CN1628357B - 读取结构相变存储器的方法 - Google Patents

读取结构相变存储器的方法 Download PDF

Info

Publication number
CN1628357B
CN1628357B CN02828593XA CN02828593A CN1628357B CN 1628357 B CN1628357 B CN 1628357B CN 02828593X A CN02828593X A CN 02828593XA CN 02828593 A CN02828593 A CN 02828593A CN 1628357 B CN1628357 B CN 1628357B
Authority
CN
China
Prior art keywords
voltage
unit
cell
bit
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN02828593XA
Other languages
English (en)
Other versions
CN1628357A (zh
Inventor
泰勒·A·劳里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1628357A publication Critical patent/CN1628357A/zh
Application granted granted Critical
Publication of CN1628357B publication Critical patent/CN1628357B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0054Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

通过将单元电压和单元电流提高到编程阈值水平,然后将其降低到在它们的编程水平之下的静态水平,结构相变存储器中的单元被编程。然后施加预充电脉冲,该预充电脉冲提高被选择的单元的位线电压,而不将单元电压和单元电流提高到它们的编程水平。然后,单元电流被提高到在编程阈值水平之下的一个水平,并且当单元电流处于读取水平时,将位线电压与参考电压相比较。

Description

读取结构相变存储器的方法
技术领域
本发明涉及施加于读取相变材料固态存储器器件的读操作。
背景技术
使用结构相变材料作为数据存储机构的固态存储器器件(这里简单地称作相变存储器)相比于基于传统电荷存储的存储器在成本和性能上都提供了显著的优点。相变存储器由组成单元的阵列构成,其中每个单元具有某种用于存储单元数据的结构相变材料。这种材料可以例如是显示出从非晶态到结晶态的可逆结构相变的硫族化物合金。小块的硫族化物合金被集成到允许单元用作快速开关可编程电阻器的电路中。这种可编程电阻器可以在相对的结晶相(低电阻率)与相对的非晶相(高电阻率)之间显示出大于40倍的电阻率动态范围。通过测量单元的电阻,读出存储在单元中的数据。硫族化物合金单元也是非易失性的。
相变存储器单元可以被编程,即通过施加电流脉冲而被写入和读取,所述电流脉冲具有适当大小和持续时间,并引起跨过单元中的相变材料块的电压和流过该相变材料块的电流。通过将被选择的单元的单元电压和单元电流提高到编程阈值水平,在结构相变存储器中被选择的单元可以被编程为被选择状态,其中所述编程阈值水平是单元中的相变材料的特性。电压和电流然后通常被降低到比它们的编程阈值水平低的静态水平(例如,实质上的零电压和电流)。该过程可以通过施加例如复位脉冲和设置脉冲来进行,这些脉冲可以将单元编程为两种不同的逻辑状态。在这两种脉冲中,单元电压和单元电流被使得提高到至少与编程单元所需的某个阈值电压和电流水平一样高。接着,为了读取被编程的单元,可以施加读脉冲以测量单元材料的相对电阻,而不改变其相态。从而,读脉冲通常提供比复位脉冲或者设置脉冲中任一个的大小小很多的单元电流和单元电压。
附图说明
本发明以示例的方式而非限定的方式被图示在附图的图形中,附图中相似的参考标记指示类似的元素。应当注意,所公开的内容中对“一个”实施例的提及未必是指同一个实施例,它们意思是至少一个。
图1示出了根据本发明实施例,其特征在于被耦合以受控制的相变存储器阵列的集成电路的一部分的框图。
图2示出了示例性相变存储器单元的电流电压特性。
图3描绘了用于与根据本发明实施例被编程和读取的单元相关联的各种信号的示例时序图。
图4图示了与相变存储器阵列的位线耦合的脉冲发生和驱动电路的实施例的电路原理图。
图5描绘了根据本发明实施例的用于操作结构相变存储器单元的方法的实施例的流程图。
图6示出了便携式电子设备的框图,其中该便携式电子设备含有能够进行根据本发明实施例的读操作的相变存储器IC。
具体实施方式
本发明者发现在相对大的相变存储器阵列中,通过施加预充电脉冲,可以使得上述读操作更快速,其中在将单元电流提高到其读取水平之前,所述预充电脉冲提高被选择的单元的位线电压,而不将单元电压和单元电流提高到它们的编程阈值水平。当使用预充电脉冲时,位线电压在时间上更快地变得可用,其中所述位线电压被用于获得对单元电压的测量(并从而获得单元中所述材料的相对电阻)。这看来是由于位线已经被相对短的持续时间的预充电脉冲充电到足够高的电压水平,该水平允许位线电压随后非常快速地形成对单元电压的测量,而不管相对小的读电流,其中取决于存储器阵列的大小,所述位线可以显示出与读电流相比相当大的容量。
使用预充电脉冲的另一个优点出现在某些实施例中,其中单元电流的控制独立于预充电脉冲。通过选择读电流水平中的适合的误差范围,这允许读操作在考虑到阵列中单元的结构和电性能的变化时能够成功。
现在参考图1,该图示出了一种集成电路(IC)的一部分的框图,该集成电路特征在于被耦合以受时序逻辑、脉冲发生和驱动电路130控制的相变存储器阵列104。根据所描述的各种实施例,电路130能够对阵列104进行编程和读操作。首先从阵列104开始,如图所示,以交叉点矩阵排列在半导体IC管芯上可以构建许多垂直方向的有时被称作位线的导线112_1、112_2……和许多水平方向的有时被称作字线的导线108_1、108_2……。位线-字线对的每个交叉与一个单独的存储器单元114相关联。为了获得低的大规模制造成本,阵列104中的每个存储器单元114可以被设计为具有相同的结构。
每个存储器单元114具有一块结构相变材料118,该材料被耦合在位线112和字线108的单独的位线-字线对之间。相变材料块118用来根据其被编程的电阻率来存储该单元的信息。对在图1的实施例中的每个单元114的访问经由了其相应的位线-字线对,并通过每个单元中另外的电路而变得可能,所述另外的电路例如是寄生PNP双极型晶体管124之类的隔离器件。被选择单元的字线(在该情况中是字线108_2)被连接到晶体管124的基极,而单元114的位线112_2被连接到相变材料块118的另一侧。在本实施例中,相变材料块118与晶体管124的发射极串连,而晶体管124的集电极被连接到功率返回节点,其中功率返回节点对于阵列104中的全部存储器单元以及IC的时序逻辑、脉冲发生和驱动电路130可以是公共的。如图1所示被连接的晶体管124用作在其基极接收的字线信号控制下的固态开关。有选择地阻断单元电流穿过相变材料118的其他结构也是可以的,例如使用分立的开关场效应晶体管。晶体管120还可以与相变材料块118串连地被提供,以用于加热和/或限制电流的目的。
单元电流可以被定义为穿过相变材料块118的电流,在本实施例中,也是位线电流。在本实施例中,单元电流等于晶体管124的发射极电流。另一方面,单元电压可以更宽松地定义为与单元114有关的任何电压,包括跨过相变材料块118的电压。
仍然参考图1,时序逻辑、脉冲发生和驱动电路130具有许多输入和输出端口,其中每个端口被耦合到阵列104的各个位线112和字线108.用适当的信号水平和时序来驱动这些端口,使得一个或多个被选择的单元可以如下面将看到的那样被编程和读取.例如开关晶体管的传统驱动电路可以与脉冲发生电路一起使用,所述脉冲发生电路允许在被驱动到位线和字线上的信号上形成任何希望的波形.时序逻辑也可以使用传统部件实现,例如提供为获得编程和读操作的更大精确度和速度所需的时序的计数器.时序逻辑可以响应经由地址线134和数据线138收到的输入请求.这样的请求可以例如是向阵列104中的一个或多个单元写单个位或多个位的数据值.因此,电路130被理解为包括任何将在地址和数据线上收到的地址和数据信息转换为阵列104的那些位线-字线对所必需的译码逻辑,所述位线-字线对要被驱动并对应于所请求的数据和地址.电路130可以被形成在与阵列104相同的IC管芯上.
应当注意,虽然这里的说明提到被编程和读取的单个被选择的存储器单元或者目标存储器单元,但是这些概念也适用于同时从许多存储器单元同时地编程和读取。例如,取决于电路130所收到的写请求,可以同时编程或读取许多存储器单元,这些存储器单元在阵列的同一行中,并从而耦合到同一字线108,而这些单元中每一个被耦合到不同的位线112。
当单元114已经被选择以被编程或者被读取时,适当的脉冲被施加到所选择单元的字线-位线对上。从而,当图1中所示的单元114被选择以被编程或者读取时,位线112_2上的电势被提高到功率返回节点电势之上,同时字线108_2上的电势被降低(例如降低到功率返回节点的电势),以提供对晶体管124的基极驱动。这接着又允许发射极电流增大到脉冲所允许的水平。可以被施加到所选择的单元上用于编程和读取的电压和电流水平将取决于单元的电流-电压(即I-V)特性。
图2示出了示例性的一组存储器单元I-V特性。图形已经被注释,以示出在相变存储器单元的编程和读取期间可能涉及的各种电压和电流水平。对于不同的存储器单元状态,单元电流的变化被示出为单元电压的函数。例如注意图线204于图线210之间的不同。图线204对应于在设置状态中的单元的I-V特性。在这种状态中,单元的相变材料主要是结晶态的,从而显示出对电流的低电阻。相对比,当单元在复位状态中时,相变材料主要时非晶态的,并从而显示出对电流的相对高的电阻。复位状态中的单元的这种行为通过图线210给出。在一个实施例中,单元可以被设置到中间状态中,例如对应于图线206的那些状态,其中相变材料具有既不主要为结晶态也不主要为非晶态的结构。
随着单元电流提高到阈值Ith之上,单元中的材料可以经历相变。图2中所示和所描述的阈值电流和电压的范围是这里被称作编程阈值水平的示例。但是注意,为了实际地将单元编程到给定状态,单元电流应当被进一步沿着基本垂直的图线208增大到图形中所指示的水平。图线208描绘了单元的动态行为,其中,取决于单元电流达到的水平以及单元电流脉冲的形状和持续时间,单元的状态可以被编程到设置状态、复位状态或者中间状态。
根据一个实施例,读电流范围可以在零到Ith之间。因为理想的可以是读一个单元而不改变其状态,所以读取水平不应当取到Ith之上。
现在转到图3,图示了一组示例性的时序图,这些时序图表示了与编程和读取相变存储器单元相关联的各种波形.图示出了六组波形,其中,它们表示相变材料温度、单元电压、单元电流、字线电压、位线电压以及预充电(即PC)控制信号.根据这里所描述的各种实施例,预充电控制信号可以被用于施加预充电脉冲,在将所选择的单元的电流提高到其读出水平之前提高该单元的位线电压(而不将单元电压和单元电流提高到编程阈值水平).
图3可以被看作含有三列,其中第一列描述了在单元上所进行的复位操作,第二列描述的设置操作,第三列描述了读操作的一个实施例。复位和设置操作可以完全是传统的,并且这里将只简要地描述。注意,在本实施例中,在编程或其他操作之间,任何未被选择的字线都被提高到相对高的电压,例如Vcc,而未被选择的位线被保持在相对低的电压,例如零伏特或者地电位。返回参考图1,这从而意味着利用在Vcc的未被选择的字线和在地电位的未被选择的位线,晶体管124被确保在其截止模式,从而确保了单元电流是最小的。
为了对单元复位,相变材料的温度将达到某个水平,并将该水平维持给定的一段时间。从而,在图3所示的实施例中,通过在单元的位线与字线之间施加电压脉冲使得单元电流提高到给定的水平并在那里保持一定的时间间隔T复位,单元被复位。被示出并被标记为“设置”和“复位”的两个波形分别是指单元在设置或复位状态中时的电流或电压行为(可能的话)。从而,参考第一列(写0或复位操作),如果被写的单元已经在复位状态中,则电压和电流的行为如“复位”标记所指示的那样。另一方面,如果被编程的单元目前在设置状态中,则电压和电流行为通过被标记“设置”的波形给出。为了完成将单元编程到复位状态,单元中的相变材料的温度被迅速地降低,如由图形中示出的淬火时间所定义的。可以通过在如所示出的时间间隔T复位降落中迅速地降低单元电流,来获得该淬火时间。此后,单元电压和单元电流被降低到它们的静态水平,在本实施例中,实质上是零伏特和零安培。静态水平的零电压和零电流有助于降低功耗以及维持单元的已编程状态。
仍然参考图3,第二列描绘了在示例性写操作期间所产生的波形,在该操作期间,单元被编程到其设置状态。如果单元目前在复位状态中,并且将要进行设置操作,则在第二列中被标记“复位”的波形是存储器单元将表现出的波形。为了设置单元,相变材料的温度被维持晶体生长的间隔时间,设置脉冲的时间间隔T设置符合该间隔时间。再次,单元已经被编程之后,通过将其字线电压提高到Vcc并将其位线电压降低到地电位,单元被取消选择。
现在参考图3的第三列,描绘了包括预充电脉冲的读操作的一个实施例。由预充电控制信号中的低电平有效脉冲说明预充电脉冲的施加,该信号由图3底部的波形描绘。在所示的实施例中,当位线-字线对处在它们的静态水平,即未被选择的时候,发起预充电脉冲。用于实现预充电脉冲的具体电路实施方式将结合图4在下面被图示和描述。目前,理解预充电脉冲用于提高被选择单元的位线电压,如在图3的位线电压波形所示的,而不将单元电压和单元电流提高到它们的编程阈值水平,这已经足够了。
在图3所示的实施例中,在预充电脉冲期间单元电压和单元电流的变化相对于位线电压的增大被认为是相当小的。这是由于预充电电压跨过所述隔离器件,尤其是跨过晶体管124的发射极基极端子(见图1),而被大大降低了。
根据一个实施例,预充电脉冲的结尾可以被宽松地定义为位线电压已经达到在静态水平之上的预定水平后的时间中的一个点。可以使用各种水平的预充电电压,只要它们有助于降低随后获得某个位线电压所需的时间间隔,其中该位线电压表示了为了读取目的而对单元数据状态的测量。例如,对于具有例如Ge2Sb2Te5的典型相变材料的存储器单元,位线中的预充电脉冲电压的峰值可以在0.5伏特到1.5伏特的范围内。
预充电脉冲之后立即将单元电流提高到在编程阈值水平之下的读取水平,并将在电流处于读取水平时所获得的位线电压与参考电压相比较,取决于被读取的存储器单元的状态,单元电压将是不同的:如果单元是在复位状态中,其中相变材料具有相对高的电阻,则在电流处于读取水平时所获得的位线电压大于单元处于复位状态中时的情况.这可以在图3的V位线的波形中看到。另外,由于在设置和复位状态中相变材料所提供的不同的电阻,如果读电流不是由恒流源提供的,则单元电流的读取水平也可以不同,如图中所示。或者,对于设置和复位条件两者,可以使用恒流源来提供固定的读电流水平。
对于具有例如Ge2Sb2Te5的典型相变材料的存储器单元,用于设置存储器单元的电流脉冲的一个示例大小可以是50微安到650微安。相对比,对于相同单元的如上所述的复位电流脉冲的大小将在100微安到3毫安的范围中。在典型的存储器单元中的适合的电流的读取水平可以是5微安到100微安。这些水平可以适用于显示出1千欧姆到10千欧姆范围中的低电阻以及大于100千欧姆范围的高电阻的相变材料。单元电流要被维持在读取水平的必需的时间间隔可以相对较短,例如在5到30纳秒的范围内。预充电脉冲的持续时间甚至可以更短。读取时间间隔还取决于在参考电压与位线电压之间形成足够大的电压差所需的时间,其中所述参考电压与位线电压将由例如读出放大器比较。读出放大器的示例性电路实施方式将在下面结合图4给出。当然,这些值依赖于技术和设备,并且还可以根据具体的制造工艺而变化。
现在参考图4,示出的是被耦合到相变存储器阵列的位线112_1和112_2的脉冲发生和驱动电路的一个实施例的电路原理图。该电路实施方式全部使用金属氧化物半导体场效应晶体管(MOSFET),不过取决于制造工艺也可以使用其他类型的晶体管。下面的说明将集中于晶体管410~422,它们被耦合以经由位线112_2和字线108_2编程和读取被选择的单元114。对于阵列的其他位线,可以重复相同的电路实施方式。被用于对脉冲发生和驱动电路的晶体管以及控制信号或位线进行控制的时序逻辑没有被示出,但是给出了上面结合图3的示例性时序图以及下面的讨论,本领域的普通技术人员将可以容易地实现这种电路的设计。
可以看出,单元114部分地被施加到字线108_2上的信号控制。假定单元114已经被选择以被编程或者被读取,则字线108_2上的电势被降低到足够低的水平,允许在所选择的单元114内部的PNP晶体管传导单元电流。在本实施例中,单元电流与由晶体管419~422中的一个提供的位线电流是相同的。通过数字设置控制信号,晶体管419被用于产生设置编程电流脉冲。以相同的方式,响应于数字复位控制信号,晶体管420被用于产生复位编程电流脉冲。类似地,在数字预充电控制信号的控制下,使用晶体管421产生预充电脉冲。最后,在数字读控制信号的控制下,使用晶体管422将单元电流提高到其读取水平。在所示出的实施例中,提供给被选择的单元114的设置、复位和读取电流脉冲是恒定大小的(即,方波)。或者,在这些脉冲仍然获得希望的编程或读取结果的条件下,它们可以具有非方波的形状。
使用由晶体管410~418组成的读出放大器,在图4所示的实施例中可以实现作为读操作目的的对相变材料电阻的读出。通过将位线112_2上的电压与外部参考电压比较,读出放大器提供了对所述电阻的测量。读出放大器的输入由用于位线电压的隔离晶体管416以及用于参考电压的晶体管415所控制。在读出放大器的这个实施例中,读出放大器的输出是由晶体管417门控的单端电压Vout.晶体管410和413形成交叉耦合p沟道对,而n沟道晶体管412和414也形成交叉耦合对.如所示地被连接,这些交叉耦合的晶体管对形成了再生电路,参考公共电源返回电压(这种情况中是地),通过迅速地提供对于较大的输入电压的指示,该电路将能够解析出两个输入信号(这里是位线电压和参考电压)之间的差别.为了帮助节省功率,在数字活动上拉控制信号控制下的开关上拉晶体管418被提供来当位线112_2上的电压没有被读取时,有效地关断读出放大器.
现在描述在图4中所示的使用脉冲发生和驱动电路的读取过程的一个实施例。通过选择一个或多个要被读取的单元,开始读取操作。在一个实施例中,被选择的单元可以是在相同的行中。在该情况中,与存储器单元所有没被选择的行相对应的字线上的电压被提高到Vcc,而使用于被选择的行的字线到达地电位。在图4中,被选择的行含有被连接到字线108_2上的被选择的单元114。用于要被读取的被选择的列的位线112被预充电至电压Vpc。在图4的实施例中,这是通过导通晶体管421来完成的。在预充电脉冲期间,即在晶体管421被导通时,读出放大器的隔离晶体管415和416可以被导通。注意,此时读出放大器自身还没有被激活(即,晶体管418保持在截止状态)。接着,晶体管421被关闭,从而结束了预充电脉冲,然后晶体管422被导通,以将读电流提供到位线112_2中。在足够形成被提供给读出放大器的在外部参考电压与位线电压之间的最小差值(其中,该最小差值取决于读出放大器的灵敏度)的时间延迟之后,隔离晶体管415和416被关闭,并且读出放大器被激活(通过导通晶体管418)。通过读出放大器的充分放大之后,通过导通门控晶体管417,然后提供数字值Vout,该数字值表示被选择的单元中的两种状态(例如设置和复位)中的一种。注意,一旦隔离晶体管415和416已经被关闭,则位线112_2可以被降低回到地电位,准备下一个读取或者编程周期。
从而,通过将预充电操作与电流模式读取相结合,因为不需要等待位线从其静态水平(这里是地)以晶体管422所提供的相对小的读电流被充电,所以可以有更迅速的读操作。回想到该读电流应当相当小,并可能小于阈值电流Ith,以获得正确的读结果并防止被选择的单元114中的结构相变材料的相变。然而,读电流可以例如基于被选择的要被读取的单元的位置而被调整。这允许一个可调的余量,用于读取其电气行为中可能显示出变化的单元。
虽然上述的读取过程是基于图4的电路原理图,该图示出了具有耦合在相变材料与功率返回节点(在该情况中是地)之间的隔离器件的被选择的单元114,但是类似的过程可以被施加于这样的相变存储器阵列,即其中存储器单元中的隔离晶体管被连接到电源节点,而不是功率返回节点。在这样的实施例中,通过相变材料块的单元电流将源自电源节点,并通过许多脉冲发生晶体管吸入到功率返回节点(例如地)。该实施例可以被看作是图4中的实施例的补偿版本。此外,虽然图1和图4示出的实施例中的单元电压相对于功率返回节点(这里是零伏特)是单端的,但是另外的实施例可以包括允许在单元的相应的位线-字线对之间测量单元电压的电路。在这样的替代实施例中,单元电压将被看作为在被选择的单元的相应的位线-字线对之间测量的差分电压。
注意,在图4的实施例中,其中示出了具有接收位线电压的第一输入端以及接收外部参考电压的第二输入端的读出放大器,单元被期望用于存储单个位。但是,对于例如通过允许在设置和复位状态之间有一个或多个中间状态(见图2)从而可以存储多位信息的单元,可能需要具有多个参考水平的比较电路来确定多位单元的状态。
现在转到图5,示出的是用于操作结构相变存储器单元的方法的一个实施例的流程图.操作开始于通过将存储器中被选择单元的单元电压和单元电流提高到编程阈值水平,将该单元编程到被选择状态(操作504).电压和电流然后被降低到它们的编程阈值水平之下的静态水平.这些水平可以如同上面结合示出了示例性存储器单元I-V特性的图2所描述的那些.操作然后继续进行到施加预充电脉冲(操作508).该脉冲提高被选择的单元的位线电压,但不将单元电压和单元电流提高到它们的编程阈值水平.因此,预充电脉冲是相对短的电流脉冲,可以被看作是用于将被选择的位线向上朝向一个水平充电,当读取电流随后流过该位线时期望看到该水平.
在施加了预充电脉冲之后,单元电流可以立即被提高到读取水平,其中该读取水平在编程阈值水平之下,使得不改变所选择单元的状态(操作512)。接着,在单元电流处于读取水平时,位线电压可以与参考电压相比较,以确定被选择的单元的状态(操作516)。在将单元电流提高到读取水平之前对预充电脉冲的使用也可以适用于多位单元的实施例。
现在转到图6,示出的是便携式电子应用604的框图,它实施了能够进行如上所述的读操作的相变存储器存储子系统608。存储系统608可以根据上述读取过程的实施例被操作。存储系统608可以包括一个或多个集成电路管芯,其中每个管芯具有根据上面在图1到图5中所描述的实施例而被编程和读取的存储器阵列。这些IC管芯可以是被布置在诸如传统动态随机存取存储器(DRAM)模块之类的模块中的分开的、独立的存储器器件,或者它们可以是与例如I/O处理器或微控制器的一部分的其他片上功能集成在一起。
应用604可以例如是笔记本电脑、数字相片照相机和/或摄像机、个人数字助理或者移动(蜂窝)手持电话单元。在所有这些应用中,已经在板上可操作地安装了处理器610和存储系统608,存储系统608用作程序存储器,以存储用于处理器执行的代码和数据。便携式应用604经由I/O接口614与其他设备通信,这些设备例如是个人计算器或者计算机网络。该I/O接口614可以提供对计算机外围总线、高速数字通信传输线或者用于无定向传输的天线的访问。处理器与存储系统608之间以及处理器与I/O接口614之间的通信可以使用传统的计算机总线体系结构实现。
上述便携式应用604的部件经由电源总线616由电池618供电。因为应用604通常是电池供电的,所以其功能部件(包括存储系统608)应当被设计为以低功耗水平提供希望的性能。此外,由于便携式应用的受限制的尺寸,图6所述的部件应当提供相对高的功能密度。当然,存储系统608的一些非便携式应用没有被示出。这些包括例如大型网络服务器或者其他可以从例如相变存储器的非易失性存储器器件受益的计算设备。
综上所述,已经描述了用于读取结构相变存储器的方法和装置的各种实施例。在上述说明中,已经参考其特定的示例性实施例描述了本发明。但是很明显,可以对其作出各种修改和变化,而不脱离在所附权利要求中提出的本发明的更广的精神和范围。因此,说明书和附图被认为是示例性的,而不是限定性的含意。

Claims (12)

1.一种用于操作结构相变存储器单元的方法,包括:
通过将结构相变存储器中被选择的单元的单元电压和单元电流提高到编程阈值水平,将所述被选择的单元编程为被选择状态,然后将所述单元电压和单元电流降低到在它们的编程阈值水平之下的静态水平;以及然后
施加预充电脉冲,以提高所述被选择的单元的位线电压,而不将所述单元电压和单元电流提高到它们的编程阈值水平;以及然后
将所述单元电流提高到在所述编程阈值水平之下的读取水平,并在所述单元电流处于所述读取水平时,将所述位线电压与参考电压比较。
2.根据权利要求1所述的方法,其中,所述静态水平在零伏特和零安培。
3.根据权利要求1所述的方法,还包括:
在施加所述预充电脉冲时,将读出放大器的输入从所述位线电压隔离开预定的时间间隔,然后使所述输入接受所述位线电压,其中,所述位线电压与所述参考电压的比较通过所述读出放大器进行,所述读出放大器的输出位值表示所述比较的结果。
4.根据权利要求1所述的方法,其中,所述单元电压相对于功率返回节点电压是单端的。
5.一种集成电路,包括:
多个位线和多个字线;
多个存储器单元,所述多个存储器单元中的每一个都具有结构相变材料块,所述结构相变材料块耦合在所述多个位线与所述多个字线的单独的位线-字线对之间,以存储该单元的信息,当读取该单元时,所述对将被选择;和
时序逻辑、脉冲发生和驱动电路,所述时序逻辑、脉冲发生和驱动电路被耦合到所述多个位线和所述多个字线,以通过将被选择的单元的单元电压和单元电流提高到编程阈值水平,将所述被选择的单元编程为被选择状态,然后将所述单元电压和单元电流降低到在它们的编程阈值水平之下的静态水平,然后施加预充电脉冲,以提高所述被选择的单元的位线电压,而不将所述单元电压和单元电流提高到它们的编程阈值水平,然后将所述单元电流提高到在所述编程阈值水平之下的读取水平,并将在所述单元电流处于所述读取水平时获得的所述位线电压与参考电压比较。
6.根据权利要求5所述的集成电路,其中,所述静态水平在零伏特和零安培。
7.根据权利要求5所述的集成电路,还包括:
读出放大器,其具有耦合到所述被选择单元的位线的输入端。
8.根据权利要求5所述的集成电路,其中所述单元电压相对于功率返回节点电压是单端的。
9.一种便携式电子设备,包括:
印刷电路板以及电池,在所述印刷电路板上已经可操作地安装有处理器和存储子系统,所述电池对所述印刷电路板供电,其中,所述存储子系统包括集成电路,所述集成电路具有多个位线和多个字线、多个存储器单元以及时序逻辑、脉冲发生和驱动电路,所述多个存储器单元中的每一个都具有结构相变材料块,所述结构相变材料块耦合在所述多个位线与所述多个字线的单独的位线-字线对之间,以存储该单元的信息,读取该单元时所述对将被选择,所述时序逻辑、脉冲发生和驱动电路耦合到所述多个位线和所述多个字线,以通过将被选择的单元的单元电压和单元电流提高到编程阈值水平,将所述被选择的单元编程为被选择状态,然后将所述单元电压和单元电流降低到在它们的编程阈值水平之下的静态水平,然后施加预充电脉冲,以提高所述被选择的单元的位线电压,而不将所述单元电压和单元电流提高到它们的编程阈值水平,然后将所述单元电流提高到在所述编程阈值水平之下的读取水平,并将在所述单元电流处于所述读取水平时获得的所述位线电压与参考电压比较.
10.根据权利要求9所述的设备,其中,所述静态水平在零伏特和零安培。
11.根据权利要求9所述的设备,其中所述集成电路还包括:
读出放大器,其具有耦合到所述被选择单元的位线的输入端。
12.根据权利要求9所述的设备,其中所述单元电压相对于功率返回节点电压是单端的。
CN02828593XA 2002-08-14 2002-08-14 读取结构相变存储器的方法 Expired - Fee Related CN1628357B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2002/025932 WO2004017328A1 (en) 2002-08-14 2002-08-14 Method for reading a structural phase-change memory

Publications (2)

Publication Number Publication Date
CN1628357A CN1628357A (zh) 2005-06-15
CN1628357B true CN1628357B (zh) 2010-05-05

Family

ID=31886104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02828593XA Expired - Fee Related CN1628357B (zh) 2002-08-14 2002-08-14 读取结构相变存储器的方法

Country Status (5)

Country Link
KR (1) KR100634330B1 (zh)
CN (1) CN1628357B (zh)
AU (1) AU2002331580A1 (zh)
DE (1) DE10297767T5 (zh)
WO (1) WO2004017328A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944041B1 (en) * 2004-03-26 2005-09-13 Bae Systems Information And Electronic Systems Integration, Inc. Circuit for accessing a chalcogenide memory array
DE102004040753A1 (de) * 2004-08-23 2006-03-09 Infineon Technologies Ag Schaltungsanordnungen zum Speichern von Informationen in Speicherelementen vom CBRAM-Typ
DE102004041330B3 (de) * 2004-08-26 2006-03-16 Infineon Technologies Ag Speicherschaltung mit ein Widerstandsspeicherelement aufweisenden Speicherzellen
DE102006016514A1 (de) * 2006-04-07 2007-10-18 Infineon Technologies Ag Schaltung und Verfahren zum Konfigurieren einer Schaltung
JP5396011B2 (ja) * 2007-06-19 2014-01-22 ピーエスフォー ルクスコ エスエイアールエル 相変化メモリ装置
CN101868828B (zh) * 2007-11-22 2013-01-23 Nxp股份有限公司 载流子流产生电子器件及方法
US7729163B2 (en) * 2008-03-26 2010-06-01 Micron Technology, Inc. Phase change memory
US8027192B2 (en) 2008-08-20 2011-09-27 Samsung Electronics Co., Ltd. Resistive memory devices using assymetrical bitline charging and discharging
KR101416834B1 (ko) * 2008-08-20 2014-07-08 삼성전자주식회사 저항체를 이용한 비휘발성 메모리 장치
WO2011055669A1 (en) * 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8649212B2 (en) * 2010-09-24 2014-02-11 Intel Corporation Method, apparatus and system to determine access information for a phase change memory
JP5598338B2 (ja) * 2011-01-13 2014-10-01 ソニー株式会社 記憶装置およびその動作方法
EP2684193B1 (en) * 2011-03-10 2019-08-14 International Business Machines Corporation Cell-state determination in phase-change memory
WO2013017131A2 (de) 2011-07-12 2013-02-07 Helmholtz-Zentrum Dresden - Rossendorf E.V. Integrierte nichtflüchtige speicherelemente, aufbau und verwendung
DE102012102326A1 (de) * 2012-03-20 2013-09-26 Helmholtz-Zentrum Dresden - Rossendorf E.V. Integrierter nichtflüchtiger Analogspeicher
WO2013093669A1 (en) * 2011-12-21 2013-06-27 International Business Machines Corporation Read/write operations in solid-state storage devices
US10134470B2 (en) 2015-11-04 2018-11-20 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
US9530513B1 (en) * 2015-11-25 2016-12-27 Intel Corporation Methods and apparatus to read memory cells based on clock pulse counts
US10446226B2 (en) 2016-08-08 2019-10-15 Micron Technology, Inc. Apparatuses including multi-level memory cells and methods of operation of same
US10157670B2 (en) * 2016-10-28 2018-12-18 Micron Technology, Inc. Apparatuses including memory cells and methods of operation of same
US10431301B2 (en) 2017-12-22 2019-10-01 Micron Technology, Inc. Auto-referenced memory cell read techniques
US10566052B2 (en) * 2017-12-22 2020-02-18 Micron Technology, Inc. Auto-referenced memory cell read techniques
CN118057964A (zh) * 2022-09-21 2024-05-21 长江先进存储产业创新中心有限责任公司 存储器件及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206195A (zh) * 1997-06-18 1999-01-27 日本电气株式会社 有输入/输出掩码功能且不破坏数据位的半导体存储器件
US6314014B1 (en) * 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206195A (zh) * 1997-06-18 1999-01-27 日本电气株式会社 有输入/输出掩码功能且不破坏数据位的半导体存储器件
US6314014B1 (en) * 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells

Also Published As

Publication number Publication date
DE10297767T5 (de) 2005-08-04
KR20050018639A (ko) 2005-02-23
WO2004017328A1 (en) 2004-02-26
CN1628357A (zh) 2005-06-15
WO2004017328A8 (en) 2004-08-26
AU2002331580A1 (en) 2004-03-03
KR100634330B1 (ko) 2006-10-16

Similar Documents

Publication Publication Date Title
CN1628357B (zh) 读取结构相变存储器的方法
US6590807B2 (en) Method for reading a structural phase-change memory
US6462984B1 (en) Biasing scheme of floating unselected wordlines and bitlines of a diode-based memory array
US10083752B2 (en) Apparatuses and methods for efficient write in a cross-point array
CN101789262B (zh) 可变电阻存储装置
US8559253B2 (en) Variable-resistance memory device with charge sharing that discharges pre-charge voltage of a selected bit line to share charge with unselected bit lines
US7038938B2 (en) Phase change resistor cell and nonvolatile memory device using the same
US7929339B2 (en) Phase change memory device
CN100409363C (zh) 数据存储器件及其制造方法
US20070217253A1 (en) Non-volatile phase-change memory device and associated program-suspend-read operation
CN111263963A (zh) 用于读取和写入优化的解码器电路中的电阻和栅极控制
US10553647B2 (en) Methods and apparatus for three-dimensional non-volatile memory
KR101176503B1 (ko) 라이트 드라이버를 구비한 상변화 메모리 장치
CN103165178B (zh) 精细粒度电源门控
US8547726B2 (en) Semiconductor memory device and controlling method thereof
TW202301334A (zh) 記憶體元件、感測放大器系統及其控制方法
KR20130123904A (ko) 반도체 메모리 장치
JP2020155168A (ja) 半導体記憶装置
JP2011054233A (ja) 半導体記憶装置
KR930000898B1 (ko) 고속으로 데이타를 소거할 수 있는 반도체 메모리
US10355049B1 (en) Methods and apparatus for three-dimensional non-volatile memory
US20180122461A1 (en) Resistive memory apparatus
US11475960B2 (en) Non-volatile memory device with a program driver circuit including a voltage limiter
TW202341142A (zh) 記憶體裝置、其寫入電路及記憶體寫入方法
US8264871B2 (en) Phase change memory device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100505

Termination date: 20190814