CN1666316A - Method and apparatus for non-invasive measurement and analysis of semiconductor process parameters - Google Patents

Method and apparatus for non-invasive measurement and analysis of semiconductor process parameters Download PDF


Publication number
CN1666316A CN 03815562 CN03815562A CN1666316A CN 1666316 A CN1666316 A CN 1666316A CN 03815562 CN03815562 CN 03815562 CN 03815562 A CN03815562 A CN 03815562A CN 1666316 A CN1666316 A CN 1666316A
Grant status
Patent type
Prior art keywords
rf energy
plasma processing
Prior art date
Application number
CN 03815562
Other languages
Chinese (zh)
Original Assignee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date



    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge


一种用于传感和分析等离子体处理的参数的RF传感器。 An RF sensing and analyzing sensor parameters for plasma processing. 所述RF传感器具有一个等离子体处理工具(110)和一个用于接收从等离子体处理工具辐射的RF能量的天线(140)。 The RF antenna sensor has a plasma processing tool (110) and for receiving RF energy from the plasma processing tool (140). 天线位于非常接近等离子处理工具处,以便是非侵入式的。 Antenna is located very close to the plasma processing tools, so that non-invasive. 此外,RF传感器可配置为从等离子体处理工具辐射的RF能量的多谐波的宽带接收。 In addition, the sensor may be configured to receive RF broadband multiple harmonics radiated from the plasma processing tool RF energy. 另外,RF传感器可耦合到一个高通滤波器和一个用于处理接收到的RF能量的处理器(150)。 Further, RF sensors may be coupled to a high pass filter and a processor (150) for processing a received RF energy to the. 此外,天线可位于一个外壳内,所述外壳带有吸收器,用于减少RF传感器受到的干扰。 Further, the antenna may be located within a housing, said housing having an absorber, for reducing interference of RF sensor is subjected. 此外,一个工具控制可耦合到处理器以便根据由接收到的RF能量提供的信息调整和维持等离子体处理的各参数。 Further, a tool control processor for processing the parameters adjusted according to the information provided by the received RF energy to be coupled to and maintaining a plasma.


对半导体处理参数进行非侵入式测量和分析的方法和装置 Method and apparatus for processing a semiconductor non-invasive measurement parameters and analysis

本发明基于2002年7月3日提交的美国临时申请60/393101,并要求其优先权,此处通过引用将该申请的内容完全包含进来。 The present invention is based on the United States July 3, 2002 Provisional Application 60/393101, and claims priority to, herein by reference contain the complete contents of the application came in.

技术领域 FIELD

本发明涉及等离子体处理工具,尤其涉及对等离子体处理工具的参数进行非侵入式测量和分析的传感设备。 The present invention relates to a plasma processing tools, and particularly to apparatus for sensing parameters of the plasma process tool noninvasive measurement and analysis.

背景技术 Background technique

等离子体处理系统在材料处理中以及半导体、集成电路、显示器和其他电子设备的制造和处理中具有相当广的用途,用于在衬底(例如半导体片)上进行蚀刻和层淀积。 The plasma processing system, and handling and manufacturing semiconductors, integrated circuits, displays and other electronic devices having a very wide use in material processing for a substrate (e.g. semiconductor wafer) layer deposition and etching. 一般来讲,等离子体处理系统的基本元件包括一个腔室,其中形成等离子体,一个泵区域,它连接到一个真空端口用于注入和抽除处理气体,以及一个能量源,用于在腔内形成等离子体。 Generally, the basic elements of a plasma processing system comprising a chamber, wherein the plasma is formed, a region of the pump, which is connected to a vacuum port for injecting and exhausting the process gas, and a source of energy in the cavity for form a plasma. 其他元件可包括,一个卡盘,用于支持一个晶片,以及一个能量源,用于加速等离子体的离子,以便离子能够以所希望的能量撞击晶片表面,从而蚀刻晶片或在其上形成淀积。 Other elements may include a chuck for supporting a wafer, and a power source for accelerating ions of the plasma, so that a desired ion energy can impact the wafer surface, whereby the wafer is etched or deposited thereon is formed . 用于形成等离子体的能量源也可用于加速离子,或者可以将不同的能量源用于不同的任务。 An energy source for forming a plasma accelerating ions can also be used, or a different source of energy may be used for different tasks.

为确保形成精确的晶片,通常用一个传感器监控等离子体系统以确定等离子体处理系统的状态。 To ensure accurate formation of a wafer, typically a plasma monitor system with a sensor to determine the state of the plasma processing system. 一般在这种系统中传感器放置在等离子体内以监控特定参数,或者放置在耦合到处理腔室内的一个电极的传输线中。 Usually in such systems the plasma sensor is placed to monitor a particular parameter, or coupled to one electrode placed in the processing chamber over the transmission line.


本发明提供了一种新方法和装置,用于测量和分析等离子体处理参数。 The present invention provides a new method and apparatus for measuring and analyzing the plasma processing parameters.

一个感测等离子体处理参数的RF传感器被提供有一个等离子体处理工具和一个接收从等离子处理工具辐射的RF能量的天线。 RF plasma treatment sensor senses a parameter is provided a plasma processing tool and a receiving RF energy from the plasma antenna radiation treatment instrument. 所述天线位于接近等离子处理工具处,以便是非侵入式的。 The antenna is located in proximity of the plasma processing tools, so that non-invasive. 所述天线可以是一个宽带单极点天线。 The broadband antenna may be a monopole antenna points.

在本发明的一方面内容中,一个RF传感器位于一个外壳中,所述外壳可被带有多个吸收器,用于吸收RF能量。 SUMMARY In one aspect of the present invention, an RF sensor in a housing, the housing having a plurality of absorbers may be, for absorbing RF energy. 所述外壳可通过衰减从另一个附近的源产生的RF能量以及降低所需的RF能量的失真来降低天线受到的干扰量。 The housing may be reduced by the amount of interference received by the antenna attenuated RF energy generated from the source and another nearby RF energy required to reduce the distortion. 吸收器降低了入射到天线的RF能量的反向散射。 Entering the absorber reduces the RF energy to the antenna backscatter.


图1描述了根据本发明的一个实施例的一个RF传感器;图2是根据本发明的一个实施例的一个天线和处理器的简化框图;图3是根据本发明的一个实施例的一个天线的简化框图;图4是根据本发明的一个等离子体处理系统的简化框图;以及图5是根据本发明的一个实施例的期望的谐波数据的简图。 Figure 1 depicts a RF sensor according to one embodiment of the present invention; FIG. 2 is a simplified block diagram of one embodiment of the antenna and the processor according to one embodiment of the present invention; FIG. 3 is an embodiment of the antenna according to one embodiment of the present invention. a simplified block diagram; FIG. 4 is a simplified block diagram of a plasma processing system according to the invention; and FIG. 5 is a diagram of the harmonic data desired in accordance with one embodiment of the present invention.

具体实施方式 detailed description

以下将参考提出的说明性实施例更详细说明本发明。 Presented below with reference to illustrative embodiments of the present invention in more detail.

图1描述了根据本发明的一个实施例的一个RF传感器。 Figure 1 depicts a RF sensor according to one embodiment of the present invention. 一个等离子体处理工具包括一个腔室110。 A processing tool includes a plasma chamber 110. 该等离子处理工具一般由一个RF能量源(未显示)提供能量。 Plasma processing tools typically are powered by an RF energy source (not shown). 来自RF能量源的RF 120在等离子体处理工具的腔室110中产生和维持一个等离子体130,其中等离子体处理工具一般用在衬底的处理中。 RF energy from RF source 120 to generate and sustain a plasma in a plasma processing tool 130 of the chamber 110, wherein the plasma processing tool generally used in the processing of the substrate. 该等离子处理工具可以按照多种已知配置中的任何一种装配,所有已知配置都包括一个腔室110,其中有一个等离子体130用于处理。 Plasma processing tool assembly in accordance with any of a variety of known configurations, all known configurations include a chamber 110, which has a plasma 130 for processing. 这些配置中的某些包括,例如,一个感性耦合等离子体(ICP)源、一个静电屏蔽射频(ESRF)等离子源、一个变压器耦合等离子体(TCP)源以及一个容性耦合等离子体(CCP)源。 Certain of these configurations include, for example, an inductively coupled plasma (ICP) source, a radio frequency electrostatic shield (the ESRF) plasma source, a transformer coupled plasma (TCP) source, and a capacitively coupled plasma (CCP) source . 不论是哪种RF能量源,腔室110内的等离子体130都是通过由RF能量源生成的RF能量激励的。 Whatever the RF energy source, a plasma 130 is energized by an RF energy source generates RF excitation within the chamber 110. 因此,RF能量以RF基频和RF基频的谐波从腔室110辐射出。 Therefore, RF energy in the RF fundamental frequency and harmonics of the fundamental frequency RF radiation from the chamber 110. 谐波频率在等离子体130中生成。 Harmonic frequencies generated in the plasma 130. 谐波频率的幅度和相位提供了关于等离子体130和腔室110的状态的信息。 Amplitude and phase of the harmonic frequencies provides information on the plasma chamber 110 and 130 states. 例如,在不同功率、压强和流动率下进行的实验显示了辐射能量和处理参数之间的高度相关。 For example, experiments performed at different power, pressure and flow rate shows a high correlation between the radiation energy and processing parameters. 特别地,分析结果显示第一和第二谐波以高于99%的匹配与等离子体的电子密度相关。 In particular, the analysis showed that the first and second harmonic to match the electron density of the plasma is higher than 99% related.

在等离子体腔室110外提供了一个天线140,用于接收从等离子体130辐射出的RF能量,并且将RF能量转换为一个RF信号。 Provided outside the plasma chamber 110 one antenna 140 for receiving RF energy radiated from the plasma 130, and converts the RF energy to a RF signal. 在图1中,天线140被描绘为在腔室110外。 In Figure 1, antenna 140 is depicted as 110 in the outer chamber. 它也可以位于腔室110内,但是位于等离子体130的处理区域外。 It may also be located within the chamber 110, but outside of the plasma processing region 130. 由于已知侵入式传感器会改变处理参数,因此在此配置中,天线具有不侵入等离子体130的优点。 Since it is known invasive sensor will change process parameters, in this configuration, the antenna 130 has the advantage of not invade the plasma. 天线140耦合到一个处理器150。 The antenna 140 is coupled to a processor 150. 处理器150从天线140接收RF信号,从而被配置为处理RF信号以提供所需要的关于等离子体的状态的信息。 Processor 150 receives RF signals from antenna 140 so as to be configured to process RF signals to provide the required information regarding the state of the plasma. 此外,由于能量源的基频可能是兆赫量级,因此天线140可以是宽带、单极点天线,以便能够接收辐射出的RF能量的大带宽。 Further, since the fundamental frequency of the energy source may be on the order of MHz, so that the antenna 140 may be a broadband, point monopole antenna, so that a large bandwidth capable of receiving RF energy radiated. 例如,一个天线研究模型RAM-220可被用作宽带单极点天线。 For example, one antenna Model RAM-220 can be used as a broadband monopole antenna points.

图2是根据本发明的一个实施例的一个天线和处理器的简化框图。 FIG 2 is a simplified block diagram of one embodiment of the antenna and the processor according to one embodiment of the present invention. 在所示实施例中,天线140耦合到一个高通滤波器210。 In the illustrated embodiment, the antenna 140 is coupled to a high pass filter 210. 天线也可耦合到另一类型的滤波器,例如带阻、带通或低通滤波器。 The antenna also be coupled to another type of filter such as a band-stop, band-pass or low pass filter. 高通滤波器210的输出耦合到一个低噪声放大器(LNA)220,然后放大后的信号输入到处理器230。 Output of the high pass filter 210 is coupled to a low noise amplifier (LNA) 220, then the signal input to the processor 230 after amplification. 高通滤波器可用于从接收到的信号中去除基频,因为通常基频中可能没有有用信息,有用信息可能包括在RF能量的谐波内。 High pass filter can be used to remove from the received baseband signal, since the baseband may not generally useful information, useful information may include the RF energy in the harmonics. 当然可通过去除或调整高通滤波器210的截止频率来收集关于基频的数据。 Of course, by removing or adjusting the high-pass cutoff frequency of filter 210 to collect data regarding the fundamental frequency. 在高通滤波器的截止频率之下的信号的典型衰减可在40dB范围内。 A typical signal attenuation below the cutoff frequency of the high pass filter may be in the range of 40dB. LNA 220放大从高通滤波器提供的RF信号,以便信号能被处理器230适当处理。 LNA 220 RF signal from the amplified high-pass filter provided to the signal processor 230 can appropriately process. LNA的典型增益可在20-30dB范围内。 Typical gain LNA can be in the range 20-30dB.

处理器230可配置为支持多个输入,如图2所示。 The processor 230 may be configured to support a plurality of inputs, as shown in FIG. 在此情况下,几个处理过程可被单个处理器230独立监控和处理。 In this case, several processes can be a single processor 230 and the independent monitoring process. 处理器230可包括一个模数(A/D)转换器,用于将接收到的模拟信号转换成数字采样。 The processor 230 may include an analog to digital (A / D) converter for converting the received analog signals into digital samples. 可以以多种方法确定信号采样率。 Signal sampling rate may be determined in various ways. 例如,如果RF能量的基频为13.56MHz,则125MHz的带宽将适于测量8个谐波(第8谐波的频率为122.04MHz)。 For example, if the fundamental frequency of the RF energy 13.56MHz, the bandwidth is 125MHz 8 adapted to measure the harmonic (eighth harmonic frequency of 122.04MHz). 在此情况下,如果A/D转换器的采样间隔为100ms,并且选择10KHz的频率库,则按Nyquist准则计算的采样率将为至少250MS/s,采样量将为25000。 In this case, if the sampling interval of A / D converter is 100ms, and to select the frequency of 10KHz library, press the Nyquist criterion the sampling rate would be calculated at least 250MS / s, the sample volume will be 25,000.

耦合到处理器230的是一个用户接口240、一台外部计算机250以及一个网络260。 The processor 230 is coupled to a user interface 240, an external computer 250 and a network 260. 用户接口250可包括多个已知元件,其用途是使用户能够与处理器230交互。 The user interface 250 may include a plurality of known components, whose purpose is to enable a user to interact with the processor 230. 例如,如果处理器在采样后要执行采样数据的FFT(快速傅立叶变换),则结果将显示在一个触摸屏上,使用户能够与系统交互。 For example, if the processor performs the FFT to the sampled data sampled (Fast Fourier Transform), the result is displayed on a touch screen, enabling a user to interact with the system. 外部计算机250可提供多种用途,包括对处理参数和腔室110的实时控制。 The external computer 250 can provide a variety of purposes, including real-time control of the processing parameters and the chamber 110. 网络260起的作用是使得用户能够远程访问处理器。 Role is played by the network 260 enables the user to remotely access the processor. 例如,可以使FFT信息对外部计算机250或网络260可用。 For example, the FFT 250 or an external computer information network 260 is available.

在这种天线和处理器的一个例子中,腔室参数特征可在一个校准状态中描述,并且由天线140收集的数据可施加到一个联系腔室和等离子体的各参数的模型。 In one example of such an antenna, and a processor, wherein the chamber may be described in a parameter calibration state, the antenna 140 and collected by the data model parameters of a contact chamber and can be applied to the plasma. 例如,某些参数可包括:电子密度、装配清洁度、电子温度和端点检测。 For example, certain parameters may include: electron density, cleanliness assembly, electron temperature and endpoint detection. 通过使用这样的模型可以在不考虑天线的绝对标度的情况下使用天线,这样简化了传感器设计参数。 The antenna may be used in the case where the absolute scale is not considered by the antenna using such a model, which simplifies the design parameters of the sensor.

图3是根据本发明的一个实施例的一个天线的简化框图。 FIG 3 is a simplified block diagram of one embodiment of the antenna according to one embodiment of the present invention. 腔室110、等离子体130、天线140和处理器150可以与图1和2所示的相同。 Chamber 110, a plasma 130, and antenna 140 may be the same processor 150 as shown in FIGS. 1 and 2. 天线140放置在一个外壳340中,外壳340通过连接壁310连接到腔室110。 The antenna 140 is placed in a housing 340, a housing 340 connected to the chamber 110 by a connecting wall 310. 连接壁310被设计为传递从等离子体130辐射的RF能量,它可以是石英、氧化铝或其他任何合适的材料。 Connecting wall 310 is designed to transmit RF energy from the plasma radiation 130, which may be quartz, alumina, or any other suitable material. 也可在连接壁310中提供了一个孔,使RF能量能够经它传递。 A hole may also be provided in the connecting wall 310, so that RF energy can be transmitted through it. 吸收器320和330用于吸收来自不必要的源的RF能量,以及减少由外壳340的谐振引起的失真,即,如果没有吸收器320和330,天线可能接收到不必要的谐振,使应该接收到的信号失真。 320 and absorber 330 for absorbing energy from an RF source unnecessary, and to reduce distortion caused by the resonance of the housing 340, i.e., if no absorber 320 and 330, the antenna may receive unwanted resonance, so to be received to signal distortion. 一般来说,吸收器可包括在离散或宽带频率吸收能量的材料。 Generally, the absorbent material may comprise a discrete frequency or broadband absorb energy.

虽然显示为在外壳340的背部,吸收器320和330也可放置于外壳340周围的五侧面上(如果考虑外壳为矩形盒)。 Although it is shown as the back of the housing 340, the absorber 320 and 330 may be placed on the side of the housing 340 around five (in consideration of the housing is a rectangular box). 吸收器的这种配置方式使得当吸收器在盒的另外五侧面上时,RF能量能够经过连接壁310从等离子体辐射出以及在外壳中辐射。 This arrangement is such that when the absorber the absorber on the other five sides of the cartridge, RF energy can be connected through the wall 310 and a radiation radiated from the plasma in the housing.

在实施例中,可选择吸收器320和330使得吸收器320被选择为吸收基频,而吸收器330被选择为吸收第一谐波。 In an embodiment, the selectable absorbers 320 and 330 are selected such that the absorber 320 to absorb the fundamental frequency, while the absorber 330 is selected to be absorbed by the first harmonic. 四分之一波配置可提供所选频率的最大衰减。 Quarter wave configuration provides maximum attenuation of selected frequency. 此外,如果需要的话可提供额外的吸收层。 Further, if desired, an additional absorbent layer may be provided. 虽然以上说明了特定的吸收器配置方式,但也可利用任何能够减少不必要的干扰的吸收器配置。 Although the above described specific configuration of the absorber, but may be any absorbent capable of reducing the unnecessary use of interference configuration.

图4是根据本发明的一个实施例的一个等离子处理系统的简化框图。 FIG 4 is a block diagram like a simplified embodiment of the present invention, an embodiment of a plasma processing system. 为了进行说明,腔室110被显示为一个具有上电极125的容性耦合的腔室,但是,也可类似地采用任何类型的系统。 To illustrate, the chamber 110 is shown having a chamber on the capacitive coupling electrode 125, however, can be similarly employed in any type of system. 等离子体130、天线140和处理器150可以与上文所述的相同。 The plasma 130, antenna 140 and processor 150 may be the same as described above. 如前所述,等离子体130被一个RF生成器420激励。 As described above, the plasma 130 by a RF generator 420 excited. RF生成器420可直接耦合到腔室110,或者如图4所示,通过一个匹配网络410或440耦合到腔室110。 RF generator 420 may be directly coupled to the chamber 110, or 4, is coupled to the chamber 110 through a matching network 410 or 440. 在图4中,为了说明显示了两个RF生成器,但是根据腔室110的配置,可以只用一个RF生成器420。 In FIG. 4, for illustration shows two RF generators, but according to the configuration of the chamber 110, can use only one RF generator 420. 上电极(UEL)匹配网络410耦合到上电极125,而下电极(LEL)匹配网络440耦合到下电极450。 Coupling an upper electrode (the UEL) matching network 410 to the electrode 125, the lower electrode is coupled (the LEL) matching network 440 to the lower electrode 450. 等离子体130被一个或多个RF生成器420激励。 130 is a plasma generator 420 or more RF excitation. 从而等离子体以基频和基频的谐波辐射RF能量。 Whereby RF energy to the plasma harmonic radiation fundamental frequency and the fundamental frequency. RF能量从腔室110中辐射出,并被天线140接收,天线140位于等离子130外。 RF energy from the chamber 110, and the receiving antenna 140, antenna 140 is located outside the plasma 130. 天线140耦合到一个处理器150,先前已经部分说明了该处理器。 The antenna 140 is coupled to a processor 150, it has been previously described part of the processor. 正如参考图1所说明的那样,上述配置提供了一种接收等离子处理参数的非侵入式方法。 As described above with reference to FIG. 1, the above-described configuration provides a non-invasive method for receiving a plasma processing parameter.

处理器150接收RF能量,并通过一个模数(A/D)转换器将模拟信号转换为一个数字信号。 Processor 150 receives the RF energy, through an analog to digital (A / D) converts an analog signal into a digital signal converter. 通常,模拟信号的采样率取决于感兴趣的带宽(即带宽是感兴趣的基频和谐波的一个函数)。 Typically, the sampling rate of the analog signal depends on the bandwidth of interest (i.e., the bandwidth of interest is a function of the fundamental frequency and harmonics). 例如,500MHz的带宽通常以每秒10亿个采样的采样率采样。 For example, 500MHz bandwidth is generally sampled at the rate of 1 billion per sample. 当然,可根据需要确定采样率,不必限于以上例子。 Of course, the sampling rate may be determined according to need, not necessarily limited to the above example. RF能量的幅度和相位,包括谐波,可提供关于等离子体130的状态的信息,从而可提供关于腔室110的状态的信息。 Amplitude and phase of the RF energy, including harmonics, may provide information about the state of the plasma 130, which can provide information about the state of the chamber 110. 然后可用处理器150处理数据,并且通常可用诸如快速傅立叶变换(FFT)和主要成分分析(PCA)这样的操作来从RF信号搜集信息。 Data processor 150 can then be processed, such as commonly available and Fast Fourier Transform (FFT) and principal component analysis (PCA) to gather information such operation from the RF signal. 由处理器150获得的信息可提供对诸如装配清洁度、等离子密度、电子温度和端点检测等参数的了解。 Information obtained by processor 150 may provide insight as to the cleanliness of the assembly, the plasma density, electron temperature and endpoint detection parameters.

在处理器的一个实施例中,可通过使用包括FFT的常规技术将接收到的RF能量的轨迹数据转换成频域输出信号。 In one embodiment of the processor, the trace data received RF energy may be converted into a frequency domain output signal by using conventional techniques comprising the FFT. 然后可提取出谐波频率的信息,并用在等离子处理系统校准过程中获得并通过PCA确定的系数与之相乘。 Then the information can be extracted harmonic frequency, and obtaining a calibration process in a plasma processing system and the like is multiplied by the coefficient determined with PCA. PCA可用于确定系数,因为它使得相关值的一个大集合能够被转换为主值的一个较小集合。 PCA can be used to determine the coefficients, because it makes a large collection of correlation values ​​can be converted to a small value based collection. 可通过将原来的值集合转换成原来的(较大的)集合的不相关的线性组合的一组新集合,从而实现集合大小的减小。 By the original set of values ​​converted to the original (larger) set a new set of linear combinations of a set of unrelated, thereby achieving the reduced size of the collection.

通过使用接收到的RF能量的基频和谐波频率的幅度,可以进行几种不同的分析,包括能量分析、流分析和压强分析。 Energy analysis, flow analysis, and analyzed by using the pressure energy of the received RF frequency and amplitude of the fundamental harmonic frequencies, can carry out several different analysis, comprising 通过处理根据幅度值获得的信息,还能进一步确定最大相关存在于哪些谐波之间,从而确定每个频率成分的可接受的系数。 The amplitude value by processing the information obtained can be further determining a maximum correlation which exists between the harmonics, to determine an acceptable coefficient for each frequency component. 也可进行依赖性分析,以确定系统中一个参数的变化是否会影响另一个参数,但是,最初的结果显示参数可被独立调整。 Dependency can also be analyzed to determine a change in the parameters of the system will affect the other parameters, however, the initial results show that the parameters can be adjusted independently.

此外,可以根据对轨迹数据的分析进行端点检测。 Furthermore, endpoint detection can be based on an analysis of the trace data. 一旦被绘出,则容易看出在接收到的RF能量的谐波中有显著移动。 Once drawn, it is easy to see that there is significant movement in the harmonics of the received RF energy in. 尤其地,在处理完成时,主要谐波的贡献可能变化。 In particular, when the process is completed, the main contribution of harmonics may vary.

例如,如描绘简化的期望的数据的图5所示,在T1时刻第3谐波的变化很明显,而在T2时刻,基频和第3谐波的变化都很明显。 For example, as depicted in FIG simplified data desired. 5, at time T1 of the third harmonic variation is obvious, and at time T2, and the third change of the fundamental frequency harmonics are obvious. 对处理过程的分析显示这些变化归因于处理过程的完成。 Analysis of the process showed these changes attributable to the completion of the process. 这种端点检测方法可以是一种精确并且成本效率高的端点检测方法。 This endpoint detection method may be an accurate and cost-efficient method for endpoint detection.

然后处理后的数据发送到一个工具控制430。 Processed data is then transmitted to a control means 430. 该工具控制430可配置为执行几项任务。 The tool control 430 can be configured to perform several tasks. 某些任务是工具控制430可执行包括端点确定、能量控制和气体控制(流速、压强等)。 Some tasks the control tool 430 may perform determination inclusive, energy control and gas control (flow rate, pressure, etc.). 如图4所示,工具控制430耦合到腔室110和RF生成器420。 4, the tool 430 is coupled to the control chamber 110 and the RF generator 420. 通过这种方式,工具控制可以根据从处理器150接收到的数据调整这些设备的参数,以便能在腔室110中维持可重复的处理过程。 In this manner, the control means may adjust these parameters based on data received from the devices to the processor 150, in order to maintain a repeatable process in the chamber 110.

如上所述,PCA是一个多变量统计过程,它允许相关变量的一个较大的集合减少到主要成分的一个较小集合。 As mentioned above, PCA is a multivariate statistical process, which allows a larger collection of related variables reduced to a smaller set of major components. 因此,在校准阶段,PCA可用于首先根据一个包括各谐波的数据的数据集合生成一个协方差矩阵。 Thus, during the calibration phase, the PCA can be used to generate a set of first covariance matrix based on the data comprises a data of each harmonics. 接下来,可根据协方差矩阵获得一个特征解,从而可计算一组特征向量。 Next, a feature can be obtained from the covariance matrix solution to calculate a set of feature vectors. 根据特征解可计算每个主要成分的贡献百分比。 The percentage contribution of each component of the main solution calculated based on the feature. 通过使用这些百分比,可使用带有获得的百分比的特征向量的加权和来相应地选择系数。 Using these percentages, the use of weighted feature vectors obtained with percentages and correspondingly selected coefficient. 可对不同参数进行此计算,这些参数包括能量、气体流和腔室压强。 This can be calculated for different parameters, including power, gas flow and chamber pressure. 一旦完成校准并确定了各参数,则工具控制可在控制循环中利用该信息,正如对本领域技术熟练者显而易见的那样。 Once calibrated and the determined parameters, the tools may use this control information in the control loop, as the technical experts were apparent as the art. 在这种类型的反馈循环中可维持一个可再现的处理过程。 In this type of feedback loop may be maintained in a reproducible process.

处理器150可耦合到几个设备,如图2所示。 The processor 150 may be coupled to several devices, as illustrated in FIG 2. 某些本实施例中重要的设备包括用户接口240和外部计算机250。 Important embodiment apparatus includes a user interface 240 and some external computer 250 of the present embodiment. 此外可能用户接口240和外部计算机250二者是一个设备,例如一台个人计算机。 Further possible both the external computer 240 and user interface 250 is a device such as a personal computer.

最后,正如本领域技术熟练者将意识到的那样,由处理器150处理的数据量可以相当大。 Finally, as a skilled person in the art techniques, as will be appreciated, the amount of data processed by the processor 150 can be quite large. 因此可能要求使用一个外部储存设备(未显示)。 It may require the use of an external storage device (not shown). 连接存储设备的一个可能的配置可以是直接连接到处理器150。 A possible configuration of storage devices may be connected directly to the processor 150 is connected. 通过网络260使用远程储存也可能是有利的(在图2中显示)。 By using the remote network 260 may also be advantageous to store (shown in FIG. 2). 但是,任何储存数据的方法都是可接受的。 However, any method is acceptable to store data. 储存数据的一个好处是用于将来的处理和分析。 One benefit of storing data for future processing and analysis. 此外,实现的数据可用于建模一个可接受的操作工具控制430的控制系统,从而控制等离子处理。 Further, the data can be modeled to achieve an acceptable control system for controlling the operation tool 430, thereby controlling the plasma treatment.

以上对所述实施例的介绍是用来使任何本领域技术熟练者能够利用本发明的。 The above described embodiment of the embodiment is to enable any skilled in the art to utilize the invention to a skilled person. 可能对这些实施例进行各种修改,并且此处介绍的用于半导体处理参数的测量的一个RF传感器的一般原理也可用于其他实施例。 Various modifications may be made to these embodiments, and the generic principles described herein for a sensor for measuring RF semiconductor processing parameters may also be used in other embodiments. 从而,本发明不倾向于限于以上所示的实施例,而是根据此处以任何方式提出的原理和新特征一致的最广的范围的。 Accordingly, the present invention is not limited to the embodiments shown inclined above, but is identical in any way according to the principles presented herein and novel features of the broadest range.

Claims (8)

  1. 1.一种用于感测等离子体处理的参数的系统,所述系统包括:一个等离子体处理工具;一个放置在所述等离子体处理工具附近的外壳;一个位于所述外壳内的天线,用于接收从所述等离子体处理工具辐射的RF能量;以及一个耦合到所述天线的处理器,用于处理由所述天线接收到的所述RF能量。 1. A system for sensing a parameter of the plasma processing, the system comprising: a plasma processing tool; a tool placed in the housing near the plasma process; an antenna located within the housing, with to receive RF energy radiated from the plasma of the processing tool; and a processor coupled to the antenna, for processing the RF energy received by the antenna.
  2. 2.权利要求1所述的系统,其中所述外壳附着到所述等离子体处理工具。 The system according to claim 1, wherein said housing is attached to the plasma processing tool.
  3. 3.权利要求1所述的RF系统,进一步包括:至少一个提供给所述外壳的吸收器,用于吸收RF能量。 The RF system of claim 1, further comprising: at least one housing provided to the absorber, for absorbing RF energy.
  4. 4.权利要求3所述的系统,其中所述外壳具有至少一个表面与所述等离子体处理工具的一个表面相邻,并且所述的至少一个表面和等离子体处理工具的所述表面被配置为传递RF能量。 The system according to claim 3, wherein said housing has at least one surface adjacent one surface of the plasma processing tool, and said at least one of said surfaces and a plasma processing tool is configured to transmitting RF energy.
  5. 5.权利要求1所述的系统,其中所述外壳和所述工具相邻,并且其间界定了一个开口。 The system according to claim 1, wherein said housing and adjacent said tool, and defining an opening therebetween.
  6. 6.权利要求4所述的系统,其中所述的至少一个吸收器被放置为防止吸收经过所述外壳的与所述的等离子处理工具相邻的所述至少一个表面的RF能量。 The system according to claim 4, wherein said at least one absorber is placed to prevent absorption through the housing of the plasma processing tool adjacent to said at least one surface of the RF energy.
  7. 7.权利要求3所述的系统,其中一个第一吸收器配置为吸收所述RF能量的一个基频,一个第二吸收器配置为吸收所述RF能量的一个谐波频率。 The system according to claim 3, wherein a first absorber configured to absorb the RF energy of a frequency group, a second absorber configured to absorb a harmonic frequency of the RF energy.
  8. 8.权利要求3所述的系统,其中所述外壳是矩形的,并且所述吸收器被提供在所述外壳的所有侧面上,除了与所述等离子体处理工具相靠近的一面。 The system according to claim 3, wherein said housing is rectangular and the absorber is provided on all sides of the housing, with one surface in addition to the plasma processing tool with close.
CN 03815562 2002-07-03 2003-06-18 Method and apparatus for non-invasive measurement and analysis of semiconductor process parameters CN1666316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US39310102 true 2002-07-03 2002-07-03

Publications (1)

Publication Number Publication Date
CN1666316A true true CN1666316A (en) 2005-09-07



Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03815562 CN1666316A (en) 2002-07-03 2003-06-18 Method and apparatus for non-invasive measurement and analysis of semiconductor process parameters

Country Status (4)

Country Link
US (1) US20050183821A1 (en)
JP (1) JP2005531931A (en)
CN (1) CN1666316A (en)
WO (1) WO2004006298A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565785A (en) * 2010-11-22 2012-07-11 通用电气公司 Sensor assembly and methods of adjusting the operation of a sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865301A2 (en) * 2006-06-09 2007-12-12 Andrew Telecommunication Products S.r.l. System and method of non-invasive control of apparatus tightness
US7728602B2 (en) * 2007-02-16 2010-06-01 Mks Instruments, Inc. Harmonic derived arc detector
DE102009011960B4 (en) * 2009-03-10 2013-06-13 Schott Ag Method for monitoring plasma discharges
GB201705202D0 (en) * 2017-03-31 2017-05-17 Dublin City Univ System and method for remote sensing a plasma

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207137A (en) * 1979-04-13 1980-06-10 Bell Telephone Laboratories, Incorporated Method of controlling a plasma etching process by monitoring the impedance changes of the RF power
US4846920A (en) * 1987-12-09 1989-07-11 International Business Machine Corporation Plasma amplified photoelectron process endpoint detection apparatus
DE3821208C1 (en) * 1988-06-23 1989-11-02 Leybold Ag, 6450 Hanau, De
JP2766685B2 (en) * 1988-09-26 1998-06-18 アンリツ株式会社 Spectrum analyzer
US5175880A (en) * 1988-11-03 1992-12-29 Rolls-Royce Plc Signal analysis
US4982150A (en) * 1989-10-30 1991-01-01 General Electric Company Spectral estimation utilizing an autocorrelation-based minimum free energy method
US5284544A (en) * 1990-02-23 1994-02-08 Hitachi, Ltd. Apparatus for and method of surface treatment for microelectronic devices
US5103182A (en) * 1990-04-02 1992-04-07 Texas Instruments Incorporated Electromagnetic wave measurement of conductive layers of a semiconductor wafer during processing in a fabrication chamber
US5168279A (en) * 1991-06-12 1992-12-01 Hewlett-Packard Company Antenna for sensing stray rf radiation
JP3122175B2 (en) * 1991-08-05 2001-01-09 忠弘 大見 The plasma processing apparatus
US5184398A (en) * 1991-08-30 1993-02-09 Texas Instruments Incorporated In-situ real-time sheet resistance measurement method
US5523955A (en) * 1992-03-19 1996-06-04 Advanced Energy Industries, Inc. System for characterizing AC properties of a processing plasma
US5458732A (en) * 1992-04-14 1995-10-17 Texas Instruments Incorporated Method and system for identifying process conditions
US5273610A (en) * 1992-06-23 1993-12-28 Association Institutions For Material Sciences, Inc. Apparatus and method for determining power in plasma processing
US5325019A (en) * 1992-08-21 1994-06-28 Sematech, Inc. Control of plasma process by use of harmonic frequency components of voltage and current
US5407524A (en) * 1993-08-13 1995-04-18 Lsi Logic Corporation End-point detection in plasma etching by monitoring radio frequency matching network
US5479340A (en) * 1993-09-20 1995-12-26 Sematech, Inc. Real time control of plasma etch utilizing multivariate statistical analysis
US5467013A (en) * 1993-12-07 1995-11-14 Sematech, Inc. Radio frequency monitor for semiconductor process control
US5442562A (en) * 1993-12-10 1995-08-15 Eastman Kodak Company Method of controlling a manufacturing process using multivariate analysis
US5556549A (en) * 1994-05-02 1996-09-17 Lsi Logic Corporation Power control and delivery in plasma processing equipment
JPH07326490A (en) * 1994-05-31 1995-12-12 Sony Corp Discharge detector
US5474648A (en) * 1994-07-29 1995-12-12 Lsi Logic Corporation Uniform and repeatable plasma processing
US5576629A (en) * 1994-10-24 1996-11-19 Fourth State Technology, Inc. Plasma monitoring and control method and system
US5519399A (en) * 1994-12-05 1996-05-21 Alliedsignal Inc. Method for measuring the frequency of continuous wave and wide pulse RF signals
US5688357A (en) * 1995-02-15 1997-11-18 Applied Materials, Inc. Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
US5667701A (en) * 1995-06-07 1997-09-16 Applied Materials, Inc. Method of measuring the amount of capacitive coupling of RF power in an inductively coupled plasma
US5691642A (en) * 1995-07-28 1997-11-25 Trielectrix Method and apparatus for characterizing a plasma using broadband microwave spectroscopic measurements
JP3766991B2 (en) * 1995-10-20 2006-04-19 株式会社日立製作所 Endpoint detection method and apparatus of the plasma treatment, and a semiconductor manufacturing method and apparatus using the present detection method and apparatus
JPH09266098A (en) * 1996-03-29 1997-10-07 Seiko Epson Corp Plasma condition detecting device and method, and etching terminating point detecting device and method
US6051284A (en) * 1996-05-08 2000-04-18 Applied Materials, Inc. Chamber monitoring and adjustment by plasma RF metrology
US5770922A (en) * 1996-07-22 1998-06-23 Eni Technologies, Inc. Baseband V-I probe
US6252354B1 (en) * 1996-11-04 2001-06-26 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing and power, voltage, current or DI/DT control
US6178822B1 (en) * 1996-11-19 2001-01-30 Christopher J. Manning Method and device for multiplexed spectro-rheological measurements
US5862060A (en) * 1996-11-22 1999-01-19 Uop Llc Maintenance of process control by statistical analysis of product optical spectrum
EP0887864B1 (en) * 1997-06-24 2005-10-19 Matsushita Electric Industrial Co., Ltd. Semiconductor device with capacitor and method for fabricating the same
US6027601A (en) * 1997-07-01 2000-02-22 Applied Materials, Inc Automatic frequency tuning of an RF plasma source of an inductively coupled plasma reactor
CN1186476C (en) * 1997-09-17 2005-01-26 东京电子株式会社 Device and method for detecting and preventing arcing in RF plasma systems
US6129807A (en) * 1997-10-06 2000-10-10 Applied Materials, Inc. Apparatus for monitoring processing of a substrate
US6153115A (en) * 1997-10-23 2000-11-28 Massachusetts Institute Of Technology Monitor of plasma processes with multivariate statistical analysis of plasma emission spectra
US7537672B1 (en) * 1999-05-06 2009-05-26 Tokyo Electron Limited Apparatus for plasma processing
US6675137B1 (en) * 1999-09-08 2004-01-06 Advanced Micro Devices, Inc. Method of data compression using principal components analysis
US6657214B1 (en) * 2000-06-16 2003-12-02 Emc Test Systems, L.P. Shielded enclosure for testing wireless communication devices
US6963728B2 (en) * 2002-05-15 2005-11-08 Visteon Global Technologies, Inc. Low power, high speed data communications in vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565785A (en) * 2010-11-22 2012-07-11 通用电气公司 Sensor assembly and methods of adjusting the operation of a sensor

Also Published As

Publication number Publication date Type
US20050183821A1 (en) 2005-08-25 application
WO2004006298A3 (en) 2004-05-13 application
WO2004006298A2 (en) 2004-01-15 application
JP2005531931A (en) 2005-10-20 application

Similar Documents

Publication Publication Date Title
US6197116B1 (en) Plasma processing system
US6157867A (en) Method and system for on-line monitoring plasma chamber condition by comparing intensity of certain wavelength
US5449411A (en) Microwave plasma processing apparatus
US6535785B2 (en) System and method for monitoring and controlling gas plasma processes
US4767496A (en) Method for controlling and supervising etching processes
US5103182A (en) Electromagnetic wave measurement of conductive layers of a semiconductor wafer during processing in a fabrication chamber
US6383554B1 (en) Process for fabricating plasma with feedback control on plasma density
US20060231526A1 (en) System and method for determining the state of a film in a plasma reactor using an electrical property
US6972524B1 (en) Plasma processing system control
Klick Nonlinearity of the radio‐frequency sheath
US20060088655A1 (en) RF measurement feedback control and diagnostics for a plasma immersion ion implantation reactor
US20050082482A1 (en) Process monitoring using infrared optical diagnostics
US20080075834A1 (en) Dosimetry using optical emission spectroscopy/residual gas analyzer in conjuntion with ion current
US5705931A (en) Method for determining absolute plasma parameters
US6885153B2 (en) Plasma processing apparatus and method
US5576629A (en) Plasma monitoring and control method and system
US5806980A (en) Methods and apparatus for measuring temperatures at high potential
US5474648A (en) Uniform and repeatable plasma processing
US7334477B1 (en) Apparatus and methods for the detection of an arc in a plasma processing system
Kortshagen et al. Ion energy distribution functions in a planar inductively coupled RF discharge
US6656848B1 (en) Plasma chamber conditioning
US6226086B1 (en) Thickness monitoring
US20030032207A1 (en) Method and apparatus for process monitoring
US5339039A (en) Langmuir probe system for radio frequency excited plasma processing system
US20050060103A1 (en) Method and system of diagnosing a processing system using adaptive multivariate analysis

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)