CN1608274A - Optical memory system for information retrieval from fluorescent multilayer optical clear card of the ROM-type - Google Patents

Optical memory system for information retrieval from fluorescent multilayer optical clear card of the ROM-type Download PDF

Info

Publication number
CN1608274A
CN1608274A CN 02817297 CN02817297A CN1608274A CN 1608274 A CN1608274 A CN 1608274A CN 02817297 CN02817297 CN 02817297 CN 02817297 A CN02817297 A CN 02817297A CN 1608274 A CN1608274 A CN 1608274A
Authority
CN
China
Prior art keywords
optical
data
information
card
layer
Prior art date
Application number
CN 02817297
Other languages
Chinese (zh)
Inventor
尤金·利维克
谢尔盖·马格尼茨基
尼古拉·马格尼茨基
安德烈·塔拉西金
A·安格卢茨
S·亚库博维奇
Original Assignee
特莱第存储Ip有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US30378301P priority Critical
Application filed by 特莱第存储Ip有限责任公司 filed Critical 特莱第存储Ip有限责任公司
Publication of CN1608274A publication Critical patent/CN1608274A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using optical elements using other beam accessed elements, e.g. electron, ion beam
    • G11C13/048Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using optical elements using other beam accessed elements, e.g. electron, ion beam using other optical storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0033Recording, reproducing or erasing systems characterised by the shape or form of the carrier with cards or other card-like flat carriers, e.g. flat sheets of optical film
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • G11B7/08511Methods for track change, selection or preliminary positioning by moving the head with focus pull-in only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Abstract

多层荧光光学存储介质具有多个数据层,每个数据层具有用于保存信息的荧光凹坑。 Fluorescent multilayer optical storage medium having a plurality of data layers, each data layer having a pit for holding the information of fluorescence. 组织每层上的凹坑,以便形成多个帧。 Pits on each tissue, so as to form a plurality of frames. 可在不横向移动读取头的情况下,读取每一堆叠的帧。 It can be without the lateral movement of the read head, the reading frame of each stack. 另外还使用8-10代码对要保存的信息编码。 It also uses 8-10 codes encode information to be saved.

Description

用于从ROM型荧光多层光学透明卡的取回信息的光学存储系统 Optical storage system for retrieving information from a ROM type multilayer optical transparent phosphor of the card

技术领域 FIELD

本发明涉及用于信息的逐页取回的光学存储系统,更具体地说,涉及自荧光多层只读存储器(ROM)光学透明卡的信息取回的光学存储系统和设备。 The present invention relates to an optical information storage system by the retrieval page, and more particularly, to a system from the optical storage device and a read only information phosphor multilayer memory (ROM) card retrieved optically transparent.

背景技术 Background technique

现有的光学存储系统利用具有一个和两个信息层的二维数据载体。 A conventional two-dimensional optical storage system and a data carrier having two information layers. 光学数据记录方法中的多数在先技术解决方案提出记录信息层的局部区域(凹坑)中反射的激光辐射强度的变化。 Change in intensity of the laser radiation reflected (pit) of the optical data recording method in the prior art solutions put forward majority of the information recording layer is localized area. 这些变化可由对CD或DVD ROM型凹凸光盘的干扰影响,由广泛使用的CD-R系统中的金属薄膜中的烧制小孔,染料漂白,聚碳酸酯的局部熔化,由相变系统中反射系数的变化等造成[Bouwhuis G.等,“Principle of Optical Disc SystemS'',PhilipsResearch Laboratories,Eindhoven,Adam Higer,Ltd.,Bristol andBoston]。 Effect of CD or DVD ROM type optical disk irregularities may interfere with these changes, a thin metal film CD-R system widely used in the firing aperture, dye bleach, partially melting the polycarbonate, is reflected by the phase change system coefficient of variation and the like caused by [Bouwhuis G. et, "Principle of Optical Disc SystemS '', PhilipsResearch Laboratories, Eindhoven, Adam Higer, Ltd., Bristol andBoston].

图1表示了沿着使用14-位EFM(8-14调制)通道调制间距的CD和DVD格式光学信息载体的表面,信息凹坑的二维空间分布的示意几何形状。 Figure 1 shows the use of 14-position along the surface of the CD and DVD formats EFM optical information carrier (8-14 modulation) modulation channel spacing, a schematic two-dimensional spatial distribution of the information pit geometry. 可用诸如凹坑尺寸(最短凹坑长度-1,宽度-w,深度-d,道间距-p)和通道位长度之类参数表征信息凹坑在CD和DVD-ROM中的空间分布。 Available sizes such as pit (shortest pit length -1, -w width, depth -d, track pitch -p) Characterization and channel bit length category parameter information pit space CD and DVD-ROM distribution.

CD和DVD-ROM的这些及其它参数的数值参见表1[InformationStorage Materials,pp.36,42]。 These values ​​and other parameters CD and a DVD-ROM Table 1 [InformationStorage Materials, pp.36,42].

表1从CD到DVD参数 CD DVD波长λ,nm 780 650数值孔径 0.45 0.60最短凹坑长度,nm 831 399 Table 1 parameter from CD to DVD DVD CD Wavelength λ, nm 780 650 0.45 0.60 numerical aperture shortest pit length, nm 831 399

深度,μm 0.13-0.15 0.11-0.12道间距,μm 1.6 0.74通道位长度,nm 277 133调制模式*EFM EFM**物理位密度 106 508Mbit/cm21.2 4.0基准速度CLV,m/s 0.9 0.55光点大小λ/2NA,mm 0.65 4.7容量,GB*对于EFM,具有用于8个数据位的17个通道位(14个调制位和3个边缘位)。 Depth, μm 0.13-0.15 0.11-0.12 track pitch, μm 1.6 0.74 channel bit length, nm 277 133 * EFM EFM ** modulation mode physical bit density 106 508Mbit / cm21.2 4.0 reference speed CLV, m / s 0.9 0.55 spot size λ / 2NA, mm 0.65 4.7 capacity, GB * for EFM, having 17 channel bits (14 bits and three margin modulation bits) for 8 data bits. 每个通道位对应于最小标记长度的1/3。 Each channel bit corresponds to 1/3 of a minimum mark length. 物理位密度等于1/(道间距×通道位长度×17/8)。 Physical bit density is equal to 1 / (track pitch × channel bit length × 17/8). 对于EFM**,用16/8代替17/8因数。 For EFM **, 16/8 instead of 17/8 with factor.

从而,从表1可看出,转换成DVD格式将显示增大密度,从而显著提高存储信息的数量以及读取速度。 Thus, it can be seen from Table 1, when converted to DVD format display density is increased, thereby significantly increasing the number of read speed and storing information. 但是,图1和表1还证明信息凹坑只占据部分信息层,和其最大极限相比,这显著降低了密度以及存储信息的数量。 However, Figure 1 and Table 1 also demonstrates the information pits occupy only part of the information layer, and compared to its maximum, which significantly reduces the number and density of information storage.

为了提高记录密度,可使用诸如结合高孔径NA透镜,采用波长较短的辐射源之类的方法(例如参见表1[I.Ichimura等,SPIE 3864,228])。 In order to improve the recording density, such as may be used in conjunction with a high aperture NA of the lens, a method using a short wavelength radiation or the like (e.g., see Table 1 [I.Ichimura the like, SPIE 3864,228]). 我们还可减小道间距,增大凸脊凹槽记录光盘的凹槽深度[S.Morita等,SPIE,3109,167]。 We may also reduce the track pitch to increase the depth of the groove ridges groove recording optical disk [S.Morita like, SPIE, 3109,167]. 新的介质和读取方法[T.Vo-Diny等,SPIE,3401,284],凹坑深度调制[S.Spielman等,SPIE,3109,98],和具有呈对称图案排列的方形信息凹坑的光盘[Satoh等,美国专利#5572508]被用于高密度信息存储。 New media and reading method [T.Vo-Diny like, SPIE, 3401,284], depth of the pit modulation [S.Spielman the like, SPIE, 3109,98], and symmetrically arranged in a square pattern having information pits CD [Satoh et al., U.S. Patent # 5,572,508] is used for high-density information storage.

在美国专利#4634850和4786792(Drexler Technology Corp.)中,为了提高数据密度,以及使错误降至最小,可使用由CCD光电检测器阵列读取的数字光学数据的“四倍(quad)-密度”或“微型棋盘”格式使可光学保存在动画胶片(或光学存储卡)上的数字数据的数量翻两番。 In U.S. Patent # 4634850 and 4786792 (Drexler Technology Corp.), in order to improve data density, and so minimize the error, can be used "four times (Quad) read by the CCD photodetector array in a digital optical data - density "or" mini-board "optical format may be stored so that quadruple the number of digital data on a motion picture film (or optical memory card).

以双光子吸收方式显示各种光物理或光化学非线性效应的三维(均匀)光敏介质允许我们实现超过每立方厘米数兆兆位的数据写入密度。 Displaying a three-dimensional to two-photon absorption of various nonlinear effects photophysical or photochemical (homogeneous) over a photosensitive medium allows us to achieve the multi-terabit per cubic centimeter density data writing. 在这些三维WORM或WER数据载体中,通过中间虚拟层面的光敏成分和光致反应产物的协同双光子吸收,或者折射参数变化的记录构成最佳的写入和读取模式。 In these three-dimensional or WER WORM data carrier by the photosensitive component of the intermediate level and collaborative virtual two-photon photo-absorbing reaction product, or a change in refractive constitute the best recording parameter of the write and read modes. 对于彩色照片[D.Parthenopoulos等,Science,1989,245,843]或者光致漂白材料,以及光反射晶体[Y.Kawata等,Opt.Lett.1998,23,756]或者聚合物和光聚合物[R.Borisov等,Appl.Phys.,1998,B67,1]来说,情况也是如此。 For color photos [D.Parthenopoulos the like, Science, 1989,245,843] or the photo-bleaching material, and a light reflecting crystal [Y.Kawata the like, Opt.Lett.1998,23,756] or polymer and photopolymer [ R.Borisov etc., Appl.Phys., 1998, B67,1], it is true.

原理上,这种写入和读取模式允许借助数据介质内变化的光学性质,以凹坑(类似于传统反射CD或DVD-ROM中的信息凹坑)的形式局部记录数据。 In principle, this model allows the writing and reading by optical property change in the data medium, pits (similar to a conventional CD or reflecting the information pit in the DVD-ROM) in the form of a local data record.

但是,由于这种记录所需的辐透秒(phemtosecond)激光辐射源的成本高,尺寸大,以及由于介质的光敏性极低,因此这种原理的实际实现构成一个巨大的挑战。 However, since this recording desired phot seconds (phemtosecond) high costs of the laser radiation source, a large-sized, and since the photosensitive medium is very low, the actual realization of this principle constitutes a huge challenge. 通常,介质的这种极低的光敏性由目前我们已知的光敏材料极低的双光子吸收横截面参数造成。 Typically, such a low current from the photosensitive medium we know extremely low two-photon absorption of the light-sensitive material caused by the cross-sectional parameters.

从技术上说,如果我们想增大保存的数据量,我们应使用多层双面光学信息载体,因为它们更高效。 Technically, if we want to increase the amount of data stored, we shall use a multilayer double-sided optical information carrier, because they are more efficient. 但是,它们的应用也具有一些限制,会产生关于数据载体介质和数据记录模式以及设备的设计和性质的其它问题,尤其是就在介质内部特别深的关于WORM-和WER-光学存储数据的写入模式来说更是如此。 However, their use also has some limitations, can create other problems on the design and properties of the data carrier and a data medium, and a recording mode of the apparatus, especially in particularly deep inside the medium on WORM- write data and the optical storage WER- This is especially true in mode.

在反射模式下,用部分反射涂层涂覆多层光学信息载体的每个信息层。 In the reflective mode, each information layer is coated with a partially reflective coating is a multilayer optical information carrier. 由于光束通过介质到达指定的信息层,并返回接收器,因此这降低了读取光束和反射光束的强度。 Since the beam reaches the designated information through the dielectric layer, and return to the receiver, which thus reduces the read beam and the reflected beam intensity.

另外,由于它们的相干本性,透过的光束受到折射(这难以消除),还会受到信息层的片段(凹坑和凹槽)的干涉失真。 Further, due to their nature of the coherent light beam is refracted through (which is difficult to remove), but also by the segment information layer (pits and grooves) interference distortion.

这就是优选利用荧光读取的多层荧光光学信息载体的原因,因为这种载体不存在部分反射涂层。 This is why the phosphor is preferably a multilayer optical information carrier fluorescence read, because such a carrier does not exist partially reflective coating. 这种情况下,由于荧光辐射的非相干本性,和读取激光波长相比其波长较长,以及朝着激光和荧光辐射的光学介质的透明度和均匀性(不同层的相似反射系数)的缘故,折射和干涉失真要小得多。 In this case, since the non-coherent nature of the fluorescent radiation, and a reading laser having a wavelength longer wavelengths compared, as well as transparency and uniformity of the laser and optical medium towards the fluorescence radiation (similar reflection coefficients of the different layers) sake , refraction and interference distortion is much smaller. 从而,和反射光学存储器相比,多层荧光载体具有一些优点。 Thus, compared to the memory, and the reflective optical multilayer phosphor carrier has several advantages.

该系统基于诸如荧光之类非相干信号,并且荧光的空间分辨率为相干方法,例如反射、吸收或折射的两倍(参见Wilson T.,Shepard C.Theoty and Practice of Scanning Optical Microscopy,AcademicPress,London,1984)。 The system is based on a non-coherent signal such as fluorescence or the like, and the fluorescent coherent spatial resolution methods, e.g. reflected, absorbed, or refracted twice (see Wilson T., Shepard C.Theoty and Practice of Scanning Optical Microscopy, AcademicPress, London , 1984). 利用非相干信号允许多层光学存储器把信息容量增大八倍之多。 Incoherent signal allows the multilayer optical information memory capacity is increased eight times.

在美国专利#4202491中,使用一种荧光油墨层,其数据点发出红外辐射。 In U.S. Patent # 4,202,491, the use of a fluorescent ink layer which emits infrared radiation data points.

日本专利#63,195,838提出一种具有荧光读取模式的WORM光盘,数据携带层被涂到基层的无光泽表面上。 Japanese Patent # 63,195,838 proposes fluorescent WORM optical disc having a read mode, data carried on the matte surface layer is coated onto a substrate. 由于读取和写入辐射的强烈光学散射,在该WORM的基础上,绝对不可能产生多层信息结构。 Since the reading and writing optical scattering intense radiation on the basis of the WORM absolutely impossible to produce a multilayer structure information. 但是,利用荧光合成物,能够产生多层光盘。 However, with the fluorescent composition, it is possible to produce a multilayer optical disc. 在美国专利##6027855和5945252,以及在EP 00963571A1中描述了这种技术。 U.S. Patent No. 6,027,855 ## and 5,945,252, and is described in EP 00963571A1 in this technology.

美国专利#6009065和#6071671(V.Glushko和B.Levich)描述了从多层荧光光盘逐位读取信息的设备。 U.S. Patent # 6009065 and # 6071671 (V.Glushko and B.Levich) describes an apparatus for reading information from a multilayer optical disc bitwise fluorescence.

发明内容 SUMMARY

本发明涉及荧光多层只读存储器(ROM)光学透明卡。 The present invention relates to a multilayer fluorescent read-only memory (ROM) card is optically transparent. 在本发明的实施例中,数据被保存在由多个光学上薄的信息层构成的多层结构中,所述信息层由隔离层分离。 In an embodiment of the present invention, data is stored in a multi-layer structure consisting of a thin layer on the plurality of optical information, the information layer is separated by an isolation layer. 以单独的荧光材料标记的形式,把数据位保存在信息层中。 To separate the fluorescent material-labeled form, the data bits stored in the information layer.

附图说明 BRIEF DESCRIPTION

图1是借助EFM代码,在荧光物质的帮助下,沿着CD-和DVD-格式的光学数据载体的表面记录的信息凹坑的二维空间分布的几何形状的示意图。 FIG 1 is a means of EFM codes, with the aid of a fluorescent substance, a schematic view of a two-dimensional spatial distribution along the surface of the recording of the information pit of the optical data carrier format of CD- and DVD- geometry.

图2是利用ROM型荧光多层光学卡及其横截面的结构选项之一的示意图。 FIG 2 is a ROM type multilayer optical card and its fluorescence is a cross-sectional schematic view showing a configuration option horizontal.

图3是FMLC数据层之一的信息域的信息页(a)、区(b)和帧(still)(c)的示意图。 FIG 3 is the information page (a) one of the fields of the data FMLC layer region (b) and a schematic view of a frame (still) (c) of.

图4是借助ETT代码,在荧光物质的帮助下记录的四个相邻信息字节的几何结构的示意图。 FIG 4 is the code by ETT, a schematic geometry bytes of information recorded with the help of four adjacent fluorescent substance.

图5是荧光多层光学卡读取设备的示意图。 FIG 5 is a schematic view of a fluorescent multilayer optical card reading apparatus.

图6是读取设备中的光学组件和光学卡定位(卡移动)系统的操作图。 FIG 6 is a diagram of an optical assembly and operation of positioning the optical card reading apparatus (mobile card) system.

图7是构成从光学多层荧光卡读取数据的读取设备的一部分的功能传感器。 FIG. 7 is a part of the function of the sensor reading device for reading data from the optical fluorescent multilayer card.

图8表示了读取模式下的数据处理系统。 Figure 8 shows a data processing system in a read mode.

图9是从光学多层荧光卡读取信息的设备的光学图。 9 is a view of the apparatus of the reading optical information from an optical fluorescent multilayer card.

图10是矩阵和微透镜的LED和微透镜片段的顶视图(a)和横截面图(b)。 FIG 10 is a top view of the LED matrix and the microlenses and microlens segments (a) and a cross-sectional view (b).

图11是微透镜矩阵的示意原理图。 FIG 11 is a schematic diagram of a microlens array.

图12是光学卡装载和定位的设备的示意图。 FIG 12 is a schematic view of an optical card apparatus for loading and positioning.

图13表示了不需要移动光学卡,逐层调整焦点的各种方式。 13 shows various ways without moving the optical card, layer by layer to adjust the focus.

图14表示了利用EED代码写入的荧光光学卡的片段之一的初始计算机图像,λ=0.65mmc,NA=0.65。 FIG 14 shows a computer image of one of the initial code into the segment using the EED fluorescence optical card, λ = 0.65mmc, NA = 0.65. 该图像可用于产生照片模板,以便形成ROM型多层荧光光学卡的信息层。 The picture image generating template may be used to form a multilayer fluorescent information layer ROM type of optical card.

图15表示了由沿着CCD相机拍摄范围的平面布置的读取设备光学系统形成的荧光光学卡信息层的同一片段的计算机图像。 FIG 15 shows a computer image of the same fragments fluorescent information layer of the optical card reading apparatus is formed by an optical system disposed along the plane of the CCD camera range.

图16表示了由CCD相机读取,随后进行计算机处理的同一片段的计算机图像。 16 shows read by a CCD camera, followed by computer image processing computer of the same segment.

应指出的是上面引用的附图并不反映某一部件的实际比例和尺寸。 It should be noted that the above cited figures do not reflect actual proportions and dimensions of a component. 附图只是用于使得易于理解ROM型多层荧光存储器系统的结构和操作原理。 The drawings are only for making it easy to understand the structure and operation principle of ROM type multilayer phosphor system memory.

具体实施方式 Detailed ways

下面说明只读荧光多层光学存储器透明卡(clear card)(FMC-ROM)200及其横截面的结构的选项之一。 The following describes a read only memory fluorescent transparent multilayer optical card (clear card) (FMC-ROM) 200, and a cross-sectional structure of one of the options. 该结构由下述基本部分构成:呈长方体形状的金属或塑料卡壳体(201),其尺寸为45mm×25mm×2mm;在多层光学数据载体(FMLC)203的基础上制备的1.6mm“光学插入物(insert)”(202),其尺寸为35mm×15mm×1mm,多层光学数据载体203置于玻璃基底(glass pad)(基体)204之上。 The structure consists of the following basic parts: a rectangular parallelepiped shaped metal or plastic card housing (201), having a size of 45mm × 25mm × 2mm; 1.6mm "prepared on the basis of the optical multilayer optical data carrier (FMLC) 203 on insert (insert) "(202), having a size of 35mm × 15mm × 1mm, the multilayer optical data carrier 203 is placed a glass substrate (glass pad) (substrate) 204 on top. 玻璃基底材料可使用石英,透明聚合物,例如聚碳酸酯、聚丙烯酸烷基酯、聚环烯烃和其它。 A glass base material can be quartz, a transparent polymer, such as polycarbonate, polyacrylic acid alkyl ester, and other polycycloolefin. 厚度约为100mmc的保护层205用于保护光学数据携带介质免受有害侵蚀性环境的机械损坏。 The thickness of the protective layer 205 for protecting approximately 100mmc carries optical data medium from harmful mechanical damage to aggressive environments.

光学卡(200)的壳体201被设计成保护数据区FMLC 203的边缘免被机械张紧和弄脏。 FMLC 203 housing an optical card (200) 201 is designed to protect the data region are mechanically tensioned Free edges and dirty. 它还有助于在读取设备中存放和移动FMC卡200。 It also helps to store and move 200 FMC card reading device.

具有多层光学数据载体(203)的光学插入物202附着在光学卡(200)壳体(201)的“固定框架”206上。 The optical multi-layer optical data carrier having a (203) 202 attached to the insert (200) of the housing (201) "Cage" 206 in the optical card. 这可借助填充光学插入物和框架(206)之间的空间207的热或光聚胶合剂(photopolimerizing glue)来实现。 This may be achieved by filling the space frame and optical inserts 207 of thermal or photopolymerization glue (photopolimerizing glue) between (206). 在胶合光学插入物和框架(206)之前,应利用“匹配槽口”208和209,彼此相对地定位这些部件,随后暴露于热或紫外线(UV)辐射,以便固化胶合剂。 Before gluing the optical inserts and the frame (206), should use the "matching notches" 208 and 209, these members located opposite each other, followed by exposure to heat or ultraviolet (UV) radiation, to cure the adhesive.

荧光多层光学数据载体(203)由多个数据层构成,从而它看起来象厚约0.5mm(优选)的一组12mm×32mm薄层(210)。 Fluorescent multilayer optical data carrier (203) is constituted by a plurality of data layers, so that it looks like a thickness of about 0.5mm (preferably) a set of 12mm × 32mm sheet (210). 它们的工作区的尺寸为10mm×30mm,工作区包含和在众所周知的CD或DVD ROM系统中使用的反射凹坑类似的众多单独的信息标记或凹坑。 They work area size is 10mm × 30mm, and a work area comprising a reflector used in the known CD or DVD ROM system similar to many individual information pit marks or pits. 这些凹坑可被看作相对于非荧光背景(212)布置的荧光标记(211)。 These recesses can be considered with respect to a fluorescent label (211) non-fluorescent background (212) arrangement. 应指出的是每个数据层(210)中的“信息携带区”213(工作区)的尺寸约比FMLC卡(200)的尺寸小1mm。 It should be noted that each data layer (210) in the "information-bearing zone" 213 (workspace) about a size smaller than the size FMLC card (200) is 1mm. 数据层(210)由厚度为50mmc的“中间层”(219)分开。 Data layer (210) "interlayer" 50mmc (219) separated by a thickness. 中间层透明,便于读取和数据携带荧光辐射(emission)。 A transparent intermediate layer, easy to read and carry data of the fluorescence radiation (emission). 借助厚度为几微米的光或热胶合层,该组数据层(210)和中间层(219)被胶合在一起。 A thickness of several microns by means of light or heat bonding layer, the set of data layer (210) and the intermediate layer (219) are glued together. 整个结构形成单个荧光多层载体FMLC 203。 The multilayer structure is formed throughout the single fluorescent carrier FMLC 203. 为了消除由离焦层发出的光反射、散射和衍射导致的寄生效应,如果可能的话,我们应选择数据层和中间层的相似折射系数。 In order to eliminate the parasitic effects of reflection, diffraction and scattering emitted defocusing caused, if possible, we shall select the data layer and the intermediate layer is similar to the refractive index.

数据层中夹杂着中间层的这种FMLC多层结构(203)应包括至少两个以上的数据层(210),不过理想地,包括10个数据层将更好。 Data layer with the intermediate layer of this mixed FMLC multilayer structure (203) should include at least a data layer (210) above two, but desirably includes a data layer 10 will be better. 这种结构被置于基底(基体)204上。 This structure is placed in the substrate (base) 204. 基底(204)由透明或非透明的无机材料(例如玻璃)或者由聚合物(例如聚碳酸酯、聚氯乙烯、氯化聚氯乙烯、聚甲基丙烯酸甲酯、聚苯乙烯、丙烯酸、聚烯烃或类似材料、丙烯酸酯和环氧光致聚合塑料等)制成。 A substrate (204) made of a transparent or non-transparent inorganic material (e.g. glass) or a polymer (e.g. polycarbonate, polyvinyl chloride, chlorinated polyvinyl chloride, polymethyl methacrylate, polystyrene, acrylic, polyethylene olefin or the like, and an epoxy acrylate photopolymerizable plastic, etc.). 这些材料能够容易地抛光、磨光和模塑,可使用注模或者注射压模,或者采用由光学处理(2P工艺)固化的最初液体单体或者低聚物合成物的UV聚合[Bouwhuis G.等,“Principles of Optical Disc Systems”,Adam Hilger Ltd.,Bristol andBoston]。 These materials can be easily polishing, polishing, and molded, using an injection molding or injection compression molding, or by the use of an optical process (2P process) the first liquid curable monomer or oligomer polymerizable composition of UV [Bouwhuis G. etc., "Principles of Optical Disc Systems", Adam Hilger Ltd., Bristol andBoston]. 这些材料被加工,直到它们的粗糙度不低于光学级14,与平直平面的偏差可能为2~5个牛顿环(Newton ring)为止。 These materials are processed until they are not less than the roughness of the optical stage 14, and the flat plane deviations may be up to 2 to 5 Newton rings (Newton ring). 只有这样,才能获得产品机械性质的所需质量。 The only way to obtain the required mechanical properties of the product quality. 另外,随着时间的过去,基底应能够经受住变形,并保持其的高平坦质量以及在指定位置的不同厚度。 Further, over time, deform the substrate should be able to withstand and maintain its high quality flat and different thicknesses at the specified position. 基底(基体)204用作安装于其上的FMLC 203的基底,它还有助于实现FMC卡(200)在其框架(206)内的准确定位。 FMLC 203 of the base substrate (substrate) 204 as mounted thereon, and also helps to achieve FMC card (200) in its accurate positioning frame (206). 在读取设备的读取辐射组件和荧光信号数据记录组件位于FMC 200两侧的情况下,基底204可以是透明的,或者至少包括由光学透明的材料制成的透明插入物,它应和FMLC(203)数据携带域(213)位于相同的位置。 In the case of reading radiating element reading apparatus and the fluorescence signal data recording component 200 located on both sides of the FMC, the substrate 204 may be transparent, or at least an insert made of a transparent optically transparent material, and that it should FMLC (203) carries data field (213) located at the same position.

为了消除过多的移动,并使读取模式下光电接收组件的数目降至最小,以及保持高的读取速度,整个工作区(信息域)213被分成一定数目的页,例如分成3页(214)(如图2中所示)。 In order to eliminate excessive movement, the number of optoelectronic receiving component mode and to minimize read, and maintain a high reading speed, the entire work area (information field) 213 is divided into a certain number of pages, for example, is divided into three ( 214) (shown in Figure 2). 该页约为10×10mm。 This page is about 10 × 10mm. 相邻两个数据页之间的距离h 218约为200mmc。 The distance h between the two adjacent pages of data is about 218 200mmc. 这些页(图3a)看起来象是一组矩形或正方形区域(例如一组25个区域)(315),其尺寸为2mm×2mm,而沿着Y轴,它们之间的距离为17.4mmc,沿着X轴,它们之间的距离为3.2mmc。 These pages (FIG. 3a) is a group looks like a rectangular or square area (e.g., a group of region 25) (315), having a size of 2mm × 2mm, along the Y axis, the distance between them is 17.4mmc, along the X axis, the distance between them is 3.2mmc. 它们分别包含最多117个帧(still)(316)(图3b),但是其中只有115个可以是数据承载的。 They each contain up to 117 frames (still) (316) (FIG. 3b), but only 115 may be data bearer. 帧尺寸取决于读取设备设计,可以是204.8mmc×153.6mmc,沿着坐标轴的距离分别为17.4和0.8。 Frame size depends reading apparatus designed to be 204.8mmc × 153.6mmc, the distance along the axis, respectively 17.4 and 0.8. 零帧(319)用于精确调整(沿着X、Y和Z轴高达0.1mmc,在角坐标下精度高达10-3弧度)。 Frame zero (319) for precise adjustment (along the X, Y and Z axis up 0.1mmc, at an angular accuracy of up to 10-3 radians coordinate).

这些帧被分成簇(317),在每个帧中,其数目最高可达48个(沿着光学卡(200)信息域(213)的X和Y轴为6×8)(图3c)。 The frame is divided into clusters (317), in each frame, the number of which is up to 48 (X and Y axes along the optical card information field (213) (200) is a 6 × 8) (FIG. 3c). 簇尺寸可以约为25.6×25.6mmc,并且它们之间的距离沿着Y轴为1.6mmc,沿着X轴为0.8mmc。 Cluster size may be approximately 25.6 × 25.6mmc, and the distance between them along the Y-axis 1.6mmc, along the X-axis 0.8mmc. 一簇能够包含372字节的信息(一个字节(318)等于其尺寸为0.4mmc×0.4mmc的10个凹坑(321)(图3d),一个字节包含约8位信息)。 Cluster can contain 372 bytes of information (a byte (318) is equal to a size of 10 0.4mmc × 0.4mmc dimples (321) (FIG. 3d), a byte contains 8 bits of information about). 簇尺寸还依赖于编码算法,编码算法用于消除像差(aberration)和失真。 Cluster size also depends on the coding algorithm, encoding algorithm for eliminating aberration (aberration) and distortion. 根据编码方法中的算法之一,一组32个字节将保存24字节,而最小的数据量将是一组32个字节或320凹坑(如果我们使用下面引用的ETT编码(8-10编码))。 One encoding method according to an algorithm, a set of 32 bytes to save 24 bytes, and the minimum amount of data will be 32 bytes or a group of recesses 320 (if we use the following references ETT coding (8- 10 encoding)). 从而,一簇应具有N×320容量,这里N大于或等于1。 Thus, the cluster should have a capacity of N × 320, where N is greater than or equal to 1. 我们需要把帧分成簇,使它们更可靠,并实现空间低频分量对“0”和“1”信号的对比的有害影响的快速消除。 We need to frame into clusters, making them more reliable, and low-frequency component of the harmful effects of spatial contrast to "0" and "1" signal for the rapid elimination. 另外,帧还包括为帧读取过程中快速聚焦和定位而设计的15×15mmc支持域(320)。 The frame further comprises a support 15 × 15mmc domain reading frame positioning and focusing during fast designed (320).

FMLC(203)ROM数据层(210)还包括其它附加的ROM地址域,所述ROM地址域携带支持数据,支持数据可支持例如读取头和FMC 200卡相对于彼此的相互定位。 FMLC (203) ROM data layer (210) further includes other additional ROM address field, the ROM address field carries the data support, for example, may support data support readhead and FMC 200 cards mutual positioning relative to each other.

位于相互重叠的不同数据层内的几个帧可形成堆叠的帧(a stack ofstill)或信息栈(stack)。 Several frames located within the overlapping different data frame may be formed of stacked layers (a stack ofstill) or information stack (stack). 我们可从该信息栈读取信息,而不必沿FMLC平面移动读取头,为此我们只需要把透镜焦点从一层内的一个帧调整到另一层内的一个帧。 We can read information from the stack information, without having to move the read head plane along FMLC, for which we only need a lens focal point adjusting frame from one layer to the other layer within a frame. FMLC地址域实现定中心,它们可位于,例如第一层或者最后一层中,或者位于每个FMLC层内。 FMLC centering address domain implementation, they may be located, for example, in the first layer or last layer, or within each layer FMLC.

当在堆叠的帧内逐层进行读取时,为了确保光学系统对准和读取调整的成本最小,我们应使中间层的厚度(相邻数据层之间的距离)保持1mm,信息域的空间重叠的精度应在±1mm之内,而它们的角度重叠的精度应约为1013弧度。 When reading frame stacked layer by layer, in order to ensure the minimum optical system alignment and the reading adjustment costs, we should be the thickness (the distance between adjacent data layers) holding the intermediate layer 1mm, information field spatial overlap accuracy should be within ± 1mm, the angle of overlap and their accuracy should be about 1013 radians.

图4表示了以借助提出的沿着FMLC数据层的表面的二维编码的ETT(8-10)代码,而不是目前不使用的EFM(8-14调制)14-通道调制代码记录的四个相邻字节(40)的形式表示的信息凹坑的二维空间分布的示意几何形状。 Figure 4 shows in (8-10) made by the code along the surface of the two-dimensional code data layer FMLC ETT, not currently unused EFM (eight to fourteen modulation) modulation codes 14- recording four channels two-dimensional space of adjacent bytes form the information pits (40) is a schematic representation of the distribution geometry. 另外,在提出的发明中,一个信息字节被记录在域(微区)41中,域(微区)41由具有某一尺寸,例如0.4×0.4mmc的10个(2×5)正方形单元(称为“2×5”域)组成,并且每个正方形单元可以包含也可不包含荧光物质。 Further, in the proposed invention, one byte of information is recorded in the region (micro-region) 41, domain (domains) 41 having a certain size, e.g. 0.4 × 0.4mmc 10 (2 × 5) of square cells (referred to as "2 × 5" domain), and each square unit may contain or may not contain a fluorescent substance. 从而荧光物质的可用性或不可用性的事实用作该域中信息凹坑的存在与否的指示。 So the fact that the availability or unavailability of the fluorescent substance used as an information pit in the domain of the presence or absence of an indication.

从而,当我们记录信息时,这些凹坑中的每个凹坑可被填入当吸收读取辐射时,变成荧光性的物质,例如单元42,也可不被填入所述荧光性物质,例如单元43。 Thus, when we record information, which pits each pit can be filled when the reading radiation absorbed into the fluorescent substance, such as cell 42, may not be filled to the fluorescent substance, unit 43, for example. 从而,一字节的信息将占据10S正方形,即S=a×a,这里“a”是一个正方形单元的面积(square),而另一“a”是正方形对边之一。 Accordingly, the information will occupy one byte 10S square, i.e., S = a × a, where "a" is the area (Square) a unit square, and the other "a" is one of the sides of the square. 将横越彼此邻接的空间安置相邻的字节,而不象图4中描述那样存在任何间隙。 The adjoining each other across a space disposed adjacent bytes, as depicted in Figure 4 without any gaps that exist.

在数据层(210)的表面上,包含信息字节的全部256种组合被描述成由10个(2×5)正方形单元构成的域,它可以是两种类型。 On the surface of the data layer (210), the combination of all 256 kinds of information bytes comprising field is described as consisting of 10 (2 × 5) composed of square cells, which may be of two types. 第一种222种组合被描述成每个正方形单元(42)已被填入某一荧光物质(信息凹坑或荧光标记)的域,在其(2×5)域内,这些凹坑中的每一个具有至少一个相似的相邻单元,所述相邻单元被成一行地或者交叉布置,而未被填入荧光物质的每个正方形单元(43)在其域内,也具有一个这样的相邻单元。 The first 222 kinds of combinations are described as each unit square (42) has been filled fluorescent substance of a domain (information pit or fluorescent labels), and in which each (2 × 5) in the art, these pits the at least one neighboring cells having a similar, adjacent units are arranged in a row or cross, and each square cells (43) is not a fluorescent substance filled in its domain, also have one such neighboring cells . 我们把这种条件称为耦接条件。 We call this condition is called coupling conditions. 随后我们将看到上面的两个字节和左下侧的字节(图4中所示)满足这些要求。 Then we will see that byte two bytes and the lower left side of the above (shown in FIG. 4) meet these requirements.

剩余的每个组合可被描述成互补域,在这些互补域中,在(2×5)域的左上侧或左下侧单元中,都不满足耦接条件(左下侧字节参见图4)。 Each of the remaining combinations can be described as the complementary domains, these domains complementary, in (2 × 5) or the upper left side in the lower left side of the field unit, does not satisfy the coupling condition (see the lower left side of FIG. 4 bytes). 只存在52个这些耦接域,这些耦接域确保用于服务于组合的一定保留(备份),因为通常,只需要构成一个信息字节的256种组合。 There are only 52 of these fields are coupled, the coupled fields serve to secure a certain combination of retention (backup), because usually, only 256 kinds of combinations constituting a byte of information. 在读取模式下,我们的设备能够选择由相互接合的域或字节组成的每个条带内,满足耦接要求的域,因为选择的域与位于其左侧的域接合在一起。 In read mode, our device can be selected in each byte or strips are joined by the domain composition, to meet the requirements of field coupling, since the selected domain is not joined together at the left side. 从而,被填入荧光物质的最小区域包括两个相邻的荧光组成部分或者信息凹坑(荧光标记),从而其尺寸为a×2a。 Thus, the minimum area is filled two adjacent fluorescent materials include fluorescent or part of the information pit (fluorescent label), such that a size of a × 2a. 未被填入荧光物质的最小区域具有完全相同的尺寸。 Minimum area is not filled with a fluorescent material identical size.

借助提出的二维信息编码的ETT技术,我们能够用荧光标记(信息凹坑)填充数据层的整个区域,而不会留下任何间隙。 By means of a two-dimensional encoded information ETT proposed technique, we can (information pits) to fill the entire area of ​​the data labeled with a fluorescent layer, without leaving any gap. 这将允许利用借助一维或二维光电控制器阵列,例如利用电荷耦合器件(CCD)照相机的同时读取方法。 This would allow the use by one or two dimensional array of photoelectric controller, for example using a charge coupled device (CCD) camera while reading method.

图5-8表示了带有ROM型荧光多层光学卡(501)的读取设备单元(500)及其主要组件。 Figure 5-8 shows the (500) and its major components ROM reading apparatus unit with fluorescent multilayer optical card (501). 从而,读取设备包括下述主要组件: Thus, the reading apparatus includes the following main components:

1)光学卡和光学组件彼此相对粗略和精确定位用系统(510),它包括下述:-利用子系统旋转机构装载光学卡的节点(511);-指示装载角(当前卡坐标)的传感器(701和702);-指示装载器件状态(“打开-关闭”)的结束(end)传感器(701)和指示装载单元中卡的可用性的结束传感器(601);-(根据焦点)移动微透镜(microlen)阵列(或者根据焦点移动光学卡)的机构;-具有光学组件的聚焦传感器(703);-安装和替换补偿板的装置(603);-移动场透镜,以便调整光学系统放大系数(沿着光轴移动)的装置;-控制操纵装置(引擎驱动器等)的子系统。 1) The optical card and the optical components and precise positioning relative to each other with the coarse system (510), which comprises: - an optical card loading node (511) using the rotation mechanism subsystem; - indicates the load angle (current card coordinates) sensor (701 and 702); - indicates the load status of the device - the end ( "opening and closing") of the (end) sensor (701) indicating the end of loading unit sensor availability card (601) according ;-( focus) moves microlens (Microlen) array (or focus movement of the optical card) mechanism; - focus sensor having an optical assembly (703); - installation and replacement compensation plate means (603); - movement of the field lens, in order to adjust the optical system magnification factor ( along the optical axis) of the device; - actuating control means (engine driver, etc.) subsystem.

2)形成读取辐射的各种光束的系统(520),该系统包括下述组件:-最常见地,照亮光学卡的某些区域的发光单元的二维矩阵;-形成由各种读取辐射束组成的光场,并确保置于照亮光线前方的FMLC信息栈(210)的读取的光学子系统;和-荧光光学单元的矩阵控制用子系统。 Various beam system (520) 2) formed reading radiation, the system comprising the following components: - Most commonly, the optical card is illuminated two-dimensional matrix of light emitting cells in certain areas; - formed from a variety of read take light field consisting of a radiation beam, and ensures the optical subsystem disposed in front of the light illuminating the stack FMLC information (210) read; and - a fluorescence optical unit matrix control subsystem.

3)包括形成其数目等于荧光光学单元的数目的众多光学通道的微透镜矩阵的光学系统(530)。 The optical system of the microlens array 3 of the many optical channels) comprises forming a number equal to the number of fluorescence of the optical unit (530). 该系统用于把片段图案(帧)从正被读取的表面以固定的比例转移到光接收矩阵。 The system is used to segment the pattern (a frame) in a fixed ratio transferred from the surface being read by the light receiving array. 另外,光学系统(530)还包括对所有通道来说共同的那些组件:滤光器,场透镜和光学平衡器;4)记录来自FMC的信息的系统(图5和8),该系统包括下述组件:-基于矩阵光光接收传感器的检测器(801);-基于数字信号处理器的检测器控制器(802);-识别并把位转换成荧光记录中采用的信息凹坑的可编程转换装置(803);-对抗像差代码解码的装置(804);-把数据转发给微计算机的数字接口(805);-把数据流转发给外面的解压缩器的数字接口(806); Further, the optical system (530) further comprises a component that is common to all channels: a filter, and an optical field lens balancer; 4) from FMC system information (FIGS. 5 and 8), which system includes said assembly: - receiver array spectrophotometer detector sensor (801) based; - a detector based on a digital signal processor controller (802); - to identify and converts bit information pit recording used in fluorescent programmable conversion means (803); - means for decoding the code aberration (804) against; - the forwarding data to the digital interface microcomputer (805); - the data stream to the digital interface solutions outside compressor (806);

-产生反馈信号的控制器软件(807)。 - generating a feedback signal controller software (807).

5)控制设备组件的微处理器系统(560);6)电源(570)。 5) the microprocessor control system (560) of the device assembly; 6) a power supply (570).

对于我们的发明,我们还提供了光学数据读取设备(光学拾取器)的示意选择(参见图9)之一,在荧光载体中,光学数据读取设备(光学拾取器)以ETT二维方式对数据编码,所述荧光载体被制备成多层光学卡(200)。 For our invention we also provide a schematic selecting an optical data reading device (optical pickup) to one (see FIG. 9), the carrier in the fluorescence, an optical data reading device (optical pickup) in a two-dimensional manner ETT encode data carrier is prepared as the fluorescent multilayer optical card (200). 这确保大量数据的高速读取。 This ensures high-speed read large amounts of data.

这种光学存储系统的基本组件如下:1)FMC ROM型多层载体-荧光多层光学卡(910);2)920-包括照明装置(921)和具有特殊的选择性滤光器(923)的聚光光学器件(922)的读取辐射(938)装置;和3)930-记录信息信号(937)的部件,包括由高温(NA~0.5)非球面微透镜(932)形成的矩阵(931),一组光学补偿组件(933),另一光谱选择性滤光器(934),场透镜(935)和光接收器件矩阵(936)。 The basic components of such an optical storage system is as follows: 1) FMC ROM type multilayer vector - Fluorescent multilayer optical card (910); 2) 920- includes an illumination means (921) and has a special selective filter (923) reading radiation condensing optics (922) to (938) means; and 3) recording information signals 930 (937) of the member, comprising a matrix of a high temperature (NA ~ 0.5) aspherical microlenses (932) is formed ( 931), a set of optical compensation component (933), a further spectrally selective filter (934), a field lens (935) and a light receiving device array (936). 应指出的是按照把光学卡(910)置于其间的方式布置读取辐射装置(920)和记录信息信号的部件(930)。 It is noted that according to the optical card (910) disposed therebetween manner member (930) is arranged to read the radiation means (920) and a recording information signal.

为了确保光学卡各层的重排,卡(910)产生垂直移动。 To ensure that each layer of the optical card rearrangement card (910) generates a vertical movement. 但是,存在更可取的第二选择。 However, the presence of the second selection preferable. 在这种选择中,我们使用一组特殊的光学补偿器。 In this option, we use a special set of optical compensators. 这些补偿器(933)是光透明的高精度板,其厚度和中间层相同,并且由可延伸的光楔(wedge)等组成(参见图13和[美国专利#5381401])。 The compensator (933) is optically transparent plate with high accuracy, the thickness and the same intermediate layer, and a wedge (Wedge) and the like may extend composition (see FIGS. 13 and [U.S. Patent # 5,381,401]). 它们被周期性地插入读取设备的光学通道。 They are periodically inserted into the optical path of the reading device. 这些光学元件的数目等于光学卡中数据层的数目。 It is equal to the number of optical elements in the optical card number data layer. 我们认为第二种选择更可取,因为这种情况下,我们设法消除由光密度的改变而导致的像差。 We believe that the second option is preferable because in this case, we try to remove aberration caused by change in optical density caused. 在第二选择下,层重排的深度只受光学系统操作距离限制。 In the second selection, depth layer rearranged only by the optical system operation distance limitations. 还可使用自适应光学元件,例如由液晶制备的空间光调制器。 Adaptive optical element may also be used, for example, prepared by a spatial light modulator of the liquid crystal. 这种选择更有前途,因为它不仅调整了聚焦,而且自动地把一个设备保持在焦点(自动聚焦)。 This choice more promising, because it not only adjust the focus, and automatically put a device remains in focus (auto focus).

光谱选择性滤光器(934)用于过滤剩余的读取辐射,以便分离由数据载体荧光(937)产生的所需信号。 Spectrally selective filter (934) for filtering the remaining reading radiation, in order to separate the desired signal from the data carrier fluorescence generated (937). 它位于微透镜矩阵和场透镜之间。 It is located between the microlens array and a field lens. 在另一选择下,我们可使用安装在读取设备(在接收装置之前)的反射光谱滤光器。 In another alternative, we can use the reading device installed in the reflective spectral filter (before receiving device). 可用电学方式调整这些凹口(Notch)型滤光器,这些Notch滤光器由确保良好的辐射光谱过滤的液晶制备。 Available electrically adjusted notches (Notch) type filter, which filters Notch good radiation of the liquid crystal prepared by the spectral filtering to ensure.

为了激发光学卡(910)数据层的荧光,用辐射照射该光学卡,其显像(specter)和由发光体构成的吸收条的显像相关。 For fluorescence excitation optical card (910) a data layer, the optical card is irradiated with radiation, which imaging (Specter) imaging and absorbed by the light emitting material composed of strips associated. 由于其众所周知的特性,诸如LED(发光二极管)之类半导体发射器极好地适应该目的。 Because of its well-known properties, such as an LED (Light Emitting Diode) of the semiconductor emitters excellently adapted for this purpose. 它们可以是固体、有机或激光二极管(LD)。 They can be solids, or organic laser diodes (LD). 为了提高从光学卡读取数据的速度,以及使卡移动降至最小,我们建议使用LED矩阵照明器或者具有垂直空腔表面发射激光器(VCSEL)的LD矩阵。 In order to improve the reading speed of data from the optical card, the card moving and causing minimized, we recommend using LED matrix or a luminaire having a vertical cavity surface emitting laser (VCSEL) of LD matrix. 这种装置可被制备成一组(矩阵(921))单独的半导体二极管(924),或者制备成利用平面技术产生的立体结构。 Such a device may be prepared as a set (matrix (921)) of individual semiconductor diode (924), or prepared as a three-dimensional structure using planar techniques. 由用于聚集输入辐射的微透镜(925)形成的矩阵922也可被制备成一组,或者制备成利用集成技术产生的立体结构。 Matrix 922 for collecting the input radiation from the microlenses (925) may also be formed into a set of prepared or prepared using techniques of integrated three-dimensional structure.

我们选择了这样的一种技术方案,即采用由25个商用高亮度蓝色LED(924)形成的一组对称矩阵(921)。 We choose such a technical solution, which uses a set of symmetric matrix of 25 commercial high-brightness blue LED (924) is formed (921). 利用在兰宝石底层上生长的InGaN非均匀结构制造这些LED。 InGaN structure using a non-uniform growth on the sapphire underlying these manufacturing LED. 二极管被布置成正方形网格(5×5单元),相邻LED之间的距离为2mm。 Diodes are arranged in a square grid (5 × 5 units), the distance between the adjacent LED is 2mm. 微透镜矩阵(925)具有类似的尺寸。 A microlens array (925) having a similar size. 每个发光二极管的尺寸约为350×350×100mmc。 Each light emitting diode of a size of about 350 × 350 × 100mmc. 一些二极管只在一侧具有触点。 Some of the diodes having contacts on one side only.

照明装置(920)包括它自己的矩阵(921),LED和确保只要需要,就开关任意LED(924)的电子控制器(图9中未示出)。 The lighting device (920) comprises a matrix of its own (921), LED, and as long as necessary to ensure that, on any switch LED (924) an electronic controller (not shown in FIG. 9).

严格地周期性对准排列LED晶体,并将其布置在硅基底(100)上(图10),硅基底(100)沿着平面[100]对准,硅基底(100)还用作热导体,并且当需要时,反射LED辐射(101)。 LED arranged strictly periodically aligned crystals, and which is disposed on the silicon substrate (FIG. 10) (100), a silicon substrate (100) along a plane [100] aligned with the silicon substrate (100) also serves as a heat conductor and, when required, the reflected radiation LED (101). 通过交替喷射金属和介电涂层,并利用光刻法和化学浸蚀(staining),按照标准的集成技术制备双路接点的系统。 By alternating the injection metal and a dielectric coating, and etching by photolithography and chemical (staining), prepared according to the two-way contact system standard integration technologies. 为了产生金属反射器(103),我们使用碱性浸蚀。 In order to produce a metallic reflector (103), we use alkaline etching. 有选择地使用碱性浸蚀物质,并且碱性浸蚀物质只影响敞露的正方形区域,因为剩余的材料被保护性SiO2掩模覆盖。 Selectively etching using a basic substance, and an alkaline etching substance affects only the region free laid square, since the remaining mask material is covered with a protective SiO2. 以截头棱锥体的形式形成反射器,其锥面相对于板成55度的角度。 The reflector is formed as a truncated pyramid, which is tapered at an angle relative to the plate 55 degrees. 反射器内表面被涂覆铝。 The inner reflector surface is coated with aluminum. 这些反射器的使用确保和把设备安装在平直的金属化硅表面上的选择相比,输出的光能增大1.5倍。 Use of the reflectors and to ensure that the apparatus is mounted on a flat metal surface of the silicon selection compared to 1.5 times the light output is increased.

在我们使用焊接打开接点(102)之后,矩阵基体(100)与由球状微透镜(105)形成的另一矩阵(104)接合。 After we open the welding joint (102), the base matrix (100) engaged with another matrix (104) is formed by a spherical microlens (105). 借助高精度设备实现所述接合,该结构被装配在集成电路框架之内,所述集成电路框架的盖子具有带透滤光器窗口(923)。 The engagement achieved by means of precision equipment, the structure is fitted within the framework of the integrated circuit, the integrated cover frame having a window with a transparent filter (923).

由球状微透镜聚光器(922)形成的该组矩阵收集来自每个LED的辐射,形成25个光束,光束的辐射强度(RMS<0.07)沿着数据帧的边界(大约200×150mmc)内,正被读取的光学卡数据层的平面均匀分布。 The set of collected matrix of spherical microlenses formed concentrator (922) from each of the LED radiation beam 25 is formed, (approximately 200 × 150mmc) within the radiation intensity of the beam (RMS <0.07) along the data frame boundaries , n-layer planar optical card data to be read uniformly distributed. LED辐射影像可包括与光学卡(910)的发光体带重叠的弱的长波侧翼(wing)。 LED radiation image may comprise a weak longwave flank (Wing) of the optical card (910) with a light emitter overlap. 为了消除这种寄生信号,我们把带通滤光器(例如分色镜)(923)置于矩阵输出平面上。 In order to eliminate such spurious signals, we bandpass filter (e.g., dichroic mirror) (923) placed on the matrix output plane.

在数据读取模式下,激发的LED同时照射所有卡数据层中的堆叠的帧。 In a data read mode, the LED excitation simultaneously irradiated all card data frames are stacked in layers. 通过改变接收微透镜(932)的焦点,可把某些页投射到由光接收单元构成的矩阵。 By changing the focus of the microlens receiving (932), and some of the pages can be projected by the light receiving unit composed of a matrix. 按照时间序列逐一激发LED。 LED excitation in time series one by one. 在从25个帧读取数据之后,把光学卡向前移动和页宽相等的距离,重复整个过程。 After the data is read from the frame 25, the optical card is moved forward a distance equal to the page width and the whole process repeats.

微透镜矩阵(931)在数目不定的数据层上形成初始图案(图像)。 A microlens array (931) an initial pattern (image) on a variable number of data layers. 类似于LED矩阵(921),微透镜矩阵由置于正方形网格内的一组25个微透镜(5×5单元)组成,透镜中心之间的距离为2mm(图11)。 Similar to the LED matrix (921), a microlens array 25 is placed a set of micro lenses (5 × 5 cells) in the grid of squares, the distance between the center of the lens is 2mm (FIG. 11). 它被布置在与光学卡(200)的信息域(213)的距离约1mm的地方。 It is arranged at a distance to the optical card (200) information field (213) of about 1mm. 由于每个微透镜被设计成转发由小于1微米(约200mmc×200mmc)的单元构成的数据帧的荧光图案(图像)(荧光辐射显像带约为50nm),因此我们应选择最大限度地接近理论极限的光学设计。 Since each microlens is designed to relay data frame fluorescent pattern (image) (fluorescence radiation imaging with about 50nm) made of a unit less than 1 micrometer (about 200mmc × 200mmc), so we choose the maximum to be close the theoretical limit of optical design. 在荧光波长(约500nm)下,每个微透镜的数值孔径不小于0.5。 At fluorescence wavelength (about 500nm), the numerical aperture of each micro-lens is not smaller than 0.5. CD播放器中使用的,数值孔径为0.5,直径5mm的商用微透镜具有100mmc的视场。 , The numerical aperture of a CD player as used in 0.5, 5mm in diameter commercial microlens having a field of view of 100mmc. 由于它们只是基本的小透镜,因此它们存在色差。 Due to their small lenses just basic, and therefore they are color. 我们提出的设计选择(哪一选择?)允许我们把视场提高到200mmc,并把透镜直径减小到2mm。 Design choices (which to choose?) We propose allows us to increase the field of view to 200mmc, and the lens diameter reduced to 2mm. 在我们的设计中,我们还使用双(?)面涂层,以消除在整个荧光显像范围中的色差。 In our design, we also use a double (?) Surface coating to eliminate chromatic aberration in the entire range of fluorescence imaging. 从而,每个微透镜的基本参数如下:消色差小透镜,工作显像范围-470~520mmc,直径-2mm,焦距-2mm,数值孔径-0.5,放大-无限。 Thus, each microlens basic parameters are as follows: small achromatic lenses, developing the working range -470 ~ 520mmc, -2 mm diameter, -2 mm focal length, numerical aperture -0.5, amplification - unlimited.

场透镜(935)用于投射借助矩阵(931)的相关微透镜(932)形成的数据帧(316)的各个荧光图案。 Data frame (316) associated microlens field lens (935) for projecting a matrix means (931) to (932) formed on the respective phosphor patterns. 场透镜把它们投射到光接收单元矩阵所处平面(936)上的相同位置。 Field lens to project them on the same position of the plane in which the light receiving element array (936). 其直径稍微超过光学卡的信息域直径(213)(最好1.2cm),其优选焦距为40mm,因为它确定整个光学系统的光学放大。 Which slightly exceeds the diameter of the optical card information field diameter (preferably 1.2cm) (213), which is preferably a focal length of 40mm, because it determines the overall optical system of the optical amplification. 场透镜(934)和位于矩阵(931)内的微透镜的焦距之间的比值必须接近光接收单元矩阵(935)和数据页(?)之间的比值。 The ratio between the focal length ratio between the microlenses within a field lens (934) and of the matrix (931) to be close to the light receiving element array (935) and data pages (?). 在光学系统的这种操作模式下,以矩阵(931)中每个微透镜(932)为中心(沿着轴定位)的任意数据帧的图像总是和光接收单元矩阵(936)的位置相符(图9)。 Arbitrary data in this mode of operation of the optical system, in a matrix (931) of each microlens (932) centered (positioned along an axis) of the image frame and a light receiving unit always matrix (936) in position for ( FIG. 9).

我们可使用CCD CMOS阵列作为光接收矩阵。 We can use the array as a light receiving CCD CMOS matrix. 从而,我们使用了由1024象素阵列(768)组成的标准CCD相机。 Thus, we used standard CCD camera 1024 by the array of pixels (768) thereof. 每个象素的尺寸为4.65×4.65mmc,而其帧频率为25帧/秒。 Size of each pixel was 4.65 × 4.65mmc, and its frame frequency is 25 frames / sec.

数据读取的过程包括下述主要阶段:把光学卡装载到读取设备中;安装位置传感器,和数据读取。 Process the read data comprises the main stages: the optical card is loaded into the reading device; installation position sensor, and data reading.

关于读取设备中光学卡的装载和定位的示意选择之一,参见图12。 Selecting one of a schematic on loading and positioning of the optical card reading apparatus, see FIG. 12. 在该第一阶段中,具有光学卡(1202)的容器(1201)被置于对接凸缘(1203)旁边,并利用闩锁(锁扣)(1204)将其锁定就位。 A container (1201) in the first stage, an optical card (1202) is placed abutting the flange (1203) Next, using a latch (striker) (1204) which is locked in place.

用于粗略移动的直线(?)装置紧夹卡的端部,将其移入读取装置的锁定装置(1206)中。 For the coarse movement linear (?) End of the device grip card reading device into which a locking means (1206). 容器退出(1201),锁定装置(1206)开口具有保证卡平滑运动(不会被钩住)的漏斗(funnel)(1207)。 Exit container (1201), the locking device (1206) having a funnel opening to ensure smooth movement of the card (not hooked) the (funnel) (1207). 锁定装置定位传感器(1208)控制运动机构(1209)的运动,并且当它们检测到光学卡帧(1211)上的标记(凹口)(1210)时,运动停止。 (1208) motion control means (1209) movement of the locking means of the positioning sensor, and when they detect the optical mark on the card frame (1211) (recess) (1210), motion stops. 卡由可编程装置固定就位。 Card is held in place by a programmable apparatus.

移动装置构成一组至少2个三坐标压电陶瓷装置,所述三坐标压电陶瓷装置确保沿三个方向中任意方向的低间距循环运动。 The mobile device constituting a coordinate set of at least two piezoelectric ceramic device, the piezoelectric ceramic device coordinate to ensure low pitch circular movement in any direction in three directions. 相位和运动方向的组合使得能够在等于数百微米的高精度的大动态运动中,同时移动锁定装置和卡。 Combined phase and enables the direction of movement is equal to several hundreds of microns large dynamic movement of high precision, while moving the locking device and the card.

通过向运动装置供电,实现运动。 By the power supply to the movement means to achieve movement. 当装置处于开始位置时,即在阶段1中,向装置2供电,随后出现命令“向上前进”,装置2接收命令“向下后退”。 When the apparatus is in the starting position, i.e. in phase 1, the power supply device 2, followed by the command "forward direction" means 2 receives command "back down." 在阶段2中,上升的装置正在垂直移向其开始位置。 In Phase 2, the rising means is moved to its vertical starting position. 随后循环重复。 Then the cycle repeats.

通过沿平面分布压电陶瓷,以及它们沿相反方向的运动,确保旋转。 Distributed along the plane of the piezoelectric ceramic, and their movement in the opposite direction, to ensure rotation.

光学运动传感器看起来象两个线性漏斗。 The optical motion sensor looks like two linear funnel. 这些漏斗之一(可移动的漏斗)连接在锁定装置上,而另一漏斗(固定的漏斗)连接在外壳上。 One of these hoppers (movable funnel) connected to the locking means, and an addition funnel (a fixed funnel) attached to the housing. 当漏斗暴露于平行光束下时,看起来象众多条带的图像被光接收器接收。 When the hopper is exposed to parallel light beams, the image looks like many strip is received by the light receiver. 条带之间的距离取决于漏斗的角度对准,而条带(strip)的位置取决于漏斗的角度偏移。 The distance between the strips depends on the angular alignment funnel, and the position of the strip (Strip) depends on the angular offset funnel. PZC计算尺(标尺)的采用使得能够测量条带的准确位置,而光接收器可计数它已经过的条带的数目,从而计数漏斗周期的数目。 PZC slide rule (scale) can be measured accurately using a location such that the strip, while the light receiver may count the number of bands it has been, so that counting the number of cycles funnel.

锁定装置构成具有光学卡导向槽(粗略地)、夹具和漏斗形传感器的可移动组件的平台。 Locking means constituting an optical card having a guide groove (roughly) platform, a movable clamp assembly and a funnel-shaped sensor.

在读取设备中,用照明装置照亮数据页,以便读取。 In the reading device, the lighting device for illuminating the data page, in order to read. 数据页荧光图像被放大并投射到光接收装置的矩阵表面上。 Fluorescence data page image is enlarged and projected onto the surface of the light receiving device array. 按照来自数据页的一个凹坑应被投射到特定的一组象素,例如投射到2×2象素正方形上的方式,选择放大系数。 According to one page from the data pits to be projected to a particular group of pixels, for example, projected onto the square embodiment 2 × 2 pixels, choose magnification factor. 换句话说,凹坑和象素的位置严格相关。 In other words, the position of the pit and strictly related to the pixel. 例如,左上角中的凹坑与光接收矩阵的左上角中的4个象素相关。 For example, the upper left corner and the light-receiving recesses in the upper left corner of the matrix of four pixels in the correlation. 这种解决方案(凹坑和象素之间的相关性)有助于消除成本高的图像处理,它还采用相当简单并且低廉的微芯片用于图像解码。 This solution (the correlation between the pit and the pixel) helps eliminate costly image processing, it also uses relatively simple and low-cost microchip for image decoding. 下面说明数据页解码算法,它包括利用象素信号的下述处理,连续轮询光接收器矩阵象素。 Page data decoding algorithm will be described, which comprises the following process using the pixel signal, a continuous polling of the light receiving pixel matrix.

阶段1.装载光学卡装载节点滑出设备。 Stage 1. Load the optical card loading device node slipping. 卡被插入设备的接收槽(或接收托架)中,直到被锁定就位为止。 The device is inserted into the card receiving slot (or receiving bay), and locks into place until it is. 一旦传感器确认卡的可用性,则装载节点将滑入读取设备中,并停止在与信息片段之一的位置相关的位置。 Once the sensor card for availability, then the node will slide loading reading device, and the stop position associated with the position of one of the pieces of information. 这种装载过程应保证调整页处于透镜阵列的预选透镜的视场中。 This loading process should ensure that the page is in the field of view preselected adjustment of the lens in the lens array. 调整页位于数据层中,其尺寸等于数据页的尺寸。 Adjusting layer in the data page, which is equal to the size of the data page. 调整页由多个荧光标记组成(参见描述光学卡的章节)。 Adjusting a plurality of pages composed of a fluorescent label (see the section describing the optical card). 装载装置中卡的初始安装的精度等于沿其每个坐标,信息页尺寸数值的一半。 Loading initial installation accuracy equal to one half of the card device along each coordinate, page size value. 例如,如果数据页尺寸为200mmc×150mmc,则安装精度被假定为沿一个坐标为100mmc,沿另一坐标为75mmc。 For example, if the data page size is 200mmc × 150mmc, the mounting accuracy is assumed to be a coordinate along 100mmc, along the other coordinates 75mmc.

在粗略安装卡和节点之后,打开照明。 After installing the card and coarse node, turn on the light. 照明系统通道对应于调整页。 The illumination system channel corresponds to the adjusted page. 使打开照明系统通道的电脉冲与启动光接收装置(FRD)帧扫描的脉冲同步。 Open and make electrical pulses activated lighting system channel light receiving means (FRD) frame scan pulses synchronized. 荧光图像被投射到FRD矩阵表面上。 Fluorescent image is projected onto the surface of the matrix FRD. 通过利用固定图像,多层荧光卡记录系统形成下述坐标的控制信号:1)“焦点”,2)卡的“X”和“Y”平面中的两个坐标,和3)角坐标“φ”。 By using a fixed image, a multilayer phosphor system card recording control signal is formed by the following coordinates: 1) "Focus", 2) the card "X" and "Y" coordinates of two planes, and 3) the angular position "[Phi] . " 通过控制系统,这些信号被发送给定位系统。 By the control system, the signals are transmitted to the positioning system. 定位系统采取几个步骤调整光学卡:1)首先,调整焦点;随后2)在卡的平面内旋转卡,和3)在该平面内移动卡,直到以调整页的行和列与FRD矩阵的对应行和列相符(当我们达到调整页时会说明相关性规则)的方式确定卡的位置为止。 A positioning system adjusting the optical card several steps: 1) First, the focus adjustment; followed by 2) rotating in the plane of the card in the card, and 3) in the plane of card movement until the page to adjust the rows and columns of the matrix FRD the corresponding row and column match (when we reach adjustment pages describe the relevant rules) to determine the way up to the position of the card. 如果调整页上的一些标记不能和FRE对应象素相符时,意味着光学系统放大倍率不等于标称放大倍率。 If the number of marks on the page can not be adjusted and the corresponding pixel FRE match means that the optical system the magnification is not equal to the nominal magnification. 通过相对于FRD沿着光轴稍微移动场透镜,进行放大倍率调整。 FRD is moved slightly by the field lens along the optical axis for adjusting the magnification with respect. 通过利用调整页的图像,多层荧光卡记录系统形成“比例”故障信号,并将其发送给控制场透镜移动的装置。 By using the page image adjustment, the multilayer recording system for forming fluorescent card "ratio" fault signals, and send it to the control means of the field lens movement.

一旦所有故障信号达到0,则假定卡已精确定位于其初始坐标为0的开始位置。 Once all the fault signal reaches 0, it is assumed that the card has been accurately positioned at their initial starting position 0 of the coordinate.

阶段2.设置位置传感器当调整页的精确定位被确认时,装载节点位置传感器计数器和微透镜大型传感器计数器达到0。 Phase 2. When the position sensor is provided to adjust the precise positioning of the page is acknowledged, the loading position sensor node and the microlens counter large sensor counter reaches zero. 利用位置传感器的数据继续光学卡的进一步定位。 Using the data of the position sensor is further continued positioning of the optical card.

阶段3.读取卡利用位置传感器数据,卡被移动到与第一信息页相关的位置,移动距离等于页的间隔周期。 3. Phase reading the card data by the position sensor, the card is moved to a position associated with the first page of a distance equal interval period page. 逐一打开照明系统通道,FRD从信息页读取数据。 The illumination system open one by one channel, FRD reads data from the information page.

随后卡移动到下一位置,重复上述过程,直到透镜矩阵扫描了“照管”所有透镜的区域内的全部数据页为止。 The card is then moved to the next location and repeat the process until the matrix scan lens "care" Until all the data pages in all region of the lens. 从而,在一个定位循环中,能够读取许多数据页。 Thus, in a positioning cycle, the data can be read many pages. 例如,对于微透镜和照明装置矩阵,如果我们选择5×5格式,则能够读取25页。 For example, for the illumination device and the microlens matrix, if we choose 5 × 5 format, it is possible to read 25. 这种解决方案允许降低当使用单一FRD时的定位时间,从而显著提高数据转接流的速度。 This solution allows to reduce the positioning time when using a single FRD, thereby significantly increasing the speed of data transfer stream.

当设备完成信息扇区(信息扇区由微透镜矩阵的视场中的所有数据页组成)的读取时,卡返回其初始位置,即,返回按照位置传感器的读数,具有0坐标的位置。 When the device completes the sector information (the sector information from the field of view of all the data pages in the microlens array composition) is read, the card is returned to its initial position, i.e., returned in the position sensor readings with position coordinates 0. 该卡(或者微透镜阵列)沿着光轴移动某一距离,所述某一距离等于层间距离。 The card (or microlens array) moves a certain distance along the optical axis, a distance equal to the distance between the layers. 在新的一层中重复在阶段1~3中进行的过程。 An iterative process in stage 1 to 3 in a new layer.

从而,本文献中描述的光学结构的主要优点是能够在无任何机械移动的情况下,读取25个数据页。 Thus, the main advantage of the optical configuration described in this document is able to without any mechanical movement of the case, to read 25 pages of data. 随后该卡作为单一个体被移动200mmc的距离,再次能够在无需任何其他移动的情况下实现读取。 The card is then moved as a single subject distance 200mmc, read again can be achieved in any case other without moving. 数据页读取频率必须与由光接收组件构成的矩阵的操作频率同步。 Page data reading frequency must be synchronized with the operating frequency matrix composed of a light receiving component.

借助光学卡(910)的直接垂直移动,或者通过采用光学补偿器(933)(厚度和各层(121)或堆叠的可延伸的光楔(122)等之间的距离相同的薄板),可实现沿着卡各层的重排。 (The same as the distance between the sheet and the thickness of each layer (121) may extend or stacked optical wedge (122), etc.) directly by means of vertical movement of the optical card (910), or by using an optical compensator (933), can be achieved along the card layers rearrangement. 第二种方法更可取,因为它消除了由于光学厚度的改变而导致的像差,沿着各层的重排深度只受光学系统的操作距离限制。 The second method is preferable because it eliminates aberrations due to changes caused by the optical thickness of the layers along the depth rearrangement operation only by distance limit of the optical system. 自适应光学元件,例如液晶空间光调制器(123)的使用也是可能的。 Adaptive optical elements, for example, a liquid crystal spatial light modulator (123) is also possible. 这种方法看起来更有前途,因为在这种选择下,单一设备同时进行两个操作:重新调整和保持聚焦(自动聚焦)。 This approach looks more promising, since in this selection, a single device simultaneously two operations: re-adjustment and maintaining focus (autofocus).

我们需要两个滤光器来滤除LED辐射。 We need two filters to filter out the LED radiation. 一个滤光器置于(模糊的)矩阵和荧光卡之间,以便切去与染料荧光显像重叠的一部分LED辐射显像。 A filter disposed between the (ambiguous) and fluorescent matrix card, in order to cut the overlapping part of the LED radiation imaging and fluorescence imaging dye. 第二个滤波器被置于微透镜矩阵和场透镜之间,以便滤除由数据载体荧光产生的剩余部分的LED辐射。 The second filter is disposed between the microlens array and the field lens, in order to filter out the remaining part of the LED emission generated by the data carrier fluorescence. 另一种选择包括采用基于液晶的,可按照电学方式调整的Notch型反射显像滤光器。 Another option includes a liquid crystal-based, can be adjusted in accordance with the manner Notch reflector developing electrical filter. 这些滤光器被安装在读取设备中(在光接收装置之前),并进行沿着显像滤除辐射的工作。 The filter is mounted in the reading device (before the light-receiving device), and filtered radiation along a developing work.

当在CCD相机拍摄范围内水平移动卡时(或者当沿着卡移动CCD-相机拍摄范围时),逐层进行多层光学卡的每个数据层中荧光(42)和非荧光(43)正方形单元(凹坑)(图4)的识别。 When the CCD camera within the range of horizontal movement of the card (or when the card is moved along the CCD- camera range), layer by layer for a multilayer optical data cards each phosphor layer (42) and non-fluorescent (43) square (pit) (FIG. 4) of the identification unit. 运动速度和通道位及相机帧频率同步。 And the moving speed and the camera frame frequency channel bit synchronization. 这种情况下,能够同时识别每个垂直列的各对相邻单元(图4中上部条带的底部单元和底部条带的上部单元)。 In this case, while identifying each pair of adjacent units (the base unit and the upper unit upper bottom bar strip tape of FIG. 4) for each vertical column.

如果从覆盖荧光数据层的相关正方形单元的CCD-相机的某些象素收到的信号同时超过某一水平L1,则这两个单元都被读取为信息凹坑。 If the signal received from the certain pixel CCD- camera square cells associated cover layer while fluorescence data exceeds a certain level L1, the two units are read as information pits. 如果两个信号都没有超过某一水平L2<L1,则这两个单元都不是信息凹坑。 If the two signals do not exceed a certain level L2 <L1, the two units are not information pits. 但是当上面引用的两个要求都不被满足时,信号较强的单元构成信息凹坑,而信号较弱的单元不构成信息凹坑。 However, when the two requirements cited above are not met, the stronger the signal information pit units, the weaker the signal means does not form pits. L1和L2被预先设定。 L1 and L2 are set in advance. 它们取决于通道位长度,信息位(荧光标记)值和CCD相机标准象素值之间的比值。 They depend on the ratio between the channel bit length information bits (fluorescent label) and the value of the pixel values ​​of the standard camera CCD. 它们还取决于读取辐射波长,透镜数值孔径及其放大系数。 They also depend on the wavelength of the reading radiation, the numerical aperture of the lens and the magnification factor. 对于特定的读取设备,这些数值可被认为是固定的。 For a particular reading apparatus, these values ​​may be considered fixed.

我们假定In和Im分别是存在信息位的位置和不存在信息位的位置中荧光信号的数值。 We assume Im and In are the numeric values ​​and position information of bit position does not exist in the information bits of the presence of fluorescence signals. 已证明在读取设备参数的宽广变化范围内,ETT情况(信息的二维编码方法)的识别精度C=(In-It)=(I2-Im)超过DVD系统的对应值,从而当由CCD相机进行读取,并利用ETT代码对信息编码时的数据读取误差的概率小于当由DVD光盘进行读取时的误差概率。 The reading has been demonstrated in a wide range of device parameters, where the ETT (two-dimensional coding method information) recognition accuracy C = (In-It) = (I2-Im) exceeds the corresponding value of the DVD system, such as a CCD read the camera, and use code data ETT information code reading error probability is smaller than when read by a DVD disc error probability.

参见图12-14中的例子,图12-14表示了以EET代码编写的多层荧光卡的数据携带层片段的初始计算机图像,这里λ=0.65mmc,NA=0.65(图12);由位于CCD相机拍摄范围的平面中的光学读取设备形成的所述数据携带层片段的计算机图像(图13),和CCD相机读取的同一片段的实际图像。 Referring to FIG. Examples 12-14, 12-14 shows the initial computer code written in the image data EET card carrying a multilayer phosphor layer segments, where λ = 0.65mmc, NA = 0.65 (FIG. 12); a is located computer image (FIG. 13) the data plane of the CCD camera in the range of the optical reading apparatus carrying layer formed fragments, the same segment, and an actual image reading CCD camera. 最后图像的后续处理将允许我们恢复该片段的初始图像,而概率等于1(图14)。 Finally, subsequent processing of the image will allow us to restore the original image of the segment, the probability is equal to 1 (FIG. 14).

Claims (3)

1.一种多层荧光光学存储介质,包括:多个数据层;和在所述多个数据层的每一层上的多个荧光凹坑;其中组织每层上的凹坑,以便形成多个帧。 A multilayer fluorescent optical storage medium, comprising: a plurality of data layers; and a plurality of dimples on each phosphor layer of the plurality of data layers; wherein pits on each tissue, so as to form a multi- frames.
2.在权利要求1所述的介质中记录信息的方法,其中利用8-10码,把信息记录在介质中。 2. The method for an information recording medium as claimed in claim 1, wherein using 8-10 code, the information recorded in the medium.
3.从权利要求1的介质再现信息的方法,其中多个数据层上的对应帧形成堆叠的帧,其中通过改变读取头的焦点,无需平行于介质平面移动读取头,读取每一堆叠的帧中的信息。 3. The method as claimed in claim 1 medium reproducing information, wherein the plurality of data corresponding to the frame on the frame layer forming a stack, wherein by changing the focus of the reading head, parallel to the plane of the medium without moving the read head, each read information frame in the stack.
CN 02817297 2001-07-10 2002-07-10 Optical memory system for information retrieval from fluorescent multilayer optical clear card of the ROM-type CN1608274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US30378301P true 2001-07-10 2001-07-10

Publications (1)

Publication Number Publication Date
CN1608274A true CN1608274A (en) 2005-04-20

Family

ID=23173674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02817297 CN1608274A (en) 2001-07-10 2002-07-10 Optical memory system for information retrieval from fluorescent multilayer optical clear card of the ROM-type

Country Status (4)

Country Link
EP (1) EP1428173A4 (en)
JP (1) JP2004535027A (en)
CN (1) CN1608274A (en)
WO (1) WO2003007230A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102791220A (en) * 2010-03-16 2012-11-21 塞隆纳牙科系统有限责任公司 Blank with coding for producing shaped parts for use in dentistry, and method for identifying a blank

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003537A2 (en) * 2004-06-28 2006-01-12 Koninklijke Philips Electronics N.V. Apparatus for reading an information carrier
US9275671B2 (en) 2011-06-09 2016-03-01 Case Western Reserve University Optical information storage medium
ZA201308624B (en) 2012-12-21 2015-02-25 Destiny Health Inc A method of determining the attendance of an individual at a location and a system therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195838A (en) * 1987-02-10 1988-08-12 Canon Inc Optical information recording carrier
JP3353381B2 (en) * 1993-04-23 2002-12-03 ソニー株式会社 Recording and reproducing apparatus
US5838653A (en) * 1995-10-04 1998-11-17 Reveo, Inc. Multiple layer optical recording media and method and system for recording and reproducing information using the same
US6071671A (en) * 1996-12-05 2000-06-06 Omd Devices Llc Fluorescent optical memory
JP2001505701A (en) * 1996-12-05 2001-04-24 オーエムディー デヴァイセス エルエルシー The optical pickup to read the 3-d data from multilayer fluorescence optical disk
WO2000048175A1 (en) * 1999-02-12 2000-08-17 Tri D Store Ip, L.L.C. Multilayer optical information storage medium based on incoherent signal
IL129011D0 (en) * 1999-03-16 2000-02-17 Omd Devices L L C Multi-layered optical information carriers with fluorescent reading and methods of their production
AU3970901A (en) * 1999-11-30 2001-06-12 Trid Store Ip, L.L.C. Fluorescent multilayer data storage with high capacity and high data rate
AU8468201A (en) * 2000-07-31 2002-02-13 Trid Store Ip L L C Method for data reading/writing using an optical carrier with pattern information pits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102791220A (en) * 2010-03-16 2012-11-21 塞隆纳牙科系统有限责任公司 Blank with coding for producing shaped parts for use in dentistry, and method for identifying a blank
CN102791220B (en) * 2010-03-16 2015-11-25 西诺德牙科设备有限公司 Shaped member for machining the blank and dental technology for the identification of the blank having a method of encoding

Also Published As

Publication number Publication date
EP1428173A2 (en) 2004-06-16
EP1428173A4 (en) 2007-06-13
JP2004535027A (en) 2004-11-18
WO2003007230A3 (en) 2003-04-10
WO2003007230A2 (en) 2003-01-23

Similar Documents

Publication Publication Date Title
US4090031A (en) Multi-layered opitcal data records and playback apparatus
US5669995A (en) Method for writing and reading data on a multi-layer recordable interferometric optical disc and method for fabricating such
US5610880A (en) Optical disc system and optical disk therefor
US4219704A (en) Record playback apparatus for optical data records
US7321541B2 (en) Information recording method, reproducing method, and recording/reproducing method utilizing holography
CA2047208C (en) Erasable optical wallet-size data card
CN1220982C (en) Optical recording medium and optical disk cartridge
US4868373A (en) Memory card comprising an optical memory disc and microelectronic memory component, and apparatus for transferring information to and from such card
US6009065A (en) Optical pickup for 3-D data storage reading from the multilayer fluorescent optical disk
US5063556A (en) Optical information recording medium providing reflected light at two different wavelengths, recording apparatus utilizing the same
JP3558306B2 (en) Multilayer recording disc and recording / reproducing system using the same
US6052354A (en) Optical data storage medium and method for writing and reading of data
US6337841B1 (en) Compatible optical pickup
US5485452A (en) Optical information recording medium
EP0159785A2 (en) Optical recording &amp; reproducing apparatus
US4163600A (en) Light beam scanner
US5163039A (en) Three-dimensional optical memory system
JP2931852B2 (en) Method and apparatus for reading data in Ccd area array
EP0414380A2 (en) Optical recording and reproducing apparatus
US20050002311A1 (en) Hologram recording medium and method of hologram recording and reproduction
JPH0721874B2 (en) The read-write head
JPH11296890A (en) Compatible optical pickup device
WO1999026240A1 (en) Optical recording systems and media with integral near-field optics
EP1747502A4 (en) Calibration of holographic data storage systems using holographic media calibration features
EP0179531B1 (en) Single bi-aspherical lens

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)