CN1430789A - 晶片热处理的方法和设备 - Google Patents

晶片热处理的方法和设备 Download PDF

Info

Publication number
CN1430789A
CN1430789A CN01809857A CN01809857A CN1430789A CN 1430789 A CN1430789 A CN 1430789A CN 01809857 A CN01809857 A CN 01809857A CN 01809857 A CN01809857 A CN 01809857A CN 1430789 A CN1430789 A CN 1430789A
Authority
CN
China
Prior art keywords
process chamber
wafer
gas
temperature
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01809857A
Other languages
English (en)
Other versions
CN1199236C (zh
Inventor
Sr 詹姆斯·J·梅泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1430789A publication Critical patent/CN1430789A/zh
Application granted granted Critical
Publication of CN1199236C publication Critical patent/CN1199236C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Abstract

本设备提供一种温度控制环境,用于半导体晶片的升温处理。一热壁的处理室被用于各处理步骤。该处理室包括三个区,各有独立的温度控制能力。该设备除了能在晶片之上提供气流速度梯度,以改进温度和处理的均匀性结果之外,还能旋转晶片。

Description

晶片热处理的方法和设备
技术领域
本发明涉及工件热处理的改进的方法和设备,更具体说,是涉及用于电子器件制作的半导体晶片的热处理。
背景技术
半导体晶片的高温处理,对近代微电子器件制造是十分重要的。这些处理包括化学气相淀积(CVD)、硅外延、硅锗、和诸如注入退火、氧化与扩散注入等快速热处理。在多片晶片批量反应器、微晶片批量反应器、或在单个晶片快速热反应器中,这些处理都在约400到1200摄氏度的范围中进行。有许多标准的教科书和参考书描述了半导体晶片的升温处理。可以举出的参考书包括:Peter Van Zant,“Microchip Fabrication”,第三版,McGraw-Hill,New York,1987;John L.Vossen and Werner Kern,“Thin Film Processes”,AcademicPress,Orlando,1978;S.M.Sze,“VLSI Technology”,McGraw-Hill,New York,1988。
根据目前的实践,这些系统全都存在严重的问题。例如,一种典型的批量或微量炉,用它炽热壁的辐射加热约24到200片晶片。加热源通常用Ni-Cr丝电子元件,排列在预加热、淀积、和后加热区内。各区按有各自的温度分布和控制,在该区长度上维持需要的晶片温度分布。但是,这些炉的缺点是,例如维持温度的极其长的时间和涉及装入和取出晶片的长的加热和冷却时间。
由于晶片边缘靠近热壁辐射源,造成晶片边缘比中央更热,于是出现炉系统的另一个问题。这一情况能在晶片的晶格中产生热应力,并产生位错而导致滑移及其他缺陷。众所周知,因为该类缺会陷出现在电路中,所有这些缺陷导致近代器件的生产率问题。另一个问题是,当晶片弯曲或翘曲时,将使这些晶片不适宜作进一步处理。通常,晶片被装入有托住晶片的槽的石英舟或SiC舟中。在处理时,环绕槽的地方产生均匀性问题。此外,晶片的受夹并承受的局部应力,同样能导致滑移。
另一个问题是,在升温时,晶片受热的时间全都不同。炉中前面的晶片受热时间最长,而后面的晶片受热时间最短。CVD处理对温度极其敏感,从而处于升温过程的时间能导致从这一晶片到另一晶片的均匀性问题。
当今的器件要求线宽小于1微米,而结深小至25埃。此外,300mm晶片有较小的热聚集周期(thermal budget cycle),因此,为满足热聚集周期的要求,必须缩减温度处理时间,以限制横向的和向下的掺杂扩散。
为满足这些要求,半导体工业已经研发了各种途径。其一是增加晶片间的间隔来缩减炉的批量大小,从而允许更短的装入/取出时间和更好的晶片处理均匀性。
另一种技术是用RTP系统,该种系统一次处理一晶片,且通常使用高电流的石英卤素灯作加热源。它们能以高达150℃/秒的速度,把晶片快速加热至约400℃到1200℃的温度范围。RTP把周期时间减少一个量级或更多、减少处于温度的时间、并消除掺杂扩散的问题。借助RTP系统处理均匀性的改进,RTP有效地与炉竞争。
在一种典型的RTP系统中,灯放在处理室一定距离外的光学反射器中,处理室由纯净熔融石英制成。纯净的熔融石英可使灯的能量绝大部分通过处理室,加热晶片和晶片托架。但是,石英室吸收来自灯的一些能量和来自晶片和托架的辐射。处理室必须冷却,以防止不需要的淀积涂覆在处理室的壁上。在处理的壁上的涂覆层,干扰传导至晶片的辐射能;且涂覆层能产生不需要的微粒,落在晶片上。晶片的边缘接近冷却的壁,这一点可能产生滑移和处理问题。由于冷壁的要求,为了使处理壁上的淀积最小化,限制了使用硅气的生长速率。对使用硅烷的情形,生长速率仅限于约0.2微米/分。
使用灯的另一个问题是,只有一小部分(约30%)灯的能量被引导至晶片的位置区。由于灯与晶片有一定距离,所以该部分灯的能量是太小了。具体说,灯在室外,还要分区把能量传送至各晶片区域。因此,难以改进温度的均匀性。为获得需要的温度而单纯调节灯功率所带来的变化,能够引起晶片加热特性的剧烈变化。虽然把灯装在复杂的反射器内,试图控制辐射能量,但是,这些反射器和灯丝随时间和使用而降质,导致晶片上不想要的温度变化。此外,辐射加热系统要求用许多灯(多达300盏)来加热单个晶片,还有巨大的功率(高达300KW)。灯加热反应器要求复杂的加热和温度控制系统,这也是个麻烦问题。
热处理的处理结果,关键是晶片温度的测量和温度的控制。灯加热系统的温度测量,同样是非常困难的,因为温度传感器可能受来自灯和晶片表面的辐射变化的影响,该辐射变化随温度而改变,特别是晶片上形成布线图案之后。通常,只在少数位置测量温度,且在处理过程中,一般不测量或控制温度梯度。
一般用多点热电偶晶片来帮助分配灯功率输出。但是,这样做要把反应器(reactor)暴露在金属污染下,还因为用该种技术,晶片不能旋转,无法考虑因气流等等产生的温度梯度。
晶片通常装在顶针(pin lift)机构的基座上,以便升起/降下晶片。这些针能刻划晶片的背面、产生微粒、和在针的区域产生局部的温度改变。这种情况能在硅晶片的晶体结构中产生缺陷和淀积的不均匀问题。晶片背面的微粒,在晶片输送机装入/取出时,能够污染其他晶片。一般说,300mm的晶片比200mm的晶片薄,并要求更多的针支撑点,但300mm的背面表面规格,更要求减少背面的刻划。
标准系统还涉及处理气体温度控制的一些问题。当把气体引进系统时,晶片的前缘被冷却。这样可能产生滑移并使膜的质量恶化。半导体工业认识到这个问题。为此,半导体工业尝试通过预加热气体和在晶片外侧区域用滑移环来缓解该问题。但是,已经作出的改变仍旧不能令人满意,也不能完全解决晶片的热处理问题,特别是对大直径的晶片。
很清楚,有许多应用要求可靠的和高效的方法与设备,用于如半导体晶片等工件的热处理。遗憾的是,通常用于老式热处理的方法和设备的特性,不适宜用于某些当前的应用和将来的应用。因此仍旧需要一种半导体晶片热处理系统,为晶片和处理气体提供改进的温度控制。需要一种易于操作并易于维护的系统。需要一种系统来提供改进的微粒性能、改进的处理结果、和更高的产量。
发明内容
本发明力图提供能克服已知方法和设备缺点的方法和设备,用于如半导体晶片等工件的热处理。本发明的一个方面,包括半导体晶片热处理的方法和设备,该方法和设备使用的热壁处理室,有执行升温处理步骤的等温区。该处理室装在更易于进行气体处理的外壳之中。处理室的加热器位于外壳与处理室之间。加热器的构造,能为等温区产生高度稳定的和高度均匀的温度。气体在晶片上的流动是受控的,以获得均匀的处理结果。本发明还有一个方面,包括处理室中的各个区,每一区的温度能够独立控制,使处理气体的温度在该气体到达晶片前和通过晶片后,都能被控制。
本发明的另一个方面,包括一种设备,它有改进的升起和旋转晶片的部件,以便减少微粒的产生、简化晶片的装入、和改善晶片处理的均匀性。
本发明还有一个方面,包括一种设备,它在晶片的升温处理时,有提供能量效率的部件。该设备还包括有效地使用处理气体的部件。
应当指出,本发明不把它的应用,限制在后面说明或示于附图的部件结构细节和部件排列。本发明能用于其他的实施例,且能以各种方式实施和实现。还应指出,本文采用的词汇和术语,只为说明的目的,因而不能认为是限制。
如上所述,本领域熟练人员容易用这里公开的基本概念作为基础,设计出实现本发明各个方面的其他结构、方法和系统。因此,重要的是,应当认为本文的权利要求书包括该类等效的结构,只要它们不违背本发明的精神和范围。
还有,前述提要的目的,是使美国专利与商标局和一般公众,特别是不熟悉专利及法律术语或词汇的本领域科学家、工程师、专业人员,能根据粗略浏览而很快判定本申请公开的技术性质和实质。无论如何,前述提要既不企图用来定义本申请的发明,因为本申请的发明是由权利要求书界定的,也不企图限制本发明的范围。
在考虑本发明的特定实施例,特别是结合附图的下述详细说明后,本发明的上述和更进一步的特征和优点,将一目了然。
附图说明
图1是本发明一个实施例的剖面图。
图1a是图1所示设备的另一视图。
图2是图1中处理室的一个实施例的剖面图。
图3是电功率加热单元的假设的有代表性的温度分布。
图3a是使用电功率加热单元的一种示例性构造。
图4是处理室另一个实施例的剖面图。
图5画出处理室气体注入器的一个例子。
图6画出隔热屏(heat shield)的另一个实施例。
图7画出一种旋转与升降系统的简图。
具体实施方式
本发明各实施例的工作原理,将在下面就晶片的外延层淀积方面说明。但是应当指出,按照本发明的各实施例,基本上可以执行任何需要升温处理的半导体晶片处理步骤,特别是那些在晶片上需要温度均匀性的步骤。有关需要升温处理的半导体晶片处理步骤的评论,容易在专利文献和标准的科学文献中找到。
现在参考图1,图中画出用于工件如半导体晶片的热处理设备20。该设备包括外壳30。在一个优选的实施例中,外壳30包括主体34和至少一个可拆卸的部件,如盖38。主体34与盖38的结构,能形成基本上气密的接触。该气密接触可以是任何类型标准的可移出的密封圈42,例如用O形环的密封圈及用垫圈的密封圈。外壳30把容积46封闭。在某些实施例中,外壳30包括如陶瓷材料、石英、铝合金、和铁合金如不锈钢等材料的结构。在一个优选的实施例中,外壳30的结构能自主冷却。在一个实施例中,外壳30的壁形成传送冷却剂的冷却剂导管50。在又一个实施例中,外壳30包括冷却蛇管(未画出)。冷却蛇管与外壳30的表面接触,当冷却剂流过蛇管时,能把热量带走。
处理室54安装在外壳30内。处理室54最好用耐热材料构成。合适的材料例子包括碳化硅、涂覆石墨的碳化硅、石墨、石英、硅、陶瓷、氮化铝、氧化铝、氮化硅、氧化镁、氧化锆、及陶瓷材料。
处理室54包括处理区(未在图1画出)。在优选的各实施例中,处理区在主要的处理步骤中,维持基本上等温处理的温度。晶片支座(未在图1画出)在处理区中支承晶片,以便晶片在主要处理步骤中经受基本上等温处理的温度。本发明各实施例可以包括不同的晶片支座结构。例如,在一个实施例中,晶片支座包括处理区的底部内侧表面。在另一个实施例中,晶片支座包括位于处理区内的板(未画出)。
一个优选的实施例包括多个电功率加热单元66,位于外壳30与处理室54之间,用于加热处理室54。图1画出沿处理室54上表面与下表面排列的加热单元66的剖面。加热单元66也可以沿处理室54的侧面排列;为清楚起见,在图1中没有画出沿处理室54侧面排列的加热单元66。
加热单元66与处理室54之间距离的变化,给出本发明的另一个实施例。对某一特定实施例,该距离将由加热单元66的类型和所选的加热处理室54的工作模式决定。适合用作加热单元66的加热单元类型例子,包括电阻条加热器、IR灯、RF功率感应加热器、和电弧灯。
在一个优选的实施例中,电阻条加热器是涂覆石墨的碳化硅电阻条加热器。该种电阻条加热器市面上可以买到,用于各种高温使用中。
本发明使用电阻条加热器的实施例中,包括一个实施例,在该实施例中,电阻条加热器与处理室54是直接物理接触的。在另一个实施例中,电阻条加热器的安排基本上避免与处理室54的直接物理接触。在又一个另外的实施例中,电阻条加热器与处理室54之间夹有第三种物体(未在图1中画出)。
温度控制系统(未在图1中画出)控制传送至加热单元66的功率。至少一个温度传感器(未在图1中画出)至少为下述三者之一导出温度信息
a)加热单元66,
b)处理室54,和
c)晶片(未在图1中画出)。
一个优选的实施例,包括安排多个温度传感器,为温度控制系统导出温度信息。温度控制系统测量温度的优选位置,包括处理室54、加热单元66、和晶片(未在图1中画出)。温度控制系统的结构,能对来自至少一个温度传感器的温度信息作出响应;温度控制系统能对来自多个温度传感器的温度信息作出响应则更好。能够用于半导体处理的标准温度传感器,都可用于本发明各实施例。某些能用的温度传感器例子,包括电热偶、高温计、和温度计。
图上至少一个隔热屏70位于加热单元66与外壳30之间。在另外的实施例中,基本上所有加热单元66都可以有隔热屏。为清楚起见,图1只画出沿处理室54底部的隔热屏70。隔热屏70至少执行下述功能之一
a)阻隔处理室54与外壳30之间的热传导,以便减少处理室54需要的加热能量,
b)为加热单元66提供支撑,和
c)为处理室54提供支撑。
在一个优选的实施例中,隔热屏70由耐热材料制成。能用作隔热屏70材料的例子包括:石英、碳化硅、涂覆石墨的碳化硅、和陶瓷材料。在一个实施例中,隔热屏70与外壳连结,且安排该隔热屏70,要用该隔热屏70来支承处理室54。作为又一个实施例,一支承臂(未在图1中画出)把隔热屏70与外壳30连结,以便在外壳30内支承隔热屏70。支承臂最好由耐热材料制作;适合的材料例子包括石英和陶瓷材料。在别的实施例中,可以把多个隔热屏放在加热单元66与外壳30之间。
在另一个实施例中,支承臂(未在图1中画出)把处理室54与外壳30连结,以便把处理室54支承在外壳30内。支承臂最好由耐热材料制作;适合的材料例子包括石英和陶瓷材料。
气体注入导管74与处理室54连结,把处理气体传送至处理室54。气体排放导管78与处理室54连结,把用过的气体从处理室54排出。注入导管74与排放导管78最好由耐热材料如石英、碳化硅、和陶瓷材料制作。
外壳30与输入驱气气体导管82连结,以便向外壳30的容积46输送驱气气体(purge gas)。外壳30有一端口86,用于从外壳30的容积46中除去驱气气体。在另一个实施例中,排放导管78的结构能经过端口86穿越外壳30。
外壳30要安排向加热单元66提供电的连接。用于本任务的标准电连通线(未在图1中画出)可在市面上购到。此外,要安排外壳30容纳温度传感器。例如,如果温度传感器包括电热偶,那么外壳30要有电热偶的连通线。同样,如果温度传感器包括高温计,那么外壳30要有孔或其他种类的穿通装置来容纳高温计或与高温计连结的光纤。
作为本发明的另一个实施例,在外壳30的内表面附近设置衬套88。衬套88用于保护外壳30内表面区域。例如在涉及淀积处理的应用中,衬套88的排列能基本上阻挡外壳30内表面上的淀积。因此,从处理室54泄漏的处理气体,把材料淀积在外壳30的可能性降低了。
衬套88最好包括稳定的材料,使衬套88能经得起各种清洁处理,如为除去衬套88表面淀积物的液体清洁处理、气体清洁处理、和物理清洁处理。适合用作衬套88的材料例子包括石英和陶瓷材料。在各优选实施例中,衬套88是可移去的,所以可以移去衬套88,加以清洁,并重新装回外壳30内。
在一个用于某些淀积应用的优选实施例中,安排衬套88与外壳30接触,使衬套88能维持基本上高于外壳30温度的工作温度。这样安排的优点是,衬套88更高的温度,有利于降低可能从处理室54逸出的处理气体淀积在衬套88上。通过令衬套88与外壳30之间热传导的接触的设计,能够获得该种安排。在一个实施例中,把热传导的接触限制在最小,以能满足在外壳30中稳定地支承衬套88为度。
现在参考图1a,图中画出本发明实施例的另一个视图。图上的外壳30,有端口90,用于向和从外壳30装入和取出晶片。在一个优选的实施例中,把一外壳进出板94放在端口90的附近,且可移动地与外壳30连结,便于晶片装入和取出时,提供与外壳30内部的进出,也便于在晶片处理时,把外壳30的内部隔离。外壳进出板94移动至第一位置时,供晶片的装入和取出;外壳进出板94移动至第二位置时,供晶片处理时把外壳30隔离。
图上画出的处理室54,有端口98,用于向和从处理室54装入和取出晶片。安排端口90和端口98,使它们排成直线,以便移动晶片进入和离开处理室54。室进出板102靠近端口98。室进出板102可移动地与处理室54、外壳30、隔热屏70(未在图1中画出)连结,或与它们的组合连结。进出板102可在第一位置与第二位置之间移动,在第一位置时,能进入处理室54的端口98,以便能把晶片装入和取出。当进出板102在第二位置时,进出板102阻止进入处理室54的端口98,以便在晶片处理时,减少处理室内部的辐射热损耗。在另一个实施例中,进出板102有加热单元66,用于加热进出板102。
在一个实施例中,进出板102的第二位置,使进出板102与处理室54保持一定距离,所以在围绕进出端口90的区域,进出板102基本上不与处理室54接触。使进出板102与处理室54保持一定距离的作用,是减少因进出板102与处理室54的物理接触而产生微粒的可能性。
控制器106与进出板102及外壳进出板94连结,以便控制进出板102和进出板94的移动,以便装入和取出晶片。在另外一个实施例中,控制器106还包括温度控制系统。在又一个实施例中,控制器106的结构,能控制流向处理室54的处理气体。
现在参考图2,图上画出处理室54一个实施例的剖面图。处理室54包括三个区:处理区58、预处理区114、和后处理区118。处理区58把预处理区114和后处理区118隔开。
为在处理区58支承晶片,设置晶片支座122。晶片支座122与处理室54连结,以便能旋转晶片支座122,从而当晶片支承在晶片支座122上时,能旋转晶片。晶片支座122包括一盘126,上有基本上平的与晶片背面接触的区域。晶片支座122与晶片背面接触的该区域,即盘126,最好小于晶片面积,以方便装入和取出晶片。晶片支座122还包括晶片托架杆130,基本上约成90度角连结在盘126的中心。在一个实施例中,处理室54在底部表面有一孔,且杆130从盘126伸延,穿过该处理室54底部的孔。杆130可旋转地与电机(未在图1中画出)连结,使晶片支座122能绕杆130的轴旋转。
图2给出的实施例,还画出处理区58有一凹进区域134。选择凹进区域134的大小,使盘126能托住晶片,且晶片的前表面基本上与处理区58底部表面周围持平,目的是在与淀积有关的处理中,遮挡晶片背面,避免背面的淀积。
工作时,晶片装在盘126上。盘126基本上维持与处理区58相同的温度。在各优选的实施例中,晶片由盘126支承,所以必需用针升降机构。这样,晶片不必经受针升降机构在其背面的刻划;产生较少的微粒;且在晶片中产生的晶体应力也少。
预处理区114与处理气体注入导管74连结,所以处理气体能经过预处理区114进入处理室54。后处理区118与气体排放导管78(未在图2中画出)连结,所以处理气体能经过后处理区118离开处理室54。因此,处理气体进入预处理区114;沿基本上平行于盘126表面的方向,流过处理区58;并经后处理区118,流出处理室54。
环绕处理室54的外部,放置多个电阻条加热器110。对图2所示实施例,电阻条加热器110与处理室54接触。应当指出,图2所示实施例,只是电阻条加热器110相对于处理室54多种可能的安排之一。对图2所示实施例,电阻条加热器110可以沿处理室54的上表面排列;电阻条加热器110可以沿处理室54的下表面排列;电阻条加热器110还可以沿处理室54的侧表面排列。
电阻条加热器110与温度控制系统(未在图2中画出)连结,所以预处理区114、处理区58、和后处理区118,各能控制在独立的温度上,或者,在另一个实施例中,它们都能控制在相同的温度上。具体说,预处理区114能够控制在预处理温度上、处理区58能够维持在处理温度上、而后处理区118能够维持在后处理温度上。独立地控制三个区温度的能力,是本发明一些实施例的优点。该优点是靠在多个位置测量温度的能力、和向各组许多电阻条加热器110个别传送功率的独立控制能力实现的。
例如,能够安排一个或多个温度传感器来测量特定电阻条加热器的温度,并且能够响应该测量的温度,控制该电阻条加热器的温度。或者,能够安排一个或多个温度传感器来测量处理室上特定位置的温度,并控制处理室在该区域的温度。
独立温度控制的优点在于,进入预处理区114的处理气体,在该气体进入装有晶片的处理区58之前,能够被预加热。处理气体的预加热,能更好地控制晶片在处理时的温度。换句话说,处理气体的预加热,有助于减轻晶片被处理气体冷却。在诸如外延膜生长的应用中,维持晶片一致的温度,有助于防止在外延膜中形成缺陷。在涉及化学气相淀积的应用中,均匀的晶片温度,有助于减轻因晶片温度不均匀而产生的膜厚和膜性质的不均匀性。此外,使晶片温度均匀的优点,还能在涉及升温晶片处理的其他集成电路制作工艺中实现。
三个区能独立温度控制的另一个优点,是能用后处理区118把排出气体维持在后处理的温度,直至用过的气体离开处理室54并从处理区58除去。在涉及淀积的应用中,控制排放气体的温度,能控制后处理区118中淀积材料的性质。例如,由于把后处理区118维持在预选的温度,暴露在后处理区118的排放气体,是在预选的温度下淀积材料的。预选的温度最好选取后处理区淀积高质量膜的温度,而不是低质量膜的温度。低质量膜包括诸如具有与处理室54粘结性质不好的性质的膜。众所周知,与壁不粘结的淀积,是半导体晶片处理的微粒污染源。另一种低质量膜例子,包括其蚀刻特性与处理区58淀积的膜的蚀刻特性不一致或不相符的膜。不一致或不相符的蚀刻特性,使清洁处理室54变得更为困难;这一点能使现场清洁处理成为特别严重的问题。
处理区能独立温度控制的又一个优点,是能把排放区118温度维持在低于处理区58温度的能力。排放区118较低的温度,能使排放的气体在进入排放导管冷却段之前缓慢冷却。在某些应用中,由于不能恰当冷却排放的气体,能够引起排放气体的热激波;该热激波能够在排放导管中产生大量淀积。排放线管线中的淀积是潜在的危险;该种淀积物能产生挥发性物质,当清洁系统而暴露在空气中时可引发自燃。
三个区能独立温度控制还有另一个优点,就是在晶片处理步骤中,处理区58能维持在处理温度上。在晶片处理步骤中,处理区58最好维持基本上等温的条件。处理区58的等温条件,对本发明的实施例而言,是更容易获得的,因为在本发明的实施例中,温度控制系统包括多个温度传感器,并且向各个电阻条加热器的功率传送是独立控制的。对其他类型的加热单元,如红外灯、电弧灯、和RF感应加热器,也可获得类似的优点。
现在参考图3,图上画出加热单元66。电接头67a和电接头67b形成与加热单元66的电接触,以便让电流在电接头67a和电接头67b之间通过加热单元66。分布69表示加热单元66工作时假设的温度曲线例子。加热单元66靠近电接头67a和电接头67b的温度,通常基本上低于加热单元66其他电流流过的区域的温度。通常,靠近电接触处需要较低的温度,使之与标准电线材料如铜适应。为了在电接触处获得适当的温度,加热单元如电阻条加热器的设计,要使电阻条加热器在电接触区域有较低的电阻。该较低的电阻导致电阻条加热器在电接触处产生较小的热。但是,加热单元66离开电接触处的区域,要能维持基本上等温的温度。具体说,电阻条加热器的设计,要求在基本上等温的部分有较高的电阻,而在电接触区域则有较小的电阻。
在本发明的一个实施例中,只有加热单元66基本上等温的部分,被用来为处理区58获得基本上等温的条件。例如,加热单元66非等温的部分,远离处理区58,所以处理区58的温度控制,基本上不受加热单元66非等温部分的影响。要达到这一点,可以把加热单元66基本上等温部分安排在更接近处理区58的位置,同时把非等温部分安排离处理区58更远。作为结构的一个例子,可以增大加热单元66,使之大于处理区58,于是加热单元66的非等温部分伸延至处理单元58边界之外,如图3a所示。换而言之,把电接触处放在远离处理区58的地方。
另一种结构包括,把加热单元66的非等温部分,例如通过弯曲或改变形状等调整操作,使之远离处理区58,于是,加于处理区58的热,基本上全部来自加热单元66的等温部分。另外的结构对本领域一般人员是容易了解的。
在其他实施例中,预处理区114和后处理区118能够用刚刚说明的处理区58的结构维持等温。不过对许多应用,也只有处理区需要等温。
现在参考图4,图中画出处理室54另一个实施例的剖面图。处理室54包括预处理区114、处理区58、和后处理区118。气体注入导管74与预处理区114连结,以便向处理室54供应处理气体。在一个实施例中,处理室54有孔136,气体注入导管74通过该孔进入处理室54。密封衬圈138在气体注入导管74周围形成密封,以便限制处理气体从处理室54漏失。在一个实施例中,密封衬圈138不形成气密封,所以密封衬圈138能让气体在处理室54和外壳30之间泄漏。
在一个实施例中,气体注入导管74包括气体分散头142,上有用于在处理室54预处理区114中使处理气体分散的孔。
处理气体预热器146位于气体分散头142与处理区58之间,使进入预处理区114的处理气体,在进入处理区58之前,经过气体预热器146。气体预热器146便于把处理气体加热至预处理温度。气体预热器146包括耐热材料的实体,耐热材料如碳化硅、涂覆石墨的碳化硅、石英、和陶瓷材料。气体预热器146有多个孔让处理气体通过。在一个优选的实施例中,排列气体预热器146中的孔,以便分配处理气体,使处理气体在离开气体预热器146时,被迫维持层流。
处理区58在处理室54的底部表面有一凹进区域134。晶片支座122位于处理区58内。晶片支座122有一盘126,与晶片保持接触。在一个优选实施例中,盘126刚好适合放进凹进区域134,以便晶片的上表面能够与包围凹进区域134的处理区58底部表面区域基本上持平。在晶片处理时,晶片支座122要能让晶片旋转。具体说,晶片支座122与处理室54的连结,要能让晶片支座旋转。电机(未在图4中画出)可旋转地与晶片支座122连结,以便使晶片支座122旋转。
一速度梯度板150与处理室54连结。速度梯度板150最好基本上是刚性的且对处理气体基本上是惰性的。速度梯度板150放在晶片支座附近,以便对处理气体在晶片支座122晶片托架表面上的流动通道的一端,加以限制,使该通道的截面面积,随速度梯度板150与晶片支座122晶片托架表面之间垂直距离的变化,沿处理气体流动方向而减小。速度梯度板150最好由耐热材料构成。能够用作速度梯度板150的材料的例子,包括诸如石英、碳化硅、涂覆石墨的碳化硅、和陶瓷材料等材料。
在另一个实施例中,速度梯度板150是可移动地与处理室54连结,以便速度梯度板150与晶片支座122间的距离,能够作为另一个处理参数进行调节。最好是,速度梯度板150与晶片支座122间的距离能够调节,速度梯度板150与晶片支座122间的角度也能够调节。作为例子,用速度梯度板连接器154,把速度梯度板150悬挂在处理室54的顶部。连接器154的长度可以变化,以便改变速度梯度板150相对于晶片支座122的位置。
在处理气体在晶片上流过时,速度梯度板150能改善处理气体的质量输运特性。对涉及如淀积、外延生长、和其他要求处理气体中有反应物的应用中,改善了的质量输运特性有助于补偿处理气体中反应物的消耗。消耗偏差的减少,改善了淀积层性质的均匀性,如厚度均匀性、化合性质、光学性质、和电学性质。
速度梯度板150置于气体预热器146的附近,所以,离开气体预热器146的处理气体,在通过处理区58时受速度梯度板150的影响。
对用高温计测量晶片温度的本发明实施例,速度梯度板150可以有孔(未在图4中画出),以便用光纤观察晶片而不受速度梯度板150的阻碍。这些孔最好大小适当,对流过处理区58的处理气体基本上不产生影响。
在另外一个实施例中,速度梯度板150呈倒“U”形,以改善对流过晶片上的处理气体的制约。对本实施例,速度梯度板150两相对边缘向下弯,使速度梯度板150至少对晶片上气体流过的通道的部分侧壁有所限制。排放隔板158把处理区58与后处理区118分开。隔板158至少有一孔,让气体从处理区58流进后处理区118。隔板158的一种功能,是帮助减少气体从后处理区118返回处理区58的反向循环。
在另一个实施例中,预处理区114包括处理室驱气气体注入器162,用于向处理室54提供驱气气体,如氢气或惰性气体。在一个优选实施例中,驱气气体注入器162用于使驱气气体从预处理区114流过处理区58的容积166。容积166基本上不包括位于速度梯度板150与晶片支座122之间的容积170。驱气气流的一种功能,是帮助限制处理气体流进容积170,以便最大限度地让处理气体出现在晶片之上。对速度梯度板150上有温度测量孔的实施例,处理室的驱气气流是十分重要的。驱气气流通过后处理区118,离开处理室54。排放隔板158至少有一孔,让驱气气体从处理区58到达后处理区118。后处理区118有一孔174,供排放的气体和驱气气体离开处理室54。
现在参考图5,图上画出使处理气体和驱气气体流向处理室54的气体注入器178的例子。气体注入器178包括三部分:传送处理气体的处理气体部分182a及182b,和传送驱气气体的驱气气体部分186。各部分都有多个孔189。在一个优选实施例中,这些孔在每部分内基本上是平行的。这些孔分配处理气体,使气流方向基本上平行于晶片托架平面。换句话说,一种喷淋头类型的气流近似平行地被引向晶片表面。作为又一个实施例,气体注入器178的结构,能使气体可选择地在晶片上或独立分配或共同分配,以便改善处理均匀性的控制。通过可选择的晶片上气体的分配,补偿因温度梯度和气流产生的反应速率变化,从而获得改善的均匀性。
此外,直立的典型的喷淋头结构能获得高的生长速率,但要避免一些常规喷淋头共有的产生微粒的问题。例如,直立的喷淋头较少可能有微粒从喷淋头落在晶片表面上。用在淀积应用的本发明各实施例包括喷淋头材料,该种材料要对淀积材料有良好粘附性质。现在参考图6,图上画出一种隔热屏190的示例性结构。隔热屏190包括第一隔热屏190a和第二隔热屏190b。隔热屏190a和隔热屏190b要适当定位,以便为处理室54同一区域提供热隔离。为了降低隔热屏190a和隔热屏190b之间的热传导,要在隔热屏之间维持一定的间隔。隔热屏之间最好保持最少的物理接触。在一个实施例中,隔热屏之间的间隔,是通过在隔热屏之间放置一个或多个衬垫194保持的。适合用作衬垫194的材料,包括诸如石英、多晶硅、碳化硅、涂覆石墨的碳化硅、和陶瓷材料等耐热材料。在一个优选的实施例中,衬垫194作成球形,直径约等于隔热屏间需要维持的间隔。衬垫194还能用于本设备其他部件间维持需要的间隔,例如用于加热单元66、电阻条加热器110、与处理室54之间。如图6所示,衬垫194用来维持隔热屏190b与处理室54外表面之间的间隔。图上的电阻条加热器110夹在隔热屏190b与处理室54之间。
在一个另外的实施例中,利用隔热屏的表面结构,可以产生与使用刚说明的衬垫基本上相同的结果。例如,隔热屏可以有突出部,从隔热屏表面伸出,那么,该突出部基本上维持了相邻隔热屏之间或其他相邻表面之间需要的间隔。
对本发明各种实施例,可把单个隔热屏,或多个隔热屏,用于同一区域的热隔离。
现在参考图7,图上画出包括盘126和晶片托架杆130的晶片支座122。晶片托架杆130基本上附着在盘126的中央,以便晶片支座122能绕晶片托架杆130的轴旋转,从而使晶片旋转。晶片托架杆130伸延穿过处理室54(未在图7中画出);晶片支座122与处理室54的连结,要能使晶片支座122旋转。晶片托架杆130伸延穿过外壳30的底部表面;晶片托架杆130与外壳30底部的连结,要能让晶片支座122旋转。晶片托架杆130可旋转地耦合至旋转晶片支座122的电机198。线性执行机构202与电机198连结;线性执行机构202能升起和降下电机198。电机198与晶片托架杆130耦合,所以线性执行机构202升起和降下电机198时,也使晶片托架122升起和下降。可以利用晶片支座122的升起和下降,方便地向和从晶片支座122装入和取出晶片。
在一个实施例中,旋转的穿通装置206,例如标准的市面上可购得的旋转穿通装置,连结在电机198与晶片托架杆130之间,以便传送旋转运动和上下运动。波纹管210的一端与外壳30底部连结。波纹管210包围晶片托架杆130。支撑板214附着在波纹管210的另一端。与波纹管210的附着部分最好基本上是气密的。旋转穿通装置206附着在支撑板214上,以便让电机198使晶片支座122旋转。波纹管210的结构能使电机198上下运动,把晶片支座122升起和降下。
在另一个实施例中,晶片托架杆130有中心孔,例如轴中心孔218。盘126有一孔222与轴中心孔218对应。晶片托架杆130的结构能让真空源对轴中心孔218抽真空,在孔222上产生低压。孔222上的低压,最好足以使盘126起真空吸盘的作用,把晶片吸附在晶片支座122上。
本发明的各实施例,由处理室材料及热壁操作产生的优点是,对诸如硅外延等应用中消除了常规生长速率的限制。本发明的各实施例,能以高本征电阻率值、按基本上更高的生长速率和更高的温度生长外延硅,而不出现壁淀积问题。此外,用非氯化硅源,对已刻图的晶片,可获得无图形位移、无畸变、和无擦除等优点。
显然,本发明各实施例能用于广泛的各种半导体器件制作的升温处理。更换所选处理气体,能使本发明各实施例适合用于各种半导体晶片处理步骤,如退火、激活掺杂物、化学气相淀积、外延淀积、掺杂、形成硅化物、氮化、氧化、淀积物回流、和再结晶。
虽然已经说明和列举本发明各具体实施例,但显然,在不违背本发明的真正精神和范围下,可以对具体说明和列举的实施例细节作各种改变,本发明的真正精神和范围由后面的权利要求书及其法律上等效的叙述界定。

Claims (37)

1.一种半导体晶片热处理设备,该设备包括:
外壳,该外壳有供装入和取出晶片的端口,该外壳有驱气气体进入端口和驱气气体离开端口,让驱气气体流过该外壳;
包含在该外壳内的处理室,该处理室有供装入和取出晶片的端口,该处理室包括托住晶片的晶片支座;
位于外壳内的多个加热单元,通过排列这些加热单元,使这些加热单元对处理室的外部加热;
至少一个隔热屏,置于至少一个加热单元与外壳之间;
温度控制系统,用于控制各加热单元,使晶片基本上维持在某一热处理温度。
2.按照权利要求1的设备,其中的各加热单元包括电阻条加热器。
3.按照权利要求1的设备,其中的晶片支座可旋转地耦合至处理室,以便使晶片旋转。
4.按照权利要求1的设备,还包括置于外壳内表面附近的衬套,用于基本上阻挡外壳内表面上的淀积。
5.按照权利要求4的设备,其中的外壳有通道,用于接受冷却外壳的流体。
6.按照权利要求3的设备,还包括:
与处理室连结的气体注入导管,用于传送处理气体至处理室;和
与处理室连结的气体排放导管,用于从处理室除去气体,且
其中,通过排列气体注入导管和气体排放导管,使进入处理室的处理气体,沿基本上平行于晶片表面方向流动。
7.按照权利要求6的设备,还包括速度梯度板,该速度梯度板基本上是刚性的,该速度梯度板与处理室连结,该速度梯度板置于晶片支座附近,以便对处理气体在晶片支座上的流动通道的一端,加以限制,其中,该通道的截面面积,随速度梯度板与晶片支座之间垂直距离的变化,沿处理气体流动方向而减小。
8.按照权利要求7的设备,其中的速度梯度板可移动地与处理室连结,以便能调节速度梯度板与晶片支座之间的距离。
9.按照权利要求1的设备,其中处理室包括:预处理区、处理区、和后处理区,温度控制系统能对预处理区、处理区、和后处理区独立地控制在预先选定的温度上,于是,各区能维持在独立的温度上。
10.按照权利要求9的设备,其中的预处理区包括气体注入器,把处理气体注入处理室,还包括能传导热量至处理气体的气体预热器,使处理气体在到达晶片支座之前,被预加热至接近预先选定的预处理温度。
11.按照权利要求9的设备,其中的处理区包括晶片托架。
12.按照权利要求9的设备,还包括把处理区与后处理区分隔开的隔板,该隔板能让气体从处理区流向后处理区,且其中后处理区能维持预先选定的后处理温度。
13.按照权利要求2的设备,其中的处理室包括基本上等温的处理区,且其中电阻条加热器的电接触处,远离等温处理区,只让电阻条加热器基本上等温的部分,加热处理室的等温处理区。
14.按照权利要求2的设备,其中电阻条加热器的电接触处,远离处理室,使靠近电接触处的电阻条加热器较冷的部分,基本上不冷却处理室。
15.按照权利要求11的设备,其中的加热单元包括电阻条加热器,且其中电阻条加热器的电接触处,远离处理室,只让电阻条加热器基本上等温的部分,加热处理室的处理区。
16.按照权利要求11的设备,其中电阻条加热器的电接触处,远离处理室,使靠近电接触处的电阻条加热器较冷的部分,基本上不冷却处理室的处理区。
17.按照权利要求1的设备,其中的加热单元至少包括如下之一:
a)电阻条加热器,和
b)红外灯。
18.按照权利要求1的设备,其中的加热单元至少包括如下之一:
a)电阻条加热器,和
b)红外灯,且
其中加热单元的电接触处,远离处理室。
19.按照权利要求11的设备,其中的加热单元是电功率加热单元,从包括电阻条加热器、红外灯、和射频感应加热器的一组中选出,又,其中加热单元的电接触处,远离处理室的处理区,使靠近电接触处的加热单元较冷的部分,基本上不冷却处理室的处理区。
20.按照权利要求1的设备,其中的处理室由耐热材料构成。
21.按照权利要求20的设备,其中的耐热材料,从包括碳化硅、涂覆石墨的碳化硅、石墨、石英、硅、陶瓷、氮化铝、氧化铝、氮化硅、氧化镁、和氧化锆的一组材料中选出。
22.按照权利要求1的设备,其中,至少一个隔热屏包括至少两个隔热屏,并且还包括位于该至少两个隔热屏之间的衬垫,该衬垫要能防止隔热屏之间的接触,该衬垫由耐热材料构成。
23.按照权利要求1的设备,其中的温度控制系统包括多个温度传感器,用于控制加热单元的温度、处理室的温度、和晶片的温度。
24.按照权利要求23的设备,其中的温度传感器至少包括如下之一:
a)高温计,和
b)电热偶。
25.一种半导体晶片热处理方法,该方法包括的步骤有:
a.设置处理室;
b.用电阻条加热器基本上等温的部分,在处理室中产生基本上等温的热壁处理区;
c.在处理区中提供晶片;
d.旋转该晶片;
e.使预加热了的气体,沿基本上平行于晶片表面的方向,在该晶片上流动;
f.在该预加热的气体中引发速度梯度,使气体速度沿气体流动方向增大;和
g.在保持预先选定温度的各区中维持气体,直至该气体离开处理室。
26.按照权利要求25的方法,还包括限制加热器和处理室的热量损失的步骤。
27.按照权利要求25的方法,还包括基本上收集所有从处理室泄漏的处理气体的步骤。
28.按照权利要求25的方法,其中的步骤b包括在多个位置测量温度。
29.按照权利要求25的方法,还包括在步骤d之后,当晶片正在旋转时,在晶片上多个位置上测量温度的步骤。
30.按照权利要求25的方法,其中步骤e中指出的气体,要根据半导体晶片的处理步骤选择,半导体晶片的处理步骤,从包括退火、激活掺杂物、化学气相淀积、外延淀积、掺杂、形成硅化物、氮化、氧化、淀积物回流、和再结晶的一组中选出。
31.按照权利要求30的方法,还包括把外壳中的处理室封闭的步骤。
32.一种在半导体晶片上外延淀积的设备,该设备包括:
外壳,该外壳有供装入和取出晶片的端口,该外壳有驱气气体进入端口和驱气气体离开端口,让驱气气体流过该外壳;
包含在该外壳内的处理室,该处理室有预处理区、处理区、和后处理区,该处理室有供装入和取出晶片的端口,该处理室包括处理区中托住晶片的晶片支座,该晶片支座可旋转地与处理室连结,能使晶片旋转;
位于外壳内的多个电阻条加热器,通过排列这些电阻条加热器,以便对处理室的外部加热;
至少一个隔热屏,置于至少一个电阻条加热器与外壳之间;
温度控制系统,用于控制各电阻条加热器,使晶片基本上维持在某一热处理温度上,该温度控制系统,要能对预处理区、处理区、和后处理区独立地控制在预先选定的温度上,于是,各区能够维持在独立的温度上;
与处理室连结的气体注入导管,把处理气体传送至处理室;
与处理室连结的气体排放导管,用于从处理室除去气体;
速度梯度板,该速度梯度板基本上是刚性的,该速度梯度板与处理室连结,该速度梯度板置于晶片支座附近,以便对处理气体在晶片支座上的流动通道的一端,加以限制,其中,该通道的截面面积,随速度梯度板与晶片支座之间垂直距离的变化,沿处理气体流动方向而减小。
33.按照权利要求32的设备,还包括置于外壳内表面附近的衬套,用于基本上阻挡外壳内表面上的淀积。
34.按照权利要求32的设备,其中电阻条加热器的电接触处,远离处理室的处理区。
35.按照权利要求32的设备,其中的温度控制系统,包括多个温度传感器,用于控制加热单元的温度、处理室的温度、和晶片的温度。
36.按照权利要求32的设备,还包括室进出板,该进出板放在靠近处理室中的端口,该进出板可移动地与至少下述之一连结:
a)处理室,
b)外壳,和
c)隔热屏;且
该进出板可在第一位置与第二位置之间移动,其中在第一位置时,能进入处理室的端口,以便把晶片装入和取出,在第二位置时,则阻止进入处理室的端口,以便在晶片处理时,减少处理室内部的辐射热损耗。
37.按照权利要求32的设备,其中的预处理区包括气体预热器,在处理气体进入处理区之前,加热处理气体。
CNB018098576A 2000-04-17 2001-04-12 晶片热处理的方法和设备 Expired - Fee Related CN1199236C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/550,888 US6331212B1 (en) 2000-04-17 2000-04-17 Methods and apparatus for thermally processing wafers
US09/550,888 2000-04-17

Publications (2)

Publication Number Publication Date
CN1430789A true CN1430789A (zh) 2003-07-16
CN1199236C CN1199236C (zh) 2005-04-27

Family

ID=24198985

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018098576A Expired - Fee Related CN1199236C (zh) 2000-04-17 2001-04-12 晶片热处理的方法和设备

Country Status (11)

Country Link
US (2) US6331212B1 (zh)
EP (1) EP1275135B1 (zh)
JP (1) JP2003531489A (zh)
KR (1) KR100793329B1 (zh)
CN (1) CN1199236C (zh)
AT (1) ATE390705T1 (zh)
AU (1) AU2001253890A1 (zh)
DE (1) DE60133376T2 (zh)
HK (1) HK1057130A1 (zh)
TW (1) TW529059B (zh)
WO (1) WO2001080291A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307686C (zh) * 2003-10-14 2007-03-28 茂德科技股份有限公司 批式处理装置及晶片处理方法
CN100530523C (zh) * 2003-10-27 2009-08-19 应用材料股份有限公司 修正温度均匀度的方法
CN102047387B (zh) * 2008-06-30 2012-07-04 S.O.I.Tec绝缘体上硅技术公司 模块化的cvd反应器子系统、其配置方法和独立功能模块
CN102634850A (zh) * 2012-03-31 2012-08-15 江苏鑫和泰光电科技有限公司 一种蓝宝石晶片的退火方法
CN103866282A (zh) * 2012-12-14 2014-06-18 北京北方微电子基地设备工艺研究中心有限责任公司 Pecvd设备
CN104919579A (zh) * 2012-07-09 2015-09-16 法国圣戈班玻璃厂 用于处理被覆层的基质的工艺盒、组件和方法
US9382642B2 (en) 2009-04-17 2016-07-05 Lpe S.P.A. Reaction chamber of an epitaxial reactor and reactor that uses said chamber
CN110512287A (zh) * 2019-09-12 2019-11-29 江苏吉星新材料有限公司 一种4吋蓝宝石晶体退火方法

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936134B2 (en) * 2000-11-14 2005-08-30 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
JP3607664B2 (ja) * 2000-12-12 2005-01-05 日本碍子株式会社 Iii−v族窒化物膜の製造装置
US20020129768A1 (en) * 2001-03-15 2002-09-19 Carpenter Craig M. Chemical vapor deposition apparatuses and deposition methods
US6902622B2 (en) * 2001-04-12 2005-06-07 Mattson Technology, Inc. Systems and methods for epitaxially depositing films on a semiconductor substrate
AU2002344320A1 (en) * 2001-05-17 2002-11-25 Tokyo Electron Limited Cylinder-based plasma processing system
US6442950B1 (en) * 2001-05-23 2002-09-03 Macronix International Co., Ltd. Cooling system of chamber with removable liner
JP2003031050A (ja) * 2001-07-16 2003-01-31 Nec Corp 水銀を含む銅酸化物超伝導体薄膜、その製造装置およびその製造方法
US20060190211A1 (en) * 2001-07-23 2006-08-24 Schietinger Charles W In-situ wafer parameter measurement method employing a hot susceptor as radiation source for reflectance measurement
US20030036877A1 (en) * 2001-07-23 2003-02-20 Schietinger Charles W. In-situ wafer parameter measurement method employing a hot susceptor as a reflected light source
US6896738B2 (en) 2001-10-30 2005-05-24 Cree, Inc. Induction heating devices and methods for controllably heating an article
US6861321B2 (en) * 2002-04-05 2005-03-01 Asm America, Inc. Method of loading a wafer onto a wafer holder to reduce thermal shock
US6921556B2 (en) * 2002-04-12 2005-07-26 Asm Japan K.K. Method of film deposition using single-wafer-processing type CVD
TWI336905B (en) * 2002-05-17 2011-02-01 Semiconductor Energy Lab Evaporation method, evaporation device and method of fabricating light emitting device
US20040035360A1 (en) 2002-05-17 2004-02-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
US6887521B2 (en) * 2002-08-15 2005-05-03 Micron Technology, Inc. Gas delivery system for pulsed-type deposition processes used in the manufacturing of micro-devices
US6709267B1 (en) 2002-12-27 2004-03-23 Asm America, Inc. Substrate holder with deep annular groove to prevent edge heat loss
US7091453B2 (en) * 2003-02-27 2006-08-15 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus by means of light irradiation
US20040182315A1 (en) * 2003-03-17 2004-09-23 Tokyo Electron Limited Reduced maintenance chemical oxide removal (COR) processing system
US6951821B2 (en) * 2003-03-17 2005-10-04 Tokyo Electron Limited Processing system and method for chemically treating a substrate
US20040255442A1 (en) * 2003-06-19 2004-12-23 Mcdiarmid James Methods and apparatus for processing workpieces
CN1301534C (zh) * 2003-07-15 2007-02-21 旺宏电子股份有限公司 半导体炉管温度及气体流量异常事件的预防方法
US7044476B2 (en) * 2003-11-25 2006-05-16 N&K Technology, Inc. Compact pinlifter assembly integrated in wafer chuck
WO2005124859A2 (en) * 2004-06-10 2005-12-29 Avansys, Inc. Methods and apparatuses for depositing uniform layers
KR100587688B1 (ko) * 2004-07-28 2006-06-08 삼성전자주식회사 화학 기상 증착 장치
US7645342B2 (en) * 2004-11-15 2010-01-12 Cree, Inc. Restricted radiated heating assembly for high temperature processing
US7105840B2 (en) * 2005-02-03 2006-09-12 Axcelis Technologies, Inc. Ion source for use in an ion implanter
JP5092162B2 (ja) * 2005-07-06 2012-12-05 Sumco Techxiv株式会社 半導体ウェーハの製造方法および製造装置
CN100358098C (zh) 2005-08-05 2007-12-26 中微半导体设备(上海)有限公司 半导体工艺件处理装置
US7691208B2 (en) * 2005-08-31 2010-04-06 Tokyo Electron Limited Cleaning method
US20070084406A1 (en) 2005-10-13 2007-04-19 Joseph Yudovsky Reaction chamber with opposing pockets for gas injection and exhaust
US20070084408A1 (en) * 2005-10-13 2007-04-19 Applied Materials, Inc. Batch processing chamber with diffuser plate and injector assembly
JP4956963B2 (ja) 2005-11-02 2012-06-20 富士通セミコンダクター株式会社 リフロー装置、リフロー方法、および半導体装置の製造方法
US7732009B2 (en) * 2006-09-26 2010-06-08 United Microelectronics Corp. Method of cleaning reaction chamber, method of forming protection film and protection wafer
JP5202839B2 (ja) * 2006-12-25 2013-06-05 東京エレクトロン株式会社 成膜装置および成膜方法
JP4974805B2 (ja) * 2007-08-10 2012-07-11 トヨタ自動車株式会社 加熱炉および加熱炉の加熱方法
US20100199914A1 (en) * 2007-10-10 2010-08-12 Michael Iza Chemical vapor deposition reactor chamber
JP5060324B2 (ja) * 2008-01-31 2012-10-31 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び処理容器
WO2009128253A1 (ja) * 2008-04-17 2009-10-22 本田技研工業株式会社 太陽電池の熱処理装置
US8895107B2 (en) * 2008-11-06 2014-11-25 Veeco Instruments Inc. Chemical vapor deposition with elevated temperature gas injection
KR101001314B1 (ko) 2008-11-17 2010-12-14 세메스 주식회사 기판 처리 장치
US20110073039A1 (en) * 2009-09-28 2011-03-31 Ron Colvin Semiconductor deposition system and method
KR101073550B1 (ko) * 2009-10-29 2011-10-14 삼성모바일디스플레이주식회사 기판 열처리 장치
US9084298B2 (en) * 2010-02-26 2015-07-14 Hitachi Kokusai Electric Inc. Substrate processing apparatus including shielding unit for suppressing leakage of magnetic field
DE102010009795B4 (de) * 2010-03-01 2014-05-15 Von Ardenne Anlagentechnik Gmbh Verfahren und Vorrichtung zur Herstellung von metallischen Rückkontakten für waferbasierte Solarzellen
WO2012009636A1 (en) * 2010-07-15 2012-01-19 Despatch Industries Limited Partnership Firing furnace configuration for thermal processing system
US10138551B2 (en) 2010-07-29 2018-11-27 GES Associates LLC Substrate processing apparatuses and systems
CN102465335B (zh) * 2010-11-18 2014-07-16 南京大学 一种用于半导体材料热壁外延生长系统的加热装置
US20130008602A1 (en) * 2011-07-07 2013-01-10 Lam Research Ag Apparatus for treating a wafer-shaped article
ES2859505T3 (es) * 2012-07-09 2021-10-04 Cnbm Bengbu Design & Res Institute For Glass Industry Co Ltd Instalación y método para procesar sustratos
JP6116685B2 (ja) * 2012-07-09 2017-04-19 サン−ゴバン グラス フランスSaint−Gobain Glass France 対象物を熱処理するための装置と方法
CN105210173A (zh) * 2013-05-23 2015-12-30 应用材料公司 用于半导体处理腔室的经涂布的衬里组件
TWI470105B (zh) * 2013-06-03 2015-01-21 Adpv Technology Ltd Gas Reaction Continuous Cavity and Gas Reaction
US9087864B2 (en) * 2013-12-19 2015-07-21 Intermolecular, Inc. Multipurpose combinatorial vapor phase deposition chamber
US9808891B2 (en) * 2014-01-16 2017-11-07 Taiwan Semiconductor Manufacturing Co., Ltd. Tool and method of reflow
US20160002775A1 (en) * 2014-07-02 2016-01-07 Rolls-Royce Corporation Multilayer liner for chemical vapor deposition furnace
KR101651880B1 (ko) * 2014-10-13 2016-08-29 주식회사 테스 유기금속화학기상증착장치
KR102372893B1 (ko) * 2014-12-04 2022-03-10 삼성전자주식회사 발광 소자 제조용 화학 기상 증착 장치
WO2016164569A1 (en) * 2015-04-07 2016-10-13 Applied Materials, Inc. Process gas preheating systems and methods for double-sided multi-substrate batch processing
JP2017017277A (ja) 2015-07-06 2017-01-19 株式会社Screenホールディングス 熱処理装置および熱処理方法
JP6707827B2 (ja) 2015-09-28 2020-06-10 東京エレクトロン株式会社 成膜装置
CN107435164A (zh) * 2016-05-25 2017-12-05 上海新昇半导体科技有限公司 外延生长设备
US10224224B2 (en) * 2017-03-10 2019-03-05 Micromaterials, LLC High pressure wafer processing systems and related methods
JP6895797B2 (ja) * 2017-05-09 2021-06-30 東京エレクトロン株式会社 成膜装置
US10179941B1 (en) * 2017-07-14 2019-01-15 Applied Materials, Inc. Gas delivery system for high pressure processing chamber
TWI707141B (zh) * 2017-07-27 2020-10-11 美商瓦特洛威電子製造公司 感測器系統及用以測量及控制加熱器系統之效能之整合式加熱器感測器
US11032945B2 (en) * 2019-07-12 2021-06-08 Applied Materials, Inc. Heat shield assembly for an epitaxy chamber
US11898245B2 (en) * 2021-02-26 2024-02-13 Applied Materials, Inc. High throughput and metal contamination control oven for chamber component cleaning process
KR102564228B1 (ko) * 2021-04-29 2023-08-09 주식회사 테스 유기금속화학기상증착장치

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US685906A (en) * 1901-03-21 1901-11-05 Eugene Brown Combined milk dipper and measure.
US4496609A (en) 1969-10-15 1985-01-29 Applied Materials, Inc. Chemical vapor deposition coating process employing radiant heat and a susceptor
US3603284A (en) * 1970-01-02 1971-09-07 Ibm Vapor deposition apparatus
US3862397A (en) * 1972-03-24 1975-01-21 Applied Materials Tech Cool wall radiantly heated reactor
US4081313A (en) 1975-01-24 1978-03-28 Applied Materials, Inc. Process for preparing semiconductor wafers with substantially no crystallographic slip
US4167915A (en) * 1977-03-09 1979-09-18 Atomel Corporation High-pressure, high-temperature gaseous chemical apparatus
JPS5632400A (en) * 1979-08-16 1981-04-01 Toshiba Corp Vapor phase growing method for gallium phosphide layer
US4347431A (en) * 1980-07-25 1982-08-31 Bell Telephone Laboratories, Inc. Diffusion furnace
JPS58158914A (ja) * 1982-03-16 1983-09-21 Semiconductor Res Found 半導体製造装置
US4651673A (en) * 1982-09-02 1987-03-24 At&T Technologies, Inc. CVD apparatus
US4481406A (en) * 1983-01-21 1984-11-06 Varian Associates, Inc. Heater assembly for thermal processing of a semiconductor wafer in a vacuum chamber
JPS60112694A (ja) * 1983-11-21 1985-06-19 Matsushita Electric Ind Co Ltd 化合物半導体の気相成長方法
US4728389A (en) 1985-05-20 1988-03-01 Applied Materials, Inc. Particulate-free epitaxial process
US4753192A (en) * 1987-01-08 1988-06-28 Btu Engineering Corporation Movable core fast cool-down furnace
US4849608A (en) * 1987-02-14 1989-07-18 Dainippon Screen Mfg. Co., Ltd. Apparatus for heat-treating wafers
US4976996A (en) 1987-02-17 1990-12-11 Lam Research Corporation Chemical vapor deposition reactor and method of use thereof
US4836138A (en) 1987-06-18 1989-06-06 Epsilon Technology, Inc. Heating system for reaction chamber of chemical vapor deposition equipment
US4975561A (en) 1987-06-18 1990-12-04 Epsilon Technology Inc. Heating system for substrates
US4886954A (en) * 1988-04-15 1989-12-12 Thermco Systems, Inc. Hot wall diffusion furnace and method for operating the furnace
JPH03116929A (ja) * 1989-09-29 1991-05-17 Nec Yamaguchi Ltd 半導体基板用熱処理装置
JP2551172B2 (ja) * 1989-11-29 1996-11-06 富士通株式会社 気相エピタキシャル成長装置
US5154512A (en) * 1990-04-10 1992-10-13 Luxtron Corporation Non-contact techniques for measuring temperature or radiation-heated objects
US5128515A (en) * 1990-05-21 1992-07-07 Tokyo Electron Sagami Limited Heating apparatus
US5324920A (en) * 1990-10-18 1994-06-28 Tokyo Electron Sagami Limited Heat treatment apparatus
JPH04349623A (ja) * 1991-05-28 1992-12-04 Fuji Electric Co Ltd 気相成長装置
JP2633432B2 (ja) * 1992-01-22 1997-07-23 東京応化工業株式会社 加熱処理装置
US5431958A (en) * 1992-03-09 1995-07-11 Sharp Kabushiki Kaisha Metalorganic chemical vapor deposition of ferroelectric thin films
JP3348936B2 (ja) * 1993-10-21 2002-11-20 東京エレクトロン株式会社 縦型熱処理装置
US5305416A (en) * 1993-04-02 1994-04-19 At&T Bell Laboratories Semiconductor processing technique, including pyrometric measurement of radiantly heated bodies
US5624590A (en) * 1993-04-02 1997-04-29 Lucent Technologies, Inc. Semiconductor processing technique, including pyrometric measurement of radiantly heated bodies and an apparatus for practicing this technique
US5440101A (en) * 1993-04-19 1995-08-08 Research, Incorporated Continuous oven with a plurality of heating zones
US5622639A (en) * 1993-07-29 1997-04-22 Tokyo Electron Kabushiki Kaisha Heat treating apparatus
JPH07283155A (ja) * 1994-04-01 1995-10-27 Kokusai Electric Co Ltd 半導体製造装置
JPH0855810A (ja) * 1994-08-16 1996-02-27 Nec Kyushu Ltd 拡散炉
US5536919A (en) * 1994-11-22 1996-07-16 Taheri; Ramtin Heating chamber
US5636320A (en) * 1995-05-26 1997-06-03 International Business Machines Corporation Sealed chamber with heating lamps provided within transparent tubes
JPH08330317A (ja) * 1995-05-31 1996-12-13 F T L:Kk 半導体装置の製造方法
US5861609A (en) * 1995-10-02 1999-01-19 Kaltenbrunner; Guenter Method and apparatus for rapid thermal processing
JPH09106950A (ja) * 1995-10-12 1997-04-22 Nec Corp 結晶成長装置および結晶プロセス装置
US5854468A (en) * 1996-01-25 1998-12-29 Brooks Automation, Inc. Substrate heating apparatus with cantilevered lifting arm
US6111225A (en) * 1996-02-23 2000-08-29 Tokyo Electron Limited Wafer processing apparatus with a processing vessel, upper and lower separately sealed heating vessels, and means for maintaining the vessels at predetermined pressures
JPH1092754A (ja) * 1996-09-18 1998-04-10 Tokyo Electron Ltd 枚葉式の熱処理装置及び熱処理方法
TW506620U (en) * 1996-03-15 2002-10-11 Asahi Glass Co Ltd Low pressure CVD apparatus
US6133550A (en) * 1996-03-22 2000-10-17 Sandia Corporation Method and apparatus for thermal processing of semiconductor substrates
KR100310248B1 (ko) 1996-06-24 2001-12-15 엔도 마코토 기판처리장치
JP3200396B2 (ja) * 1996-06-24 2001-08-20 株式会社日立国際電気 基板処理装置および成膜方法
US5891251A (en) 1996-08-07 1999-04-06 Macleish; Joseph H. CVD reactor having heated process chamber within isolation chamber
ES2216104T3 (es) * 1997-04-22 2004-10-16 Imec Vzw Horno para procesos continuos de difusion de alto rendimiento con varias fuentes de difusion.
US5911896A (en) * 1997-06-25 1999-06-15 Brooks Automation, Inc. Substrate heating apparatus with glass-ceramic panels and thin film ribbon heater element
US6021152A (en) * 1997-07-11 2000-02-01 Asm America, Inc. Reflective surface for CVD reactor walls
US6075922A (en) * 1997-08-07 2000-06-13 Steag Rtp Systems, Inc. Process for preventing gas leaks in an atmospheric thermal processing chamber
JPH1174202A (ja) * 1997-08-29 1999-03-16 Sharp Corp 窒化ガリウム系iii−v族化合物半導体の気相成長装置並びに窒化ガリウム系iii−v族化合物半導体装置及びその製造方法
US6258170B1 (en) * 1997-09-11 2001-07-10 Applied Materials, Inc. Vaporization and deposition apparatus
EP0924500B1 (de) * 1997-12-08 2006-10-18 STEAG RTP Systems GmbH Verfahren zum Messen elektromagnetischer Strahlung
US5800616A (en) * 1997-12-15 1998-09-01 Sony Corporation Vertical LPCVD furnace with reversible manifold collar and method of retrofitting same
JP3068075B2 (ja) * 1998-01-17 2000-07-24 ハンベック コーポレイション 化合物半導体製造用水平反応炉
SE9801190D0 (sv) * 1998-04-06 1998-04-06 Abb Research Ltd A method and a device for epitaxial growth of objects by Chemical Vapour Deposition
US6246031B1 (en) * 1999-11-30 2001-06-12 Wafermasters, Inc. Mini batch furnace

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307686C (zh) * 2003-10-14 2007-03-28 茂德科技股份有限公司 批式处理装置及晶片处理方法
CN100530523C (zh) * 2003-10-27 2009-08-19 应用材料股份有限公司 修正温度均匀度的方法
CN102047387B (zh) * 2008-06-30 2012-07-04 S.O.I.Tec绝缘体上硅技术公司 模块化的cvd反应器子系统、其配置方法和独立功能模块
US9382642B2 (en) 2009-04-17 2016-07-05 Lpe S.P.A. Reaction chamber of an epitaxial reactor and reactor that uses said chamber
CN102634850A (zh) * 2012-03-31 2012-08-15 江苏鑫和泰光电科技有限公司 一种蓝宝石晶片的退火方法
CN104919579A (zh) * 2012-07-09 2015-09-16 法国圣戈班玻璃厂 用于处理被覆层的基质的工艺盒、组件和方法
CN104919579B (zh) * 2012-07-09 2018-02-06 蚌埠玻璃工业设计研究院 用于处理被覆层的基质的工艺盒、组件和方法
CN103866282A (zh) * 2012-12-14 2014-06-18 北京北方微电子基地设备工艺研究中心有限责任公司 Pecvd设备
CN103866282B (zh) * 2012-12-14 2016-12-21 北京北方微电子基地设备工艺研究中心有限责任公司 Pecvd设备
CN110512287A (zh) * 2019-09-12 2019-11-29 江苏吉星新材料有限公司 一种4吋蓝宝石晶体退火方法

Also Published As

Publication number Publication date
AU2001253890A1 (en) 2001-10-30
DE60133376T2 (de) 2009-04-23
CN1199236C (zh) 2005-04-27
WO2001080291A1 (en) 2001-10-25
EP1275135A1 (en) 2003-01-15
TW529059B (en) 2003-04-21
HK1057130A1 (en) 2004-03-12
US6774060B2 (en) 2004-08-10
KR100793329B1 (ko) 2008-01-11
US20010046768A1 (en) 2001-11-29
EP1275135B1 (en) 2008-03-26
WO2001080291B1 (en) 2002-02-21
DE60133376D1 (de) 2008-05-08
US6331212B1 (en) 2001-12-18
KR20030010601A (ko) 2003-02-05
JP2003531489A (ja) 2003-10-21
ATE390705T1 (de) 2008-04-15

Similar Documents

Publication Publication Date Title
CN1199236C (zh) 晶片热处理的方法和设备
US6403927B1 (en) Heat-processing apparatus and method of semiconductor process
US5493987A (en) Chemical vapor deposition reactor and method
US6352593B1 (en) Mini-batch process chamber
US6436796B1 (en) Systems and methods for epitaxial processing of a semiconductor substrate
USRE36957E (en) Method and apparatus for cold wall chemical vapor deposition
US20080220150A1 (en) Microbatch deposition chamber with radiant heating
US20050133159A1 (en) Systems and methods for epitaxially depositing films on a semiconductor substrate
US20080092812A1 (en) Methods and Apparatuses for Depositing Uniform Layers
US9194056B2 (en) Film-forming apparatus and method
CN104911565B (zh) 一种化学气相沉积装置
CN102668033A (zh) 半导体薄膜制造方法、半导体薄膜制造装置、基座和基座保持器
JP2003531489A5 (zh)
WO2012058005A2 (en) Apparatus having improved substrate temperature uniformity using direct heating methods
KR20040096496A (ko) 가열된 진공 지지 장치
CN109487237B (zh) 用于针对半导体衬底的化学气相沉积过程的装置和方法
JP2012054408A (ja) 基板処理装置及び被処理基板の製造方法
KR101698541B1 (ko) 실리콘 잉곳 제조 장치 및 원료 공급 방법
KR101653101B1 (ko) 화학기상증착장치
TWM634329U (zh) 基座支撐部及包含基座支撐部的外延設備
TW202409332A (zh) 溫度控制部件及cvd反應裝置
KR20120133870A (ko) 박막 증착장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050427

Termination date: 20120412