CN1666096A - 数字受控的传感器系统 - Google Patents

数字受控的传感器系统 Download PDF

Info

Publication number
CN1666096A
CN1666096A CN03815563XA CN03815563A CN1666096A CN 1666096 A CN1666096 A CN 1666096A CN 03815563X A CN03815563X A CN 03815563XA CN 03815563 A CN03815563 A CN 03815563A CN 1666096 A CN1666096 A CN 1666096A
Authority
CN
China
Prior art keywords
controller
digital
sensor
digitial controller
carry out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN03815563XA
Other languages
English (en)
Inventor
戴维·M.·阿尔伯特
埃德温·K.·艾伦特
马文·B.·爱德华兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Mykrolis Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29581854&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1666096(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mykrolis Corp filed Critical Mykrolis Corp
Publication of CN1666096A publication Critical patent/CN1666096A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/002Calibrating, i.e. establishing true relation between transducer output value and value to be measured, zeroing, linearising or span error determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/008Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00 with calibration coefficients stored in memory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/022Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation having an ideal characteristic, map or correction data stored in a digital memory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/02Arrangements for preventing, or for compensating for, effects of inclination or acceleration of the measuring device; Zero-setting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • G01L9/125Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor with temperature compensating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

用来对传感器进行数字控制的系统和方法。在一个实施例中,用于电容薄膜式压力计的一个数字控制器被嵌入到一个数字信号处理器(DSP)中。该控制器通过一个可变增益模块、一个零偏置模块以及一个模数转换模块从传感器AFE接收数字化输入。该控制器通过调整可变增益和零偏置模块对接收到的输入进行校准。控制器还监控和调整一个加热器装置以维持传感器中的合适温度。控制器使用一个内核模块来将处理资源分配给压力计控制器模块的多个任务。该内核模块反复执行一个循环,其中,每个循环执行所有的高优先级任务和低优先级任务中的一个。从而,控制器模块就可以按照精确的周期提供传感器测量输出,同时还能够实现辅助功能。

Description

数字受控的传感器系统
技术领域
本发明一般涉及用来操作传感器的系统和方法,更确切的,涉及用于数字电容薄膜式压力计的嵌入式控制系统,所述电容薄膜式压力计使用一个高级数字信号处理器,其包括用来处理内部测量功能的内核和测量控制算法。
背景技术
许多制造工艺在重要的工艺步骤中需要对压强进行准确且可重复的测量。这些工艺可以依赖电容薄膜式压力计来实现对容器压强的准确判定。电容薄膜式压力计(或电容压力计)普遍使用于半导体工业中。这一部分是因为它们适用于该工业的腐蚀性操作。而且还因为它们的高准确性以及对污染的不敏感性。
电容压力计是一种可以被用来测量处理容器中诸如压强这样的参量的一种传感器。电容压力计的外壳包括由一个薄膜所隔开的两个容器。所述容器中的一个与要被测量压强的处理容器或导管之间有流体的交互。压力计的另一个容器一般(尽管不是必须)是被抽空的。它是一个压力参考容器。电容器板处于压力计外壳和薄膜上。这些电容器板所具有的电容可以被测量。当处理气体进入第一容器,它就会给薄膜施加压力,从而使薄膜移动。连接在薄膜上的电容器板相应就会移向连接在压力计外壳上的电容器板,从而就改变了电容器板之间的电容。电容的改变对应了压强的增加,因而可以被用作对压强的量度。
电容压力计通常是通过测量探测电极的相对移动所导致的电容变化来进行操作的。可以用多种不同类型的电接口来测量电容的变化,例如平衡二极管电桥接口、基于保护次级变压器的电桥接口、以及匹配参考电容桥接口。这些接口测量电容的方式在于,利用耦合到压力计电容板上的电路来确定它们电容的变化以及被测量参数相应的变化。
电容薄膜压力计的一个主要优点在于它能够检测到极小的薄膜移动,从而就可以检测到被测量处理参数的很小的变化。这种传感器的准确度一般为所产生的读数的0.25到0.5%。例如,在一个典型的电容薄膜式压力传感器中,一个薄的薄膜可以测量到10-5Torr。稍厚,但更加粗糙的薄膜可以在低密度真空到大气范围内进行测量。为了覆盖一个宽的真空范围,可以在一个多量程封装中连接两个或多个电容传感头。
使用差分电容压力计的系统一般对压强读数的可重复性有严格的要求,其偏置漂移一般限制在满量程的.02%每天。差分电容薄膜式压力计的满量程偏离一般会导致0.22.0pF(10-12F)的电容变化。所以,到传感元件的电子接口(“模拟前端”或“AFE”)每天的漂移不可以超过0.04飞法(10-15F)。
除了对性能的严格要求以外,用户越来越需要基于差分电容压力计的系统能够利用其它工艺设备的进展。例如,一些最新的工艺技术需要数字通信、嵌入式诊断以及低温灵敏性。现有的电容薄膜式压力计通常不能满足这些需求。
发明内容
上述的一个或多个问题可以用本发明的多个实施例来解决。广义上讲,本发明包括用于数字控制传感器的系统和方法。本发明的多个实施例可以基本减小或消除与现有技术中用来操作传感器的系统和方法相关的缺点和问题。
在一个实施例中,用于电容薄膜式压力计的数字控制器被嵌入在一个数字信号处理器(DSP)中。该控制器通过一个可变增益模块、一个零偏置模块以及一个模数转换器(ADC)从一个传感器模拟前端接收数字化输入。控制器通过调整可变增益以及零偏置模块来自动缩放接收到的输入。控制器还对一个加热装置进行监控和调整,以维持传感器的合适温度。控制器使用一个内核软件模块来将处理资源分配给压力计控制器模块的多个任务。该内核模块重复执行一个循环,其中,每个循环执行高优先级任务集合的全部以及低优先级任务集合中的一个。从而,控制器模块就按照精确的周期提供传感器测量输出,同时还可以实现辅助功能(例如自动缩放、零偏置调整以及嵌入式诊断)。
本系统和方法可以提供相对于现有技术的很多有点。例如,它们可以让控制器能够同时服务数字工具控制器接口和嵌入式诊断端口接口。此外,它们还可以实现控制器内的嵌入式诊断。控制器的数字引擎能够离散地监控系统变量,并且能够无缝的将数据提供给工具控制器和/或嵌入式诊断端口。系统变量可以包括压力计压强、传感器温度、加热器驱动、环境温度、预处理压力计压强、零偏置以及设备状态,但并不限于这些。此外,在本系统和方法中不需要使用人工调整的分压计。除了在装配时手动安装的一个压力计平衡电阻以外,所有的校准调整都是由一个自动校准台数字化的完成的。所有的校准参数都被存储在非易失存储器中,且可以被嵌入式诊断端口所访问。此外,本系统和方法可以通过嵌入式诊断端口来允许压力计的线性化以及传感加热器控制器的配置。
附图说明
通过阅读下面的详细描述以及参考附图,本发明的其它目标和优点可以变得更加清楚。
图1中的硬件框图表示了一个实施例中的嵌入式系统控制器。
图2中的流程图表示了一个实施例中嵌入式系统的内核模块的操作。
图3中的框图表示了一个实施例中的嵌入式系统的压力计控制器模块。
尽管本发明可以有多种修改和可替换形式,但其具体实施例是通过附图以及详细描述中的例子来说明的。然而,需要理解的是,这些附图和详细描述并不是为了将本发明限制在所描述的某个具体实施例。相反,本公开是为了包括属于权利要求所确定的本发明范围以内的所有修改、等价和可替换方式。
具体实施方式
下面将要描述本发明的优选实施例。需要注意的是,下文所述的实施例仅仅是示例性的,它们是对本发明的解释而不是限制。
广义的说,本发明包括用于数字控制传感器的系统和方法。本发明的多个实施例可以基本上减小或消除与操作传感器的传统技术的系统和方法所对应的缺点和问题。
在一个实施例中,用于电容薄膜式压力计的一个数字控制器被嵌入到一个数字信号处理器(DSP)中。该控制器通过一个可变增益模块、一个零偏置模块以及一个模数转换器(ADC)从一个传感器AFE接收数字化的输入。控制器通过调整可变增益以及零偏置模块来自动缩放接收到的输入。控制器还监视和调整一个加热装置以维持传感器的适当温度。
控制器所使用的内核模块将处理资源分配给压力计控制模块的各个任务。该内核模块重复的执行一个循环,其中在每一次重复中,高优先级任务组的全部都被执行,以及低优先级任务组的中的一个被执行。在一个实施例中,所述高优先级任务包括从传感器读取数字化的输入,线性化所述输入,提供压强输出。所述低优先级任务包括提供串行通信接口(SCI)消息,提供控制区域网络(CAN)消息,补偿环境温度,控制传感器加热器,控制温度和状态LED,检查零压强和过压强以及类似情形。
控制器的数字引擎对系统变量进行监控的目的在于,产生准确、可重复并且是温度补偿后的压强输出,同时还支持数字工具控制器接口、独立诊断接口、闭环加热器控制器以及其它压力计功能。执行所有这些功能都不会影响到压力计的准确度或性能。
优点。为了达到差分电容压力计系统中新的需求,可能就需要一个数字控制系统。传统的模拟信号会受到噪声、接地环路、以及信号损耗的影响。由于数字通信不会受到噪声和信号恶化的影响,所以数字通信就可以解决这些问题。在一个实施例中,压力计上的数字通信接口是利用嵌入数字控制系统来实施的。
传统技术只提供(如果有的话)了很少的诊断特征。传统的模拟压力计必须从工具移开才能被诊断。利用本系统和方法,压力计就不需要被移开来诊断和解决问题。例如,可以通过数字诊断端口、或者到PC、笔记本电脑、PDA或校准台的一个接口来在正常操作的过程中监控或获取系统内部参数。该压力计还可以包括嵌入的诊断装置来帮助解决工具或压力计的问题。这些特征通过快速发现和解决工具或传感器的问题来降低持有成本。
对传统的模拟压力计进行校准时,调整多个分压计所用的过程主要是手动校准。然而,本系统和方法可以提供自动校准(例如,由一个校准台来实施)。在一个实施例中,一个嵌入数字引擎允许进行自动校准和测试,这就降低了制造的成本,并减小了设备之间的差异。与现有技术不同,这里不需要使用分压计。由于校准过程是数字的和自动的,所以出现人为因素而导致变化的机会就大大减小。所以,就可以实现更高的准确性、可重复性、设备-设备之间的可重复性。
高性能薄膜式压力计通常会受到温度系数要求的影响。也就是说,压力计对温度变化的敏感性必须是最小。减小温度系数的值通常需要一个精确的传感加热控制系统。本系统和方法使用了数字技术来监控和控制加热器输出,因而也有利于高级的加热器控制。本系统和方法还利用对环境温度的测量来补偿电子线路中温度的变化。
所以,本系统和方法可以提供很高的压力计性能,同时还允许与主设备以及诊断装置进行数字通信。此外,本系统和方法还可以降低压力计的制造成本以及最终用户的持有成本。
优选实施例
图1中的功能框图表示了具有一个数字控制器的传感系统的结构。在该图所示和实施例中,控制器是用数字信号处理器(DSP)110来实施的。在另一实施例中,控制器可以用一个微控制器或者其它数字处理器来实施。该控制器从传感器10接收数字化的输入,处理该输入,控制传感器以及相关部件,执行多种服务功能,以及向用户提供输出数据。在一个实施例中,控制器DSP被嵌入在(集成在)传感器中。
压强获取。在本实施例中,来自传感器(也就是电容薄膜式压力计)10的信号被模拟前端(AFE)30转换成电压。该AFE信号被一个可编程增益放大器40所放大,并被零偏置模块50进行零调整。可编程增益放大器40以及零偏置模块50都被内嵌的控制器DSP110所控制。接着,模数转换器(ADC)60将被放大和偏置的模拟信号转换成数字信号。然后,ADC60在接收到嵌入控制码指令时与处理器通信,将数字信号传送给处理器。
由于不同的传感器的输出之间差别可能很大,所以可编程增益放大器40和零偏置模块50就被用来修改AFE30所产生的信号。所以,该信号在被数字化之前就已经自动调整到了合适的水平。这些部件取代了现有系统中用于增益和偏置调整的分压计。分压计很容易出现不正确的调整,且具有很高的温度系数,所以不使用分压计就可以提高压力计的性能。
信号处理。DSP110所接收到的数字化压强信号是用数字技术来处理的,从而非线性的传感信号被转换成线性的压强信号。这一个处理过程所使用的线性化算法基于在对控制器进行自动校准时所计算出的常数。这些常数被保存在EEPROM150的非易失性存储器中。一个温度补偿算法也被用来处理信号以补偿电路中的温度变化。
当数字信号被DSP处理之后,它可以被送到一个或多个输出端口。该数字信号可以被直接送到一个数字设备或网络,例如可以将其用于DeviceNet网络102的控制区域网络(CAN)收发器101,或者送到一个RS232/485嵌入诊断端口,通过该诊断端口,数字信号可以用于校准台、PC或其它设备。被处理的数字信号还可以被送到数模转换器(DAC)70,以产生适用于模拟设备的模拟信号。如果需要,该模拟信号可以在被传送到设备104之前被电路103所缩放,并被一个算法进行线性化。
零偏置。零偏置是当把压力计置于一个基准压强或者一个低于压力计检测分辨率的压强时,压力计的输出。传统CDG的一个问题就在于控制压力计中零偏置漂移。大多数压力计随着时间都会出现零偏置值的漂移或移动。所以,这些压力计需要被不断的调整来补偿这些漂移。传统压力计需要用户(例如一个技师)来调整分压计,以使得压力计在处于基准压强的时候显示零伏。
本系统通过不调整分压计来简化零调整过程。控制器被配置来监控压强信号,并响应一个恰当的指令来自动调整零偏置模块50。由于对零偏置的调整是由控制器自动完成的,所以调整零偏置所需的时间就被最小化。由于在调整分压计时的人为出错的机会已经没有了,所以出现错误调整的风险就减小了。(需要注意的是,调整的准确度通常都会比手工调整分压计所能达到的准确度大很多。)零调整的过程可以被手动调用(例如,通过使用者按下按钮),或者也可以响应工具端口、诊断端口、触电闭合、甚至控制器自己的信号来启动。
在一个实施例中,控制器包含与零调整过程相关的锁出特征。对零偏置的调整只有在适当条件存在的情况下才会进行。如果这些条件中的某一个没有得到满足,误差就会被引入到后续的测量中。在一个实施例中,进行零调整过程之前需要满足下面的条件:入口压强必须低于压力计的零调整极限;传感器必须处于设定点温度;电路的环境温度必须处于预定范围内;必须没有过压信号;传感器或控制器中没有故障情况。由于这些条件不被满足将会导致不正确的调整,所以控制器被配置成只有满足这些条件时才进行零调整。
可变增益。控制器还可以提供对系统的自动校准。由于传感信号可能没有处于最佳信号范围(也就是幅度以及与零的偏离),所以有时就需要调整可变增益模块以及零偏置模块,以得到最好的信号来输入到模数转换器和控制器中。控制器被配置来将控制输入提供给可变增益和零偏置模块,从而实现对它们的调整。这就免去了传统系统中手动调节分压计的需要。通过根据数字化传感信号来调整这些模块,校准的准确性和可重复性就得到了提高。
加热器控制。在本实施例中,控制器也可以控制传感器加热装置20。所述加热装置在本实施例中时必需的,这是因为传感输出是温度的函数,还因为传感器的性能可能会受到传感器(电容薄膜式压力计)薄膜上处理气体凝结的影响。所以,控制器就监控着传感器的温度,并且调整加热装置的温度以将传感器保持在期望的设定点温度。对加热器的控制是在一个闭环子系统中实施的,该闭环子系统与其它系统功能并行操作,它不会降低压力计的准确度或性能。
环境温度补偿。尽管环境温度给传感器性能带来的影响通常比传感器温度的影响小,但这一影响是存在的。所以,控制器就被耦合到一个环境温度传感器140。控制器从传感器140接收环境温度信息,然后处理该数字信号来补偿环境温度的影响。
数字通信端口。上文已经提到,控制器可以把处理后的数字信号提供到多个端口以用于多种其它设备。例如,控制器可以具有CAN接口来将数据送到CAN收发器101,然后该收发器将数据送到DeviceNet网络。类似的,控制器包括耦合到DAC70的压强输出端口,所述DAC70能够将模拟信号(对应于数字信号)提供给外部模拟设备。此外,控制器还可以通过UART(通用异步接收器/发送器)将数据传送给RS232/485诊断端口100。诊断端口100是独立的,它可以使得控制器能够进行自动校准、测试以及消除故障。该端口允许控制器通过串行链路将诊断数据提供给PC、笔记本电脑、PDA、校准台以及类似装置(105)。如果诊断端口能够与适当的网页服务设备进行交互,那么诊断端口就可以允许进行远程诊断。
其它硬件模块。本实施例中控制器所监控的其它信号包括地址、波特率选择器以及MacID开关(160)、以及多种状态(例如故障)和温度LED(170)。所述状态和温度LED可以由控制器中内嵌的诊断装置来驱动。控制器还与一个非易失性存储器(例如EEPROM 150)相交互以存储校准和配置参数。这些硬件特征将在本公开的其它部分得到更细致的描述。
软件。实施控制器的DSP被编程来周期性的执行一定的任务,这包括处理传感信号中的功能性任务,以及在诊断、校准以及其它非测量功能中的辅助任务。在一个实施例中,所述编程是通过一个内核模块和一个控制器模块来实现的。所述内核模块连续执行处理资源,并将处理资源分配给要被执行的多个任务,而真正执行这些任务的是控制器模块。
内核模块。如上所述,本实施例的内嵌控制器的内核将处理器资源分配给控制模块的各个任务。由于嵌入式控制器的主要任务是控制传感器,所以控制器的第一优先级就是服务于系统的传感功能。内核被设计来精确提供这些功能的周期性服务。在本实施例中,这些功能包括从模数转换器中读取数字化的压强信号,对数字化的压强信号线性化,以及将线性化的信号提供给多个输出端口(尤其是那些特别用于传感器输出的)。通过首先给这些高优先级任务分配资源,内核就确保了及时和准确地确定感测的压强。
由于本实施例中的嵌入式控制器是用在一个闭环压强控制系统中的,所以控制器在它的压强响应时间内不要引入任何变化,这一点很重要。如果与处理压强信号相关的功能被延迟了,那么压强控制系统实际上就是用失效的数据在操作,从而就会产生潜在的错误控制数据。所以,内核给低优先级任务分配资源的方式就必须不延误或打扰高优先级的压强计算任务。
所述内核由一个定时器来确定步调,该定时器周期性的产生中断来触发高优先级压强计算任务。每个中断会触发一个新的控制流程周期,这包括执行所有的高优先级任务,以及,在本实施例中,执行低优先级任务中的一个。每个高优先级任务在下一个定时器中断之前完成执行过程。在下一个终端之前的剩余时间可以被用于低优先级的任务。
在一个实施例中,高优先级任务包括:从模数转换器中读取AFE输出;计算线性化的压强输出;将线性化的压强值写入到DAC中;服务CAN缓冲器;以及服务串行端口缓冲器。
本实施例中的低优先级任务包括:处理串行通信消息(通过嵌入诊断端口100);处理CAN消息(通过DeviceNet端口101);更新环境温度补偿;服务闭环加热算法;服务温度LED;监控过压和零调整输入;服务状态LED170以及开关160;服务EEPROM 150。
图2中的流程图表示了嵌入式系统内核的操作。在打开电源(或复位)时,内核将资源分配给DSP的初始化,包括控制器模块以及内核模块自身。在完成初始化之后,内核反复执行循环200,循环200一般包括步骤220和230。该循环的每一次执行都是响应定时器210的信号,从而就确保了该循环的执行是精确的周期性的。
步骤220包括的任务是涉及传感器输出处理以产生输出信号的(也就是说,是高优先级任务)。在上述实施例中,这些任务包括读取模数转换器60所产生的数字信号,对该信号线性化以产生线性压强输出信号,对压强信号进行温度补偿调整,以及将得到的压强数据写入到数模转换器之外的缓冲器、CAN和诊断(SCI)端口中。所有这些任务都在每次循环中被执行一次。所以,传感控制器系统的测量功能就具有与定时器210一样的周期。
在执行了高优先级任务的步骤220之后,步骤230将选择低优先级步骤中的一个。这些任务中的每一个都被作为独立的步骤(240-247)表示在图中。在图示的实施例中,低优先级任务包括:提供SCI消息(240);提供CAN消息(241);进行温度补偿(242);进行加热控制(243);控制温度LED(244);进行零检查和过压检查(245);控制状态LED(246);以及控制EEPROM和逝去时间计时器(247)。一个任务计数器在每个循环中完成低优先级任务的时候会增加(参见步骤250),对一个循环中所要执行的低优先级任务的选择就是基于该任务计数器的。这样,低优先级任务步骤240-247就被顺序地执行,一次循环200执行一个。换句话说,每个低优先级任务每“N”次循环被执行一次,其中“N”为任务列表中的任务数。
在本实施例中,控制了每次循环200的启动的定时器210被设定以使得有足够时间来完成所有高优先级任务以及低优先级任务中的任何一个(包括增大任务计数器)。在其它实施例中,也许希望减小时间周期的长度,以更频繁的更新控制器所产生的传感器输出读数。在这样的情况下,也许就没有足够的时间来完成所选的低优先级任务。所以,设计中就需要准备对所选任务的非完整执行的情况,并在稍后的时候继续执行或重新执行该任务。可替换的,也许并不需要对控制器的传感器输出读数作频繁的更新。在这种情况下,就可以增大计时器的时间间隔,从而使得在一个循环中可以执行不止一个低优先级任务。还可以有其它一些变化。
使用图2所示的内核控制循环,每个任务在下一个计时器中断到来之前就已经完成。这一顺序处理可以确保压力计控制系统能够在服务所有其它压力计功能的同时,以精确周期的形式读取、线性化以及输出容器的压强。该控制流有效的区分了计算资源的优先级,从而使压力计的准确性和性能达到最大,同时还提供了辅助功能。
控制器模块。如上所述,当内核分配资源以后,控制器模块就将执行嵌入式控制器的任务。控制器模块的结构示于图3。下面将通过参考该图来描述该结构。
在一个实施例中,控制器模块程序被编制到DSP中。(需要注意的是,这里所讲的“软件”指的是配置来让DSP执行指定任务的一组指令,所述“软件”包括软件、程序包以及硬编码的指令。)控制器模块被配置来从加热装置和传感器、AFE以及模数转换器接收数据。控制器模块还从零按钮接收控制输入(当用户按下该按钮来启动自动归零处理时)。控制器模块将本实施例中的输出数据提供给CAN端口、数模转换器以及诊断端口(RS232/485)。控制器模块将控制输出提供给模拟零偏置和增益部件,以及加热装置和传感器。
控制模块300所包括的一个加热控制模块310被配置来从耦合到传感器10的温度传感器上接收温度数据。加热控制模块310处理该数据来确定传感器10的温度是否合适,并且在需要的时候调整该温度。这可以涉及对应不同的传感器10区域来独立地控制多个加热部件。加热设定点以及调整值被存储在EEPROM中,并且在打开电源的时候被恢复。
零调整模块330被配置来启动零偏置调整过程,以作为对从零按钮所接收到的信号的响应。零调整模块330自动确定传感器和/或模拟前端的漂移,从而纠正之。换句话说,如果有效压强为零(也就是低于最小可分辨压强),那么零调整模块330就会判定必须调整以将模数转换器所数字化的传感器信号置为零。然后该信息可以被送给零偏置控制模块,然后零偏置控制模块会反过来实现对零偏置硬件模块的实际调整。这一调整存储在EEPROM中,并且在打开电源的时候被恢复。
需要注意的是,在一个实施例中,零调整模块330包括锁出特征。这就在没有达到调整所需条件(为了正常执行调整所需的条件)的情况下,防止进行零调整。换句话说,自动零偏置调整过程被锁出。本实施例中所需要满足的具体条件为,传感器中的压强低于一个预定阈值,传感器温度处于期望设定点,电路的环境温度处于一个预定范围内,以及控制器中没有故障。
EEPROM模块320被配置来管理EEPROM(电可擦除只读存储器)中的数据存储。EEPROM模块存储了增益和零调整值、配置数据、历史诊断数据、以及加热配置和控制数据。如上所述,由控制器模块300所计算的线性化常数也被存储在EEPROM中。压强线性化模块340利用这些常数来将从模数转换器所接收到的非线性数字化信号转换成可以通过适当的端口进行输出的线性压强信号。需要注意的是,由压强线性化模块340所产生的线性压强信号可能需要被温度补偿模块350所处理,以对环境温度的变化进行纠正。
一旦压强信号被线性化,且温度得到了补偿,该信号就可以被送到适当的输出端口。在一个实施例中,这些模块包括,被配置来控制到CAN端口(可以被用于DeviceNet网络)输出的工具控制器模块360,被配置来控制到专用诊断端口的输出的嵌入式诊断和校准模块370,以及被配置来控制到数模转换器的输出的数模转换器模块380。
嵌入式诊断和校准模块370可以允许在控制模块与诸如校准台或PC这样的外部设备之间的通信。所以,控制器就可以利用数字信号数据以及内部控制数据来执行诊断过程,然后将该信息传送给用户。需要注意的是,各个实施例所执行的具体诊断可能彼此不同,所以这里将不讨论具体的过程。对具体过程的编程一定是在熟悉技术的人的能力范围之内的。诊断可以产生故障状态指示,该指示可以被传送给用户,可以用来驱动LED指示器,可以用于其它诊断过程等等。在一个实施例中,故障状态被存储在一个历史数据库中以用于后来的分析。
嵌入式诊断和校准模块370所实现的校准还利用了来自诸如校准台这样的外部设备的通信。所述模块被配置来接收从校准台下载的数据,例如校准常数或者描述自动校准过程中使用的多变量响应函数的其它数据。然后,该信息可以与内部变量一起被用来调整可变增益以及零偏置硬件模块来获得优化输入数据,所述内部变量包括未处理的传感信号、环境温度、传感器温度以及过压信号。
从图3可以看出,除了所述控制模拟传感器信号偏置的零偏置控制模块以外,控制器模块300还包括一个传感器增益控制模块。该模块控制着可编程增益硬件模块,所述可编程增益硬件模块将来自模拟前端的模拟传感器信号进行放大。这就可以使提供给模数转换器输入端的信号水平是最合适的。放大增益以及零调整值都被存储在EEPROM中,且在打开电源的时候被恢复。控制器模块300还包括一个过压输入模块,该模块被配置来在模拟前端探测一个过压情况。
除了上述的本发明实施例以外,还有很多可替换实施例也属于本公开的范围之内。例如,如上所述,一个可替换实施例可以包括一个传感器系统,其具有一个传感器、一个模拟前端、一个模数转换器和一个数字控制器。该系统可以包括其它独立的或组合的硬件部件。这些部件可以包括一个传感器加热器、一个可变增益模块、一个零偏置模块、一个存储器(例如,EEPROM)、通信端口、校准台、PC、PDA、网络、或其它外部设备。
其它实施例可以包括多种方法。例如,一个可替换实施例包括进行零调整的一个方法。该方法包括下列步骤:检测零调整指令(例如,来自用户按钮开关、接点闭合,或来自通信端口的数字指令);检测入口压强信号的零偏置值;将零偏置信号从线性化的压强输出信号中数字地去除;以及更新零调整状态变量。该方法还可以包括的步骤有,指示零调整操作的成功与否,仅仅在满足预定条件的情况下执行该过程(否则锁出该过程),等等。
另一可替换实施例可以包括的方法在于,给诸如电容薄膜式压力计这样的传感器进行较准。该方法的步骤可以包括:测量传感器入口的真实压强;探测与电容薄膜式压力计相关的一系列系统变量(例如,未处理的输入压强信号,环境温度信号,传感器温度信号或过压信号);控制与电容薄膜式压力计相关的另一系列系统变量(例如,传感器增益放大器值或零偏置值);用回归技术对压强建模,以产生用系统变量描述压力计压强的一个多变量响应函数;以及将多变量响应函数输入到嵌入式控制系统中以使能输出压强信号。
上文已经通过具体的实施例描述了本发明所能提供的好处和优点。这些好处和优点,以及任何让它们能够出现或变得更加明显的元件或限制都不应该被认为是任何或全部权利要求决定性的、必需的、或者是本质的特征。正如这里所用的,术语“包括”或其任何变形都应该被理解为非排他性的包括这些术语后所跟的元件或限制。相应的,包括一系列元件的一个过程、方法、物品或装置并不仅仅包括这些元件,而是可以包括没有列出或者这内含于所述过程、方法、物品或装置中的其它元件。
尽管本发明是通过参考具体实施例来描述的,但需要理解这些实施例仅仅是示例性的,本发明的范围并不限于这些实施例。还可以对上述实施例作多种变化、修改、添加和改进。可以理解,这些变化、修改、添加和改进是属于下文权利要求书所限定的本发明范围之内的。

Claims (52)

1.一种数字受控的传感器系统包括:
一个传感器;
一个模拟前端模块,它被耦合到所述传感器并且被配置来产生一个模拟传感器信号;
一个模数转换器,它被配置来将所述模拟传感器信号转换成一个数字传感器信号;以及
一个数字控制器,它被配置来接收所述数字传感器信号,处理该信号,然后提供一个指示对应于所述传感器信号的测得参数的输出信号,其中所述控制器利用一个内核模块,该内核模块被配置来执行一个控制循环的重复操作,其中控制循环包括执行所有的高优先级任务以及执行一个或多个低优先级任务。
2.权利要求1中的系统,其中数字控制器实施在一个数字信号处理器(DSP)中,其中DSP被内嵌于所述传感器中。
3.权利要求1中的系统,其中数字控制器实施在一个微控制器中,其中微控制器被内嵌于所述传感器中。
4.权利要求1中的系统,其中所述传感器包括一个电容薄膜式压力计。
5.权利要求1中的系统,其中控制循环的每次重复都是周期性执行的。
6.权利要求1中的系统,其中高优先级任务包括由下述任务组成的任务组中的至少一个或多个:从模数转换器读取数字传感器信号;从数字传感器信号中计算出线性化压强值;将线性化的压强值写入到一个数模转换器中;以及将线性化的压强值传送到一个或多个端口缓冲器。
7.权利要求1中的系统,其中低优先级任务包括由下述任务组成的任务组中的至少一个或多个:处理从诊断端口接收到的通信消息;处理控制区域网络消息;进行环境温度补偿;执行闭环加热器算法;服务温度LED;监控过压和零调整输入;服务状态LED和开关;服务一个EEPROM;执行自动模拟缩放过程;执行自动零调整过程;以及执行嵌入式诊断过程。
8.权利要求1中的系统,其中数字控制器被配置来执行自动校准过程。
9.权利要求8中的系统,其中数字控制器被配置来计算一组校准常数,线性化计算就是基于这组校准常数来进行的。
10.权利要求9中的系统,其中数字控制器被配置来利用一个回归过程计算所述的一组校准常数。
11.权利要求9中的系统,其中数字控制器被配置来在非易失性存储器中存储所述一组校准常数。
12.权利要求8中的系统,其中数字控制器被配置来利用从一个校准台导入到数字控制器中的校准数据来进行自动校准过程。
13.权利要求1中的系统,其中数字控制器被配置来执行一个自动零调整过程。
14.权利要求13中的系统,其中数字控制器被配置来响应于用户的指示来执行自动零调整过程。
15.权利要求13中的系统,其中数字控制器被配置来响应通过网络连接所接收到的电子指示来执行自动零调整过程。
16.权利要求13中的系统,其中数字控制器被配置来将控制数据提供给一个模拟零调整模块,其中所述控制数据是由所述自动零调整过程所产生的。
17.权利要求13中的系统,其中数字控制器被调整来锁出自动零调整过程,除非一组预定条件被满足。
18.权利要求17中的系统,其中所述一组预定条件包括由下列各项构成的组中的一个或多个:入口压强低于传感器的检测极限;传感器及其电路处于设定点温度;环境温度处于预定范围内;过压信号未被声明;以及传感器或控制器中没有故障。
19.权利要求1中的系统,其中数字控制器被配置来执行一个或多个嵌入式诊断过程。
20.权利要求19中的系统,其中数字控制器被配置来提供故障情况的指示,所述故障情况是由一个或多个嵌入式诊断过程所检测到的。
21.权利要求19中的系统,其中数字控制器被配置来存储检测到的故障情况。
22.权利要求1中的系统,其中数字控制器被配置来将从一个或多个嵌入式诊断过程所得到的诊断数据传送到一个诊断端口。
23.权利要求1中的系统,其中数字控制器还包括一个专用诊断端口。
24.权利要求23中的系统,其中存储在数字控制器中的内部数据可以被外部设备访问。
25.权利要求1中的系统,其中数字控制器被配置来对数字传感器信号进行线性化。
26.权利要求25中的系统,其中数字控制器被配置为利用基于存储在非易失性存储器中的值的线性化表达式对数字传感器信号进行线性化。
27.权利要求26中的系统,其中的非易失性存储器是一个EEPROM。
28.权利要求1中的系统,其中数字控制器被配置来对数字传感器信号进行温度补偿。
29.用来数字控制传感器系统的一种方法,包括:
接收一个模拟传感器信号;
将所述模拟传感器信号转换成一个数字传感器信号;
处理该信号以提供一个输出信号,该输出信号指示对应于所述传感器信号的一个测量参数;以及
在一个内核模块中重复执行一个控制循环,其中所述控制循环包括执行所有的高优先级任务,以及执行一个或多个低优先级任务。
30.权利要求29中的方法,其中所述方法被实施在一个数字信号处理器(DSP)中,以及其中DSP内嵌于传感器中。
31.权利要求29中的方法,其中所述方法被实施在一个微控制器中,以及其中所述微控制器内嵌于传感器中。
32.权利要求29中的方法,还包括利用一个电容薄膜式压力计产生传感器信号。
33.权利要求29中的方法,还包括周期性的执行所述控制循环的每次重复。
34.权利要求29中的方法,其中高优先级任务包括由下述任务构成的任务组中的至少一个或多个:从模数转换器读取数字传感器信号;从数字传感器信号中计算出一个线性化压强值;将线性化的压强值写入到一个数模转换器中;以及将线性化的压强值传送到一个或多个端口缓冲器。
35.权利要求29中的方法,其中低优先级任务包括由下述任务构成的任务组中的至少一个或多个:处理从诊断端口接收到的通信消息;处理控制区域网络消息;进行环境温度补偿;执行闭环加热器算法;服务温度LED;监控过压和零调整输入;服务状态LED和开关;服务一个EEPROM;执行自动模拟缩放过程;执行自动零调整过程;以及执行一个嵌入式诊断过程。
36.权利要求29中的方法,还包括执行一个自动校准过程。
37.权利要求36中的方法,其中执行自动校准过程包括计算一组校准常数,所述线性化计算就是基于该组校准常数的。
38.权利要求36中的方法,其中对所述一组校准常数的计算是利用一个回归过程来完成的。
39.权利要求36中的方法,还包括在一个非易失性存储器中存储所述一组校准常数。
40.权利要求36中的方法,还包括利用从一个校准台导入的校准数据来执行自动校准过程。
41.权利要求29中的方法,还包括执行一个自动零调整过程。
42.权利要求41中的方法,还包括根据自动零调整过程所产生的控制数据来控制一个模拟零调整模块。
43.权利要求41中的方法,还包括锁出所述自动零调整过程,除非一组预定条件被满足。
44.权利要求43中的方法,其中所述一组预定条件包括由下列各项构成的组中的一个或多个:入口压强低于传感器的检测极限;传感器处于设定点温度;环境温度处于预定范围内;过压信号未被声明;以及传感器或控制器中没有故障。
45.权利要求29中的方法,还包括执行一个或多个嵌入式诊断过程。
46.权利要求45中的方法,还包括提供对一个或多个嵌入式诊断过程所检测到的故障情况的指示。
47.权利要求45中的方法,还包括存储检测到的故障情况。
48.权利要求29中的方法,还包括将从一个或多个嵌入式诊断过程所得到的诊断数据发送到一个诊断端口。
49.权利要求29中的方法,还包括对数字传感器信号进行线性化。
50.权利要求49中的方法,其中数字传感器信号是利用基于非易失性存储器中所存储的值的线性化表达式被线性化的。
51.权利要求50中的方法,其中非易失性存储器是一个EEPROM。
52.权利要求29中的方法,还包括对数字传感器信号进行温度补偿。
CN03815563XA 2002-05-31 2003-05-29 数字受控的传感器系统 Pending CN1666096A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/063,991 US6910381B2 (en) 2002-05-31 2002-05-31 System and method of operation of an embedded system for a digital capacitance diaphragm gauge
US10/063,991 2002-05-31

Publications (1)

Publication Number Publication Date
CN1666096A true CN1666096A (zh) 2005-09-07

Family

ID=29581854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03815563XA Pending CN1666096A (zh) 2002-05-31 2003-05-29 数字受控的传感器系统

Country Status (7)

Country Link
US (4) US6910381B2 (zh)
EP (1) EP1527327A4 (zh)
JP (2) JP4812300B2 (zh)
CN (1) CN1666096A (zh)
AU (1) AU2003240940A1 (zh)
TW (1) TW200404990A (zh)
WO (1) WO2003102527A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141455A (zh) * 2010-12-10 2011-08-03 北京航空航天大学 一种非介入式压力测量方法
CN101806602B (zh) * 2009-12-23 2011-08-10 哈尔滨工业大学 自动校正零偏的压阻式传感器电路
CN101729330B (zh) * 2008-11-03 2011-12-28 北京广利核系统工程有限公司 一种高精度ad转换电路及该电路使用的工作方法
CN101273310B (zh) * 2005-09-29 2012-12-26 罗斯蒙德公司 过程现场设备温度控制
CN101741386B (zh) * 2009-12-22 2013-04-24 李华 无线传感器网络模数输入前端预处理电路
CN103488808A (zh) * 2012-06-08 2014-01-01 瑞萨电子株式会社 用于半导体装置的模拟器和模拟方法
CN104015674A (zh) * 2013-02-28 2014-09-03 英飞凌科技股份有限公司 具有模拟线路适配的传感器系统和方法
CN104792933A (zh) * 2011-01-31 2015-07-22 斯科特科技股份有限公司 用于自动调节气体传感器设置和参数的系统和方法
CN110709683A (zh) * 2017-06-09 2020-01-17 阿自倍尔株式会社 静电电容型压力传感器
CN111506132A (zh) * 2015-04-20 2020-08-07 深圳市大疆创新科技有限公司 用于对传感器操作进行热调节的系统和方法
US12078653B2 (en) 2023-07-17 2024-09-03 SZ DJI Technology Co., Ltd. Systems and methods for thermally regulating sensor operation

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910381B2 (en) * 2002-05-31 2005-06-28 Mykrolis Corporation System and method of operation of an embedded system for a digital capacitance diaphragm gauge
US20040205111A1 (en) * 2002-11-15 2004-10-14 Zaki Chasmawala User configurable data messages in industrial networks
AU2003295703A1 (en) * 2002-11-20 2004-06-15 Bookham Technology, Plc Optical transceiver module with improved ddic and methods of use
US7061325B2 (en) * 2003-12-31 2006-06-13 Texas Instruments Incorporated Digital compensation for offset and gain correction
US7347099B2 (en) * 2004-07-16 2008-03-25 Rosemount Inc. Pressure transducer with external heater
DE102004054644A1 (de) * 2004-11-11 2006-05-18 Endress + Hauser Gmbh + Co. Kg Vorrichtung und Verfahren zum Kompensieren von Messwertaufnehmern
US7980481B2 (en) * 2004-12-08 2011-07-19 Rosemount Inc. Thermally controlled process interface
US7356631B2 (en) * 2005-01-21 2008-04-08 Himax Technologies, Inc. Apparatus and method for scheduling requests to source device in a memory access system
TWI270667B (en) * 2005-06-01 2007-01-11 Touch Micro System Tech Method of calibrating zero offset of a pressure sensor
US7706995B2 (en) * 2007-04-16 2010-04-27 Mks Instr Inc Capacitance manometers and methods relating to auto-drift correction
DE102007023383A1 (de) * 2007-05-18 2008-11-20 Robert Bosch Gmbh Drucksensor mit umschaltbarem Druckbereich
US8423311B2 (en) * 2007-07-23 2013-04-16 Inficon Gmbh Method for calibrating and operating a measuring cell arrangement
JP5217045B2 (ja) * 2008-03-28 2013-06-19 アズビル株式会社 圧力センサ
WO2010045246A1 (en) * 2008-10-14 2010-04-22 Circor Instrumentation Technologies, Inc. Method and apparatus for low powered and/or high pressure flow control
DE102009011007B4 (de) * 2009-03-02 2011-09-15 Rittal Gmbh & Co. Kg Verfahren und Vorrichtung zur Regelung eines Klimasystems für Datenverarbeitungsanlagen
JP5588243B2 (ja) 2009-07-01 2014-09-10 ブルックス・インストルメント・エルエルシー 検出手段として静電気干渉を使用するモノリシック真空マノメータ
US20130226500A1 (en) * 2012-02-27 2013-08-29 Yazaki North America, Inc. Determination of validity of bi-level digital signal via digital data acquisition
US9434211B2 (en) 2012-04-30 2016-09-06 Michelin Recherche Et Technique S.A. Layered tire tread design for improved coast by noise and traction performance
US9783004B2 (en) 2012-04-30 2017-10-10 Compagnie Generale Des Etablissements Michelin Layered tire tread design with bridged circumferential and transverse grooves
FR2991451B1 (fr) * 2012-05-31 2014-06-13 Continental Automotive France Procede de traitement d'un signal issu d'un dispositif de mesure de pression au sein d'un moteur a combustion interne et dispositif associe
US9052217B2 (en) * 2012-11-09 2015-06-09 Honeywell International Inc. Variable scale sensor
US9562820B2 (en) 2013-02-28 2017-02-07 Mks Instruments, Inc. Pressure sensor with real time health monitoring and compensation
JP5900536B2 (ja) 2013-09-30 2016-04-06 株式会社デンソー センサ信号検出装置
CA2928833A1 (en) * 2013-11-04 2015-05-07 Nextnav, Llc Determining calibrated measurements of pressure for different sensors
CN104848895A (zh) * 2015-05-15 2015-08-19 沈阳理工大学 一种抗强冲击和耐高压的温度压力传感器组合装置
CN104949797B (zh) * 2015-05-27 2017-12-29 重庆川仪自动化股份有限公司 压力/差压型传感器温压补偿方法
EP3124937B1 (de) * 2015-07-29 2018-05-02 VEGA Grieshaber KG Verfahren zum ermitteln eines druckes sowie entsprechende messanordnung
CN106406196A (zh) * 2016-12-21 2017-02-15 北京市佛力系统公司 模块化电液伺服结构试验控制系统
US10983823B2 (en) * 2017-01-25 2021-04-20 Mitsubishi Electric Corporation Computer apparatus, task initiation method, and computer readable medium
US10754685B2 (en) * 2017-03-03 2020-08-25 Microsoft Technology Licensing Llc Cross-device task registration and resumption
JP6345322B1 (ja) * 2017-07-28 2018-06-20 新光商事株式会社 見守りシステム
CN108254125A (zh) * 2018-02-05 2018-07-06 上海勤上自动化科技有限公司 压力变送器的批量全自动温度补偿系统
US10917102B2 (en) 2019-03-18 2021-02-09 Analog Devices International Unlimited Company Signal gauge
US11280644B2 (en) * 2019-05-24 2022-03-22 Ashcroft, Inc. Adjustment member for measuring devices
EP4099572A1 (en) * 2021-05-31 2022-12-07 Infineon Technologies AG Environmental sensor
US11879918B2 (en) * 2022-02-16 2024-01-23 Stowe Woodward Licensco Llc Methods, devices, and systems for nip calibration

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US612291A (en) * 1898-10-11 And george d
US4198677A (en) * 1978-01-30 1980-04-15 Exxon Research & Engineering Co. Method and apparatus for compensating a sensor
US4383431A (en) * 1980-11-03 1983-05-17 The Perkin-Elmer Corporation Auto-zero system for pressure transducers
US4457179A (en) * 1981-03-16 1984-07-03 The Bendix Corporation Differential pressure measuring system
US4466289A (en) * 1982-03-17 1984-08-21 Lam Calvin K Capacitance manometer with digital output
US4598381A (en) * 1983-03-24 1986-07-01 Rosemount Inc. Pressure compensated differential pressure sensor and method
US4644482A (en) * 1984-12-21 1987-02-17 Pressure Systems Incorporated Digital pressure transducer and corrections circuitry system
US4766435A (en) * 1986-05-27 1988-08-23 Hughes Aircraft Company Adaptive radar for reducing background clutter
US4783659A (en) * 1986-08-22 1988-11-08 Rosemount Inc. Analog transducer circuit with digital control
US4866435A (en) 1987-10-16 1989-09-12 Rosemount Inc. Digital transmitter with variable resolution as a function of speed
US4818994A (en) * 1987-10-22 1989-04-04 Rosemount Inc. Transmitter with internal serial bus
JPH02311932A (ja) * 1989-05-29 1990-12-27 Oki Electric Ind Co Ltd 優先制御方式
US5642301A (en) * 1994-01-25 1997-06-24 Rosemount Inc. Transmitter with improved compensation
US5625144A (en) * 1994-02-08 1997-04-29 Chang; Yih-Min Simple, low-cost, low-noise, and energy-efficient digital tire gauge
MX9602687A (es) * 1994-02-23 1997-05-31 Rosemount Inc Transmisor de campo para almacenar informacion.
JPH07286925A (ja) * 1994-04-19 1995-10-31 Omron Corp 圧力センサーとこの圧力センサーを用いたガス供給システム及びガス漏れ検出方法
US5564434A (en) 1995-02-27 1996-10-15 Medtronic, Inc. Implantable capacitive absolute pressure and temperature sensor
JPH08328615A (ja) * 1995-05-31 1996-12-13 Hitachi Ltd 自動車用制御装置
DE69638284D1 (de) 1995-07-17 2010-12-09 Rosemount Inc Ein strömungssignal durch einen druckdifferenzsensor anzeigender geber unter verwendung eines vereinfachten prozesses
US6012336A (en) * 1995-09-06 2000-01-11 Sandia Corporation Capacitance pressure sensor
US5953690A (en) * 1996-07-01 1999-09-14 Pacific Fiberoptics, Inc. Intelligent fiberoptic receivers and method of operating and manufacturing the same
US5747696A (en) * 1996-10-28 1998-05-05 Temic Bayern-Chemie Airbag Gmbh Method of non-invasively monitoring pressure of a compressed gas in a closed container
JPH10240548A (ja) * 1997-03-03 1998-09-11 Toshiba Corp タスクスケジューリング装置及び方法
WO1998047008A2 (en) * 1997-03-20 1998-10-22 Hedrick Geoffrey S M Air data measurement system with circuit for linearizing pressure transducer output
US6125291A (en) 1998-10-30 2000-09-26 Medtronic, Inc. Light barrier for medical electrical lead oxygen sensor
JPH11264332A (ja) 1997-12-17 1999-09-28 Hitachi Ltd 電制スロットルボディ一体型空気流量測定装置
US5939693A (en) * 1998-02-02 1999-08-17 Motorola Inc. Polynomial calculator device, and method therefor
JP2882786B1 (ja) * 1998-04-14 1999-04-12 長野計器株式会社 センサの信号処理回路
JP2000046665A (ja) * 1998-07-29 2000-02-18 Smc Corp 多チャンネル圧力センサコントローラ
US6289259B1 (en) * 1998-10-16 2001-09-11 Husky Injection Molding Systems Ltd. Intelligent hydraulic manifold used in an injection molding machine
JP2000162066A (ja) * 1998-11-26 2000-06-16 Denso Corp センサ装置
US6295875B1 (en) * 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
JP2001256063A (ja) * 2000-03-13 2001-09-21 Denso Corp 制御装置及びエンジン制御装置
US7114366B1 (en) * 2000-03-16 2006-10-03 Input / Output Inc. Sensor
JP2001264121A (ja) 2000-03-21 2001-09-26 Tokyo Seimitsu Co Ltd 測定装置の演算方法及び装置
US7076920B2 (en) * 2000-03-22 2006-07-18 Mks Instruments, Inc. Method of using a combination differential and absolute pressure transducer for controlling a load lock
US6516672B2 (en) * 2001-05-21 2003-02-11 Rosemount Inc. Sigma-delta analog to digital converter for capacitive pressure sensor and process transmitter
JP2002350258A (ja) * 2001-05-24 2002-12-04 Mitsubishi Electric Corp 圧力センサ
US6536287B2 (en) * 2001-08-16 2003-03-25 Honeywell International, Inc. Simplified capacitance pressure sensor
US6910381B2 (en) * 2002-05-31 2005-06-28 Mykrolis Corporation System and method of operation of an embedded system for a digital capacitance diaphragm gauge
US6687635B2 (en) * 2002-06-13 2004-02-03 Mks Instruments, Inc. Apparatus and method for compensated sensor output
US6837112B2 (en) * 2003-03-22 2005-01-04 Stec Inc. Capacitance manometer having a relatively thick flush diaphragm under tension to provide low hysteresis
US6806756B1 (en) * 2003-06-16 2004-10-19 Delphi Technologies, Inc. Analog signal conditioning circuit having feedback offset cancellation
US7201057B2 (en) * 2004-09-30 2007-04-10 Mks Instruments, Inc. High-temperature reduced size manometer
US7324029B2 (en) * 2006-01-26 2008-01-29 Emerson Process Management Capacitance-to-digital interface circuit for differential pressure sensor
US7236113B1 (en) * 2006-01-26 2007-06-26 Emerson Process Management Capacitance-to-digital modulator with sensor failure-mode detection

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101273310B (zh) * 2005-09-29 2012-12-26 罗斯蒙德公司 过程现场设备温度控制
CN101729330B (zh) * 2008-11-03 2011-12-28 北京广利核系统工程有限公司 一种高精度ad转换电路及该电路使用的工作方法
CN101741386B (zh) * 2009-12-22 2013-04-24 李华 无线传感器网络模数输入前端预处理电路
CN101806602B (zh) * 2009-12-23 2011-08-10 哈尔滨工业大学 自动校正零偏的压阻式传感器电路
CN102141455B (zh) * 2010-12-10 2014-06-25 北京航空航天大学 一种非介入式压力测量方法
CN102141455A (zh) * 2010-12-10 2011-08-03 北京航空航天大学 一种非介入式压力测量方法
CN104792933A (zh) * 2011-01-31 2015-07-22 斯科特科技股份有限公司 用于自动调节气体传感器设置和参数的系统和方法
CN104792933B (zh) * 2011-01-31 2017-06-27 斯科特科技股份有限公司 用于自动调节气体传感器设置和参数的系统和方法
CN103488808A (zh) * 2012-06-08 2014-01-01 瑞萨电子株式会社 用于半导体装置的模拟器和模拟方法
CN104015674A (zh) * 2013-02-28 2014-09-03 英飞凌科技股份有限公司 具有模拟线路适配的传感器系统和方法
CN111506132A (zh) * 2015-04-20 2020-08-07 深圳市大疆创新科技有限公司 用于对传感器操作进行热调节的系统和方法
CN111506132B (zh) * 2015-04-20 2022-04-05 深圳市大疆创新科技有限公司 用于对传感器操作进行热调节的系统和方法
US11703522B2 (en) 2015-04-20 2023-07-18 SZ DJI Technology Co., Ltd. Systems and methods for thermally regulating sensor operation
CN110709683A (zh) * 2017-06-09 2020-01-17 阿自倍尔株式会社 静电电容型压力传感器
CN110709683B (zh) * 2017-06-09 2021-08-24 阿自倍尔株式会社 静电电容型压力传感器
US12078653B2 (en) 2023-07-17 2024-09-03 SZ DJI Technology Co., Ltd. Systems and methods for thermally regulating sensor operation

Also Published As

Publication number Publication date
WO2003102527A2 (en) 2003-12-11
US20050011271A1 (en) 2005-01-20
AU2003240940A1 (en) 2003-12-19
JP5102819B2 (ja) 2012-12-19
TW200404990A (en) 2004-04-01
US6910381B2 (en) 2005-06-28
JP2005528604A (ja) 2005-09-22
US20060107746A1 (en) 2006-05-25
EP1527327A4 (en) 2006-08-02
EP1527327A2 (en) 2005-05-04
AU2003240940A8 (en) 2003-12-19
US20030221491A1 (en) 2003-12-04
US20060219018A1 (en) 2006-10-05
JP2010133937A (ja) 2010-06-17
WO2003102527A3 (en) 2004-03-18
US7720628B2 (en) 2010-05-18
US7010983B2 (en) 2006-03-14
US7490518B2 (en) 2009-02-17
JP4812300B2 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
CN1666096A (zh) 数字受控的传感器系统
RU2370895C2 (ru) Система и способ обеспечения виртуальной радиосвязи
EP3475664B1 (en) Method and apparatus for sensing and for improving sensor accuracy
CN100483278C (zh) 具有扩展的硬件故障识别的过程测量仪表
US10551226B2 (en) System and method for scalable cloud-based sensor calibration
US20110145180A1 (en) Diagnostic Method for a Process Automation System
CN107356387B (zh) 一种模态试验中多传感器附加质量消除方法
CN101529352A (zh) 用于确定、监控和/或影响不同过程变量和/或状态变量的过程自动化系统
CN105092095B (zh) 温度标定方法及装置
US9020768B2 (en) Two-wire process control loop current diagnostics
US8401824B2 (en) Method for determining an output value of a sensor of automation technology
CN111476206A (zh) 一种通用型模拟量处理方法及处理系统
KR101229571B1 (ko) 센서 캘리브레이션 시스템 및 그 방법
US20210215736A1 (en) Method for calibrating a sensor of a device and sensor system
US20070233421A1 (en) Pressure transducer
CN111295625B (zh) 过程仪表的异常检测方法、系统及存储介质
KR100899998B1 (ko) 아날로그 입출력 카드의 캘리브레이션 방법
US20200319000A1 (en) Method for correcting measurement data of an analysis sensor and analysis sensor with correction of measurement data
Možek et al. Compensation and Signal Conditioning of Capacitive Pressure Sensors
CN116113898A (zh) 用于在分布式账本中集成自动化技术现场设备的方法
KR20050023281A (ko) 디지털 커패시턴스 다이어프램 게이지를 위한 내장시스템의 동작 방법 및 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: CELERITY INC.

Free format text: FORMER OWNER: ENTEGRIS INC

Effective date: 20070518

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070518

Address after: Texas USA

Applicant after: Entegris Inc.

Address before: Massachusetts USA

Applicant before: Entegris Inc.

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication