and N = 256. 每个采样周期的持续时间为50ns。 The duration of each sampling period is 50ns. 使用的循环前缀为800ns(或Cp=16个采样),并且每个OFDM符号的持续时间为13.6μs(或N+Cp=272个采样)。 Cyclic prefix is ​​800ns (or Cp = 16 samples), and the duration of each OFDM symbol is 13.6μs (or N + Cp = 272 samples). 上行链路导频信号在每个MAC帧内被发送,每个MAC帧的持续时间为5ms或367个OFDM符号。 Uplink pilot signal is transmitted every MAC frame duration of each MAC frame is 5ms or 367 OFDM symbols. 从各终端发射的导频信号需要具有的总能量为4个符号周期×全发射功率。 The pilot signal transmitted from each terminal is required to have a total energy of 4 symbol periods × full transmit power. 如果存在K个活动终端,那么,不采用子带复用时,发射导频信号所需的符号周期总数为4·K。 If K active terminal exists, then, without using subband multiplexing, pilot symbol signal period required for a total of 4 · K. 对于K=12的情况,发射上行链路导频信号将使用48个符号周期,这将占用MAC帧中367个符号的约13.1%。 For the case of K = 12, transmitting the uplink pilot signal using 48 symbol periods, which would occupy about 13.1% MAC frame 367 symbols. 如果存在K=24个活动终端,则导频信号开销将增加到MAC帧的26.2%。 If K = 24 active terminal exists, a pilot signal overhead would increase to 26.2% MAC frame.

如果将K个活动终端分配给K个子带组并且允许它们同时发射上行链路导频信号,那么,每个MAC帧内只需4个符号周期用于上行链路导频信号。 If you allocated to K active terminal group K subbands and allow them to simultaneously transmit the uplink pilot signal, then every MAC frame only 4 symbol periods for the uplink pilot signal. 将子带复用用于上行链路导频信号时,对于K=12的情况,开销可降低到MAC帧的1.1%,K=24时,可降低到2.2%。 When the subband multiplexing for the uplink pilot signal, for the case of K = 12, the overhead of the MAC frame can be reduced to 1.1%, K = 24 time, can be reduced to 2.2%. 这表示上行链路导频信号传输所需的开销量对于K=12和K=24的情况分别有12%和24%的重大节约。 This overhead represents an uplink pilot signal transmission required in the case of K = 12 and K = 24, respectively 12% and 24% significant savings.

图8A为上述示例性OFDM系统中不同数量活动终端的上行链路导频信号传输的节约量的示意图。 FIG 8A schematic savings amount to the above-described exemplary uplink pilot OFDM system different from the number of active pilot signal transmission terminals. 如图8A所示,节约量随终端数目大约呈线形增长关系。 8A, the number of terminals savings with a roughly linear relationship growth.

支持QR个同时上行链路速率控制传输的示例性OFDM系统的节约量也可以被量化。 QR supports simultaneous transmission of uplink rate control of exemplary OFDM system the amount of savings may be quantified. 该示例性OFDM系统有M=224个可用子带,并且使用速率为1/3编码的BPSK进行调制。 The exemplary OFDM system has M = 224 usable subbands, and using rate 1/3 coded BPSK modulation. 每个调制符号具有1/3个信息比特,在每个符号周期内,224个可用子带上可以发送大约75个信息比特。 1/3 each modulation symbol has bits of information in each symbol period, 224 usable subbands may be sent about 75 bits of information. 如果各终端在每个MAC帧内发送15比特或更少的速率控制信息,则相同的OFDM符号上可同时容纳大约5个终端。 If each terminal transmits each MAC frame 15 bits or less of the rate control information on the same OFDM symbol can accommodate about five terminals. 在不采用子带复用的情况下,需要为5个终端的速率控制信息分配5个OFDM符号(其中,每个OFDM符号中用于填充未使用比特的量很大)。 In the case of using the subband without multiplexing requires five terminals 5 rate control information allocating OFDM symbols (where, for each OFDM symbol to fill a large amount of unused bits). 在使用子带复用的情况下,可以在一个OFDM符号内发送相同的速率控制信息,这将带来80%的节约。 In the case of using subband multiplexing, the same can be sent within one OFDM symbol rate control information, which will bring savings of 80%.

对于一些分集发射模式来说,采用子带复用的节约量更大。 For some diversity transmission mode is used to save a greater amount of subband multiplexing. 对于空时发射分集(STTD)模式,两个发射天线在两个符号周期内发射一对调制符号(表示为s1和s2)。 For transmit diversity (the STTD) mode empty, two transmit antennas transmit one pair of modulation symbols two symbol periods (denoted as s1 and s2). 第一个天线在两个符号周期内发射向量x&OverBar;1=s1s2*T,]]>第二个天线在相同的两个符号周期内发射向量x&OverBar;2=s2-s1*T.]]>STTD的发射单位实际上就是两个OFDM符号。 The first antenna transmits in two symbol periods vectors x & OverBar; 1 = s1s2 * T,]]> second antenna transmit vector x & OverBar in the same two symbol periods;. 2 = s2-s1 * T]]> STTD transmission unit actually two OFDM symbols. 通过子带复用,可以在两个OFDM符号内发送10个终端的速率控制信息,这显然小于如果各终端在一对分离的OFDM符号上发射其速率控制信息所需的20个OFDM符号。 By using subband multiplexing rate, the terminal 10 may be transmitted in two OFDM symbols of the control information, which is clearly less than the desired rate if each terminal transmitting its control in a pair of separate information 20 OFDM symbol OFDM symbols.

对于使用4个天线且发射单位为4个OFDM符号的分集发射模式来说,节约量更大。 For four transmit antennas and a diversity transmission mode unit 4 OFDM symbols, the greater savings. 对于这种分集发射模式,可以将15个终端子带复用到一个4符号周期中。 For such diversity transmission mode, a terminal 15 may be multiplexed into a 4 subbands in symbol period. 可以通过子带复用,在4个OFDM符号中发送这15个终端的速率控制信息,这显然小于如果各终端在分离的一组4个OFDM符号上发送速率控制信息所需的60个OFDM符号。 By subband multiplexing, the transmission rate of the terminal 15 in which 4 OFDM symbols in the control information, which is obviously less than if each terminal on a separate set of 4 OFDM symbol transmission rate control information necessary for OFDM symbols 60 .

图8B是一个示例性OFDM系统中不同数量活动终端的上行链路速率控制发射的节约量的示意图。 8B is a schematic view of a savings exemplary OFDM system, the uplink rate control of a different number of active terminals transmitted. 对于该系统,可以通过子带复用,将最多12个终端复用在一起。 For this system, by subband multiplexing, up to 12 terminals to be multiplexed together. 可以为每个终端分配18个子带,每个子带能承载3个信息比特。 18 subbands may be allocated for each terminal, each sub-band can carry three bits of information. 这12个终端各能在2个符号周期内,在分配给它们的18个子带中发射108个信息比特。 Each terminal 12 that can be in two symbol periods, the transmitter 108 information bits 18 in their assigned subbands. 这远小于不采用子带复用时12个终端需要的24个符号周期。 This is much less than without using subband multiplexing terminal 12 requires 24 symbol periods. 如果有12个终端,则可以实现22个符号的节约,对于367个符号的MAC帧来说,这大约是6%。 If there are terminals 12, 22 can be achieved to save the symbols for the MAC frame is 367 symbols, which is approximately 6%. 如果有24个终端,则可以实现44个符号的节约,这代表着MAC帧的大约12%。 If there are terminals 24, 44 can be achieved savings symbol, which represents about 12% MAC frame. 如图8B所示,节约量与终端数目约呈线形增长关系。 8B, the number of terminals with the savings was approximately linear relationship growth.

图8C示出了在上行链路上将导频信号、速率控制和确认信息进行子带复用所带来的节约量的示意图。 FIG 8C shows a pilot signal on the uplink, the rate control and acknowledgment schematic subband multiplexing savings brought about by the amount information. 在曲线812中,多个终端的导频信号和速率控制信息分别被子带复用到导频信号段和速率控制段中。 In the graph 812, the pilot signal and a plurality of terminals rates Quilt control information is multiplexed with a pilot signal section and a rate control section. 这种情况下没有考虑确认信息。 Confirmation is not considered in this case. 在曲线814中,多个终端的导频信号、速率控制信息和确认信息分别被子带复用到导频信号段、速率控制段和确认段中。 In the graph 814, a plurality of conductive terminals of the pilot signal, acknowledgment information and rate control information are multiplexed with the quilt pilot signal section, and rate control segment acknowledgment segment.

从图8C的曲线中可以看出,节约量随着被复用终端的数目而大致呈线形递增关系。 As it can be seen from the graph in FIG. 8C, as the number of multiplexed savings terminal being substantially linearly increasing relationship. 此外,当更多类型的信息被复用时,节约量也随之增加。 Further, when more types of information are multiplexed, savings also increases. 可以看出,子带复用可以大大降低导频信号和信令的开销量,从而使更多可用资源可方便地用于数据传输。 As can be seen, the subband multiplexing may significantly reduce the amount of overhead signaling, and pilot signals, so that more resources available for data transmission may be conveniently.

系统图7是能够支持上行链路子带复用的接入点110x和终端120x的实施例的框图。 FIG 7 is a system diagram of an embodiment capable of supporting an uplink subband multiplexed access point 110x and a terminal 120x. 在接入点110x,从数据源708将业务数据提供给TX数据处理器710,TX数据处理器710将业务数据格式化、编码和交织,从而提供编码数据。 At access point HOx, traffic data for the data from the source 708 provided to a TX data processor 710, TX data processor 710 formats the traffic data, coding and interleaving to provide coded data. 数据率和编码方式分别取决于控制器730提供的速率控制和编码控制。 Data rate and coding scheme depending on whether the rate controller 730 provides control and encoding control.

OFDM调制器720接收和处理编码数据和导频符号,从而提供OFDM符号流。 OFDM modulator 720 receives and processes the coded data and pilot symbols to provide a stream of OFDM symbols. OFDM调制器720所做的处理包括:(1)将编码数据调制,以形成调制符号;(2)将导频符号和调制符号进行复用;(3)将调制符号和导频符号变换,以获得变换后的符号;(4)将循环前缀附加到变换后的各个符号,以形成相应的OFDM符号。 Processing done OFDM modulator 720 comprises: (1) modulating the encoded data to form modulation symbols; (2) pilot symbols and multiplexes the modulation symbols; (3) the modulation symbols and pilot symbols transform to obtain transform symbols; (4) append a cyclic prefix to each transformed symbols to form a corresponding OFDM symbol.

然后,发射机单元(TMTR)722接收OFDM符号流,并将其转换为一个或多个模拟信号,并进一步将模拟信号修整(如放大、滤波和上变频),以产生适于通过无线信道传输的下行链路调制信号。 Then, the transmitter unit (TMTR) 722 receives the stream of OFDM symbols, and converts it into one or more analog signals, and further the analog signal conditioning (e.g., amplifies, filters, and upconverts), adapted to produce a transmission over a wireless channel the downlink modulated signal. 然后,经由天线724将调制信号发射到终端。 Then, the modulated signal via the antenna 724 to the transmitting terminal.

在终端120x中,天线752接收下行链路调制信号,并将其提供给接收机单元(RCVR)754。 In terminal 120x, an antenna 752 receives the downlink modulated signals, and supplies it to a receiver unit (RCVR) 754. 接收机单元754将收到的信号修整(如滤波、放大和下变频),并将修整后的信号数字化,从而提供采样。 Signal conditioning the received receiver unit 754 (e.g., filters, amplifies, and downconverts), the signal is digitized and trimmed to provide samples.

然后,OFDM解调器756将附加到各OFDM符号中的循环前缀去除,使用FFT将各个收到的变换后符号进行变换,并将收到的调制符号解调,从而提供解调后的数据。 Then, the OFDM demodulator 756 cyclic prefix appended to each OFDM symbol is removed, using an FFT transform after converting the respective received symbols and demodulates the received modulation symbols to provide demodulated data. 然后,RX数据处理器758将解调后的数据进行解码,以恢复出所发送的业务数据,并将其提供给数据接收装置760。 Then, the RX data processor 758 decodes the demodulated data to recover the transmitted traffic data, and supplies it to the data reception apparatus 760. OFDM解调器756和RX数据处理器758所做的处理分别与接入点110x中OFDM调制器720和TX数据处理器710执行的处理相反。 758 made by processing RX data processor 756 and OFDM demodulator access point 110x, respectively in the OFDM modulator 720 and TX data processor 710 performs reverse.

如图7所示,OFDM解调器756获得信道估计并将这些信道估计提供给控制器770。 As shown in FIG 7, OFDM demodulator 756 and obtain a channel estimate these channel estimates to controller 770. RX数据处理器758提供各个收到数据包的状态。 RX data processor 758 provides the status of each received data packet. 根据从OFDM解调器756和RX数据处理器758接收的各种类型的信息,控制器770可以确定或选择各传输信道的特定速率。 The various types of information received from the OFDM demodulator 756 and RX data processor 758, the controller 770 may determine or select a particular channel for each transmission rate. 上行链路导频信号和信令信息(如用于下行链路数据传输的速率、对收到数据包的确认等)由控制器770提供,由TX数据处理器782处理,由OFDM调制器784调制,由发射机单元786修整,并且由天线752发射到接入点110x。 Uplink pilot signal and the signaling information (such as the rate for downlink data transmission, acknowledgment of received packets, etc.) provided by the controller 770, processed by a TX data processor 782, the OFDM modulator 784 modulation, trimmed by a transmitter unit 786, and transmitted by the antenna 752 to the access point 110x. 可以通过分配给终端120x的、进行这些类型传输的子带组,来发送上行链路导频信号和信令信息。 It may be the group of subbands assigned to the type of the transmission by terminal 120x, the transmitted uplink pilot signal and the signaling information.

在接入点110x中,来自终端120x的上行链路调制信号由天线724接收,由接收机单元742修整,由OFDM解调器744解调,并且由RX数据处理器746处理,从而恢复出该终端发射的导频信号和信令信息。 At access point 110x, the uplink modulated signal from terminal 120x is received by an antenna 724, receiver unit 742 by the trimming, demodulated by the OFDM demodulator 744, and processed by a RX data processor 746 to recover the conducting pilot signal transmitted by the terminal and signaling information. 恢复出的信令信息被提供给控制器730,用于控制传输到该终端的下行链路数据的处理。 The recovered signaling information is provided to the controller 730, for transmission of control data to the downlink processing of the terminal. 例如,根据该终端提供的速率控制信息,或来自该终端的信道估计,可以确定每个传输信道上的速率。 For example, according to a rate control information provided to the terminal, from the terminal or the channel estimate, the rate may be determined for each transmission channel. 收到的确认信息可用于将终端接收错误的数据包进行重新发射。 It may be used to receive confirmation that the terminal receives the error packet retransmission. 如上所述,控制器730也可根据所分配子带上传输的上行链路导频信号,获取各个终端的增强信道频率响应。 As described above, the controller 730 may take the uplink pilot signal transmission in accordance with the pilot allocation sub obtain enhanced channel frequency response for each terminal.

控制器730和770分别指导接入点和终端处的操作。 Controllers 730 and 770 direct the operation at the access point and the terminal. 存储器732和772分别存储控制器730和770使用的程序代码和数据。 The memory 732 and 772 store controller 730 and 770 program codes and data used.

这里描述的上行链路导频信号和信令传输技术可用各种方式实现。 Uplink pilot signal described herein pilot and signaling transmission techniques can be used to achieve a variety of ways. 例如,这些技术可用硬件、软件或软硬件结合的方式实现。 For example, these techniques can be used to achieve hardware, software, or a combination of hardware. 对于硬件实现的情况,用于实现这些技术中任意之一或其组合的部件可以在一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理器件(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、用于实现这里描述的功能的其他电子单元或其组合中实现。 In the case of a hardware implementation, the means for implementing these techniques may be any one or a combination of one or more application specific integrated circuits (ASIC), a digital signal processor (DSP), digital signal processing devices (DSPDs), may implementations, other electronic units, or a combination of programmed logic devices (PLD), field programmable gate arrays (the FPGA), processors, controllers, micro-controllers, microprocessors, for implementing the functions described herein.

对于软件实现的情况,这些技术可实现为执行这里描述的功能的模块(如过程、函数等)。 In the case of a software implementation, these techniques may be implemented as modules (e.g., procedures, functions, etc.) to perform the functions described herein. 软件代码可以存储在存储器单元(如图7中的存储单元732或772),并由处理器(如控制器730或770)执行。 The software codes may be stored in a memory unit (in FIG. 7 or memory unit 732 772), by a processor (e.g., controller 730 or 770) performed. 存储器单元可实现在处理器中,也可实现在处理器之外,这种情况下,它可以通过本领域公知的各种方式耦接到该处理器。 The memory unit may be implemented in a processor may also be implemented external to the processor, in which case, it may be coupled to the processor known in the art by various means.

这里所包含的标题用于参考和协助定位特定部分。 Header included herein for reference and to aid in locating certain sections. 这些标题并不限制这里描述的概念的保护范围,这些概念适用于整个说明书中的其他部分。 These headings are not intended to limit the scope of the concepts described herein, and these concepts apply to other parts throughout the specification.

前面对公开的实施例进行了描述,以使本领域技术人员能够制造或使用本发明。 The previous embodiments described the disclosed embodiments, to enable those skilled in the art to make or use the present invention. 本领域技术人员应当明白,在不脱离本发明的精神或保护范围的前提下,对这些实施例的各种修改都是显而易见的,这里描述的原理同样适用于其他实施例。 Those skilled in the art will appreciate, without departing from the spirit or scope of the present invention, Various modifications to these embodiments will be apparent that the principles described herein are equally applicable to other embodiments. 因此,本发明不限于这里给出的实施例,而是与这里披露的原理和新颖特征的最宽保护范围相一致。 Accordingly, the present invention is not limited to the embodiments set forth herein, the broadest scope of the principles and novel features disclosed herein consistent.

Claims (30)

1.一种用于在无线通信系统中通过上行链路传输导频信号的方法,包括:将多个适用于数据传输的可用子带分为至少两个不相交的子带组;将所述至少两个不相交组中的第一个组分配给一个终端;以及在所述第一个组中的所述子带上,接收从所述终端发射的导频信号。 1. A method in a wireless communication system, the uplink pilot signal for pilot transmission, comprising: a plurality of usable subbands suitable for data transmission band is divided into sub-bands of at least two disjoint groups; the at least two disjoint sets of the first group is assigned to a terminal; and the subbands in the first group, the received pilot signal transmitted from the terminal.
2.如权利要求1所述的方法,还包括:将所述至少两个不相交组中的第二个组分配给第二个终端;以及在所述第二个组中的所述子带上,接收从所述第二个终端发射的导频信号。 2. The method according to claim 1, further comprising: a second of the at least two disjoint groups allocation group to a second terminal; and the second sub-set of the belt , the received pilot transmitted from the second terminal of the pilot signal.
3.如权利要求1所述的方法,还包括:根据所述接收,获取对所述终端的信道估计,其中,所述信道估计覆盖至少一个不包含在所述第一个组中的子带。 3. The method according to claim 1, further comprising: based on the received, obtaining the estimate of the channel terminal, wherein the channel estimation sub cover is not included in at least one of said first group with .
4.如权利要求3所述的方法,其中,对所述终端的信道估计覆盖所述多个可用子带。 4. The method according to claim 3, wherein the channel estimate for the terminal to cover the plurality of usable subbands.
5.如权利要求1所述的方法,其中,所述至少两个不相交组中每一个组都包括相同数量的子带。 5. The method according to claim 1, wherein the at least two disjoint groups each group includes the same number of subbands.
6.如权利要求1所述的方法,其中,所述至少两个不相交组中的每一个组包括S个子带,其中S是一个大于或等于所述上行链路的信道冲激响应的抽头数的整数。 6. The method according to claim 1, wherein the at least two disjoint groups each group including S subbands, where S is greater than or equal to said uplink channel impulse response taps integer numbers.
7.如权利要求1所述的方法,其中,所述至少两个不相交组中每一个组中的子带均匀分布于所述多个可用子带。 7. The method according to claim 1, wherein the at least two disjoint groups of subbands of the plurality of usable subbands that are uniformly distributed in each group.
8.如权利要求1所述的方法,其中,用于在所述第一个组的所述子带中的每一个子带中发射导频信号的发射功率被调整为高于如果在所有子带上发射导频信号时所使用的每子带的平均发射功率,调整倍数大于1。 8. The method according to claim 1, wherein the transmit power for each of the subbands in the subband of the first group in the pilot signal is transmitted is adjusted to be higher than if all sub average transmit power of each sub-band used in the transmission band of the pilot signal, the adjustment factor greater than 1.
9.如权利要求8所述的方法,其中,所述调整倍数等于可用子带的数量除以所述第一个组的子带数量。 9. The method according to claim 8, wherein the adjustment factor equal to the number of available subbands divided by the number of sub-bands of the first group.
10.如权利要求8所述的方法,其中,用于在所述第一个组的所述子带中的每一个子带中发射导频信号的发射功率的所述调整倍数取决于所述无线通信系统使用的频带的每MHz的功率约束和全发射功率约束。 10. The method according to claim 8, wherein, for each of the subbands in the subband of the first group transmit the adjustment of the transmit power of the pilot signal dependent on a multiple of the per MHz power constraint of the wireless communication system using a frequency band and the full transmit power constraints.
11.如权利要求1所述的方法,还包括:控制从所述终端发射导频信号的发射功率,使所述终端的接收信噪比(SNR)维持等于或低于特定的门限SNR。 11. The method according to claim 1, further comprising: controlling transmission power of the pilot signal is transmitted from the terminal, the reception signal to noise ratio (SNR) of the terminal is maintained at or below a certain threshold SNR.
12.如权利要求1所述的方法,其中,分配给所述终端的所述第一个组中的子带邻近于分配给具有大约相同接收导频信号功率的至少一个其他终端的至少一个其他组中的子带。 At least one other 12. The method according to claim 1, wherein said sub-band allocated to the terminal in the first group is adjacent to the dispensing end having approximately the same at least one other received pilot signal power subband group.
13.如权利要求1所述的方法,其中,所述无线通信系统是正交频分复用(OFDM)通信系统。 13. The method as claimed in claim 1, wherein the wireless communication system is an orthogonal frequency-division multiplexing (OFDM) communication system.
14.如权利要求1所述的方法,其中,所述多个可用子带是用OFDM形成的正交子带。 14. The method according to claim 1, wherein the plurality of usable subbands that is orthogonal subbands using OFDM formed.
15.一种用于在正交频分复用(OFDM)通信系统中通过上行链路传输导频信号的方法,包括:将多个适用于数据传输的可用子带分为多个不相交的子带组,其中,所述多个不相交组中的每一个组都包括相同数量的子带;为至少两个终端中每一个终端分配所述多个不相交组中的一个组,其中,至少两个子带组被分配给所述至少两个终端;以及通过所述至少两个子带组,接收从所述至少两个终端发射的导频信号。 15. A method for an orthogonal frequency division multiplexing method (OFDM) communication system, the uplink pilot signal transmission guide, comprising: a plurality of data transmission applicable to the usable subbands are divided into a plurality of disjoint sub-band group, wherein said plurality of disjoint groups each group includes the same number of subbands; at least two terminals each terminal is assigned one group of the plurality of disjoint groups, which is, at least two sub-band group allocated to the at least two terminals; and by at least two sub-band groups, the received pilot signal transmitted from the at least two terminals.
16.如权利要求15所述的方法,还包括:根据所述接收,获取对所述至少两个终端中每一个终端的信道估计,其中,对所述至少两个终端中每一个终端的信道估计覆盖所述多个可用子带。 16. The method of claim 15, further comprising: based on the received, obtaining estimates of the at least two terminals of each terminal channel, wherein the channel of the at least two terminals of each terminal covering the plurality of estimated usable subbands.
17.一种用于在无线通信系统中通过上行链路传输导频信号的方法,包括:接收为用于上行链路上导频信号而分配的一个子带组,其中,该组包括适用于数据传输的多个可用子带的一个子集;确定用于所述组中所述子带中的每一个子带的发射功率,其中,用于每一个子带的所述发射功率被调整为高于如果在所有子带上进行导频信号传输所使用的每子带的平均发射功率,其调整倍数大于1;以及以所述确定的发射功率,在所述组中的所述子带上发射所述导频信号。 17. A method in a wireless communication system, the uplink pilot signal for pilot transmission, comprising: receiving a group of subbands for pilot signals on the uplink allocated, wherein the set comprises suitable a plurality of data transmission subset of the available band; determining transmission power for each sub-band in the group of the sub-bands, wherein the transmit power for each sub-band is adjusted to If each sub-band is higher than for pilot signal transmission is used in all sub-bands average transmitted power, the adjustment factor greater than 1; and determining the transmit power of said sub-belt in the group transmitting the pilot signal.
18.一种用于在无线通信系统中通过上行链路发射信令信息的方法,包括:将适用于数据传输的多个可用子带分为多个不相交的子带组;为至少两个终端的每一个终端分配所述多个不相交组中的一个组,其中,为所述至少两个终端分配至少两个子带组;以及通过所述至少两个子带组,在相同的时间间隔内,接收从所述至少两个终端发射的信令。 18. A method for a wireless communication system by the method of transmitting uplink signaling information, comprising: a plurality of data transfer suitable for usable subbands are divided into a plurality of disjoint groups of subbands; and at least two each terminal of the plurality of terminals allocated a group disjoint groups, wherein the at least two groups of subbands assigned to the at least two terminals; and by at least two sub-band groups, at the same time intervals receiving from the at least two terminals transmit signaling.
19.如权利要求18所述的方法,其中,所述发射的信令包括用于下行链路数据传输的速率控制信息。 19. The method as claimed in claim 18, wherein signaling the transmitter comprises means for data transmission rates of the downlink control information.
20.如权利要求18所述的方法,其中,所述发射的信令包括对经由下行链路接收的数据的确认。 20. The method according to claim 18, wherein signaling, including the acknowledgment of the transmitted data received via a downlink.
21.如权利要求18所述的方法,其中,用于在各子带中发射信令的发射功率被调整为高于如果在所有子带上发射导频信号所使用的每子带的平均发射功率,其调整倍数大于1。 21. The method according to claim 18, wherein the transmit power for transmitting signaling in each sub-band is adjusted to be higher than the average transmission per sub-band if the transmitted pilot signals of all the sub-band used power, the adjustment factor greater than 1.
22.如权利要求18所述的方法,其中,所述多个不相交组中的每个组包括相同数量的子带。 22. The method according to claim 18, wherein the plurality of disjoint groups each group comprising the same number of subbands.
23.如权利要求18所述的方法,其中,所述多个不相交组中的每个组包括可变数量的子带。 23. The method according to claim 18, wherein the plurality of disjoint groups each group comprising a variable number of subbands.
24.如权利要求18所述的方法,其中,所述多个不相交组中每个组可选用不同的调制方案。 24. The method according to claim 18, wherein the plurality of disjoint groups each group can use different modulation schemes.
25.具有多个子带的无线通信系统中的一种装置,包括:划分装置,用于将多个适用于数据传输的可用子带分为至少两个不相交的子带组;分配装置,用于将所述至少两个不相交组中的第一个组分配给一个终端;以及接收装置,用于通过所述第一个组中的子带,接收从所述终端发射的导频信号。 25. An apparatus for a wireless communication system having a plurality of sub-bands, comprising: dividing means, a plurality of usable subbands suitable for data transmission band is divided into sub-bands of at least two disjoint groups; dispensing means for at least two of said disjoint groups of the first group is assigned to a terminal; and a receiving means for the first sub-band by a group, from the transmitting terminal receives a pilot signal.
26.如权利要求25所述的装置,还包括:获取装置,根据在所述第一个组中的子带上接收的所述导频信号传输,获取对所述终端的信道估计,其中,所述信道估计覆盖至少一个不包含于所述第一个组中的子带。 26. The apparatus according to claim 25, further comprising: acquiring means, pilot signal transmission, for obtaining the channel estimate for the terminal in accordance with said received sub-band in said first group, wherein, covering the channel estimate at least one sub-band is not included in said first group.
27.无线通信系统中的一种装置,包括:接收装置,用于接收为上行链路导频信号传输而分配的一个子带组,其中,该组包括适用于数据传输的多个可用子带的一个子集;以及发射装置,用于在所述组中的所述子带上发射导频信号,其中,用于在所述组的所述子带中每一个子带上的所述导频信号的发射功率被调整为高于如果在所有子带上发射导频信号所使用的每子带平均发射功率,其调整倍数大于1。 27. A wireless communication system apparatus, comprising: receiving means for receiving a set of sub-band uplink pilot signal allocated for transmission, wherein the set comprises a suitable plurality of available sub-band data transmission the guide and the sub-transmitting means for transmitting the set band of the pilot signal, wherein for the subset of the set with each of the subbands; a subset transmit power of the pilot signal is adjusted to be higher than if each sub-band transmit pilot signals with the average transmit power used for all child, the adjustment factor greater than 1.
28.无线通信系统中的一种接入点,包括:一个解调器,用于接收从终端发射的导频信号,其中,从适用于数据传输的多个可用子带形成多个不相交的子带组,并且其中,在从所述多个不相交组中选择出来的并且分配给所述终端的第一个子带组上接收所述导频信号传输;以及一个控制器,根据接收的导频信号传输,获取对所述终端的信道估计,其中,所述信道估计覆盖至少一个不包含于分配给所述终端的组中的子带。 28. The wireless communication system of an access point, comprising: a demodulator for receiving a guide pilot signal transmitted from a terminal, wherein, from a plurality of available sub-band data transmission is suitable for forming a plurality of disjoint sub-band group, and wherein is selected from the plurality of disjoint groups and assigned to the pilot signal transmission on the terminal receiving a first set of subbands; and a controller, according to the received pilot signal transmission, access to the channel estimate for the terminal, wherein the channel estimate covers at least a sub-band group is not included in the distribution to the terminal in.
29.如权利要求28所述的接入点,其中,所述解调器还用于在第二个子带组上接收从第二个终端发射的导频信号,其中,所述第二个组是从所述多个不相交组中选择出来的并且被分配给所述第二个终端。 29. The access point of the second set of claim 28, wherein said demodulator further configured to receive a pilot from the second terminal transmit pilot signal on a second set of subbands, wherein said It is disjoint from said plurality of groups selected and assigned to the second terminal.
30.无线通信系统中的一种接入点,包括:一个解调器,用于在相同的时间间隔内,接收从至少两个终端发射的信令,其中,从多个适用于数据传输的可用子带形成多个不相交的子带组,其中为所述至少两个终端中的每一个终端分配所述多个不相交组中的一个组,其中,至少两个组被分配给所述至少两个终端,并且其中,在所述至少两个子带组上接收从所述至少两个终端发射的所述信令;以及一个控制器,用于处理所收到的、从所述至少两个终端发射的所述信令。 30. The wireless communication system of an access point, comprising: a demodulator for the same time interval, receiving signaling transmitted from the at least two terminals, wherein the plurality of data suitable for transmission forming a plurality of usable subbands disjoint groups of subbands, wherein each terminal is assigned one group of the plurality of disjoint groups of said at least two terminals of which at least two groups assigned to the at least two terminals, and wherein receiving the signaling transmitted from the terminal on the at least two of said at least two sub-band group; and a controller for processing received from the at least two the transmitted signaling terminals.
CN 200380102367 2002-10-29 2003-10-29 Uplink pilot and signaling transmission in wireless communication systems CN1708999B (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US42236802P true 2002-10-29 2002-10-29
US42236202P true 2002-10-29 2002-10-29
US60/422,362 2002-10-29
US60/422,368 2002-10-29
US10/340,507 US6928062B2 (en) 2002-10-29 2003-01-10 Uplink pilot and signaling transmission in wireless communication systems
US10/340,507 2003-01-10
PCT/US2003/034507 WO2004040827A2 (en) 2002-10-29 2003-10-29 Uplink pilot and signaling transmission in wireless communication systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010106823.4A CN101848531B (en) 2002-10-29 2003-10-29 Pilot information transmission and signaling by upperlink in wireless communication systems

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN 201010106882 Division CN101854711B (en) 2002-10-29 2003-10-29 Uplink pilot and signaling transmission in wireless communication systems
CN201010106823.4A Division CN101848531B (en) 2002-10-29 2003-10-29 Pilot information transmission and signaling by upperlink in wireless communication systems

Publications (2)

Publication Number Publication Date
CN1708999A true CN1708999A (en) 2005-12-14
CN1708999B CN1708999B (en) 2012-03-07

Family

ID=35581916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200380102367 CN1708999B (en) 2002-10-29 2003-10-29 Uplink pilot and signaling transmission in wireless communication systems

Country Status (2)

Country Link
CN (1) CN1708999B (en)
ZA (1) ZA200502668B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286970A (en) * 2008-05-16 2008-10-15 中兴通讯股份有限公司 Method for transmitting rank indication signaling on share channel of physical uplink
WO2008134981A1 (en) * 2007-04-30 2008-11-13 Da Tang Mobile Communications Equipment Co., Ltd. Method, system, base station and terminal for transmitting uplink channel sounding pilot
CN1808961B (en) * 2006-02-06 2011-05-04 华为技术有限公司 Uplink multi-user pilot method for interference depression between cells
CN101345974B (en) * 2007-07-09 2011-08-31 电信科学技术研究院 Method and system for scheduling mobile terminal to transmit ascending signal channel detection pilot frequency
CN102223336A (en) * 2010-04-16 2011-10-19 联芯科技有限公司 Wireless communication method and equipment
CN102342053A (en) * 2009-03-03 2012-02-01 夏普株式会社 Wireless communication system, reception apparatus, transmission apparatus, communication method of wireless communication system, control program, and autonomous distributed network
CN101094519B (en) * 2006-06-19 2012-05-23 日本电气株式会社 Band allocation method and radio communication system
CN101444058B (en) * 2006-05-11 2013-07-17 皇家飞利浦电子股份有限公司 Method and apparatus for distributing multi-carrier
CN102170343B (en) * 2006-02-06 2015-06-17 华为技术有限公司 Uplink multi-user pilot frequency method for reducing interference among cells

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442153B1 (en) * 1997-10-23 2002-08-27 Telefonaktiebolaget Lm Ericsson (Publ) Random access in a mobile telecommunications system
JP3981898B2 (en) * 1998-02-20 2007-09-26 ソニー株式会社 Signal receiving apparatus and method, and recording medium
US6430724B1 (en) * 1999-05-28 2002-08-06 Agere Systems Guardian Corp. Soft selection combining based on successive erasures of frequency band components in a communication system
CN1126336C (en) * 1999-11-12 2003-10-29 深圳市中兴通讯股份有限公司 Coherent channel estimation method based on inserted pilot simbol
US20020110107A1 (en) * 2001-02-12 2002-08-15 Motorola, Inc. Channel structure for data transmission

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170343B (en) * 2006-02-06 2015-06-17 华为技术有限公司 Uplink multi-user pilot frequency method for reducing interference among cells
CN1808961B (en) * 2006-02-06 2011-05-04 华为技术有限公司 Uplink multi-user pilot method for interference depression between cells
CN101444058B (en) * 2006-05-11 2013-07-17 皇家飞利浦电子股份有限公司 Method and apparatus for distributing multi-carrier
CN101094519B (en) * 2006-06-19 2012-05-23 日本电气株式会社 Band allocation method and radio communication system
US8538445B2 (en) 2007-04-30 2013-09-17 China Academy Of Telecommunications Technology Method and system for transmitting an uplink channel sounding pilot and base station and user equipment
CN101299871B (en) * 2007-04-30 2012-07-25 电信科学技术研究院 Method, system, base station and terminal for transmitting upstream detection pilot frequency
WO2008134981A1 (en) * 2007-04-30 2008-11-13 Da Tang Mobile Communications Equipment Co., Ltd. Method, system, base station and terminal for transmitting uplink channel sounding pilot
CN101345974B (en) * 2007-07-09 2011-08-31 电信科学技术研究院 Method and system for scheduling mobile terminal to transmit ascending signal channel detection pilot frequency
CN101286970B (en) * 2008-05-16 2013-06-12 中兴通讯股份有限公司 Method for transmitting rank indication signaling on share channel of physical uplink
CN101286970A (en) * 2008-05-16 2008-10-15 中兴通讯股份有限公司 Method for transmitting rank indication signaling on share channel of physical uplink
CN102342053A (en) * 2009-03-03 2012-02-01 夏普株式会社 Wireless communication system, reception apparatus, transmission apparatus, communication method of wireless communication system, control program, and autonomous distributed network
CN102223336A (en) * 2010-04-16 2011-10-19 联芯科技有限公司 Wireless communication method and equipment
CN102223336B (en) * 2010-04-16 2014-04-09 联芯科技有限公司 Wireless communication method and equipment

Also Published As

Publication number Publication date
ZA200502668B (en) 2006-02-22
CN1708999B (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US9876609B2 (en) Method and apparatus for providing an efficient control channel structure in a wireless communication system
US10057899B2 (en) Method for transmitting and receiving frame
US9402248B2 (en) Method for determining the location of control channels in the uplink of communication systems
US10278176B2 (en) Uplink control in a wireless communication network
US20160156451A1 (en) Methods and systems to mitigate inter-cell interference
US8767522B2 (en) Methods and apparatus for signal transmission and reception in a broadband communication system
US9755807B2 (en) Uplink channel estimation using a signaling channel
US9544897B2 (en) Peak-to-average power ratio management for multi-carrier modulation in wireless communication systems
JP5362803B2 (en) Scalable frequency band operation in wireless communication systems
JP5485305B2 (en) Various signaling channels for the reverse link in wireless communication systems
US9100152B2 (en) Apparatus for dimensioning the control channel for transmission efficiency in communications systems
US20140023046A1 (en) Soft handoff for ofdm
USRE46774E1 (en) Receiving a pilot design and channel estimation
AU2009217481B2 (en) Multicarrier modulation system with cyclic delay diversity
US10243641B2 (en) Frame transmitting method and frame receiving method
US9240877B2 (en) Segment sensitive scheduling
JP4981898B2 (en) Efficient channel structure for wireless communication systems
RU2425459C2 (en) Configurable pilot signals in wireless communication system
US8582509B2 (en) Scalable frequency band operation in wireless communication systems
EP1585246B1 (en) Apparatus and method for broadband wireless communication
US7567625B2 (en) Apparatus and method for sub-carrier allocation in a multiple-input and multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system
KR101010548B1 (en) Spatial pilot structure for multi-antenna wireless communication
JP4567628B2 (en) Mobile station, transmission method and communication system
US7924935B2 (en) Channel sounding in OFDMA system
US7502310B2 (en) Apparatus and method for assigning subchannel in a mobile communication system using orthogonal frequency division multiple access scheme

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1085337

Country of ref document: HK

C14 Granted
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1085337

Country of ref document: HK