CN1468455A - High performance lithium or lithium ion cell - Google Patents

High performance lithium or lithium ion cell Download PDF

Info

Publication number
CN1468455A
CN1468455A CN 01816843 CN01816843A CN1468455A CN 1468455 A CN1468455 A CN 1468455A CN 01816843 CN01816843 CN 01816843 CN 01816843 A CN01816843 A CN 01816843A CN 1468455 A CN1468455 A CN 1468455A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
lithium
graphite
method
electrochemical cell
current collector
Prior art date
Application number
CN 01816843
Other languages
Chinese (zh)
Inventor
H·戴
H・戴
Original Assignee
纳幕尔杜邦公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute

Abstract

当使用厚度低于250微米和面内导电率至少是100S/cm的石墨片作为含氟化亚氨基锂或甲基锂电解质盐的锂或锂离子电池中的阴极集电器时,该石墨片产生高热电阻、优异的电化学稳定性和在高放电速度下令人惊奇地高的容量保持率。 When the thickness is less than 250 microns and an inner surface of the electrical conductivity is at least 100S / fluorinated graphite sheet as methyl lithium or a lithium imide electrolyte salt cathode current collector lithium or lithium-ion batteries in cm, of the graphite sheet produced heat resistance, and excellent electrochemical stability at high speeds surprisingly high discharge capacity retention ratio.

Description

高性能锂或锂离子电池 High-performance lithium or lithium ion batteries

发明领域本发明涉及在高放电速度下令人惊奇地表现出高容量保持率和长循环寿命的锂和锂离子电池,以及涉及用于其制备的升温熔融法。 Field of the Invention The present invention relates to a high discharge rate exhibit surprisingly high retention capacity and long cycle life of lithium and lithium ion batteries, and to a process for the preparation of a melt heating.

本发明的技术背景本领域中已知在电化学电池中,特别是在存在金属集电器腐蚀危险的环境中采用石墨集电器。 Background of the art of the present invention in an electrochemical cell is known, especially in the presence of the metal collector corrosive hazardous environments graphite current collector. 该金属集电器,除其潜在腐蚀外,由于它们高的载电流能力是优选的。 The metal current collector, in addition to its corrosion potential, due to their high current carrying capacity are preferred. 在一些情况下使用贵金属,但是它们的高成本妨碍它们在大多数商业应用中的使用。 In some cases the use of precious metals, but their high cost hamper their use in most commercial applications. 大多数情况下一般选择铝和铜作为锂和锂离子电池中集电器的材料。 In most cases the material is generally selected as aluminum and copper, lithium and lithium ion batteries collector.

Toyuguchi等JP-A Sho 58(1983)-115777公开了一种在锂金属/聚乙炔电池中使用的人造石墨板集电器,其中使用LiClO4在碳酸异丙烯酯中的溶液或四氟硼酸锂在γ-丁内酯中的溶液作为电解质。 Toyuguchi etc. JP-A Sho 58 (1983) -115777 discloses a metal lithium / polyacetylene artificial graphite used in the battery current collector plate, or using a solution wherein lithium tetrafluoroborate LiClO4 in propylene carbonate in the γ - butyrolactone as an electrolyte solution. 表现出的充电效率远远高于具有金属集电器的可比电池。 It exhibited much higher charging efficiency than the cell having a metal current collector. 采用2小时或更长的充电-放电循环来测定充电效率,也就是说使用的电流不超过在1小时中电池放电所需电流的50%。 A 2 hours or longer charge - discharge cycle charge efficiency is determined, the current that is used is not more than 1 hour in 50% of the required battery discharge current. Toyuguchi使用的电池不是锂离子电池。 Toyuguchi battery is not used in lithium ion batteries.

英国专利说明书1,214,4123(Standard Oil Company)公开了柔性石墨片作为埋置在熔融盐电池(其使用二元盐电解质,主要是LiCl和KCL的组合)使用的碳电极中的集电器。 British Patent Specification 1,214,4123 (Standard Oil Company) discloses a flexible graphite sheet as buried (dibasic salt electrolyte which primarily is a combination of LiCl and KCL) in the molten salt batteries used in the carbon electrode current collector. 石墨片的厚度是约250微米,其特征在于该片的面内电阻是8×10-4ohm-cm。 Thickness of the graphite sheet is about 250 microns, characterized in that the inner surface of the sheet resistance is the 8 × 10-4ohm-cm.

Gratzel等的WO99/59218涉及了锂或锂离子电池,其一个电极由以中型构造形态为特征的固体材料组成。 Gratzel, etc. WO99 / ​​59218 relates to a lithium or lithium ion battery, which electrode is made of a solid material of medium characterized configured to form a composition. 还公开了二次(可再充电)电池,其中在非质子溶剂中可以使用双(三氟磺酰基)亚氨基锂或三(三氟磺酰基)甲基锂作为电解质。 Also disclosed is a secondary (rechargeable) batteries, wherein the aprotic solvent may be used bis (trifluoromethanesulfonyl) imide or amide tris (trifluoromethanesulfonyl) methide lithium as an electrolyte. 发现包括TiO2作为阳极和LiyMn2O4作为阴极、双(三氟磺酰基)亚氨基锂在甲氧基丙腈中的溶液作为电解液以及纸作为隔板的电池保持10C放电速度并保持1.5伏的电池电压。 Found comprising TiO2 battery voltage of 1.5V as an anode and as a cathode LiyMn2O4, bis (trifluoromethyl sulfonyl) solution of lithium imide in methoxypropionitrile as an electrolytic solution and holding a paper discharging speed of 10C as a battery separator, and maintained . 集电器是沉积在玻璃基底上的导电的氧化锡铟。 The current collector is electrically conductive indium tin oxide is deposited on a glass substrate. 与碳阳极相比更优选TiO2阳极。 More preferably the anode and TiO2 compared to carbon anodes.

Fujimoto等的JP Hei 5(1993)-290887公开了二次锂离子电池,其包括锂金属氧化物化合物的阴极、石墨粉与聚丙烯树脂复合物的阴极集电器、粉状石墨的阳极、铜箔阳极集电器和溶解在碳酸亚乙酯和碳酸二甲酯的混合物中的LiCF3SO3电解液。 Fujimoto, etc. JP Hei 5 (1993) -290887 discloses a lithium ion secondary battery, the cathode current collector which comprises a lithium metal oxide compound cathode, a graphite powder and a polypropylene resin composite anode powdered graphite foil LiCF3SO3 anode current collector and an electrolyte dissolved in a mixture of dimethyl carbonate and ethylene carbonate in. 这样形成的电池组电池据说与目前技术的采用LiPF6电解质和铝阴极集电器相结合的电池相比具有改进,其改进在于减少了短路时爆炸的危害性,并且还改善了充电放电特性。 Such battery cell is said to be formed as compared with currently used LiPF6 electrolyte and an aluminum cathode current collector in combination with improved battery technology, the improvement is to reduce the dangers of explosion short circuit, and also improves the charge and discharge characteristics. 容量是500mA-h的电池在4.1至3伏的电压范围中以200mA放电;使用了非常高的容量百分比,并且在再充电时被复原。 500mA-h capacity battery 200mA discharge to a voltage range from 4.1 to 3 volts; the use of a very high percentage of capacity, and to be restored during recharging.

本发明概述本发明涉及锂或锂离子电化学电池,该电池包括阳极、与该阳极呈导电性接触的阳极集电器、相对于Li/Li+参考电极表现出3至5伏的上限充电电压范围的阴极,所述的阴极包括与厚度不低于250微米的阴极集电器呈导电性接触的锂嵌入过渡金属氧化物、磷酸盐或硫酸盐,该集电器包含石墨,所述的石墨特征在于其堆积密度为0.08-2.25g/cc,导电性至少是500Siemens/cm,并且所述的导电性接触的特征在于电阻低于50ohm-cm2;作为所述阴极和阳极之间的隔板的离子渗透膜,以及与所述阳极和阴极呈导离子接触的电解液,该电解液包括非质子极性溶剂和浓度范围是0.2至最高达3摩尔浓度的锂化合物,所述的锂化合物由下式表示Rf1SO2X-(Li+)YZa其中X是C或N,a=0或1,前提条件是当X是C时,a=1,当X是N时,a=0;其中当a=1时,Y和Z独立地是吸电子基团,选自CN、SO2Rf2 Summary of the Invention The present invention relates to a lithium or lithium-ion electrochemical cell, the cell comprising an anode, and the anode form an anode current collector electrically conductive contact with respect to Li / Li + reference electrode exhibits an upper charging voltage range of 3-5 volts a cathode, said cathode comprises a thickness of not less than 250 microns cathode current collector was embedded in the contact conductive lithium transition metal oxides, sulfates, or phosphates, the current collector comprising graphite, graphite is characterized in that the bulk a density of 0.08-2.25g / cc, the conductive least 500Siemens / cm, and wherein said conductive contact resistance lower than that 50ohm-cm2; as a separator between the cathode and anode ion permeable membrane, and with the anode and cathode were in contact with the ion-conducting electrolyte, the electrolyte comprising a polar aprotic solvent at a concentration ranging up to 0.2 to 3 molar concentration of the lithium compound, the lithium compound represented by the formula Rf1SO2X- (Li +) YZa wherein X is C or N, a = 0 or 1, with the proviso that when X is C, a = 1, when X is N, a = 0; wherein, when a = 1, Y and Z It is independently an electron withdrawing group selected from CN, SO2Rf2 SO2R、P(O)(OR)2、CO2R、P(O)R2、C(O)Rf3、C(O)R、与它们形成的环烯基和H,前提条件是Y和Z二者不能都是H;另外其中Rf1、Rf2和Rf3是C1-4的全氟烷基,其任选地被一个或多个醚氧取代;R是C1-6的烷基,其任选地被一个或多个醚氧取代,或者是芳基,其任选地进一步被取代;或者其中当a=0时,Y是由式-SO2Rf6表示的吸电子基团,其中Rf6是由式-(Rf4SO2N-(Li+)SO2)mRf5表示的基团,其中m=0或1,并且Rf4是-CnF2n-,Rf5是-CnF2n+1,这里n=1-4,任选地被一个或多个醚氧取代。 SO2R, P (O) (OR) 2, CO2R, P (O) R2, C (O) Rf3, C (O) R, cycloalkenyl and H, with the proviso that they are formed both Y and Z can not are H; further wherein Rf1, Rf2 and Rf3 is a perfluoroalkyl group of C1-4, optionally substituted by one or more ether oxygen; R is a C1-6 alkyl group, optionally substituted with one or more ether oxygen substituents, or an aryl group, which is optionally further substituted; or wherein when a = 0, Y is an electron withdrawing group represented by the formula -SO2Rf6, wherein Rf6 by the formula - (Rf4SO2N- ( group li +) SO2) mRf5 represented, where m = 0 or 1, and Rf4 is -CnF2n-, Rf5 is -CnF2n + 1, where n = 1-4, optionally substituted with one or more ether oxygen.

本发明还提供形成该电化学电池的方法,该方法包括通过在配有混合装置的容器中使聚合物、一种或多种极性非质子液体的混合物和锂化合物混合而形成可熔融加工的组合物;混合所述的组合物至少至其为可塑性成形;以及由所述的可塑性变形组合物通过对其施加热和/或压力制成片材;将所述的片材和堆积密度是0.08-2.25g/cc、厚度小于250微米和导电性至少是500Siemens/cm的石墨集电器片以及制备电化学电池所需的这样的其它元件进行层压;以及压实所述的层状成型制品,以使这些层可以如形成电化学电池所需的一样呈导电和/或导离子接触,所述的锂化合物由下式表示Rf1SO2X-(Li+)YZa其中X是C或N,a=0或1,前提条件是当X是C时,a=1,当X是N时,a=0;其中当a=1时,Y和Z独立地是吸电子基团,选自CN、SO2Rf2、SO2R、P(O)(OR)2、CO2R、P(O)R2、C(O)Rf3、C(O)R、与它们形成 The present invention also provides a method of forming the electrochemical cell, the method comprising mixing with the polymer by means of manipulation of the container, and a mixture of one or more lithium compounds mixed polar aprotic liquid to form a melt-processible the composition; mixing said composition at least until it is plastically formed; applied thereto and a heat and / or pressure into a sheet from said composition by a plastically deformable; and the bulk density of the sheet was 0.08 -2.25g / cc, a thickness of less than 250 microns and a conductivity of at least 500Siemens / cm graphite current collector sheet, and such other elements required for the preparation of an electrochemical cell are laminated; and compacting the layered molded article, so that these layers may be formed in the same shape as the desired electrochemical cells electrically and / or ion-conducting contact with the lithium compound represented by the formula Rf1SO2X- (Li +) YZa wherein X is C or N, a = 0 or 1 with the proviso that when X is C, a = 1, when X is N, a = 0; wherein, when a = 1, Y and Z is independently an electron withdrawing group selected from CN, SO2Rf2, SO2R, P (O) (OR) 2, CO2R, P (O) R2, C (O) Rf3, C (O) R, which is formed 环烯基和H,前提条件是Y和Z二者不能都是H;另外其中Rf1、Rf2和Rf3是C1-4的全氟烷基,其任选地被一个或多个醚氧取代;R是C1-6的烷基,其任选地被一个或多个醚氧取代,或者是芳基,其任选地进一步被取代;或者其中当a=0时,Y是由式-SO2Rf6表示的吸电子基团,其中Rf6是由式-(Rf4SO2N-(Li+)SO2)mRf5表示的基团,其中m=0或1,并且Rf4是-CnF2n-,Rf5是-CnF2n+1,这里n=1-4,任选地被一个或多个醚氧取代。 Cycloalkenyl and H, with the proviso that both Y and Z can not both be H; further wherein Rf1, Rf2 and Rf3 is a perfluoroalkyl group of C1-4, optionally substituted by one or more ether oxygen; R & lt is C1-6 alkyl, optionally substituted with one or more ether oxygens, or an aryl group, which is optionally further substituted; or wherein, when a = 0, Y is represented by the formula -SO2Rf6 an electron withdrawing group, wherein Rf6 by the formula - (Rf4SO2N- (Li +) SO2) group represented mRf5, where m = 0 or 1, and Rf4 is -CnF2n-, Rf5 is -CnF2n + 1, where n = 1 -4, optionally substituted with one or more ether oxygen.

附图简述附图1表示本发明一个实施方案中的锂电池组电池。 BRIEF DESCRIPTION Figure 1 shows a lithium battery pack for an embodiment of the present invention.

附图2以分步方式表示在下述实施例中使用的组件。 Figure 2 represents a stepwise manner in the component used in the following examples.

附图3是在制备下述本发明的具体实施方式中采用的层压机的示意图。 3 is a schematic view of a laminator employed in the specific embodiments of the present invention was prepared in the following drawings.

附图4是表示对比试验B、对比试验C和实施例2的容量保持率与放电电流之间的关系的图。 4 is a graph showing the relationship between the comparison test B, Comparative Experiment C and Example capacity retention rate of the discharge current of.

详细描述本发明给锂离子电池技术提供几个令人惊奇的并且重要的益处。 Detailed description of the present invention to a lithium-ion battery technology offers several significant and surprising benefits. 在该技术目前的状况中,溶解在非质子溶剂混合物中的LiPF6一般与约3伏或更高的锂离子电池的阴极侧的铝集电器结合,因为其表现出本领域专业人员公知的几个所需特性的良好折衷。 In the current state of the art, LiPF6 dissolved in an aprotic solvent mixture is generally combined with the cathode side electrical about 3 volts or more lithium-ion batteries of the aluminum collector, because it exhibits well-known to those skilled in several the required characteristics of a good compromise. 然而,LiPF6具有一些缺陷,正如在前面所引述的Fujimoto等中所概述。 However, LiPF6 has some drawbacks, as in the previously-cited Fujimoto et outlined. LiPF6的主要缺陷是缺乏热稳定性,这严重限制了电池的操作温度,并且很大程度上阻碍了需要加热LiPF6在约100℃以上的任何电池制备方法。 The main drawback is the lack of thermal stability of LiPF6, which severely limits the operating temperature of the battery, and LiPF6 largely hindered any cell preparation method of above about 100 deg.] C requires heating. 这点是基于熔融加工锂电池部件的制备方法例如描述在Dolye等美国专利6,025,092中的严重限制。 This is a method for melt processing, for example, lithium-based member severely limits described in U.S. Patent No. 6,025,092 Dolye the like.

前面引述的Fujimoto等提出使用CF3SO3-Li+代替LiPF6,CF3SO3-Li+可以弥补上述缺陷,并且进一步提供优良的热稳定性。 The Fujimoto et cited above proposes to use CF3SO3-Li + in place of LiPF6, CF3SO3-Li + can remedy the aforementioned drawbacks, and further provides excellent thermal stability. 因为CF3SO3-Li+盐的腐蚀性,用由石墨粉和选自聚乙烯、聚丙烯或聚对苯二甲酸乙二酯的聚合粘合剂制成的石墨复合集电器代替标准铝。 Because corrosive CF3SO3-Li + salt, with a graphite powder and selected from polyethylene, polypropylene or a graphite composite polymeric binder on a current collector made of polyethylene terephthalate instead of standard aluminum. 然而,如下所述,与LiPF6体系相比,CF3SO3-Li+在高的放电速度下造成容量保持率的严重损失,由此在需要一些但相对低的放电速度的任何应用中不能使用基于CF3SO3-Li+的电池。 However, as described below, compared with LiPF6 system, CF3SO3-Li + cause serious damage capacity retention ratio at a high discharge velocity, whereby some, but any application requiring relatively low discharge rate can not be based CF3SO3-Li + battery. 在本发明中,这里描述的亚氨基盐和甲基化物盐与纯的石墨箔阴极集电器相结合提供了在高放电速度下具有非常高的容量保持率和高的循环寿命以及热稳定性的电池。 In the present invention, imino methide salts and salts described herein pure graphite foil cathode collector provided in combination with a very high capacity retention rate and cycle-life and high thermal stability at high discharge rates battery. 然而,特别令人惊奇的是,在本发明的优选实施方案中,在高速度下的容量保持率超过包括LiPF6与铝集电器相结合的目前技术状态下的容量保持率。 However, it is particularly surprising that, in the preferred embodiment of the invention, the capacity retention ratio at high speeds exceeding include a capacity retention at the current state of the art aluminum current collector and LiPF6 combined. 换言之,本发明的锂离子电池组电池可以提供比LiPF6/铝电池更高的能量。 In other words, the lithium ion battery cell according to the present invention can provide a higher ratio of LiPF6 / aluminum battery power. 当考虑到与石墨相比铝的导电性处于更高的数量级时,这是一个值得注意的结果。 When considering the conductivity of aluminum compared to graphite at a higher magnitude, which is a remarkable result.

在优选的实施方案中,采用本领域已知的任何适合的方式将本发明的电极组合物加工成片状或薄膜状,并且与集电器接触以形成层压结构。 In a preferred embodiment, in any suitable manner known in the art the electrode composition of the present invention into a sheet or film, and is in contact with the current collector to form a laminate structure.

本发明锂电池组电池的一个实施方案,如附图1所示,包括石墨箔的阴极集电器1、包含阳极活性材料的阳极2、隔板3、包含阴极活性材料的阴极4、铜网阳极集电器5和包含非质子溶剂和锂化合物的电解液6,所述的电解液和所述的电极相互呈导离子接触,并且所述的锂化合物由下式表示:Rf1SO2X-(Li+)YZa其中X是C或N,a=0或1,前提条件是当X是C时,a=1,当X是N时,a=0;其中当a=1时,Y和Z独立地是吸电子基团,选自CN、SO2Rf2、SO2R、P(O)(OR)2、CO2R、P(O)R2、C(O)Rf3、C(O)R、与它们形成的环烯基和H,前提条件是Y和Z二者不能都是H;另外其中Rf1、Rf2和Rr3是C1-4的全氟烷基,其任选地被一个或多个醚氧取代;R是C1-6的烷基,其任选地被一个或多个醚氧取代,或者是芳基,其任选地进一步被取代;或者其中当a=0时,Y是由式-SO2Rf6表示的吸电子基团,其中Rf6是由式-(Rf4SO2N-(Li+ The cathode of the lithium battery pack according to the present invention, an embodiment, as shown in Figure 1, comprises a graphite foil current collector of the cathode 1, an anode comprising an anode active material 2, the separator 3, 4 comprising a cathode active material, anode copper mesh current collector 5 and the electrolytic solution comprises an aprotic solvent and a lithium compound 6, the electrolyte and the electrode in ionic contact with each other are turned, and said lithium compound represented by the formula: Rf1SO2X- (Li +) YZa wherein X is C or N, a = 0 or 1, with the proviso that when X is C, a = 1, when X is N, a = 0; wherein, when a = 1, Y and Z is independently an electron withdrawing a group selected from CN, SO2Rf2, SO2R, P (O) (OR) 2, CO2R, P (O) R2, C (O) Rf3, C (O) R, cycloalkenyl and they are formed with H, with the proviso that both Y and Z can not both be H; further wherein Rf1, Rf2 is a perfluoroalkyl group and Rr3 a C1-4, optionally substituted by one or more ether oxygen; R is a C1-6 alkyl group, which is optionally substituted with one or more ether oxygens, or an aryl group, which is optionally further substituted; or wherein when a = 0, Y is an electron withdrawing group represented by the formula -SO2Rf6, wherein Rf6 is the formula - (Rf4SO2N- (Li + )SO2)mRf5表示的基团,其中m=0或1,并且Rf4是-CnF2n-,Rf5是-CnF2n+1,这里n=1-4,任选地被一个或多个醚氧取代。 Group) SO2) mRf5 represented, where m = 0 or 1, and Rf4 is -CnF2n-, Rf5 is -CnF2n + 1, where n = 1-4, optionally substituted with one or more ether oxygen.

本发明涉及锂和锂离子电池这二者。 The present invention relates to both lithium and lithium ion batteries. 出于本发明的目的,“锂电池”指具有包括阳极活性材料如Li金属和Li金属合金的阳极和包括其电荷储备和释放机理涉及锂离子嵌入和脱嵌的活性阴极材料的阴极的锂电池。 For purposes of this invention, "lithium batteries" means a cell comprising a lithium anode and an anode active material including the charge reservoir and release mechanism, and Li metal Li metal alloy cathode involves intercalation of lithium ions and the active cathode material deintercalation of . 术语“锂离子电池”是指具有包括其电荷储备和释放机理涉及锂离子嵌入和脱嵌的活性电极材料的阳极和阴极这二者的锂电池。 The term "lithium ion battery" refers to a lithium battery relates both lithium ions and the active electrode material deintercalating the anode and the cathode which comprises a charge reservoir and release mechanism. 在优选的实施方案中,这是通过在层状结构中的嵌入和脱嵌来实现的。 In a preferred embodiment, this is accomplished by intercalation and deintercalation of a layered structure.

实施本发明时使用的优选阳极包括锂金属或一种或多种以颗粒形式存在的阳极活性材料的混合物、粘合剂优选聚合粘合剂、任选的电子传导添加剂和至少一种有机碳酸酯。 Preferred embodiments of the anode used in the present invention comprises a lithium metal or a mixture of one or more of the anode active material is present in particulate form, binder is preferably a polymeric binder, optionally an electron conductive additive, and at least one organic carbonate . 有用的阳极活性材料的实例包括锂金属、碳(石墨、焦炭类、中碳(mesocarbon)、聚烯烃类、碳纤维等),但不限于这些。 Examples of useful anode active materials include lithium metal, carbon (graphite, cokes, carbon (mesocarbon), polyolefin, carbon fiber, etc.), but are not limited to these. 阳极活性材料还包括锂嵌入碳;锂金属氮化物例如Li2.6Co0.4N;金属锂合金例如LiAl或LiSn;形成锂合金的锡、硅、锑或铝化合物,例如在O.Mao等的《作为锂离子电池的阳极的活性/非活性纳米复合物》(Active/Inactive Nanocomposites asAnodes for Li-Ion Batteries),Electrochemical and Solid StateLetters,2(1),第3页,1999中公开的那些。 Further the anode active material include lithium intercalation carbon; lithium metal nitrides such as Li2.6Co0.4N; metallic lithium alloys such as LiAl or LISN; forming a tin, silicon, antimony compound or an aluminum lithium alloy, for example, in O.Mao like "as the active anode of a lithium ion battery / inactive nanocomposite "(active / inactive nanocomposites asAnodes for Li-ion batteries), Electrochemical and Solid StateLetters, 2 (1), pp. 3, 1999, those disclosed. 包括的其它可作为阳极活性材料的是金属氧化物,例如氧化钛、氧化铁或氧化锡。 Other included as an anode active material is a metal oxide, such as titanium oxide, iron oxide or tin oxide. 当该阳极活性材料以颗粒形式存在时,其颗粒尺寸应该是约1至100微米。 When the anode active material is present in the form of particles having a particle size should be from about 1 to 100 microns. 优选的阳极活性材料是石墨例如碳微珠、天然石墨、碳纤维或石墨片型材料。 Preferred anode active materials are graphite microbeads such as carbon, natural graphite, carbon fibers or graphite sheet type material. 特别优选的是石墨微珠,例如由日本Osaka Gas制备的那些(MCMB 25-28、10-28或6-28)。 Particularly preferred are graphite microbeads such as those (MCMB 25-28,10-28 or 6-28) prepared from Osaka Gas in Japan.

阳极组合物适合的导电添加剂包括碳例如焦炭、炭黑、碳纤维和天然石墨;铜、不锈钢、镍或其它相对呈惰性的金属的金属片或颗粒;导电金属氧化物例如氧化钛或氧化钌;或者导电聚合物例如聚苯胺或聚吡咯。 Anode composition suitable conductive additive comprises carbon coke, carbon black, carbon fiber and natural graphite, for example; copper, stainless steel, nickel or other relatively inert metal or particles of metal sheet; conductive metal oxides such as titanium oxide or ruthenium oxide; or conductive polymers such as polyaniline or polypyrrole. 优选的是相对表面积低于约100平方米/克的炭黑,例如从比利时的MMM Carbon购得的Super P和Super S炭黑。 The preferred relatively surface area below about 100 m2 / g carbon black, such as commercially available from MMM Carbon in Belgium Super P and Super S carbon black.

在制备其中阳极活性材料为颗粒形式的本发明电池时,阳极可以通过混合和形成下述组合物来制备,该组合物以重量计包含2至20%,优选3至10%的聚合粘合剂、10至50%,优选14至28%的所述本发明的电解液、40至80%,优选60至70%的电极活性材料、和0至5%,优选1至4%的导电添加剂。 In preparing the anode active material which is in particulate form of the battery of the present invention, the anode may be prepared by mixing the following composition and formation, the composition comprises by weight 2 to 20%, preferably 3 to 10% of polymeric binder , 10 to 50%, preferably 14 to 28% electrolytic solution of the present invention, 40 to 80%, preferably 60 to 70% of the electrode active material, and 0 to 5%, preferably 1 to 4% of the conductive additive. 任选地还可以加入最高达12%如上所述的惰性填料,以及可以加入本领域专业人员可能需要的其它不实质性影响本发明所需结果的获得的添加剂。 Optionally, may also be added up to 12% inert filler as described above, and others not materially affect skilled in the art may be added to the present additive may be required to obtain the desired result of the present invention. 优选的是不使用惰性填料。 The preferred inert filler is not used.

优选用于实施本发明的电池使用具有相对于Li/Li+参比电极的3.5至4.5伏的上限充电电压的阴极。 Preferred embodiments for the present invention has a battery using Li / Li + reference electrode is 3.5 to 4.5 volts than the upper limit of the charging voltage with respect to cathode. 该上限充电电压是该阴极在低的充电速度下和具有明显可逆储备容量时充电可达到的最大电压。 The upper limit of the charging voltage is the maximum voltage of the cathode at a low charging rate and the charging time can be achieved with significant reversible storage capacity. 然而,使用相对于Li/Li+参比电极具有3至5伏的上限充电电压的阴极的电池也是适合的。 However, with respect to the use of Li / Li + reference cell having a cathode 3 to 5 volts, the upper limit charge voltage electrode are also suitable. 在阴极组合物中适合于作为电极活性材料使用的组合物包括过渡金属氧化物、磷酸盐和磷酸盐以及锂化的过渡金属氧化物、磷酸盐和硫酸盐。 In the cathode composition is suitable as an electrode active material composition include transition metal oxides, phosphates and phosphates and lithiated transition metal oxides, phosphates and sulfates. 优选的是氧化物例如LiCoO2、尖晶石LiMn2O4、铬掺杂的尖晶石氧化锰锂LiCryMn2O4、层状LiMnO2、LiNiO2、LiNixCo1-xO2(其中x是1<x<1,优选范围是0.5<x<0.95)和氧化钒例如LiV2O5、LiV6O13或者通过改性使其组合物是非化学计量的、无序的、无定形的、过锂化的或欠锂化的形式的上述化合物,例如本领域中已知的。 Preferred are oxides such as LiCoO2, spinel LiMn2O4, chromium-doped spinel lithium manganese oxide LiCryMn2O4, layered LiMnO2, LiNiO2, LiNixCo1-xO2 (where x is 1 <x <1, preferably in the range of 0.5 <x <0.95) and vanadium oxide e.g. LiV2O5, LiV6O13 it or by modifying the non-stoichiometric composition, disordered, amorphous, or through the above-mentioned compound lithiated less lithiated forms, such as the present art has been Known. 适合的阴极活性化合物可以进一步通过用少于5%的二价或三价金属阳离子例如Fe2+、Ti2+、Zn2+、Ni2+、Co2+、Cu2+、Mg2+、Cr3+、Fe3+、Al3+、Ni3+、Co3+、Mn3+等掺杂来改性。 Suitable cathode active compounds can be further purified by using less than 5% of divalent or trivalent metal cations Fe2 +, Ti2 +, Zn2 +, Ni2 +, Co2 +, Cu2 +, Mg2 +, Cr3 +, Fe3 +, Al3 +, Ni3 +, Co3 +, Mn3 +, etc. doped e.g. be modified. 其它适合于该阴极组合物的阴极活性材料包括具有橄榄石结构的锂嵌入化合物例如LiFePO4和具有NASICON结构的锂嵌入化合物例如LiFeTi(SO4)3,或者那些由JBGoodenough在《锂离子电池》(Lithium Ion Batteries)(Wiley-VCH出版社,由M.Wasihara和O.Yananoto主编)中公开的。 Other suitable cathode to the cathode active material composition comprising a lithium intercalation compound having an olivine structure such as LiFePO4 and with NASICON structures of the lithium intercalation compounds e.g. LiFeTi (SO4) 3, or those produced by JBGoodenough the "lithium ion batteries" (Lithium Ion Batteries) (Wiley-VCH Press, edited by the M.Wasihara and O.Yananoto) is disclosed. 阴极活性材料的颗粒尺寸应该是约1至100微米。 Particle size of the cathode active material should be from about 1 to 100 microns. 优选过渡金属氧化物例如LiCoO2、LiMn2O4、LiNiO2和上述它们的衍生物。 Preferred transition metal oxides such as LiCoO2, LiMn2O4, LiNiO2 and said derivatives thereof. LiCoO2是最优选的。 LiCoO2 is the most preferred.

在制备本发明的电化学电池时,阴极可以通过混合和形成下述组合物来制备,该组合物以重量计包含2至15%,优选4至8%的聚合粘合剂、10至50%,优选15至25%的所述本发明的电解液、40至85%,优选65至75%的电极活性材料和1至12%,优选4至8%的导电添加剂。 In the preparation of the electrochemical cell of the present invention, the cathode may be mixed and formed by the following composition is prepared, which composition contains by weight 2 to 15%, preferably 4-8% polymeric binder, 10 to 50% , preferably 15 to 25% electrolytic solution of the present invention, 40 to 85%, preferably from 65 to 75% of the electrode active material and 1-12%, preferably 4-8% conductive additives. 任选地可以加入最高达12%的惰性填料,以及可以加入本领域专业人员可能需要的其它不实质上影响本发明所需结果的获得的添加剂。 May optionally be added up to 12% of inert fillers, and other additives do not materially affect the desired result of the present invention obtained may be added to those skilled may be required. 优选的是不使用惰性填料。 The preferred inert filler is not used.

适合于在阴极制备方法中使用的导电添加剂与在上述阳极制备中采用的相同。 Suitable for use in the method of preparation of the cathode and the conductive additive used in the preparation of the anode in the same. 正如在阳极情况下一样,更为优选的电子传导助剂是炭黑,特别是表面积低于约100平方米/克的,最优选是从比利时布鲁塞尔的MMM Carbon购得的Super P炭黑。 As in the case of an anode, electron conductive aid is more preferably carbon black, in particular the surface area below about 100 m2 / g, most preferably available from MMM Carbon, Brussels, Belgium Super P carbon black.

在优选的实施方案中,石墨是阳极活性材料,而LiCoO2是阴极活性材料,获得的电池具有的阴极相对于Li/Li+参比电极具有约4.2伏的上限充电电压。 In a preferred embodiment, the graphite anode active material and LiCoO2 cathode active material, a battery having a cathode obtained with respect to Li / Li + reference electrode having an upper limit of about 4.2 volt charging voltage.

本发明优选的锂离子电池可以按照本领域中已知的任何方法来组装。 The present invention is preferably a lithium ion battery may be assembled according to any method known in the art. 在由Nagamine等的美国专利5,246,796所例示的本领域的第一种方法中,将电极溶剂-浇注在集电器上,集电器/电极带与微孔聚烯烃隔膜一起螺旋形缠绕以形成圆柱形卷,将该缠绕卷放置在金属电池壳中,并使无水电解液浸入缠绕的电池中。 In the first method in the art by U.S. Patent No. 5,246,796 Nagamine et illustrated, the electrode is a solvent - cast on a current collector, the current collector / electrode strip separator microporous polyolefin and spirally wound together to form a cylindrical roll , the wound roll is placed in a metal battery case, and the wound was immersed in aqueous electrolyte battery. 在由Oliver等的美国专利5,688,293和Venuogopal等的美国专利5,837,015所例示的本领域的第二种方法中,将电极溶剂-浇注在集电器上并干燥,将电解质和聚合凝胶剂涂覆在隔板和/或电极上,将该隔板层压到集电器/电极带上或者使之与集电器/电极带接触以制备电池部件,然后将该电池部件切割并堆叠,或者折叠,或者缠绕,然后放置在箔层压外壳中,最后热处理以使该电解质凝胶化。 In the second method of the present art by the U.S. Patent 5,688,293 and U.S. Patent No. Venuogopal 5,837,015 Oliver et like in the embodiment shown, the electrodes a solvent - cast and dried on a current collector, an electrolyte and a polymeric gelling agent is coated compartment or the upper plate and / or the electrodes, the separator is laminated to a current collector / electrode belt or into contact with the current collector / electrode strip member to prepare a battery, then the battery member cut and stacked, or folded, or wound, foil laminate is then placed in the housing, and finally heat-treated so that the gelled electrolyte. 在由Gozdz等的美国专利5,456,000和美国专利5,540,741提供的本领域的第三种方法中,将电极和隔板在加入增塑剂下溶剂浇注,将电极、网状集电器、电极和隔板层压在一起以制备电池部件,使用挥发性溶剂提取该增塑剂,干燥该部件,然后通过使该部件与电解质接触而用电解质填充由于增塑剂提取而留下的孔隙,以获得活化的电池,任选地使该部件堆叠、折叠或缠绕,并且最后将该电池包装在箔层压外壳中。 In the third method of the present art by the U.S. Patent No. 5,456,000 to Gozdz et and U.S. Patent No. 5,540,741 provided, the electrode and separator in a solvent casting plasticizer added, the electrodes, mesh current collector, an electrode and a separator layer pressed together to prepare a cell component, the plasticizer is extracted using a volatile solvent, drying the member, and then extracting the plasticizer to fill the pores due to the leaving member by contact with the electrolyte so that the electrolyte, in order to obtain an activated cell optionally means that the stacked, folded, or wound, and finally the foil laminate packaging cell in the housing. 在待审查的美国专利申请09/383,129中描述的本领域的第四种方法中,首先将电极和隔板材料干燥,然后与盐和电解质溶剂混合以获得活性组合物;通过熔融加工将该电极和隔板组合物成形为薄膜,将该薄膜层压以获得电池部件,将该电池部件堆叠、折叠或缠绕,然后包装在箔层压容器中。 In the fourth method of copending U.S. Patent Application 09 / 383,129 described in the art, the first electrode and separator materials are dried, then mixed with the salt and electrolyte solvent to obtain an active composition; by melt processing the electrodes and a separator composition was molded into a film, the film to obtain a laminated cell components, the cell components are stacked, folded, or wound and then packaged in a foil laminate container. 第三和第四种方法将在下面描述的本发明的具体实施方案中详细说明。 Specific embodiments of the present invention third and fourth methods will be described below in detail.

适合于本发明锂或锂离子电池的阴极集电器包括石墨。 The present invention is suitable for the lithium or lithium-ion battery cathode current collector comprising graphite. 在纯的石墨中通常能获得最大的导电性,所以优选石墨片包括尽可能少的粘合剂、添加剂和杂质以便实现本发明的优点。 Usually for maximum conductivity in pure graphite, the graphite sheet is preferably comprising as few binders, additives and impurities in order to achieve the advantages of the present invention. 粘合剂、添加剂和杂质由于它们对电池性能潜在的有害影响所以是不需要。 Binders, additives and impurities due to their potentially deleterious effects on the performance of the battery it is not required.

适合于本发明的石墨集电器可以以在基底例如金属基底、自立式片或层压材料上的粉末涂层的形式存在。 Graphite suitable for the present invention, the current collector may be a metal substrate, for example, from a powder coating on a vertical sheet in the presence of a substrate or laminate. 这就是说该集电器可以是具有其它成员例如金属箔、粘合剂层和对于给定用途来说是所需的其它材料的复合结构。 This means that the collector may be a metal foil, for example, other members, an adhesive layer and other composite materials required for a given application is Yes. 然而,根据本发明,在任何情况下,是石墨层或者与粘合促进剂结合的石墨层直接与本发明的电解质接合,并且与所述电极表面呈导电性接触。 However, according to the present invention, in any case, the graphite layer is a graphite layer or adhesion promoter in combination with the electrolyte of the present invention is directly bonded, and was in contact with the conductive surface of the electrode.

特别优选的石墨形式是在JHShane等的美国专利3,404,061中描述的柔性的低密度的石墨片,该专利在此全文引入以供参考,其提供通常与石墨有关的化学、热、拉伸和电学性能以及所需的柔韧性、压实性、整合性、挠性刚度和回弹性的机械性能的增强。 A particularly preferred form of graphite is a low density flexible graphite sheet is described in U.S. Patent No. 3,404,061 JHShane like, which is hereby incorporated by reference, which generally provide the graphite related to chemical, thermal, and electrical properties Tensile and the required flexibility, compaction, integration, mechanical properties of flexural rigidity and resilience enhancement. 实施本发明优选使用的柔性石墨片具有0.08至2.25克/立方厘米的堆积密度,天然石墨的密度处于该范围,然而该密度优选是0.8至1.4克/立方厘米。 Bulk density of the embodiment of the present invention is preferably used in flexible graphite sheet having 0.08 to 2.25 g / cc, the density of the natural graphite is within this range, however, the density is preferably from 0.8 to 1.4 g / cc.

实施本发明优选使用的柔性石墨的特征在于其厚度最大是250微米,优选小于125微米,最优选小于75微米。 The flexible graphite preferred embodiment of the present invention is characterized in that the maximum thickness is 250 microns, preferably less than 125 microns, most preferably less than 75 microns. 优选用于实施本发明的柔性石墨片的特征进一步在于沿着该片的长度和宽度的导电性至少是100Siemens/cm(S/cm),优选至少是500S/cm,最优选至少是1000S/cm,根据ASTM标准C611-98测定。 A preferred embodiment for the flexible graphite sheet of the invention is further characterized in that along the length and width of the conductive sheet is at least 100Siemens / cm (S / cm), preferably at least 500S / cm, most preferably at least 1000S / cm , measured according to ASTM standard C611-98.

优选用于实施本发明的柔性石墨片可以与特定应用所需的其它组分混合,但是优选石墨的纯度是约95%或更高。 Other components are mixed for preferably flexible graphite sheets of the present invention can be applied with a particular embodiment desired, but the purity of the graphite is preferably about 95% or more.

在厚度低于约10微米时,可以预料到电阻可能过度高,所以低于约10微米的厚度是不太优选的。 When the thickness is less than about 10 microns, it is expected that resistance may be excessively high, the thickness of less than about 10 microns are less preferred.

严格地说,本发明的可操作性不需要在该电极组合物中加入粘合剂。 Strictly speaking, the operability of the present invention does not require the addition of a binder in the electrode composition. 然而,在该领域中优选使用粘合剂,特别是聚合粘合剂,同样在实施本发明时也是优选的。 However, in this art adhesive is preferably used, in particular polymeric binder, also in the embodiment of the present invention is preferred when. 本领域的技术人员将可以理解,许多下述适合于作为粘合剂的聚合材料对于制备适合于在本发明的锂或锂离子电池中使用的离子渗透隔膜来说是有用的。 Those skilled in the art will be appreciated that many of the following polymeric materials suitable as the binder in the separator is useful for the preparation of an ion suitable for use in a lithium or lithium-ion battery of the present invention permeation.

适合的粘合剂包括聚合粘合剂,特别是凝胶化的聚合物电解质,包括聚丙烯腈、聚(甲基丙烯酸甲酯)、聚(氯乙烯)和聚偏1,1-二氟乙烯和它们的共聚物,但不限于这些。 Suitable binders include polymeric binders, particularly gelled polymer electrolytes comprising polyacrylonitrile, poly (methyl methacrylate), poly (vinyl chloride) and polyvinylidene fluoride and copolymers thereof, but is not limited thereto. 同样还包括固体聚合物电解质例如基于聚醚盐的电解质,包括聚环氧乙烷(PEO)和其衍生物、聚(环氧丙烷)(PPO)和其衍生物以及具有乙烯氧基和其它侧基的聚(有机膦腈)。 Also included are salts of electrolytes based on polyethers, including polyethylene oxide (PEO) and its derivatives, poly (propylene oxide) (the PPO) and its derivatives having ethyleneoxy other side of the solid polymer electrolyte e.g. group is a poly (organophosphazene). 其它适合的粘合剂包括氟化的离子交联聚合物,其包括部分或完全氟化的聚合物骨架并具有包括氟化磺酸、亚氨基或甲基锂盐的侧基。 Other suitable binders include fluorinated ionomers comprising partially or fully fluorinated polymers having a backbone and comprising a fluorinated sulfonic acid, imino groups or pendant methyl lithium salt. 优选的粘合剂包括聚偏1,1-二氟乙烯和其与六氟丙烯、四氟乙烯、氟乙烯醚例如全氟甲基、全氟乙基或全氟丙基乙烯醚的共聚物;包括聚偏1,1-二氟乙烯的单体单元和包含氟化羧酸、磺酸、亚氨基或甲基锂盐的侧基的单体单元的离子交联聚合物。 Preferred binders include copolymers of polyvinylidene fluoride and its hexafluoropropylene, tetrafluoroethylene, vinyl fluoride ethers such as perfluoromethyl, perfluoroethyl or perfluoropropyl vinyl ether; ionic monomer units comprise polyvinylidene fluoride and monomer units comprising a fluorinated carboxylic acid, sulfonic acid, imino groups or pendant methyl lithium salt of the crosslinked polymer.

凝胶化的聚合物电解质是通过聚合粘合剂与可相容的适合的非质子极性溶剂以及在适用情况下的电解质盐混合形成的。 Gelled polymer electrolyte is formed by a polymeric binder and a suitable aprotic polar solvents compatible electrolyte salt and mixed in the applicable.

PEO和PPO基的聚合粘合剂可以无需溶剂而使用。 PEO and PPO-based polymeric binders can be used without a solvent. 在无溶剂的情况下,它们成为可以在一些情况下在安全性和循环寿命方面有利的固体聚合物电解质。 In the absence of a solvent, which may be advantageous in safety and cycle life, in some cases a solid polymer electrolyte.

其它适合的粘合剂包括所谓的“盐在聚合物中”的组合物,其包含的聚合物含有大于50重量%的一种或多种盐。 Other suitable adhesive compositions include so-called "salt in polymer" is a polymer which contains one or more salts comprising greater than 50 weight percent. 例如参见M.Forsyth等Sokid State Ionics,113,第161-163(1998)。 See, e.g. M.Forsyth et Sokid State Ionics, 113, 161-163 (1998).

作为粘合剂还包括玻璃态固体聚合物电解质,其与“盐在聚合物中”的组合物是类似的,只是该聚合物是在低于其玻璃转化温度的温度下使用,并且该盐的浓度是约30重量%。 As the binder further comprises a glassy solid polymer electrolytes, which "polymer in salt" composition is similar, except that the polymer is at a temperature below its glass transition temperature is used, and the salt concentration of about 30 wt%.

优选地,在已制成的电极中优选粘合剂的体积份数是4至40%。 Preferably, the electrodes have been formed in the volume fraction of the binder is preferably 4-40%.

优选的电解质溶剂是非质子液体或聚合物。 Preferred electrolyte solvents are aprotic liquids or polymers. 其包括有机碳酸酯,例如本领域中已知用于Li-离子电池的那些是适合于实施本发明的。 Which include organic carbonates, e.g. known in the art for Li- ion batteries that are suitable for practicing the present invention. 有机碳酸酯包括碳酸异丙烯酯、碳酸二甲酯、碳酸亚乙酯和许多相关类的。 Organic carbonates include propylene carbonate, dimethyl carbonate, ethylene carbonate and many related classes. 同样也包括固体聚合物电解质,例如聚醚类和聚(有机膦腈)。 Also included are solid polymer electrolytes such as polyether and poly (organophosphazene). 进一步包括例如本领域中已知的含锂盐的离子型液体混合物,包括离子型液体,例如咪唑啉鎓阳离子与基于亚氨基盐、甲基化物盐、PF6-或BF4的相反离子的有机衍生物。 Further comprising known in the art, for example, a mixture of ionic liquid containing a lithium salt, an ionic liquid comprising, for example, cations based imidazolinium salts imino, methide salts, PF6- or organic counterions BF4 derivative . 例如参见DRMarFarlane等Nature,402,792(1999)。 See, e.g. DRMarFarlane et Nature, 402,792 (1999).

适合的电解质溶剂的混合物,包括液体和聚合电解质溶剂的混合物同样是适合的。 Suitable electrolyte solvents mixtures, including mixtures of liquid and polymeric electrolyte solvents are also suitable. 优选的电解质溶剂是有机碳酸酯。 Preferred electrolyte solvent is an organic carbonate. 更优选的是碳酸亚乙酯和碳酸二甲酯的混合物、碳酸亚乙酯和碳酸异丙烯酯的混合物、或者碳酸亚乙酯、碳酸异丙烯酯和碳酸二乙酯的混合物。 More preferred are mixtures of dimethyl carbonate and ethylene carbonate, isobutyl carbonate, ethylene carbonate and propylene carbonate, or a mixture of ethylene carbonate, propylene carbonate, and the mixture diethyl carbonate.

适合于实施本发明的电解质溶液是通过将这里描述的亚氨基锂或甲基锂盐与任选的选自LiPF6、LiPFnRfm(其中n+m=6)和Rf=CF3或C2F5、LiBF4、LiAsF6或LiClO4的共盐以及所述的电解质溶液一起通过适合于该颗粒物质的溶解、泥浆化或熔融混合进行混合而形成的。 The electrolyte solution suitable for the embodiment of the present invention is obtained by methyl lithium or a lithium imide salt selected from LiPF6 and optionally will be described herein, LiPFnRfm (where n + m = 6) and Rf = CF3 or C2F5, LiBF4, LiAsF6, or co-salt of the LiClO4 electrolyte solution and adapted to together by dissolving the particulate matter, the molten mixture or slurry formed by mixing. 当该亚氨基盐或甲基化物盐的浓度是0.2至最高达3摩尔浓度,但优选是0.5至2摩尔浓度,最优选是0.8至1.2摩尔浓度时,本发明是可操作的。 When the concentration of the imino group or a salt methide salts are up to 0.2 to 3 molar concentration, but is preferably 0.5 to 2 molar, and most preferably 0.8 to 1.2 mol concentration, the present invention is operable. 根据该电池的制备方法,在缠绕或层压形成电池结构之后可以在该电池中加入电解液,或者在最终电池组装之前将其加入电极或隔板组合物中。 The preparation method of the cell, may be added after winding or lamination structure is formed in the battery cell electrolyte, before final cell assembly or added to the electrode or separator compositions.

适合于本发明的锂或锂离子电池的隔板是任何离子可渗透的成型的制品,优选是薄膜或片状的。 Suitable for the present invention are lithium or lithium ion battery separator is any ion-permeable shaped article, preferably a film or sheet. 这样的隔板可以是微孔薄膜例如微孔聚丙烯、聚乙烯、聚四氟乙烯和它们的层状结构。 Such a separator may be a microporous film, such as a microporous polypropylene, polyethylene, polytetrafluoroethylene and layered structures thereof. 适合的隔板还包括可溶涨的聚合物例如聚偏1,1-二氟乙烯和其共聚物。 Suitable separator further comprises a swellable polymer such as polyvinylidene fluoride and ethylene copolymers. 其它适合的隔板包括那些在凝胶化聚合物电解质领域中已知的,例如聚(甲基丙烯酸甲酯)和聚(氯乙烯)。 Other suitable spacers include those known in the art gelled polymer electrolytes such as poly (methyl methacrylate) and poly (vinyl chloride). 同样适合的是聚醚类,例如聚(环氧乙烷)和聚(环氧丙烷)。 Also suitable are polyethers, such as poly (ethylene oxide) and poly (propylene oxide). 优选的是微孔聚烯烃隔板,包含1,1-二氟乙烯与六氟丙烯、全氟甲基乙烯基醚、全氟乙基乙烯基醚或全氟丙基乙烯基醚的共聚物(包括它们的混合物)、或氟化离子交联聚合物例如那些在Doyle等US 6,025,092中描述的、含由1,1-二氟乙烯衍生的单体单元和具有下式表示的离子型侧基的全氟链烯基单体的骨架的离子交联聚合物及其亚氨基盐和甲基化物衍生物的隔板,-(O-CF2CFR)aO-CF2(CFR′)bSO3-Li+其中R和R′独立地选自F、Cl或全氟化的C1-10-烷基,a=0、1或2,b=0至6,如Feiring等在WO 9945048(A1)中所述。 Preferred are microporous polyolefin separator comprising vinylidene fluoride and hexafluoropropylene, perfluoromethyl vinyl ether, perfluoroethyl vinyl ether or perfluoropropyl vinyl ether copolymer ( including mixtures thereof), or fluorinated ionomers, such as those described in Doyle et al in US 6,025,092, containing a monomer unit derived from vinylidene fluoride and ionic pendant groups represented by the formula ionomer and imido salts and methylated derivatives separator perfluoro backbone monomer alkenyl, - (O-CF2CFR) aO-CF2 (CFR ') bSO3-Li + wherein R and R 'are independently selected from F, Cl or a perfluorinated alkyl group of C1-10-, a = 0,1 or 2, b = 0 to 6 as in Feiring et al. WO 9945048 (A1).

在适合于本发明使用的电极中,最优选的粘合剂是聚偏1,1-二氟乙烯(PVDF)或者聚偏1,1-二氟乙烯与六氟丙烯的共聚物(p(VdF-HFP)),例如在商业上以商标名KYNAR FLEX从Elf Atochem NorthAmerica,Philadelphia,PA获得的。 In the present invention, suitable for use in an electrode, the most preferred binder is polyvinylidene fluoride (PVDF) or polyvinylidene copolymer of vinylidene fluoride and hexafluoropropylene (P (VdF -HFP)), for example, commercially under the trade name KYNAR FLEX obtained from Elf Atochem NorthAmerica, Philadelphia, PA. 本发明的电极可以通过将所有聚合物组分溶解在常规溶剂中并与炭黑颗粒和电极活性颗粒一起混合而很方便地制得。 The electrode of the present invention can be prepared by all of the polymer components are dissolved in a common solvent and mixing together with the carbon black particles and electrode active particles easily prepared. 例如优选的锂电池电极可以如下制备:将PVDF溶解在1-甲基-2-吡咯烷酮中或将p(VdF-HFP)共聚物溶解在丙酮溶剂中,随后加入电极活性材料和炭黑的颗粒,然后在基底上沉积薄膜并干燥。 For example, preferably a lithium battery electrode can be prepared as follows: dissolving PVDF in 1-methyl-2-pyrrolidone or p (VdF-HFP) copolymer is dissolved in acetone, followed by addition of electrode active material and carbon black particles, then depositing a thin film on a substrate and dried. 所获得的优选电极将包括电极活性材料、导电性炭黑和聚合物。 Preferably the obtained electrode including electrode active material, conductive carbon black and a polymer. 然后将该电极由溶液浇注在适合的载体例如玻璃板或集电器上,并采用本领域中众所周知的技术形成薄膜。 The electrode is then cast from a solution in a suitable carrier such as a glass plate or current collector, and using techniques known in the art to form a film.

在本发明中,使阴极与石墨集电器呈导电性接触,其接触电阻尽可能地小。 In the present invention, the graphite cathode current collector as a conductive contact, the contact resistance as small as possible. 这有利地可以通过在该石墨片上沉积一薄层的粘结促进剂层例如丙烯酸-乙烯共聚物与炭黑的混合物来实现。 A mixture of ethylene copolymer and carbon black is achieved - for example, this can advantageously be an acrylic adhesive promoter layer by depositing a thin layer on the graphite sheet. 适合的接触可以通过施加热和/或压力以使集电器和电极之间紧密接触来实现。 Suitable contact may be by application of heat and / or pressure so that intimate contact between the current collector and the electrode is achieved.

优选用于实施本发明的柔性石墨片在获得低的接触电阻方面具有特别的优势。 Preferred embodiments for the flexible graphite sheets of the present invention is particularly advantageous in terms of obtaining a low resistance contacts. 由于其高的延展性、整合性和刚度,可以制成与电极特别紧密并因此低电阻接触的结构,该结构可以有意或无意地提供粗糙的接触表面。 Because of its high ductility, stiffness and integrated, and thus the structure may be made of low resistance particularly close contact with the electrode, the structure may be intentionally or unintentionally provide a roughened contact surface. 在任何情况下,在实施本发明时,本发明阴极和石墨集电器之间的接触电阻不超过50ohm-cm2,优选不超过10ohm-cm2,最优选不超过2ohm-cm2。 In any case, in the practice of the present invention, the present invention is the contact resistance between the cathode and the graphite current collector is not more than 50ohm-cm2, preferably not more than 10ohm-cm2, most preferably not exceeding 2ohm-cm2. 出于本发明的目的,可以通过本领域普通技术人员已知的任何方便的方法测定接触电阻。 For purposes of the present invention, the contact resistance can be measured by any convenient method to those of ordinary skill in the art. 也可以使用欧姆仪简单测量。 Ohm meter can also use a simple measurement. 已经发现通过下面实施例3描述的方法测量复阻抗的实数部分在本发明的实施中是便利的。 It has been found by the following embodiment of the method described in Example 3 measured impedance real part of the complex is convenient in the embodiment of the present invention.

在本发明中,使阳极与阳极集电器进行导电性接触,该阳极集电器优选是金属箔或金属网,最优选是铜。 In the present invention, the anode current collector for the anode and the conductive contact, the anode current collector is preferably a metal foil or metal mesh, most preferably copper. 同阴极的情况一样,在它们之间采用粘结促进剂是有利的。 As with the case of the cathode, using adhesion promoters therebetween is advantageous. 当然对于最佳操作来说,希望按照本领域的实践方法将阳极和阳极集电器之间的接触电阻降低至最低。 Of course, for optimal operation, it is desirable in accordance with the practice in the art will reduce the contact resistance between the anode and the anode current collector to a minimum.

在优选的实施方案中,然后将由此制备的电极膜通过层压与集电器和隔板复合。 In a preferred embodiment, the electrode film and the thus prepared composite by lamination with the current collector and the separator. 为了确保这样层压或以其它方式复合的元件相互呈优异的导离子性接触,将这些元件与包含非质子溶剂(优选上述有机碳酸酯)、下式表示的亚氨基锂或甲基锂盐的电解液复合,Rf1SO2X-(Li+)YZa其中X是C或N,a=0或1,前提条件是当X是C时,a=1,当X是N时,a=0;其中当a=1时,Y和Z独立地是吸电子基团,选自CN、SO2Rf2、SO2R、P(O)(OR)2、CO2R、P(O)R2、C(O)Rf3、C(O)R、与它们形成的环烯基和H,前提条件是Y和Z二者不能都是H;其中Rf1、Rf2和Rf3是C1-4的全氟烷基,其任选地被一个或多个醚氧取代;R是C1-6的烷基,其任选地被一个或多个醚氧取代,或者是芳基,其任选地被进一步取代;或者其中,当a=0时,Y是由式-SO2Rf6表示的吸电子基团,其中Rf6是由式-(Rf4SO2N-(Li+)SO2)mRf5表示的基团,其中m=0或1,并且Rf4是-CnF2n-,Rf5是-CnF2n+1,这里n=1-4,任选地被一个或多个醚氧取代。 To ensure that such laminated or otherwise complexed form elements are excellent in ion-conductive contact, these elements comprising an aprotic solvent (preferably organic carbonates described above), represented by the formula of lithium imide or lithium salt of methyl electrolyte composite, Rf1SO2X- (Li +) YZa wherein X is C or N, a = 0 or 1, with the proviso that when X is C, a = 1, when X is N, a = 0; wherein when a = 1:00, Y and Z is independently an electron withdrawing group selected from CN, SO2Rf2, SO2R, P (O) (OR) 2, CO2R, P (O) R2, C (O) Rf3, C (O) R , cycloalkenyl and H, with the proviso that they form both Y and Z are not both H; wherein Rf1, Rf2 and Rf3 is a perfluoroalkyl group of C1-4, optionally substituted by one or more ether oxo substituent; R is a C1-6 alkyl group, optionally substituted with one or more ether oxygens, or an aryl group, which is optionally further substituted; or wherein, when a = 0, Y is is -SO2Rf6 electron withdrawing group represented by the formula, wherein Rf6 by the formula - (Rf4SO2N- (Li +) SO2) group represented mRf5, where m = 0 or 1, and Rf4 is -CnF2n-, Rf5 is -CnF2n + 1 , where n = 1-4, optionally substituted with one or more ether oxygen. 优选地,X是N,m=0,并且Rf1和Rf5是-CF3。 Preferably, X is N, m = 0, and Rf5 and Rf1 is -CF3.

将含本发明的整个电池的层状物组装成最终工作电池的手段对本发明来说不是关键的。 The entire cell-containing layer was present invention to a final operation of the battery assembly means for the present invention is not critical. 本领域专业人员可以理解,组装电池(包括锂和锂离子电池)的各种方法已经是本领域中公知的并且在上文已概述。 Skilled in the art will be appreciated, the assembled battery (including a lithium and lithium ion batteries) have been various methods are known in the art and have been outlined above. 出于本发明的目的,与目前环境已知的实施方式的特殊化学和机械要求相适应的任何这样的方法均是适合的。 For purposes of this invention, and any such method currently special chemical and mechanical requirements of the environment known embodiments are adapted suitable.

优选的方法是Gozdz等在美国专利5,456,000和5,540,741中描述的方法,即将增塑组合物浇注并成型,提取出该增塑剂并在干的电池结构中加入电解质。 Gozdz preferred method is a method such as described in U.S. Patent No. 5,456,000 and 5,540,741, the forthcoming casting and plasticized molding composition, the plasticizer is extracted and added to the electrolyte in a dry cell structure. 更优选的是按照在Barton等的共同待审美国专利申请09/383,129中描述的工艺步骤来制备本发明的包括石墨箔和亚氨基盐或甲基化物盐的电池,其中活化的电极材料被熔融加工,最优选通过连续挤出成为片材,并以单一的连续操作层压到电池的另一元件上。 More preferred are prepared according to the present invention in Barton et copending U.S. Patent Application 09 / 383,129 describes a process comprises graphite foil and imido salts or methide salt of the battery, wherein the electrode material activated by molten process, most preferably by continuous extruded into a sheet, and laminated in a single continuous operation of the battery to the other element.

在下面的具体实施方案中进一步描述本发明,这些具体实施方案仅是本发明一些优选实施方式的举例说明。 The present invention is further described in the following specific embodiments, these specific embodiments are merely some preferred embodiments of the present invention illustrated embodiment.

实施例在下面的具体实施例中,测定容量保持率与放电速度之间的关系。 EXAMPLES In the following specific embodiments, determining the relationship between the capacity retention rate and discharge rate. 在附图1中描述的每个试验用电池首先在放电态下制备。 Each test is described in Figure 1 is first prepared in the discharged state of battery. 在制备之后,使用Maccor 9100试验仪,以7.5mA的电流充电至电压为4.15V,随后以10mA的恒定电流放电至2.7V。 After preparation, use Maccor 9100 tester, at a current of 7.5mA is charged to the voltage of 4.15V, and then discharged to 2.7V at a constant current of 10mA. 将该电池在10mA的恒定电流下在2.7至4.14V之间循环5次。 The battery at a constant current of 10mA 5 cycles between 2.7 to 4.14V. 在该程序之后,将该电池以15mA的恒定电流放电,测定电压从4.15降低至2.7V的时间,作为缓慢放电速度电容参照点。 After this procedure, the battery discharge at a constant current of 15mA, the measured voltage decreases from 4.15 to 2.7V time, as the capacitor discharges slowly velocity reference point. 然后在重复的充电和放电循环中,再次在15mA的电流下将该电池充电至4.15伏,在逐渐升高的恒定电流下在相同的电压范围中放电,其中容量以参比放电容量的百分比表示。 Then repeated charge and discharge cycles at a current of 15mA recharging of the battery to 4.15 V, the discharge in the same voltage range gradually increased at a constant current, wherein the ratio of the percentage of the capacity represented by reference discharge capacity .

实施例1通过Gozdz等在US5,456,000和5,540,741中描述的方法制备电池,然而使用柔性石墨箔作为阴极集电器,并且盐是(CF3SO2)2NLi。 Example 1 was prepared by a method such as a battery Gozdz described in US5,456,000 and 5,540,741 are, however, a flexible graphite foil as a cathode collector, and the salt is (CF3SO2) 2NLi.

将65份LiCoO2(FMC公司)、6.5份Super P炭黑(MMM Carbon)、10份KYNAR FLEX2801(Elf Atochem)和18.5份对苯二甲酸二丁酯在丙酮溶剂中混合来制备阴极膜。 65 parts of LiCoO2 (FMC Corporation), 6.5 parts of Super P carbon black (MMM Carbon), 10 parts of KYNAR FLEX2801 (Elf Atochem) and 18.5 parts of dibutyl phthalate mixed in acetone solvent to prepare the cathode film. 使用刮刀技术浇注膜并蒸除丙酮,获得涂层重量是19.1mg/cm2和浇注厚度约是79微米的阴极。 Cast film technique using a knife and the acetone was distilled off to obtain a coating weight of 19.1mg / cm2 and a thickness of about 79 microns cast cathode. 将65份MCMB 2528(Osaka Gas)、3.3份Super P炭黑、10份KYNAR FLEX2801和21.7份对苯二甲酸二丁酯在丙酮溶剂中混合来制备阳极膜。 65 parts of MCMB 2528 (Osaka Gas), 3.3 parts of Super P carbon black, and 10 parts of KYNAR FLEX2801 mixing 21.7 parts of dibutyl phthalate in acetone solvent to prepare an anode membrane. 在浇注和丙酮蒸发之后,阳极膜的涂层重量是17.5mg/cm2,厚度约是109微米。 After evaporation of acetone and pouring the coating weight of the anodic film is 17.5mg / cm2, a thickness of about 109 microns. 将26份煅制二氧化硅(Cabot TS530)、32份KYNAR FLEX2801和42份对苯二甲酸二丁酯在丙酮溶剂中混合来制备隔板。 The 26 parts of fumed silica (Cabot TS530), 32 parts of KYNAR FLEX2801 and mixing 42 parts of dibutyl phthalate in acetone solvent to prepare a separator. 隔膜的厚度是41微米。 Thickness of the separator is 41 microns.

GTY级Grafoil箔是由UCAR Carbon Co.Inc.,Cleveland,OH获得的。 GTY grade Grafoil foil by UCAR Carbon Co.Inc., Cleveland, OH obtained. 厚度是75微米,在xy平面中电阻是8×10-6Ohm-m,并且密度是1.12g/cm3。 A thickness of 75 microns, resistance in the xy plane is 8 × 10-6Ohm-m, and a density of 1.12g / cm3. 用由Adocotor50C12乳化液(Morton InternationInc.,Chicago,IL,丙烯酸和乙烯的共聚物)、炭黑(MMM Super P)和乙醇的混合物组成的粘合促进剂喷涂该石墨箔,以便干燥的粘结促进剂层由67重量%的树脂和33重量%炭黑组成。 Adocotor50C12 with the adhesion promoter emulsion (Morton InternationInc., Chicago, IL, copolymers of ethylene and acrylic acid), carbon black (MMM Super P) composed of a mixture of ethanol and spraying the graphite foil, so that the dried adhesive junction promoter layer from 67 wt% resin and 33% by weight of carbon black. 测定的涂层重量是500μg/cm2。 The coating weight is measured 500μg / cm2. 用刀片从喷涂的石墨箔上切下一片石墨集电器。 Sprayed with a razor blade from a graphite foil current collector was cut graphite. 该集电器如附图1所示是“L”型。 The current collector as is "L" type 1 shown in the drawings. 与阴极接触的面积是45毫米×55毫米的矩形。 Contact area with the cathode is 45 mm × 55 mm rectangle. 用于外部电连接的接片是2.5厘米宽和6厘米长的条状物。 For external electrical connection tabs is 2.5 cm wide and 6 cm long strip.

将上述集电器和薄膜成型为层状结构G/C/C/S/A/Cu来制备电池,这里G表示Grafoil层,C表示两层阴极膜,45×55毫米,S表示隔板层,A表示50×60毫米的阳极层,Cu表示采用Adocote粘结促进剂处理的铜网集电器。 The film forming said collector and a layered structure G / C / C / S / A / Cu to prepare a battery, where G represents Grafoil layer, C denotes two cathode film, 45 × 55 mm, S represents a spacer layer , a denotes an anode layer 50 × 60 mm, Cu represents adhesion promoters employed Adocote treated copper mesh current collector. 使用Western Magnum XRL120层压机(WesternMagnum,El Segundo,CA)在125℃下将二层阴极膜层压在Grafoil上,辊隙压力是69kPa,辊速是0.25m/min。 Western Magnum XRL120 using a laminator (WesternMagnum, El Segundo, CA) at 125 ℃ the cathode laminated on Layer Grafoil, nip pressure was 69kPa, roller speed is 0.25m / min. 在形成该层压材料中,使用比阴极和Grafoil的复合厚度薄12.5微米的垫片。 In forming the laminate, a thickness of the cathode composite shim than Grafoil and 12.5 microns.

参照附图2进一步理解在这里公开的具体实施方案中使用的形成该层压材料的方法。 Referring to Figure 2 a further understanding of the method of forming the laminate of the specific embodiments herein disclosed are used. 待层压的层首先一个放置在另一个的顶部以形成试体。 A first layer laminated to be placed on top of the other to form a test specimen. 该试体13和相关的U型黄铜垫片14(其具有被3英寸隔开的10英寸的“臂”和具有根据所需的最终层压材料的厚度选择的厚度)夹心在二个Kapton聚酰亚胺膜(从DuPont公司获得)15之间,所有在黄铜外套16内的被用来夹住外壳一起通过该层合机。 The test specimen 13 and associated U-shaped brass gasket 14 (which has been separated by 3 inches 10 inches "arms" and having a thickness selected according to the desired final thickness of the laminate) sandwiching two Kapton  polyimide film (available from DuPont company) among 15, all designed to hold the jacket in the brass housing 16 together through the laminator.

以相同的方式将阳极层压在铜集电器上。 In the same manner as laminated on a copper anode current collector. 然后将该隔板放置在层压的阴极和阳极结构中,并使该整个组件在95℃下进行最后的层压步骤,其中辊隙压力是41.4kPa,辊速是0.3m/min。 The separator is then placed on the cathode and anode in a laminated structure, and the whole assembly the final lamination step at 95 deg.] C, wherein the nip pressure is 41.4 kPa, the roller speed is 0.3m / min. 使用比复合厚度薄20微米的垫片。 Thinner than 20 microns using a composite thickness of the gasket. 部件的层压在空气中进行。 Laminate member is in the air.

通过用过量的二乙醚连续萃取二次来除去电池中的对苯二甲酸二丁酯,每次30分钟。 To remove the secondary battery of dibutyl phthalate, and every 30 minutes with continuous extraction by an excess of diethyl ether. 在真空下,将该电池加热至80℃加热30分钟进行干燥,然后转移到填充Ar的干燥箱中。 In vacuo, and the battery was heated to 80 ℃ 30 minutes was heated and dried, and then transferred to a dry box filled with Ar's.

在使用前,将盐(CF3SO2)2NLi(3M公司,MN)在真空和120℃下干燥48小时。 Before use, the salts of (CF3SO2) 2NLi (3M Company, MN) and 120 deg.] C under vacuum dried for 48 hours. 电解液是通过将该盐以1.0M的浓度溶解在2重量份碳酸亚乙酯和1重量份碳酸二甲酯(从EM Science获得的碳酸酯,Selectipur电池级)的溶剂混合物中而制备的。 The electrolyte is prepared by dissolving the salt in a concentration of 1.0M in a solvent mixture of 2 parts by weight of ethylene carbonate and 1 part by weight dimethyl carbonate (carbonate obtained from EM Science, Selectipur battery grade) in .

在根据本领域中已知的方法进行的试验中,第一循环电化学效力是87.8%。 In tests carried out according to methods known in the art, the electrochemical efficacy of the first cycle was 87.8%. 5次循环累积的容量损失是第一次放电容量的1.9%。 5 cycles cumulative capacity loss was 1.9% in the first discharge capacity. 在2C放电速度下的容量是相同电池在C/5放电速度下测定值的85.3%。 Capacity at 2C discharge rate of the battery is the same as the value of 85.3% measured at a C / 5 discharge rate. 电流容量保持率与电池放电的关系以图表的形式表示在附图3中。 Relationship between the current and the battery discharge capacity retention rate is shown in figures 3 in tabular form.

对比试验A采用实施例1的电池制备方法和包括1M(CF3SO2)2NLi电解盐溶液在内的材料,但是阴极集电器是304型不锈钢。 Comparative Experiment A battery was prepared using the method of Example 1 and materials include 2NLi electrolyte salt solution 1M (CF3SO2) including the embodiment, but the cathode current collector 304 is stainless steel. 使用与实施例1中相同的评价方法,第一循环电化学效力是88.4%,5次循环累积的放电容量损失是68.1%。 Using the same evaluation method as in Example 1, the first cycle of the electrochemical efficacy was 88.4%, 5 cycles accumulated discharge capacity loss was 68.1%. 未测定在2C放电速度下的容量保持率,因为电池中的容量快速丧失。 Not determined in the capacity retention at a discharge speed of 2C, the capacity of the battery because of rapid loss.

实施例2在该实施方案中,同这里描述的一样,采用实施例1的Grafoil。 Example 2 In this embodiment, the same as described herein, in Example 1 using Grafoil embodiment. 所有的固体组分均在真空中在120℃下干燥,并且包含低于30ppm的H2O。 All solid components are dried in vacuo at 120 deg.] C, and contains less than 30ppm of H2O. 除非另有说明,在干燥步骤最后的所有工艺均在充氩气的干燥箱中进行。 Unless otherwise indicated, all in a final drying step of the process are in an argon-filled dry box. 电极中的粘合剂和隔板中的聚合物是根据Doyle等在US6,025,092中描述的方法制备的1,1-二氟乙烯(VF)和全氟磺酰基氟乙氧基丙基乙烯基醚(PSEPVE)的水解共聚物的磺酸锂形式。 Adhesive electrodes and the separator is a polymer vinylidene fluoride (VF) prepared by the method described in Doyle et al. In US6,025,092 and perfluoro propyl vinyl fluoroethoxy sulfonyl acid lithium form ether (PSEPVE) of the hydrolyzed copolymer. 该聚合物包括9至10摩尔%的PSEPVE,并且估计其分子量是约200000Da。 The polymer comprises 9-10 mol% of PSEPVE, and estimated molecular weight of about 200000Da. 溶剂是一种重量比是2∶1的碳酸亚乙基酯(EC,电池级,来自EMIndustries,Hawthorn,NY)和碳酸亚丁基酯(JEFFSOLBC,HuntsmanCorporation,Salt Lake City,UT)的混和物。 The solvent is a weight ratio 2:1 of ethylene carbonate (EC, battery grade, from EMIndustries, Hawthorn, NY), and butylene carbonate (JEFFSOLBC, HuntsmanCorporation, Salt Lake City, UT) mixture of .

通过将8.7克粘结剂、7克来自MMM Carbon的Super P炭黑、58克从FMC Corporation获得的LiCoO2和26.3克EC/BC混合物混合来制备阴极组合物。 Cathode composition is prepared by adding 8.7 g binder, 7 grams of Super P carbon black from MMM Carbon, and 26.3 g 58 g LiCoO2 EC available from FMC Corporation / BC mixture.

通过将8克与阴极中相同的聚合物、4.5克炭黑、64克从OSAKA GAS获得的中碳微珠(MCMB级2528)和23.5克EC/BC混合物混合来制备阳极组合物。 The anode composition was prepared by adding 8 g of the same polymer and the cathode, 4.5 g of carbon black, 64 g of carbon microbeads (MCMB 2528 grade) available from OSAKA GAS and 23.5 g EC / BC mixture.

隔板是由25重量%的相同聚合物和75%的EC/BC组成的组合物制成的。 The separator is made of the same polymer of 25% and 75% by weight of EC / BC composition composition.

通过分别将干燥的组分在Waring混合机中混合约1分钟来制备所述的阳极和阴极组合物。 Dried by respectively the anode and cathode components are mixed for about 1 minute composition was prepared in a Waring blender claim. 将所述的EC/BC溶剂混合物加入该混合机中,并将该混合物继续混合1分钟。 To the EC / BC solvent mixture added to the mixer, and the mixture was continuously mixed for 1 minute. 同时仍然在干燥箱中,将这样形成的混合物加入配有辊式转子的Haake Rhomix600混合机(Haake(USA),Paramus,NJ)的混合室中,并在约5rmp和125℃下混合20分钟。 The mixture while still in the oven, the thus formed was added with roller rotors Haake Rhomix600 mixer (Haake (USA), Paramus, NJ) in the mixing chamber 20 and mixed at about 125 ℃ and 5rmp minute. 将获得的混合物快速从该混合机中取出,并在1分钟内放置在玻璃罐中。 The obtained mixture was quickly removed from the mixer and placed in a glass jar in one minute. 将由此制备的组合物从干燥箱中取出,放入密封的Kapton聚酰亚胺袋中,并在该袋中在125℃下在Carver Model M液压机(Ferd CarverInc.,Menomonee Falls,WI)上在试样上施加30psi的压力下预致密化3分钟。 The composition thus prepared is removed from the drybox, placed in a sealed bag Kapton polyimide, and the pouches hydraulic Carver Model M (Ferd CarverInc., Menomonee Falls, WI) at the 125 ℃ under 30psi pressure is applied on the sample is pre-densified 3 minutes. 使获得的薄膜回到干燥箱中。 Get the film back in the oven.

用于制备该电池的压光机图示在附图3中。 For the preparation of the calender shown in the drawings the battery 3. 将层状电池部件7输送到由底部加热进料板8(宽度是218毫米和长度是205毫米)和顶部加热板9(宽度是154毫米和长度是205毫米)组成的水平入口加热机机组中,其中所述的顶部加热板9放置在顶部加热板进料板8的上方,并保持足够的距离以允许层状电池部件进入,并且不会接触到该顶部加热板。 The layered battery section 7 conveyed to heat the feed from the bottom plate 8 (218 mm width and 205 mm length) and a top heating plate 9 (width of 154 mm and a length of 205 mm) consisting of a horizontal heating unit inlet Unit wherein the top of the heating plate 9 is placed on top of the feed plate above the heating plate 8, and to maintain a sufficient distance to allow the member to enter the cell layer, and does not come into contact with the top of the heating plate. 该整个入口加热机机组的形状是截面呈矩形的电加热中空管。 The shape of the entire heating turbine assembly inlet is rectangular in cross section of the hollow tube is electrically heated. 该层状电池部件从入口加热机机组进入两个抛光的、电加热的铬表面的夹辊10(直径是100毫米,宽是150毫米)的间隙11中,其中驱动一个辊10,所述的间隙可以在0.025至0.250mm之间调节。 The layered cell nip roller member from the inlet into the two polishing machine heating unit, electrically heated chrome surface gap 10 (diameter 100 mm, width 150 mm) 11, a drive roller 10 which, according to gap can be adjusted between 0.025 to 0.250mm. 在通过夹辊之后,已层压的电池带12经出料板17(其宽度是210毫米,长度是165毫米)输送出。 After passing through the nip rolls, the laminated cell has a discharge belt 12 via the plate 17 (with a width of 210 mm, length 165 mm) conveyed out.

如上所述在液压机中制备的阳极和阴极薄膜在135℃下在入口加热机机组预热2分钟之后在130℃的辊温下压延,然后在总计260千克的夹力和0.1米/分钟的辊速下通过该夹辊。 As described above the anode and cathode films prepared in a hydraulic press at 135 deg.] C for 2 minutes warm rolling at a roll temperature at the inlet 130 ℃ heating machine unit, then the total clamping force of 260 kg and 0.1 m / min roll the speed of the nip rolls. 用刀从该压延薄膜上切下45毫米×55毫米的电极薄膜。 Lower electrode film cutting knife 45 mm × 55 mm from the rolling film.

隔板是通过首先使用刮刀将聚合物与EC/BC混合来制备的。 A separator is prepared by first mixing the polymer with a spatula using EC / BC. 使用5密耳的铜垫片将该混合物人工铺展在上文参照附图2描述的二片Kapton聚酰亚胺薄膜之间。 Using a 5 mil copper shims and the mixture was spread between two artificial Kapton polyimide film 2 described above with reference to the drawings. 将这样形成的组件在115℃下预热2分钟,然后在0.1m/min的线速度、总计170千克夹力和125℃的温度下压延,获得4密耳厚的隔板。 The assembly thus formed was preheated at 115 ℃ 2 minutes and then stretched at 0.1m / min line speed, a total of 170 kg clamping force and a temperature of 125 ℃ obtain 4 mil thick spacer. 该层合机的设置是:辊速度0.1米/分钟,辊力86千克,在115℃下预热2分钟并且辊温度是125℃。 The laminator is provided are: a roller speed of 0.1 m / min, roll force 86 kg, preheating at 115 ℃ 2 min and the roll temperature was 125 ℃. 从这样制备的薄膜上切下50毫米×60毫米的隔膜。 From the film thus prepared 50 mm × 60 mm cut separator.

将阴极膜与柔性石墨集电器的顶部排成直线(如附图1所示该顶部是阴极接片伸出的地方),然后层压在该集电器上。 The top of the cathode current collector film of flexible graphite aligned (as shown in Figure 1 is the top portion where the cathode tab projecting), then laminated on the current collector. 将该层合机的辊设置为温度是125℃,夹力是170千克,速度是0.25m/min,使用比阴极和集电器的复合厚度约薄12.5微米的垫片。 The roll laminator set temperature of 125 deg.] C, the clamping force is 170 kg, speed of 0.25m / min, using approximately 12.5 microns thinner than the shim thickness of the cathode composite and the current collector.

将阳极与Adocote处理的Cu网的顶部(如附图1所示该顶部是接片伸出的地方)排成直线,然后采用与阴极相同的条件下层压到该铜网集电器上。 The top of the anode and the Cu sites Adocote processing (e.g., where the top portion is shown in the drawings tab projecting 1) aligned and then laminated using a cathode under the same conditions to the copper mesh current collector.

根据上述参照附图2描述的方法将隔板放置在层压的阳极和阴极之间,并使该整个组件在95℃下进行最终的层压步骤,其中夹力为6.0psi,线速度是0.3m/min,使用比该电池部件的复合厚度约薄12.5微米的垫片。 The method described with reference to Figure 2 above the partition plate is placed between the anode and the cathode are laminated, and the whole assembly the final lamination step at 95 deg.] C, wherein the clamping force is 6.0 psi, the line speed 0.3 m / min, using thin composite gasket thickness ratio of about 12.5 micrometers cell component.

然后将获得的电池在实施例1的LiTFSI电解质中浸渍60分钟。 The obtained cell was then immersed in an electrolyte LiTFSI Example 1 for 60 minutes. 该浸渍在皮氏培养皿中进行。 This was immersed in a Petri dish. 该电池吸收的电解质的重量是0.318克。 Weight of the electrolyte of the battery is absorbed by 0.318 grams. 然后将该电池密封在袋子中。 The cell is then sealed in a bag. 使用的袋子的材料是从ShieldPack(West Monroe,LA)获得的ES类材料。 Bag material used was obtained from the ES-based material ShieldPack (West Monroe, LA). 采用的封闭器是手持的Audion Futura Poly Twin型(Packaging Aids Corp.,San Rafael,CA)。 The closure is employed Audion Futura Poly Twin handheld type (Packaging Aids Corp., San Rafael, CA).

将该密封袋转移到干燥箱的外部,并再次用固定在地面上的Model20A V-60966(Vertrod,Brooklyn,NY)密封,其是水冷却的脉冲型封闭器。 The sealed bag was transferred to a dry box outside, and once again fixed on the ground Model20A V-60966 (Vertrod, Brooklyn, NY) seal, which is a pulse-type water-cooled closure. 获得的电池描述在附图1中。 Battery obtained in Figure 1 is described.

测定的第一循环电化学效力是78.2%。 A first electrochemical cycle potency assay was 78.2%. 5次循环累积的容量损失是第一次放电容量的3.1%。 5 cycles cumulative capacity loss was 3.1% in the first discharge capacity. 该电池没有进行2C放电速度试验,因为该电池在初始循环之后出现内部短路。 The battery no 2C discharge rate test, because the battery internal short-circuit occurs after the initial cycles. 因此不再进行进一步试验。 Therefore, no further testing. 在5次初始循环之后的损失是3.1%,比实施例1中的电池高,但是仍然比对比例A的好得多。 After the loss of the initial five cycles of 3.1%, higher than the battery of Example 1, but still much better than Comparative Example A.

对比试验B Comparative Experiment B

根据实施例1中的方法制备电池,但是使用LiCF3SO3在EC/DMC(重量比2∶1)中的1M溶液代替LiTFSI溶液。 According to the method in Example 1 battery was prepared, but using LiCF3SO3 1M solution in EC / DMC (weight ratio of 2) was used instead LiTFSI solution. LiCF3SO3从Aldrich获得,并且在真空下在120℃下干燥了48小时。 LiCF3SO3 obtained from Aldrich, and dried at 120 deg.] C under vacuum for 48 hours. 最终的湿含量是10ppm。 The final moisture content is 10ppm. SelectipurEC和DMC从EM Industries Inc获得。 SelectipurEC and DMC available from EM Industries Inc. 以与实施例1相同的方式评价该电池的性能。 In the same manner as in Example 1 to evaluate the performance of the battery. 第一循环电化学效力是89.6%。 A first electrochemical cycle efficacy was 89.6%. 5次循环的累积容量损失是第一次放电容量的1.4%。 5 cycles and the accumulated capacity loss is the first discharge capacity of 1.4%. 2C放电速度下的容量是C/5下容量的35.7%。 The discharge capacity at 2C rate was C / 35.7% 5 under capacity.

对比试验B的电池容量保持率与放电电流的关系以图表的形式表示在附图3中。 Comparative Experiment B battery capacity retention rate and discharge current relationship shown in figures 3 in tabular form.

对比试验C根据实施例1的方法制备电池,但是阴极集电器是铝网,并且用LiPF6于EC/DMC(重量比2∶1)中的1M溶液代替LiTFSI溶液。 Comparative Experiment C The cell prepared as in Example 1 embodiment, but the cathode current collector is aluminum mesh, and dried LiPF6 in EC / DMC (weight ratio of 2) was used instead of 1M solution of LiTFSI.

与实施例1中石墨箔时的情况相同,将该铝网2A15-077(DelkerCorporation,Branford,CT)用粘结促进剂处理。 Same as in Example 1, when the case of the graphite foil, the aluminum mesh 2A15-077 (DelkerCorporation, Branford, CT) was treated with adhesion promoters. 如普遍接受的,使用电池级LiPF6(Hashimoto Chemical)。 As generally accepted, battery grade LiPF6 (Hashimoto Chemical). SelectipurEC和DMC从EMIndustries Inc获得。 SelectipurEC and DMC obtained from EMIndustries Inc. 以与实施例1相同的方式评价该电池的性能。 In the same manner as in Example 1 to evaluate the performance of the battery. 第一循环电化学效力是90.4%。 A first electrochemical cycle efficacy was 90.4%. 2C放电速度下的容量是C/5下容量的79.8%,其低于使用石墨箔和LiTFSI组合的实施例1中的电池。 The discharge capacity at 2C rate was C / 79.8% 5 under capacity, which is lower than used in Example LiTFSI graphite foil and a combination battery. 结果描述在附图3中。 The results are depicted in Figure 3.

实施例3如下测定阴极-石墨集电器界面的接触阻抗。 Example 3 A cathode was measured as follows - the contact resistance of the graphite current collector interface. 采用实施例1中的阴极薄膜、未处理的Grafoil,并且在135℃下将这些薄膜层压在一起,制备结构C/G/C/C/G/C,这里C是阴极并且G是Grafoil。 In Example 1 using the cathode film, untreated Grafoil embodiment, and at 135 deg.] C These films were laminated together to prepare the structure of C / G / C / C / G / C, where C is the cathode and G is Grafoil. Grafoil的接片伸出阴极外,阴极的尺寸是2.2cm×5.0cm。 Grafoil cathode tabs extending outside, a cathode size 2.2cm × 5.0cm. 使用四点探针AC伏特计测量二个Grafoil片之间的阻抗。 Four-point probe AC ​​voltmeter measuring impedance between two sheets of Grafoil. 发现1Hz至10kHz频率下的阻抗几乎完全为实数值(电阻)(具有非常低的虚数(电容)分量),并且是0.5ohm数量级。 Found impedance at 1Hz to 10kHz frequency is almost entirely real value (resistance) (having a very low number (capacitance) imaginary component), and the magnitude is 0.5ohm. 观察到的电阻比根据阴极的体积导电率计算的电阻大得多,因此该阻抗是在阴极和集电器之间的界面上的电阻的量度。 We observed much resistance ratio calculated from the resistance of the volume conductivity of the cathode, so that the impedance is a measure of the resistance at the interface between the cathode and the current collector. 因为该结构具有2个连续的C/G界面,计算的一个C/G界面的接触阻抗是0.5ohm×2.2cm×5.0cm×(1/2)=2.8ohm cm2。 Since the structure of two successive C / G interface, a contact resistance calculated C / G interface is 0.5ohm × 2.2cm × 5.0cm × (1/2) = 2.8ohm cm2.

实施例4阳极组合物是通过将39克MCMB、4.8克KYNAR Flex2801、14.4克1M Li(CF3SO2)2N于1∶1重量比EC/PC(碳酸异丙烯酯)混和物中的电解液和1.8克炭黑混合而形成的。 Example 4 anode composition was prepared by adding 39 g MCMB, 4.8 g of KYNAR Flex2801,14.4 g 1M 2N electrolyte Li (CF3SO2) in 1:1 weight ratio EC / PC (propylene carbonate) and a mixture of 1.8 g of carbon black formed by mixing. 阴极组合物是通过将52克LiCoO2、5.6克KYNAR Flex2801、17克上述电解液和5.6克炭黑混合而形成的。 The cathode composition is formed by mixing 52 g LiCoO2,5.6 g KYNAR Flex2801,17 g of the above electrolyte solution and 5.6 g carbon black. 隔板组合物是通过将1份KYNAR Flex2801与2.4份电解液和0.4份煅制二氧化硅(Cab-O-Sil,Ts530,Cabot Corporation)混合而形成的。 Separator composition is obtained by mixing 1 part 2.4 parts of KYNAR Flex2801 with an electrolyte and 0.4 parts fumed silica (Cab-O-Sil, Ts530, Cabot Corporation) formed by mixing.

按照实施例2的步骤并使用实施例2的设备,将干燥的组分在Waring混合机中混合约1分钟。 The procedure of Example 2 and the device of Example 2, the dried components are mixed in a Waring blender for about 1 minute. 然后将该混合机的罐和其内容物在覆盖的热板上加热至130℃加热30分钟。 The mixer was then heated tank and its contents were covered with a hot plate heated to 130 ℃ 30 minutes. 然后继续以缓慢的速度进行混合,同时加入电解液。 And continue mixing at slow speed, while adding an electrolyte. 将所获得的混合物再混合1分钟,混和过程中该混合机罐加盖。 The obtained mixture was further mixed for 1 minute, during which time the mixing tank mixer capped. 将混合的混合物输送到配有辊式转子的HaakeRhomix600混合机(序号557-1030)中,并在125℃下混合20分钟,其中在阳极组合物的情况下转速是1rpm,在阴极组合物的情况下转速是20rpm。 The mixture was mixed with a transport roller to HaakeRhomix600 rotor mixer (No. 557-1030), and mixed at 125 ℃ 20 minutes, in a case where the rotational speed of the anode is 1rpm composition, cathode composition in the case where the rotation speed is 20rpm. 然后,将获得的混合物在125℃和试样上的压力为约300psi下热压,随后按照实施例2的方法进行延压。 Then, the obtained mixture was pressure on the sample was 125 ℃ about 300psi and hot pressed, followed by pressure casting method according to Example 2.

根据实施例2的方法,同样将隔板组合物制成隔膜。 According to the method of Example 2, the same composition into membrane separator.

将阴极薄膜与同实施例1所述用粘结促进剂处理的柔性石墨集电器的顶部排成直线,然后层压在该集电器上。 Top flexible graphite cathode current collector film with the treatment agent to promote adhesion of Example aligned with the same embodiment, and then laminated on the current collector. 将该层合机的辊设置为温度是125℃,夹力是170千克,速度是0.25m/min,使用比阴极和集电器的复合厚度约薄12.5微米的垫片。 The roll laminator set temperature of 125 deg.] C, the clamping force is 170 kg, speed of 0.25m / min, using approximately 12.5 microns thinner than the shim thickness of the cathode composite and the current collector.

将阳极与Adocote处理的Cu网的顶部(接片伸出之处)排成直线,然后采用与阴极所用的相同的条件层压到该铜网集电器上。 The top of the anode and the Cu sites Adocote treated (at the projecting tab) aligned, and then using the same conditions as used in cathode laminated on the copper mesh current collector.

将隔板放置在层压的阳极和阴极之间,并使该整个组件在95℃下进行最终的层压步骤,其中夹力为100kg,速度是0.3m/min,使用比该电池部件的复合厚度约薄12.5微米的垫片。 A separator disposed between the anode and the cathode are laminated, and the whole assembly the final lamination step at 95 deg.] C, wherein the clamping force is 100kg, speed is 0.3m / min, than that of the battery using the composite member a thickness of about 12.5 microns thin shim.

然后将该电池密封在袋子中。 The cell is then sealed in a bag. 使用的袋子的材料是从ShieldPack(West Monroe,LA)获得的ES类材料。 Bag material used was obtained from the ES-based material ShieldPack (West Monroe, LA). 采用的封闭器是手持的Audion Futura Poly Twin型(Packaging Aids Corp.,San Rafael,CA)。 The closure is employed Audion Futura Poly Twin handheld type (Packaging Aids Corp., San Rafael, CA).

将密封的电池转移出干燥箱,并再次用固定在地面上的Model 20AV-60966(Vertrod,Brooklyn,NY)密封,其是水冷却的脉冲型封闭器。 The sealed battery transferred out of the oven, and once again fixed on the ground Model 20AV-60966 (Vertrod, Brooklyn, NY) seal, which is a pulse-type water-cooled closure.

以与实施例1相同的方式评价该电池的性能。 In the same manner as in Example 1 to evaluate the performance of the battery. 第一循环电化学效力是86.9%。 A first electrochemical cycle efficacy was 86.9%. 5次循环累积的容量损失是第一次放电容量的3.7%。 5 cycles cumulative capacity loss was 3.7% in the first discharge capacity. 2C放电速度下的容量是C/5下的容量的52.4%。 The capacity at 2C discharge capacity rate is 52.4% of C / 5 at.

Claims (37)

  1. 1.锂或锂离子电化学电池,该电池包括含阳极活性材料的阳极、与该阳极呈导电性接触的阳极集电器、相对于Li/Li+参考电极表现出3至5伏的上限充电电压的阴极,所述的阴极包含与厚度低于250微米的阴极集电器呈导电性接触的锂嵌入过渡金属氧化物、磷酸盐或硫酸盐,该阴极集电器包含石墨,所述的石墨特征在于其堆积密度为0.08-2.25g/cc,导电率至少是500Siemens/cm,并且所述的导电性接触的特征在于电阻低于50ohm-cm2;作为所述阴极和阳极之间的作为隔板的离子可渗透膜;以及与所述阳极和阴极呈导离子性接触的电解液,该电解液包含非质子极性溶剂或聚合物以及浓度是0.2至最高达3摩尔浓度的锂化合物,所述的锂化合物由下式表示Rf1SO2X-(Li+)YZa其中X是C或N,a=0或1,前提条件是当X是C时,a=1,当X是N时,a=0;其中当a=1时,Y和Z独立地是吸电子基团,选 A lithium or lithium-ion electrochemical cell, the cell comprising an anode containing an anode active material, the anode and the anode current collector was electrically conductive contact with respect to Li / Li + reference electrode 3 to 5 show the upper limit of the charging voltage V a cathode, said cathode comprising a conductive cathode current collector was in contact with the thickness of less than 250 microns lithium embedded transition metal oxides, sulfates, or phosphates, the cathode current collector comprising graphite, graphite is characterized in that the bulk a density of 0.08-2.25g / cc, a conductivity of at least 500Siemens / cm, and wherein said conductive contact resistance lower than that 50ohm-cm2; ions as a separator between the cathode and the anode permeable film; and an electrolyte with said anode and cathode were in contact with the ionic conductivity of the electrolyte solution comprising an aprotic polar solvent or a polymer, and up to a concentration of 0.2 to 3 molar concentration of the lithium compound, the lithium compound is represented by represented by the formula Rf1SO2X- (Li +) YZa wherein X is C or N, a = 0 or 1, with the proviso that when X is C when, a = 1, when X is N, a = 0; wherein when a = 1 when, Y and Z is independently an electron withdrawing group, selected from CN、SO2Rf2、SO2R、P(O)(OR)2、CO2R、P(O)R2、C(O)Rf3、C(O)R、与它们形成的环烯基和H,前提条件是Y和Z二者不能都是H;另外其中Rf1、Rf2和Rf3是C1-4的全氟烷基,其任选地被一个或多个醚氧取代;R是C1-6的烷基,其任选地被一个或多个醚氧取代,或者是芳基,其任选地进一步被取代;或者其中当a=0时,Y是由式-SO2Rf6表示的吸电子基团,其中Rf6是由式-(Rf4SO2N-(Li+)SO2)mRf5表示的基团,其中m=0或1,并且Rf4是-CnF2n-,Rf5是-CnF2n+1,这里n=1-4,任选地被一个或多个醚氧取代。 CN, SO2Rf2, SO2R, P (O) (OR) 2, CO2R, P (O) R2, C (O) Rf3, C (O) R, forming with them cycloalkenyl and H, with the proviso that Y and Z are not both H; further wherein Rf1, Rf2 and Rf3 is a perfluoroalkyl group of C1-4, optionally substituted by one or more ether oxygen; R is a C1-6 alkyl optionally substituted with one or more ether oxygens, or an aryl group, which is optionally further substituted; or wherein, when a = 0, Y is an electron withdrawing group -SO2Rf6 formula represented by the formula wherein Rf6 - group (Rf4SO2N- (Li +) SO2) mRf5 represented, where m = 0 or 1, and Rf4 is -CnF2n-, Rf5 is -CnF2n + 1, where n = 1-4, optionally substituted with one or more ether oxygen substituents.
  2. 2.权利要求1的电化学电池,其中所述的阳极活性材料是选自石墨微珠、天然石墨、碳纤维或石墨片的碳。 2. The electrochemical cell of claim 1, wherein said anode active material is selected from graphite microbeads, natural graphite, carbon fibers or carbon graphite sheet.
  3. 3.权利要求1的电化学电池,其中阳极活性材料或锂嵌入过渡金属氧化物、磷酸盐或硫酸盐或者这二者为颗粒形式,所述颗粒尺寸是平均等效球直径为1至100微米。 The electrochemical cell of claim 1, wherein the anode active material or a lithium insertion transition metal oxide, sulphate or phosphate or both in particulate form, the average particle size of equivalent spherical diameter of 1 to 100 microns .
  4. 4.权利要求1的电化学电池,其中阴极相对于Li/Li+参考电极表现出3.5至4.5伏的上限充电电压。 The electrochemical cell of claim 1, wherein the cathode with respect to Li / Li + reference electrode exhibits a 3.5 to 4.5 volt charging voltage limit.
  5. 5.权利要求1的电化学电池,其中锂嵌入过渡金属氧化物、磷酸盐或硫酸盐选自LiCoO2、尖晶石LiMn2O4、铬掺杂的尖晶石锂锰氧化物、层状LiMnO2、LiNiO2、LiNixCo1-xO2,其中x是0<x<1,钒氧化物、LiFePO4和LiFeTi(SO4)3。 The electrochemical cell of claim 1, wherein the lithium insertion transition metal oxide, a phosphate or sulfate selected from LiCoO2, spinel LiMn2O4, chromium-doped spinel lithium manganese oxide, layered LiMnO2, LiNiO2, LiNixCo1-xO2, wherein x is 0 <x <1, vanadium oxide, LiFePO4 and LiFeTi (SO4) 3.
  6. 6.权利要求5的电化学电池,其中锂嵌入过渡金属氧化物、磷酸盐或硫酸盐是选自LiCoO2、LiMn2O4、LiNiO2、LiNixCo1-xO2,其中x是0<x<1,及其衍生物的锂嵌入过渡金属氧化物。 The electrochemical cell of claim 5, wherein the lithium insertion transition metal oxide, phosphates or sulfates are selected from LiCoO2, LiMn2O4, LiNiO2, LiNixCo1-xO2, wherein x is 0 <x <1, and derivatives thereof lithium insertion transition metal oxide.
  7. 7.权利要求1的电化学电池,其中含石墨的阴极集电器是纯度大于95%的石墨片。 The electrochemical cell of claim 1, wherein the graphite-containing graphite sheet cathode current collector is greater than 95% purity.
  8. 8.权利要求7的电化学电池,其中所述石墨片的特征在于其堆积密度是0.8至1.4克/立方厘米。 The electrochemical cell of claim 7, wherein said graphite sheet characterized in that the bulk density is 0.8 to 1.4 g / cc.
  9. 9.权利要求1的电化学电池,其中所述的石墨片的厚度小于75微米。 9. The electrochemical cell of claim 1, wherein the thickness of the graphite sheet is less than 75 microns.
  10. 10.权利要求1的电化学电池,其中所述石墨片的特征在于其面内导电率至少是1000Siemens/cm。 10. The electrochemical cell of claim 1, wherein said graphite sheet characterized in that it is a surface conductivity of at least 1000Siemens / cm.
  11. 11.权利要求1的电化学电池,其中含石墨的阴极集电器还包含粘结促进剂。 11. The electrochemical cell of claim 1, wherein the graphite-containing cathode current collector further comprises adhesion promoters.
  12. 12.权利要求1的电化学电池,其中所述的电解液包括有机碳酸酯。 12. The electrochemical cell of claim 1, wherein said electrolytic solution comprises an organic carbonate.
  13. 13.权利要求12的电化学电池,其中所述的有机碳酸酯选自碳酸亚乙酯、碳酸异丙烯酯、碳酸二甲酯、碳酸二乙酯和其混合物。 The electrochemical cell 12 diethyl carbonate and mixtures thereof as claimed in claim 13, wherein said organic carbonate is selected from ethylene carbonate, propylene carbonate, dimethyl carbonate.
  14. 14.权利要求1的电化学电池,其中在所述电解液中锂化合物的浓度是0.5至2摩尔浓度。 14. The electrochemical cell of claim 1, wherein the concentration of the electrolyte in the lithium compound is 0.5 to 2 molar.
  15. 15.权利要求1的电化学电池,其中在所述电解液中锂化合物的浓度是0.8至1.2摩尔浓度。 15. The electrochemical cell of claim 1, wherein the concentration of the electrolyte in the lithium compound is from 0.8 to 1.2 molar concentration.
  16. 16.权利要求1的电化学电池,其中锂化合物由下式表示CF3SO2N-(Li+)SO2CF3 16. The electrochemical cell of claim 1, wherein the lithium compound represented by the formula CF3SO2N- (Li +) SO2CF3
  17. 17.构成电化学电池的方法,该方法包括通过在配有混合装置的容器中使第一聚合物、一种或多种极性非质子液体的混合物和锂化合物混合而形成可熔融加工的组合物;混合所述的组合物至少至其是可塑性成形的;以及由所述的可塑性成形组合物通过对其施加热和/或压力形成片材;将所述的片材与石墨集电器片、离子可渗透隔板、含阳极活性材料和第二聚合物的阳极片和阳极集电器进行叠层,所述石墨集电器片的堆积密度是0.08-2.25g/cc、厚度小于250微米,并且导电率至少是500Siemens/cm;以及压实所述的层状片材,以便这些层可以如构成电化学电池所需的一样呈导电和/或导离子性接触,所述的锂化合物由下式表示Rf1SO2X-(Li+)YZa其中X是C或N,a=0或1,前提条件是当X是C时,a=1,当X是N时,a=0;其中当a=1时,Y和Z独立地是吸电子基团,选自CN、SO2Rf2、SO2R、P( 17. The method of constituting an electrochemical cell, the method comprising the melt processable composition is formed by mixing a first polymer, of one or more polar aprotic liquid mixture of a lithium compound and a mixing apparatus equipped with a manipulation of the container composition; mixing said composition at least until it is plastically formed; and forming a sheet from said plastic formable composition by applying heat thereof and / or pressure; the graphite sheet current collector sheet, an ion permeable separator, an anode sheet comprising an anode active material and a second polymer and the anode current collector are laminated, the bulk density of the graphite current collector sheet is 0.08-2.25g / cc, a thickness of less than 250 microns, and the conductive of at least 500Siemens / cm; and compacting the layered sheets so that these layers may be composed of the same shape as the conductive and / or ion-conducting contact desired electrochemical cell, the lithium compound represented by the following formula Rf1SO2X- (Li +) YZa wherein X is C or N, a = 0 or 1, with the proviso that when X is C, a = 1, when X is N, a = 0; wherein, when a = 1, Y and Z is independently an electron withdrawing group selected from CN, SO2Rf2, SO2R, P ( O)(OR)2、CO2R、P(O)R2、C(O)Rf3、C(O)R、与它们形成的环烯基和H,前提条件是Y和Z二者不能都是H;另外其中Rf1、Rf2和Rf3是C1-4的全氟烷基,其任选地被一个或多个醚氧取代;R是C1-6的烷基,其任选地被一个或多个醚氧取代,或者是芳基,其任选地进一步被取代;或者其中当a=0时,Y是由式-SO2Rf6表示的吸电子基团,其中Rf6是由式-(Rf4SO2N-(Li+)SO2)mRf5表示的基团,其中m=0或1,并且Rf4是-CnF2n-,Rf5是-CnF2n+1,这里n=1-4,任选地被一个或多个醚氧取代。 O) (OR) 2, CO2R, P (O) R2, C (O) Rf3, C (O) R, cycloalkenyl and H, with the proviso that they form both Y and Z are not both H; further wherein Rf1, Rf2 and Rf3 is a perfluoroalkyl group of C1-4, optionally substituted by one or more ether oxygen; R is a C1-6 alkyl group, optionally substituted with one or more ether oxygen substituted, or is aryl, which is optionally further substituted; or wherein when a = 0, Y is an electron withdrawing group represented by the formula -SO2Rf6, wherein Rf6 by the formula - (Rf4SO2N- (Li +) SO2) a group represented by mRf5, where m = 0 or 1, and Rf4 is -CnF2n-, Rf5 is -CnF2n + 1, where n = 1-4, optionally substituted with one or more ether oxygen.
  18. 18.权利要求17的方法,其中将所述的层状片材压实以构成电化学电池的步骤包括施加热和/或压力。 18. The method of claim 17, wherein said layered sheet is compacted to constitute an electrochemical cell comprising the step of applying heat and / or pressure.
  19. 19.权利要求17的方法,其中阳极活性材料或锂嵌入过渡金属氧化物、磷酸盐或硫酸盐或者这二者为颗粒形式,所述颗粒尺寸是平均等效球直径为1至100微米。 19. The method of claim 17, wherein the anode active material or a lithium insertion transition metal oxide, sulphate or phosphate or both in particulate form, the average particle size of equivalent spherical diameter of 1 to 100 microns.
  20. 20.权利要求17的方法,其中锂嵌入过渡金属氧化物、磷酸盐或硫酸盐是选自LiCoO2、LiMnO4、LiNiO2、LiNixCo1-xO2,其中x是0<x<1,及其衍生物的锂嵌入过渡金属氧化物。 20. The method of claim 17, wherein the lithium insertion transition metal oxide, phosphates or sulfates are selected from LiCoO2, LiMnO4, LiNiO2, LiNixCo1-xO2, where x is a lithium intercalation 0 <x <1, and derivatives thereof transition metal oxides.
  21. 21.权利要求17的方法,其中含石墨的阴极集电器是纯度大于95%的石墨片。 21. The method of claim 17, wherein the graphite-containing graphite sheet cathode current collector is greater than 95% purity.
  22. 22.权利要求21的方法,其中所述石墨片的特征在于其堆积密度是0.8至1.4克/立方厘米。 22. The method of claim 21, wherein said graphite sheet characterized in that the bulk density is 0.8 to 1.4 g / cc.
  23. 23.权利要求17的方法,其中所述的石墨片的厚度小于75微米。 23. The method of claim 17, wherein the thickness of the graphite sheet is less than 75 microns.
  24. 24.权利要求17的方法,其中所述石墨片的特征在于其面内导电率至少是1000Siemens/cm。 24. The method of claim 17, wherein said graphite sheet characterized in that it is a surface conductivity of at least 1000Siemens / cm.
  25. 25.权利要求17的方法,其中含石墨的阴极集电器还包含粘结促进剂。 25. The method of claim 17, wherein the graphite-containing cathode current collector further comprises adhesion promoters.
  26. 26.权利要求17的方法,其中所述的电解液包括有机碳酸酯。 26. The method of claim 17, wherein said electrolytic solution comprises an organic carbonate.
  27. 27.权利要求26的方法,其中所述的有机碳酸酯选自碳酸亚乙酯、碳酸异丙烯酯、碳酸二甲酯、碳酸二乙酯和其混合物。 26. The method of diethyl carbonate and mixtures thereof as claimed in claim 27, wherein said organic carbonate is selected from ethylene carbonate, propylene carbonate, dimethyl carbonate.
  28. 28.权利要求17的方法,其中在所述电解液中锂化合物的浓度是0.5至2摩尔浓度。 28. The method of claim 17, wherein the concentration of the electrolyte in the lithium compound is 0.5 to 2 molar.
  29. 29.权利要求17的方法,其中该锂化合物由下式表示CF3SO2N-(Li+)SO2CF3 29. The method of claim 17, wherein the lithium compound represented by the formula CF3SO2N- (Li +) SO2CF3
  30. 30.权利要求17的方法,其中所述的第一和第二聚合物选自聚偏1,1-二氟乙烯和其共聚物以及具有含氟化磺酸、亚氨基或甲基锂盐侧基的离子交联聚合物。 The method of 17 or imino side methyl lithium salt as claimed in claim 30., wherein said first and second polymer is selected from polyvinylidene fluoride and copolymers thereof and a fluorinated sulfonic acid, group ionomer.
  31. 31.权利要求30的方法,其中所述第一和第二聚合物是聚偏1,1-二氟乙烯或其共聚物。 31. The method of claim 30, wherein said first and second polymer is a polyvinylidene fluoride or copolymers thereof.
  32. 32.权利要求17的方法,其中所述的离子可渗透隔板包括选自微孔片、溶剂可溶涨聚合物、凝结化聚合物电解质、聚醚、氟化离子交联聚合物和其组合的聚合组分。 32. The method of claim 17, wherein said selected ion permeable separator comprises a microporous sheet, the solvent-swellable polymer, coagulated polymer electrolyte, polyethers, fluorinated ionomers, and combinations thereof the polymeric components.
  33. 33.权利要求17的方法,其中所述离子可渗透隔板包括聚偏1,1-二氟乙烯和1,1-二氟乙烯与选自六氟丙烯、全氟甲基乙烯基醚、全氟乙基乙烯基醚和全氟丙基乙烯基醚的单体的共聚物。 33. The method of claim 17, wherein said ion-permeable separator comprises a polyvinylidene fluoride and vinylidene fluoride selected from hexafluoropropylene, perfluoromethyl vinyl ether, whole fluoroethyl vinyl ether copolymer and perfluoropropyl vinyl ether monomers.
  34. 34.权利要求17的方法,其中所述的离子可渗透隔板包括微孔聚烯烃片。 34. The method of claim 17, wherein said ion-permeable separator comprising a microporous polyolefin sheet.
  35. 35.权利要求17的方法,其中所述的离子可渗透隔板包括含由1,1-二氟乙烯衍生的重复单元和具有由下式表示的离子侧基的全氟链烯基单体的骨架的离子交联聚合物及其亚氨基盐和甲基化物衍生物,-(O-CF2CFR)aO-CF2(CFR′)bSO3-xLi+其中R和R′独立地选自F、Cl或全氟化的C1-10-烷基,a=0、1或2,b=0至6。 35. The method of claim 17, wherein said ion-permeable separator comprises a repeating unit containing a vinylidene fluoride-derived and having a perfluoroalkenyl monomer having an ionic group pendant group represented by the formula cross-linked polymers and ionic salts and imino methide derivative framework, - (O-CF2CFR) aO-CF2 (CFR ') bSO3-xLi + wherein R and R' are independently selected from F, Cl or perfluoro of C1-10- alkyl, a = 0,1 or 2, b = 0 to 6
  36. 36.权利要求1的电化学电池,其中阴极集电器是纯度大于95%、堆积密度是0.8-1.4g/cm3、厚度小于75微米和其面内导电率至少是1000Siemens/cm的石墨片;并且电解液是锂化合物于选自碳酸亚乙酯、碳酸异丙烯酯、碳酸二甲酯、碳酸二乙酯和其混合物的有机碳酸酯中的0.5至2摩尔浓度的溶液;该锂化合物由下式表示CF3SO2N-(Li+)SO2CF3 36. The electrochemical cell of claim 1, wherein the cathode current collector is greater than 95% purity, bulk density of 0.8-1.4g / cm3, a thickness of less than 75 microns and a conductivity of at least the inner surface thereof is 1000Siemens / cm graphite sheet; and the electrolyte is a lithium carbonate compound selected from ethylene ethyl ester, 0.5 to 2 molar solution of an organic carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and mixtures thereof; and the lithium compound represented by the following formula represents CF3SO2N- (Li +) SO2CF3
  37. 37.权利要求17的方法,其中阴极集电器是纯度大于95%、堆积密度是0.8-1.4g/cm3、厚度小于2 5 0微米和其面内导电率至少是1000Siemens/cm的石墨片;非质子液体是选自碳酸亚乙酯、碳酸异丙烯酯、碳酸二甲酯、碳酸二乙酯和其混合物的有机碳酸酯;并且由下式CF3SO2N-(Li+)SO2CF3表示的锂化合物的存在量使得当其与所述的有机碳酸酯混合时,将获得锂化合物于该有机碳酸酯中的0.5至2摩尔浓度的溶液。 37. The method of claim 17, wherein the cathode current collector is greater than 95% purity, bulk density of 0.8-1.4g / cm3, a thickness of less than 250 microns and a conductivity of at least the inner surface thereof is 1000Siemens / cm graphite sheet; non protic liquid is selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and mixtures of organic carbonates; and represented by the following formula CF3SO2N- (Li +) in the presence of an amount of a lithium compound represented by such SO2CF3 when mixed with the organic carbonate, a solution of lithium compound in the organic carbonates in concentrations of 0.5 to 2 moles obtained.
CN 01816843 2000-04-26 2001-10-03 High performance lithium or lithium ion cell CN1468455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09684206 US6699623B1 (en) 2000-04-26 2000-10-06 High performance lithium or lithium ion cell

Publications (1)

Publication Number Publication Date
CN1468455A true true CN1468455A (en) 2004-01-14

Family

ID=24747096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 01816843 CN1468455A (en) 2000-04-26 2001-10-03 High performance lithium or lithium ion cell

Country Status (5)

Country Link
EP (1) EP1328996A2 (en)
JP (2) JP2004511887A (en)
KR (1) KR20040005831A (en)
CN (1) CN1468455A (en)
WO (1) WO2002031905A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414492B (en) 2007-05-25 2012-02-08 原子能委员会 Plexiglass electrolyte, preparation method and device which comprises

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798951B2 (en) * 2004-03-04 2011-10-19 三洋電機株式会社 Positive electrode and battery using the positive electrode for a nonaqueous electrolyte battery
WO2007118281A1 (en) 2006-04-18 2007-10-25 Commonwealth Scientific And Industrial Research Organisation Flexible energy storage devices
KR20110025661A (en) * 2008-05-29 2011-03-10 레이덴 에너지 인코오포레이티드 Electrochemical cells with ionic liquid electrolyte
JP5601474B2 (en) * 2011-02-28 2014-10-08 株式会社Gsユアサ Negative electrode plate and a lead-acid battery for a lead storage battery
EP2684245A4 (en) * 2011-03-09 2014-09-03 Aquion Energy Inc Metal free aqueous electrolyte energy storage device
US8298701B2 (en) 2011-03-09 2012-10-30 Aquion Energy Inc. Aqueous electrolyte energy storage device
JP5303057B2 (en) * 2011-10-27 2013-10-02 株式会社神戸製鋼所 Current collectors, electrodes and a secondary battery
FR2988225B1 (en) * 2012-03-13 2014-03-28 Hutchinson An anode for a lithium-ion battery cell, its manufacturing process and the battery incorporating it.
JP5817002B2 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Non-aqueous secondary battery
JP5817001B2 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Non-aqueous secondary battery
JP5816998B2 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Salts with alkali metal, alkaline earth metal or aluminum cation, an electrolytic solution containing an organic solvent having a hetero element
RU2645104C2 (en) * 2013-09-25 2018-02-19 Дзе Юниверсити Оф Токио Electrolyte solution for electricity storage device, such as batteries and capacitors containing salt, wherein alkali metal, alkaline earth metal or aluminum serves as cations, and organic solvent having hetero element, method for producing same and capacitor provided with said electrolyte solution
JP5817000B2 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Salts with alkali metal, alkaline earth metal or aluminum cation, the electrolytic solution group containing an organic solvent having a hetero element
JP5817008B1 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Non-aqueous secondary battery
JP5817005B2 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Non-aqueous secondary battery
JP5817007B1 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Non-aqueous secondary battery
JP5816999B2 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Salts with alkali metal, alkaline earth metal or aluminum cation, the production method of the electrolytic solution containing an organic solvent having a hetero element
JP5817006B1 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Non-aqueous secondary battery
JP5816997B2 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Salts with alkali metal, alkaline earth metal or aluminum cation, high viscosity electrolyte containing an organic solvent having a hetero element
JP5817009B1 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Non-aqueous secondary battery
WO2015045389A1 (en) * 2013-09-25 2015-04-02 国立大学法人東京大学 Electrolyte solution for electricity storage devices such as batteries and capacitors containing salt, wherein alkali metal, alkaline earth metal or aluminum serves as cations, and organic solvent having hetero element, method for producing same, and capacitor provided with said electrolyte solution

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US5514493A (en) * 1995-03-06 1996-05-07 Minnesota Mining And Manufacturing Company Perfluoroalkylsulfonates, sulfonimides, and sulfonyl methides, and electrolytes containing them
JPH09306506A (en) * 1996-05-17 1997-11-28 Nisshinbo Ind Inc Current collector for molten salt battery, manufacture of current collecting material for it, and molten salt battery using its current collector
JP2001526451A (en) * 1997-12-10 2001-12-18 ミネソタ マイニング アンド マニュファクチャリング カンパニー Bis in electrochemical systems (perfluoroalkyl sulfonyl) imide surfactant salt
US6294289B1 (en) * 1998-08-25 2001-09-25 3M Innovative Properties Company Cyano-substituted methide and amide salts
JP3831550B2 (en) * 1999-08-16 2006-10-11 三洋電機株式会社 Non-aqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414492B (en) 2007-05-25 2012-02-08 原子能委员会 Plexiglass electrolyte, preparation method and device which comprises

Also Published As

Publication number Publication date Type
EP1328996A2 (en) 2003-07-23 application
JP2009043737A (en) 2009-02-26 application
JP2004511887A (en) 2004-04-15 application
KR20040005831A (en) 2004-01-16 application
WO2002031905A3 (en) 2002-10-03 application
WO2002031905A2 (en) 2002-04-18 application

Similar Documents

Publication Publication Date Title
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
US5720780A (en) Film forming method for lithium ion rechargeable batteries
US20040053122A1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
US6051343A (en) Polymeric solid electrolyte and lithium secondary cell using the same
US20050130035A1 (en) Nonaqueous electrolyte secondary battery
US6342320B2 (en) Electrochemically stable plasticizer
US20030215716A1 (en) Lithium secondary battery
US20070009794A1 (en) Nonaqueous electrolyte battery, battery pack and vehicle
US20070190407A1 (en) Lithium secondary battery
US20070037049A1 (en) Auxiliary power unit
US6699623B1 (en) High performance lithium or lithium ion cell
JP2010192200A (en) Nonaqueous electrolyte secondary battery
JP2001143702A (en) Non-aqueous secondary battery
JP2003100342A (en) Lithium secondary battery
JP2007095656A (en) Non-aqueous secondary battery
US20050058896A1 (en) Non-aqueous electrolyte secondary battery
JP2003282148A (en) Thin lithium ion secondary battery
US6632256B1 (en) Method for manufacturing a non-aqueous-gel-electrolyte battery
US20050233218A1 (en) Lithium-ion secondary battery and method of charging lithium-ion secondary battery
JP2003123724A (en) Separator for lithium secondary battery and lithium secondary battery using the same
JP2011138761A (en) Separator and battery
JP2001043897A (en) Solid electrolyte battery
US20010004504A1 (en) Nonaqueous secondary battery and method of manufacturing thereof
JPH1012272A (en) Nonaqueous electrolyte secondary battery
US20070111104A1 (en) Gel electrolyte and gel electrolyte battery

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)