CN1404254A - Expandable multicasting light exchange structure with light-regulating shunt - Google Patents

Expandable multicasting light exchange structure with light-regulating shunt Download PDF

Info

Publication number
CN1404254A
CN1404254A CN 02137618 CN02137618A CN1404254A CN 1404254 A CN1404254 A CN 1404254A CN 02137618 CN02137618 CN 02137618 CN 02137618 A CN02137618 A CN 02137618A CN 1404254 A CN1404254 A CN 1404254A
Authority
CN
China
Prior art keywords
optical
wavelength
multicast
output
module
Prior art date
Application number
CN 02137618
Other languages
Chinese (zh)
Other versions
CN1324830C (en
Inventor
肖石林
曾庆济
蒋铭
王建新
赵焕东
肖鹏程
黄�俊
Original Assignee
上海交通大学
上海全光网络科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学, 上海全光网络科技股份有限公司 filed Critical 上海交通大学
Priority to CN 02137618 priority Critical patent/CN1324830C/en
Publication of CN1404254A publication Critical patent/CN1404254A/en
Application granted granted Critical
Publication of CN1324830C publication Critical patent/CN1324830C/en

Links

Abstract

A exchanging structure which can adjust light branch route and can expand group broadcasting light structure consists of N number of 1XM light wave decomposition multiplexer, MN number of 1XN internal multicast module and N number of MNX1 light combination device, of which N is the number of input and output link circuit supported by the exchanging structure, M is number of wavelength in the samegroup multiplexed by each link circuit. The internal multicast module with duplicating function is applied in the internals of the exchanging structure, to be cascaded by several multistage controllable 1X2 light shunts to construct a power adjustable distributing structure. The multistage light shunt will select out the desired output link circuit from each inputted wavelength signal, to select out the desired wavelength by tuneable wavelength convertor for realizing the signal power distributing and wavelength exchanging.

Description

可调光分路可扩展组播光交换结构 Dimmable light branching scalable multicast switch fabric

技术领域 FIELD

:本发明涉及一种光交换结构,尤其涉及一种可调光分路可扩展组播光交换结构,适合IP业务在全光网络中实现广播功能,适用于全光网络中的光交叉连接节点。 : The present invention relates to an optical switching fabric, particularly to a scalable multicast tunable optical branching optical switching structure, functionality for IP traffic for broadcast in the whole optical network, optical network for full optical cross-connect node . 属于光通信技术领域。 Belonging to the optical communication technology field.

为满足网络灵活性、生存性的要求,还应在波分复用的基础上结合各种光交换技术,从而解决电子式交换设备的瓶颈问题。 To meet the requirements of the network flexibility, survivability, also in conjunction with various optical switching technology based on wavelength division multiplexing, so as to solve the bottleneck of electronic switching devices. 提供大容量且能动态路由的光传输通道,使节点具有灵活的路由选择和光交换功能。 Capable of providing a large capacity dynamic routing optical transmission path, the flexibility of the node having routing and optical switching function. 全光网络中的核心节点是光交叉连接设备(OXC),光交叉连接设备的核心是光交换单元。 All-optical core node in the network is an optical cross-connect apparatus (OXC), optical cross-connect device is an optical core switching unit. 它能使光纤中复用的多路光信号灵活地交叉连接到各目的地,还可实现网络的动态重构和自愈(Zhang Tao,Qu Kun,Qiu Qi,ATM photonic switch architecture based onWDM technology.Journal of University of Electronic Science and Technology ofChina.1998.27(4):371-374)。 It allows multiple optical signals are multiplexed fiber cross flexibly connected to the respective destination, can achieve dynamic reconfiguration and self-healing network (Zhang Tao, Qu Kun, Qiu Qi, ATM photonic switch architecture based onWDM technology. Journal of University of Electronic Science and Technology ofChina.1998.27 (4): 371-374). 目前光交换单元主要有空分交换,时分交换和波分交换等。 Currently available optical switching unit main division switching, wavelength division switching and time division exchange. 但这些结构中,有些无广播能力,有些只具有部分可扩展性。 But these structures, some no broadcast capability, some only a portion scalability. 有些虽是无阻塞网络,但交换结构庞大且复杂,不易实现(《全光通信网》顾畹仪等编著,北京邮电大学出版社)。 Although some non-blocking network, but the switch fabric large and complex and difficult to implement ( "all-optical networks," Gu Wanyi eds, Beijing University of Posts and Telecommunications Press).

目前出现的光交换机构主要有以下几种形式:基于空间光开关矩阵和波分复用/解复用器对的交换结构是利用波分解复用器将链路中的WDM信号在空间上分开,然后利用空间光开关矩阵在空间上实现交换。 Optical switching means currently occurring mainly in the following forms: space-based switching matrix switches and optical wavelength multiplexing / demultiplexing is the use of wavelength division multiplexer WDM signal link spatially separated and then spatial light switching switching matrix implemented in space. 完成空间交换后各波长信号直接经波分复用器复用到输出链路中,这种交换机构不具有广播发送能力。 After completion of each exchange space wavelength of a signal wavelength division multiplexed directly via output links, the switching mechanism does not have the ability to broadcast transmission.

基于空间光开关矩阵和可调谐滤波器的交换结构是利用耦合器+可调谐滤波器完成将输入的WDM信号在空间上分开的功能,经过空间光开关矩阵和波长变换器后,再由耦合器将各个波长复用起来。 Based on the spatial optical switching matrix and switch fabric using the tunable filter tunable filter coupler completion + input WDM signal spatially separated functions, after the switching matrix and the spatial light wavelength converter, then the coupler the individual wavelengths multiplexed together. 这种交换结构虽然具有广播发送能力,但只具有波长模块性,不具有链路模块性。 Such a switch fabric, while having the ability to broadcast transmission, but only having a wavelength modularity without having link modularity.

基于分送耦合开关的交换结构是A.Watanabe等人提出的,这种结构采用一种分散耦合开关实现空间光开关矩阵功能。 Based on the exchange coupling switches dispensing structure A.Watanabe et al proposed the structure uses a spatial light dispersing coupled switch matrix switch function. 这种交换结构虽然具有广播发送功能,但只具有链路模块性,而不具有波长模块性。 While such a switch fabric having a broadcast transmission function, but only a link module having properties without having a wavelength modularity.

基于平行波长开关的交换结构是由M.Nishio等人提出的。 Parallel switching fabric based on wavelength switches is made by M.Nishio et al. 它的每条输入链路对应一个波长开关,每个波长开关由N个1×M星型耦合器、M个N×1空间交换矩阵、M个可调谐滤波器、M个波长变换器和一个M×1星型耦合器组成。 Each input link it corresponds to a wavelength switching, wavelength switching each of N 1 × M star coupler, a N × M matrix switching space 1, M tunable filters, wavelength converters and a M M × 1 star coupler. 这种交换结构只具有链路模块性,不具有波长模块性。 This exchange of link module structure having only having no wavelength modularity. (《全光通信网》顾畹仪等编著,北京邮电大学出版社)。 ( "All-optical networks," Gu Wanyi eds, Beijing University of Posts and Telecommunications Press).

为实现这样的目的,本发明在交换结构的内部采用一个具有复制功能的内部组播模块。 To achieve this object, the present invention uses an internal multicast replication module having a function in the interior of the switch fabric. 若本交换结构支持N个输入/输出链路,每个链路复用同一组M个波长(λ1……λM),则本交换结构共需要2N个掺铒光纤放大器(EDFA)、N个1×M光波分解复用器、MN个1×N内部组播模块和N个MN×1光合路器构成。 If the present switch fabric supports N input / output links, each set of M reuse the same wavelengths (λ1 ...... λM), the present configuration requires a total of 2N switched erbium doped fiber amplifier (the EDFA), the N 1 × M multiplexer branching, MN a 1 × N and N internal multicast module photosynthetic MN × 1 channel is constituted. 交换结构的N个输入链路分别与N个EDFA相连,而后接至N个1×M解复用器的输入端。 N input switch fabric links are coupled to the N EDFA, and then connected to the input of N 1 × M demultiplexer. 每个解复用器将复合的光信号解复用成M个波长后分别接入1×N内部组播模块,共接MN个内部组播模块。 Each demultiplexer After the composite optical signal into M demultiplexed wavelengths are internal multicast access module 1 × N, MN received a total internal multicast module. 每个内部组播模块的N个输出端分别接至与输出链路对应的N个MN×1光合路器的输入端。 Input output of each of the N modules are connected inside multicast to the output link corresponding to the N MN × 1 channel's photosynthesis. 每个光合路器将输入信号耦合进同一根输出光纤经EDFA放大后输出至交换结构的输出端口。 Each optical coupling device coupling the input signal into the same an output to an output port of the optical switch fabric by EDFA amplification.

本发明所述结构中输入端和输出端的光放大器EDFA用来放大和补偿光信号的功率,不是本发明的必需部件。 Configuration input and output terminals of the optical amplifier EDFA for power amplification and compensation of optical signals, is not essential components of the present invention the present invention.

本发明的内部组播模块由多个可控1×2光分路器和可调谐波长变换器组成,具有一个输入端和N个输出端,每个输出端口依序对应每个输出链路。 Multicast internal module of the present invention is controlled by a plurality of 1 × 2 optical splitter and tuneable wavelength converters composition, having an input terminal and N output terminals, each output port corresponding to each output link sequentially. 输入的每个波长信号送入组播模块,先由多级光分路器选出所需输出链路,再由可调谐波长变换器选出所需波长,这样就可以将信号送入任一链路任一波长。 Each wavelength signal inputted into the multicast module, first multi-stage optical splitter desired output link is selected, and then select the desired wavelength by the tunable wavelength converter, so that a signal can be sent to any link any wavelength. 1×2可控光分路器由控制模块统一管理,按照业务需要控制分光比,通过多级级联实现信号功率分配。 1 × 2 optical splitter controlled by a unified management control module, according to the service need to control the splitting ratio, signal power distribution achieved by multi-stage cascade. 在极端情况下可控1×2光分路器相当于1×2光开关,全部光功率仅从一个端口输出,另一端口没有光信号,因此可以认为光信号直通经过内部组播模块,连接至某条输出链路,类似于一般交换结构中的波长交换。 In the extreme case the controllable optical splitter 1 × 2 1 × 2 optical switches corresponding to all the optical power output from only one port, the other port no optical signal, it is considered that an optical signal passes through an internal multicast module connected to one of output links, generally similar to the wavelength switching in the switch fabric. 每条链路的每个波长对应一个组播模块,需要NM个组播模块,每个组播模块由[log2N]级1×2可控光分路器和N个波长变换器组成。 Each link corresponds to a wavelength of each module multicast, multicast need NM modules, each module consists of multicast [of log2N] Level 1 × 2 controllable optical splitter and N wavelength converters composition. 其工作方式可以分成3大类:(I)交换,当一个波长只需要唯一的交叉连接到一条输出链路时,光分路器的状态设置成类似于光开关的通断情况,选择所需的一个端口将光信号全部输出,实现波长交换功能;(II)广播:当一个波长上的光信号需要连接到每个输出链路时,控制每个光分路器的分光比为1∶1,光信号功率平均分成N份,送入到N个输出链路;(III)组播:介于前两种情况之间,按照业务要求控制模块控制光分路器的状态,光信号连接到所需的输出链路。 It works can be divided into three categories: (I) the exchange, when only a single desired wavelength cross-connect to an output link, the state of the optical splitter is disposed off the situation is similar to the optical switch, to select the desired one output port of the optical signal of all, to achieve a wavelength switching function; (II) broadcast: when a wavelength of the optical signal needs to be connected to each output link, the control of each optical splitter splitting ratio of 1 , the average power of the optical signal into N parts, is fed to the N output links; (III) multicast: between the first two cases, according to the service state control module controls the optical splitter requirements, the optical signal is connected to desired output link. 上述三种模式输入信号的光功率都没有损失。 The optical power of the three modes of the input signal are not lost.

每个组播模块后端有N个可调谐波长变换器,可以将前端多级可控光分路器选出的链路上的波长变换到其他波长,打破波长连续性限制,使交换结构支持虚波长通道,充分利用波长资源,提高波长利用率。 The rear end of each module there are N multicast tunable wavelength converter, the wavelength on the front multi-stage controllable optical splitter selected link may be converted to other wavelengths, the wavelength continuity constraint break the switch fabric support virtual channel wavelength, the wavelength of the full use of resources and improve the utilization wavelength. 更重要的是,当2个或多条链路的同一波长都要连接到同一个输出链路时,造成波长竞争冲突,在组播这种一点到多点的通信方式使这个问题尤为严重。 More importantly, when the same wavelength two or more links to be connected to the same output link, the conflict caused by the wavelength of the competition, in which a multipoint multicast communication so that this problem is particularly serious. 发生冲突时,控制模块控制可调谐波长变换器使信号从一个波长变换到空闲波长,实现波长的再利用和再分配,从而提高交换的灵活性和可扩展性。 When a conflict occurs, the control module controls the tunable wavelength converter converting a signal from one wavelength to a spare wavelength, redistribution and re-use of a wavelength, thereby improving the flexibility and scalability exchange.

本发明交换结构同时具有链路模块性和波长模块性两种性能。 The present invention also has switching fabric link module and the wavelength properties of the two modules. 在本交换结构中,若输入输出各增加一条链路,只需要增加一个光波分解复用器,M个内部组播模块和一个光合路器,而原有器件和连接结构的改动很少,具有链路模块性。 In this switching arrangement, if each of the input and output add a link, only need to add a multiplexer branching, M internal modules and a multicast optical coupling device, and alteration of the original structure and the connecting device is small, having link modularity. 若每条链路波长数增加1,则仅需增加N个内部组播模块即可,即又具有波长模块特性。 If the increase in the number of wavelengths per link 1, the increase in N only internal to multicast modules, i.e. modules having a characteristic wavelength and. 同时具有这两种扩展性能,这在以前提出的交换结构中是很少的。 Have both extended performance, which is very little in exchange structure previously proposed. 此交换结构的模块化减少扩容对网络结构的影响,具有良好的容量扩充能力。 The modular structure of this exchange to reduce the impact on the expansion of the network structure, with good capacity expansion capability.

本发明交换结构内部组播模块中的可控光器件可由OXC中的控制模块进行控制,具有很强的灵活性。 Controllable optical device of the present invention, the internal structure of a multicast switching module is controlled by the OXC control modules, with great flexibility. 控制模块对内部组播模块进行控制,按照业务需求合理设置光分路器和可调谐波长变换器,可支持动态波长路由功能,实现简单,算法复杂度低。 The control module controls the internal multicast module, according to business needs and reasonable set of optical splitter tunable wavelength converter, can support dynamic wavelength routing function, simple, low complexity. 同时根据控制模块机制的不同(即不同交换粒度的控制),采用不同交换粒度(即变换时间的不同)的可控光器件,此交换结构可在分别具有波长路由功能和光突发交换功能的OXC中使用,具有很强的适用效果。 Depending simultaneously (i.e., different switching granularity of control) control module mechanism, the switching granularity different controllable optical device (i.e., the transformation of different time), this switching structure may have a wavelength routing and optical burst switching functions OXC in use, the application has a strong effect.

本发明结构简单可行,各元器件均可采用现有成熟技术,其中波分解复用器可采用通常使用的薄膜滤波片型解复用器。 Structure of the present invention is simple and feasible, the respective components can be employed mature prior art, wherein the thin film filter type wavelength division multiplexer demultiplexer can be generally used. 输入端和输出端的光放大器采用EDFA(掺铒光纤放大器)实现。 An input terminal and an output terminal of the optical amplifier using the EDFA (Erbium Doped Fiber Amplifier) ​​implementation. 可调谐波长变换器可采用交叉增益调制半导体光放大器和交叉相位调制半导体光放大器。 A tunable wavelength converter may employ a semiconductor optical amplifier cross-gain modulation and cross phase modulation of the semiconductor optical amplifier. 整个交换结构均由光交换器件构成,充分体现了WDM全光网的透明性和灵活性。 Whole exchange structure constituted by the optical switching device, fully reflects the flexibility and transparency of all-optical WDM networks.

本发明的光交换结构可实现组播功能,即输入的光波信号进入光交换连接设备上,在交换模块内可实现任意出口的信号复制,将任何光纤上的任何波长交叉连接到多个输出光纤的任何多个不同波长上。 Optical switching signal replica structure of the present invention may be implemented multicast, i.e. lightwave signal inputted into the optical switching devices connected in the switching module can implement any port, any wavelength on an optical fiber cross-connect to any of a plurality of output optical fibers any of a plurality of different wavelengths. 同时交换结构具有链路模块性和波长模块性两种可扩展性,大大增强全光网络中OXC的交换能力和空间扩展能力。 At the same time the switch fabric module having link modules of the two wavelengths and scalability, greatly enhancing the ability of all-optical switching network and the OXC spatial scalability.

图1中主要包括的光器件有EDFA掺铒光纤放大器1、波分解复用器2、内部组播模块3、光合路器6。 The optical device of FIG. 1 are mainly erbium doped fiber amplifier EDFA 1, wavelength division multiplexer 2, an internal multicast module 3, an optical coupling device 6. 其中内部组播模块3包括可控光分路器4和可调谐波长变换器5。 Wherein the internal multicast module 3 comprises a controllable optical splitter 4 and a tunable wavelength converter 5.

图2为本发明的内部组播模块3的具体实现方式。 2 a block diagram of an internal multicast specific implementation of the present invention 3.

图2中包括多级可控1×2光分路器4和可调谐波长变换器5。 In FIG. 2 a multi-stage controllable optical 1 × 2 splitter 4 and a tunable wavelength converter 5.

图3为四根光纤输入输出,且每根光纤上仅复用一个波长时,本发明的交换结构示意图。 FIG 3 is a four input and output optical fibers, each optical fiber and the only one wavelength, a schematic structure of the present invention, the exchange multiplexing.

图4为四根光纤输入输出,且每根光纤上复用同组4个波长时,本发明的交换结构示意图。 4 is four input and output optical fibers, each optical fiber and the complex when the same set of four wavelengths, the switch fabric by the present invention. FIG.

图5为本发明交换结构实现组播功能示意图。 FIG 5 a schematic view of multicast switch fabric to achieve the present invention.

图6为本发明交换结构的链路模块性示意图。 Figure 6 a schematic view of the switch fabric link module of the present invention.

图7为本发明交换结构的波长模块性示意图。 FIG 7 schematic diagram of the module configuration of a wavelength switching of the present invention.

以交换结构为N×N交换结构为例。 In the switch fabric of switching N × N structure as an example. 如图1所示,交换结构的N个输入端经N个EDFA(1)放大后分别接至N个光波分解复用器(2)。 As shown in FIG. 1, N input ends of the switch fabric via N EDFA (1) are respectively connected to the amplified lightwave demultiplexer, the N (2). 每个光波分解复用器(2)将光复用信号解复用到M根光纤后分别连接到M个1×N内部组播模块(3)。 Each branching multiplexer (2) the optical multiplex signal after demultiplexing M optical fibers are respectively connected to the M 1 × N multicast interior module (3). 经内部组播模块(3)的功率分配和波长变换后N个输出端分别接至相应链路的NM×1光合路器(6)。 Multicast via the internal module (3) of the power distribution and the wavelength conversion of the N output terminals respectively connected to the corresponding link photosynthetic NM × 1 channel (6). 光合路器(6)将由内部组播模块(3)选择输出的光信号耦合在一根光纤上。 Coupling an optical signal combiner (6) by an internal multicast module (3) on a selected output fiber. 为了弥补由于光信号经过交换模块而带来的损耗每个输出端接一个EDFA(1),而后输出至交换结构的输出端口。 In order to compensate since the optical signal passes through the switching module and bring a loss for each output termination EDFA (1), and then output to the output port of the switch fabric.

此交换结构中的内部组播模块(3)具体实现方式如图2所示。 This internal multicast switch fabric modules (3) the specific implementation shown in FIG. 通过多级可控1×2光分路器(4)将输入的光信号分路到N个端口,并且分别与N个可调谐波长变换器(5)相连,从而实现交换结构的组播功能。 Controllable by a multistage splitter 1 × 2 optical splitter (4) an optical signal inputted to the N ports, and the N are connected to a tunable wavelength converter (5), in order to achieve multicast switch fabric . 1×2可控光分路器(4)由控制模块统一管理,作为连续可调功率分配器,形成多级功率分配结构。 Controllable optical 1 × 2 splitter (4) by a unified management control module, a continuously adjustable power splitter, a multi-stage power distribution structure is formed. 当输入光信号唯一地交叉连接到一个输出链路时,内部组播模块(3)中光分路器(4)设成光开关的通断状态,光信号全部从与那条输出链路相对应地端口输出,实现波长交换的功能;当输入光信号要连接到每条输出链路时,可控光分路器(4)组成[log2N]级功率分配器,最大可以将输入信号平均分配成N路,分别与每个输出链路相对应,实现广播功能;如果光信号仅需要连接到几个输出链路,则控制模块统一控制[log2N]级光分路器(4)的分光比,使光功率仅分配给与所需输出链路相应的输出端口,实现组播功能。 When the input optical signal is uniquely connected to one output link cross internal multicast module (3) the optical splitter (4) into an off state of the optical switch, the optical signals from all the output links with the piece corresponding to the output port, a wavelength switching function is realized; when the input optical signal to be connected to each output link, the controllable optical splitter (4) composed [of log2N] power splitter stage, the maximum input signal may be divided equally into N channels, respectively, corresponding to each output link for broadcast function; if the optical signals need to connect to several output links, the control module collectively controls [of log2N]-stage optical splitter (4) splitting ratio , given only the optical power distribution of the output link corresponding to the desired output ports, multicast function. 内部组播模块利用多级1×2光分路器(4)进行功率分配,光功率仅分配给有需要的端口,没有功率的损失,这是此交换结构的一个很大的优势。 Internal module uses multilevel multicast 1 × 2 optical splitter (4) for power distribution, optical power budget need to only port, without a loss of power, which is a great advantage of this switch fabric. 内部组播模块(3)中最后一级的光分路器(4)后面分别连接了N个可调谐波长变换器(5)使得交换结构可支持虚波长通道,而且能够解决不同输入链路相同波长的信号交叉连接到同一个输出链路的波长冲突问题,充分利用有限的波长资源,提高波长重用效率。 Internal multicast module final stage optical splitter (3) (4) are connected to the rear of N tunable wavelength converter (5) such that the support structure may exchange virtual channel wavelength, and the same can solve the different input link signal is connected to the wavelength cross conflict with a wavelength of the output link, a wavelength full use of limited resources and improve the efficiency of reuse of wavelengths. 它可根据业务的需求由控制模块控制相应的状态,从而达到选择不同波长、不同路径输出的目的。 It may be controlled according to respective states by the control module traffic demand, choose a different wavelength so as to achieve the purpose of the different output path. 由这些设备组合在一起构成的内部组播模块(3)经控制模块的动态控制可具有支持虚波长信道,广播传送光信号,动态可控选择波长信道及通过缓存解决由于组播存在竞争阻塞的功能。 Multicast internal modules together constituting these devices (3) via the dynamic control module may have a wavelength to support a virtual channel, a broadcast transmitting optical signals, selecting wavelength channels dynamically controllable by the buffer solution and the presence of competition due to the blocking multicast Features.

为了更好的描述本发明,下面将举例说明交换结构和组播特性。 In order to better describe the present invention, it will be exemplified below and multicast switch fabric properties.

当4个输入输出链路,且每条链路上仅传输一个波长时(见图3),交换结构不需要光波分解复用器(2)和波长变换器(5),由8个输入输出的EDFA(1)、4个1×4内部组播模块(3)和4个4×1光合路器(6)组成。 When the four input links on each output link, and only a transmission wavelength (see FIG. 3), the branching structure does not require switching multiplexer (2) and a wavelength converter (5), the input and output 8 the EDFA (1), 4 th multicast 1 × 4 inside the module (3) and four 4 × 1 optical combiner (6) composition. 内部组播模块(3)包括2级3个1×2光分路器(4),输入链路的光信号通过组播模块(3)分成4路,每路信号分别连接至每条输出链路的4×1光合路器(6)。 Multicast interior module (3) comprises a level 2 3 1 × 2 optical splitter (4), an optical signal input link (3) into the multicast module 4, each signal respectively connected to each output link channel 4 × 1 optical combiner (6). 控制模块控制组播模块(3)中的光分路器(4),选择信号所需的输出链路,光合路器(6)将每条链路输入的信号耦合到同一根光纤上输出。 A multicast control module controls the optical splitter module (4) (3) select the desired signal output link, an optical coupling device (6) to couple the input signal to the output of each link on the same fiber. 图中的粗虚线表示一个点对点的光信号的传递,第二条输入链路的信号交叉连接到第三条输出链路,则按照图中内部组播模块(3)内的光分路器(4)设置,可以使信号的光功率从与第三条输出链路相连的内部组播模块(3)的第三个输出端口输出,实现信号的交叉连接。 The thick broken line indicates a transmission point of an optical signal, the second input signal crossing the third link is connected to the output link, then according to FIG multicast internal optical splitter module in (3) ( 4) is provided, the light-power signal (3) the third output port from the interior of the module and a multicast link connected to the third output, the signal interchange connection. 图中的粗实线表示一路光信号传送到多条输出链路的路径,假设按照业务需求第一条链路的光信号要传送到第一条输出链路和第四条输出链路,因此控制模块控制组播模块(3)的光分路器(4)的分光比,使组播模块(3)的输入光信号功率平均分成2份分别从它的第一个和第四个输出口输出。 FIG thick solid line indicates the optical signal is transmitted to a plurality of output links along the path, the signal is assumed in accordance with the service requirements of the first optical link to be transmitted to the first output link and the fourth output links, a multicast control module controls the module (3) of the optical splitter (4) splitting ratio, so that a multicast module (3) the average power of an input optical signal into two parts, respectively from its first and fourth output ports output. 组播模块内(3)第一级光分路器(4)设置成1∶1的分光比,各有50%的光功率送入第二级光分路器(4),其余2个光分路器(4)都设置成通断模式,工作方式同1×2光开关,全部光功率仅从一路输出,另一路没有光信号输出,光功率没有损失。 The multicast module (3) a first-stage optical splitter (4) is arranged to the spectral ratio of 1, 50% of each of the optical power fed to the second-stage optical splitter (4), the remaining two light splitter (4) are set to off mode, works with the 1 × 2 optical switch, all the light from only a single output power, there is no other way output optical signal, the optical power is not lost. 所以输入的光信号经过组播模块(3)后从第一和第四个端口输出,光功率均为输入信号的50%,分别连接至第一条和第四条输出链路的光合路器,耦合后发送到输出光纤,实现了组播功能。 Therefore, the optical signal inputted through the multicast module (3) back from the first and fourth output ports, the input optical power are 50% of the signal, respectively connected to the first and fourth optical combiner output link after the transmission is coupled to the output fiber, to achieve the multicast.

当4个输入输出链路且每条链路复用4个同组波长(见图4)时,交换结构由8个EFDA(1)、4个1×4的的光波分解复用器(2),16个内部组播模块(3)和4个16×1的光合路器(6)组成,其中每个内部组播模块(3)包括2级3个可控光分路器(4)和4个可调谐波长变换器(5)。 4 when the input and output links each link with four multiplexed set of wavelengths (see FIG. 4), the switch fabric consists of eight EFDA (1), 4 1 × 4 light waves of a demultiplexer, (2 ), 16 internal multicast module (3) and the optical combiner 4 16 × 1 (6), wherein each internal multicast module (3) comprises a 23-stage controllable optical splitter (4) 4 and a tunable wavelength converter (5). 每条链路经过光波分解复用器(2)后,复合光信号解复用成4个不同的波长,每个波长送入组播模块(3)后按照光功率分成4路,控制模块选择所需的波长和输出链路分别送入相应的光合路器(6),将4个不同的波长复用到一根光纤上。 Each link through branching multiplexer (2), the composite optical signal is demultiplexed into four different wavelengths, each wavelength into a multicast module (3) is divided into 4 in accordance with an optical power, the control module selects desired wavelength and output links respectively into the corresponding optical coupling device (6), the 4 different wavelengths multiplexed onto a single fiber. 图中粗实线和粗虚线分别表示点对多点和点对点的光信号传递。 FIG thick solid line and the thick dashed lines represent optical signal transmitting multipoint and point to point. 假设第一条链路的波长λ1的光信号需要传送到第一,第二和第四条输出链路,则组播模块(3)需要将λ1的光信号分成3份,分别从第一,第二和第四条端口输出。 Suppose the wavelength λ1 of the first link optical signal to be transferred to the first, second and fourth output link, the multicast module (3) requires an optical signal λ1 divided into 3 parts, from the first, The second and fourth output ports. 为此控制模块(3)控制每个光分路器(4)的分光比,光分路器a(4)的分光比为2∶1,则送入光分路器b,c的信号光功率分别是原信号光功率的2/3和1/3。 For this purpose the control module (3) controls each of the optical splitter (4) splitting ratio, optical splitter a (4) splitting ratio of 2, the signal light into the optical splitter b, c of the power of the original signal light power are 2/3 and 1/3. 光分路器b(4)按照1∶1的分光比再次分配光功率,使输出口1和2的光功率均是1/3,而光分路器c(4)的光功率全部分配给输出口4,其光功率也为原信号的1/3。 Optical splitter b (4) according to the spectral distribution ratio of 1 again to optical power, the output port 1 and 2 are optical power is 1/3, and the optical splitter c (4) all of the optical power allocated to the an output port 4, the light power is 1/3 of the original signal. 因此控制模块按照业务需要控制光分路器(4),使所需的链路获得公平的功率分配,而功率没有损失。 Thus the control module according to the service needs to control the optical splitter (4), so that the desired link fair distribution of power, the power is not lost. 由于每条链路的每个波长都分成了4路分别连接到每条输出链路的光合路器(6)上,因此可能一个光合路器(6)上会有相同的波长进行耦合,造成波长冲突。 Since each wavelength are divided into each link 4 are respectively connected to each output of the optical coupling link (6), so there may be one optical combiner (6) coupled to the same wavelength, resulting in wavelength conflict. 为了解决这种冲突,控制模块需要合理调谐波长变换器(5),将冲突的波长变换成不同的波长。 To resolve this conflict, the control module need to rationalize a tunable wavelength converter (5), into a wavelength conflict different wavelength. 图中第一条链路的波长λ1分成了3路,其中有一路连接到第四条输出链路,同时,第三条输入链路的波长λ1也交叉连接到第四条链路,如图中虚线所示,这两个相同的波长在第四条输出链路上发生了冲突,假设4条输入链路都没有波长为λ2的信号需要交叉连接到第四条输出链路,则控制模块控制可调谐波长变换器(5)将第三条输入链路的波长λ1变换成λ2,连接到第四条输出链路的光合路器上(6),和其他信号耦合到光纤上。 FIG wavelength λ1 of a first link into a 3-way, all the way which is connected to the fourth output links, while the third wavelength λ1 incoming link is also connected to the fourth cross-link, as shown in as shown in a broken line, both on the same wavelength occur in conflict fourth output link, the link is assumed that four input signal of wavelength λ2 no need to cross-connect outputs fourth link, the control module controlling a tunable wavelength converter (5) link the third input of the wavelength λ1 is converted into [lambda] 2, an optical coupling device is connected to the fourth output link (6), and the other signal is coupled to the optical fiber. 而第一条链路中波长不需要变换,波长变换器(5)不工作。 And the first link in the wavelength conversion is not required, the wavelength converter (5) does not work. 因此组播模块(3)可以有效的复制信号,选择所需的波长和链路,光功率没有损失。 Thus multicast module (3) can effectively replica signal, and a link to select the desired wavelength, no loss of optical power.

本交换结构的组播功能可由图5来说明。 Multicast switch fabric may be present in FIG. 5 will be described. 交换结构支持N条输入输出链路,每条链路支持M个波长。 N input switch fabric supports the output links, each supporting M wavelengths. 图中粗虚线表示一个点对点光信号的传递。 The thick broken line indicates a transmission point of the optical signal. 设第二个输入链路上波长为λM的光信号经交换结构需传递到第N条输出链路波长为λi的通路上。 The second link is provided on the input optical signal wavelength λM to be passed through the switch fabric output to the N-th link of the wavelength λi path. 链路为2波长为λM的光信号经过内部组播模块(3),经OXC中控制模块控制可控光分路器(4)光信号仅从第N个端口输出,可调谐波长变换器(5)使其光信号波长由λM变为λi,而后进入光合路器(6)耦合进输出链路。 2 is an optical signal wavelength λM link through the inside of a multicast module (3), the control module via the OXC controllable optical splitter (4) an optical signal from only the N-th output ports, the tunable wavelength converter ( 5) so that the optical signal wavelength λM becomes λi, and then enters the optical coupling device (6) is coupled into the outgoing link. 图中粗实线部分表示一个点对多点光信号的传递。 The thick solid line represents a point to multipoint transmission optical signal. 设第一条输入链路上波长为λ1的光信号经交换结构需传递到第一条和第二条输出链路且波长为λj的通道。 The first link disposed on an input signal light of the wavelength λ1 of the switch fabric needs to be transferred to a first and a second output link of the wavelength of λj channel. 则链路为1波长为λ1的光信号进入组播模块(3),由控制模块控制可控光分路器(4),各以50%的光功率为从第一端口和第二个端口输出,并且调谐波长变换器(5)使波长变换为λj,分别连接至第一个和第二个输出链路的光合路器(6)。 The link is an optical signal wavelength λ1 enters multicast module (3), controllable optical splitter (4) by the control module, each at 50% of the light power from the first port and second port output, and the tuning wavelength converter (5) is converted to the wavelength [lambda] j, respectively connected to first and second output optical coupling link (6).

当光交换节点需要扩容时,有增加链路数和波长数两种方式,在此交换结构中两种方式兼具。 When the light switching node capacity is needed, an increase in the number of links and the number of wavelengths in two ways, in which both switch fabric in two ways. 图6为此交换结构的链路模块性。 Figure 6 this exchange structure of a link module. 当交换结构为N×N交换结构,每条链路支持M个波长时,此交换结构需由N个1×M光波分解复用器(2)、MN个1×N内部组播模块(3)和N个MN×1光合路器(6)构成。 When the N × N switch fabric is a switch fabric, each link supporting M wavelengths, this structure for an exchange decomposition of N 1 × M optical wave multiplexer (2), MN 1 × N th internal multicast module (3 ) and N photosynthetic MN × 1 channel (6) configured. 当交换结构的链路数加1,扩展为(N+1)×(N+1)的交换结构时,原有交换结构的连接方式不变,只需增加1个1×M光波分解复用器(2)、M个内部组播模块(3)和1个光合路器(6),如图6中虚线所示。 When the number of links plus a switch fabric, expanded to (N + 1) × (N + 1) of the switch fabric, the switch fabric connected to the same manner as the original, by simply adding a 1 × M optical wave demultiplexing device (2), M multicast internal modules (3) and an optical combiner (6), the broken line 6 shown in FIG. 此时的内部组播模块(3)从原有的1×N内部组播模块(3)扩展成1×(N+1)内部组播模块(3),也就是说内部组播模块(3)中多级光分路器(4)要从[log2N]级扩展成[log2(N+1)]级且相应增加一个波长变换器(5)。 At this time, internal multicast module (3) extended from the original 1 × N multicast interior module (3) into a 1 × (N + 1) internal multicast module (3), that is to say an internal multicast module (3 ) multistage optical splitter (4) extended from [of log2N] to level [log2 (N + 1)] and the corresponding increase in the level one wavelength converter (5). 原有的MN×1光合路器(6)要扩展成[M(N+1)]×l光合路器(6)。 Photosynthetic original MN × 1 channel (6) to be expanded into [M (N + 1)] × l optical coupling device (6). 这里光合路器(6)的输入端口的扩展,可以是在交换结构最初设计时预留出,不用连接。 Here optical combiner input extension (6) of the port may be reserved for the initial design in the switch fabric, without connection. 当交换结构需要扩展时,预留出的端口可以直接连接相应光器件,从而实现交换结构的链路模块性。 When the switch fabric needs to be extended, it sets aside a respective port can be directly connected to the optical device, thereby realizing switch fabric link module. 光器件预留端口的数量决定此交换结构的可扩展链路的数量。 Number of reserved port optical device determines the amount of this exchange may be extended link structure.

图7为此交换结构的波长模块性。 7 this exchange module structure of a wavelength. 当交换结构为N×N交换结构,每条链路包括M个波长时,此交换结构需由N个1×M光波分解复用器(2)、MN个1×N内部组播模块(3)和N个MN×1光合路器(6)构成。 When the N × N switch fabric is a switch fabric, each link comprising M wavelengths, this structure for an exchange decomposition of N 1 × M optical wave multiplexer (2), MN 1 × N th internal multicast module (3 ) and N photosynthetic MN × 1 channel (6) configured. 当交换结构的每条链路的波长数加1,原有交换结构的连接方式不变,仅需增加N个1×N内部组播模块(3)即可,如图7中虚线所示。 When the number of wavelengths per link exchange structure 1 is added, the original connection of the same switch fabric, only an increase in the N × N multicast interior module (3) can, as shown in Figure 7 in broken lines. 同时交换结构原有的1×M光波分解复用器(2)要扩展成1×(M+1)波分解复用器(2),原有的MN×1光合路器(6)要扩展成[(M+1)N]×1光合路器(6)。 While exchanging the original structure of the branching 1 × M multiplexer (2) to be extended to 1 × (M + 1) wavelength division multiplexer (2), the original MN × 1 optical coupling device (6) to be expanded to [(M + 1) N] × 1 photosynthetic passage (6). 这里的光波分解复用器(2)的输出端口和光合路器(6)的输入端口的扩展,同样是在交换结构最初设计时预留出。 Here branching input extension multiplexer (2) and the optical combiner output port (6) of the port, also to reserve initially designed in the switch fabric. 当交换结构需要扩展时,预留出的端口可以直接连接相应光器件,从而实现交换结构的波长模块性。 When the switch fabric needs to be extended, set aside a respective port can be directly connected to the optical device, in order to achieve wavelength switch fabric module. 光器件预留端口的数量决定此交换结构的可扩展波长的数量。 Number of reserved port optical device determines the number of wavelengths of this scalable switch fabric.

Claims (5)

1.一种可调光分路可扩展组播光交换结构,其特征在于由N个1×M光波分解复用器(2)、MN个1×N内部组播模块(3)和N个MN×1光合路器(6)构成,其中,N为交换结构支持输入/输出链路数,M为每个链路复用同一组的波长数,N个输入链路分别连至N个1×M解复用器(2)的输入端,每个解复用器(2)将复合的光信号解复用成M个波长后分别接入1×N内部组播模块(3),每个内部组播模块(3)的N个输出端分别接至与输出链路对应的N个MN×1光合路器(6)的输入端,每个光合路器(6)将光信号耦合进同一根输出光纤后输出至交换结构的输出端口。 A scalable multicast tunable optical branching optical switching structure, characterized in that consists of N 1 × M multiplexer branching (2), MN 1 × N th internal multicast module (3) and N Photosynthetic MN × 1 channel (6), wherein, N is the switch fabric supports input / output link number, M being the number of wavelengths multiplexed in each link of the same group, the N input links are connected to N 1 × M demultiplexer (2) the input of each demultiplexer (2) a composite optical signal multiplexed access solutions were 1 × N multicast interior module (3) after use into the M wavelengths, each multicast internal modules (3) of the N output terminals respectively connected to the output link corresponding to the N photosynthetic MN × 1 channel (6) input terminal of each optical coupling device (6) is coupled into the optical signal after the optical output with an output to an output port of the switch fabric.
2.如权利要求1所说的可调光分路可扩展组播光交换结构,其特征在于内部组播模块(3)由多个可控1×2光分路器(4)和可调谐波长变换器(5)组成,具有一个输入端和N个输出端,每个输出端口依序对应每个输出链路,输入的每个波长信号先由多级光分路器(4)选出所需输出链路,再由可调谐波长变换器(5)选出所需波长,实现信号功率分配和波长交换。 2. 1 of said dimmable light branching scalable multicast switch fabric as claimed in claim, characterized in that the internal multicast module (3) controlled by a plurality of 1 × 2 optical splitter (4) and a tunable wavelength converter (5), having an input terminal and N output terminals, each output port corresponding to each output link sequentially, first by each wavelength signal inputted multi-stage optical splitter (4) is selected desired output link, then the tunable wavelength converter (5) selecting a desired wavelength, for signal power distribution and wavelength switch.
3.如权利要求2所说的可调光分路可扩展组播光交换结构,其特征在于内部组播模块(3)中,多个多级可控1×2光分路器(4)级联,构成功率可调的分配结构,最后一级的光分路器(4)的输出端与可调谐波长变换器(5)相连,由控制模块控制可调谐波长变换器(5)进行波长变换。 3. adjustable to claim 2 said light branching optical switching structure may be extended multicast, a multicast module wherein the interior (3), a plurality of controllable multistage 1 × 2 optical splitter (4) cascade, adjustable power distribution structure constituting, (5) connected to the output of the last stage of the optical splitter (4) and the tunable wavelength converter, the control module controls the tunable wavelength converter (5) wavelength transformation.
4.如权利要求1所说的可调光分路可扩展组播光交换结构,其特征在于具有链路模块性,当交换结构的链路数加1,原有交换结构的连接方式不变,增加1个1×M光波分解复用器(2)、M个内部组播模块(3)和1个光合路器(6),光合路器(6)的预留端口直接连接相应光器件。 4. 1 of said dimmable light branching scalable multicast switch fabric as claimed in claim, characterized in that the link module having a resistance, when the number of links plus a switch fabric, the switch fabric connected to the same manner as the original , an increase in the branching 1 × M multiplexer (2), M multicast internal modules (3) and an optical combiner (6), an optical coupling device (6) is directly connected to a respective port reserve optical device .
5.如权利要求1所说的可调光分路可扩展组播光交换结构,其特征在于具有波长模块性,当每条链路的波长数加1,原有交换结构的连接方式不变,增加N个1×N内部组播模块(3),光波分解复用器(2)的输出端口和光合路器(6)的输入端口的扩展预留端口直接连接相应光器件。 5 1 of said dimmable light branching scalable multicast switch fabric as claimed in claim, characterized in that the module having a wavelength of, when the number of wavelengths plus 1 for each link, the original connection change the switch fabric extended to include the N 1 × N multicast interior module (3), branching multiplexer (2) and the output port optical combiner (6) an input port directly connected to a respective port reserve optical device.
CN 02137618 2002-10-24 2002-10-24 Expandable multicasting light exchange structure with light-regulating shunt CN1324830C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02137618 CN1324830C (en) 2002-10-24 2002-10-24 Expandable multicasting light exchange structure with light-regulating shunt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02137618 CN1324830C (en) 2002-10-24 2002-10-24 Expandable multicasting light exchange structure with light-regulating shunt

Publications (2)

Publication Number Publication Date
CN1404254A true CN1404254A (en) 2003-03-19
CN1324830C CN1324830C (en) 2007-07-04

Family

ID=4749060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02137618 CN1324830C (en) 2002-10-24 2002-10-24 Expandable multicasting light exchange structure with light-regulating shunt

Country Status (1)

Country Link
CN (1) CN1324830C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449342C (en) 2007-02-08 2009-01-07 东南大学 Compact 1XN light power shunt
CN101547381B (en) 2009-05-08 2011-08-24 北京科技大学 Multicast RWA method with signal power attenuation limit in all-optical network
CN101304294B (en) 2008-06-24 2011-09-21 中兴通讯股份有限公司 Non-obstruction optical network apparatus as well as optical network node end-to-end service non-obstruction decussation method
WO2015066830A1 (en) * 2013-11-05 2015-05-14 华为技术有限公司 Wavelength routing device
CN105099956A (en) * 2015-06-25 2015-11-25 华为技术有限公司 Exchange network system and data exchange method
CN106301665A (en) * 2015-05-27 2017-01-04 中国电力科学研究院 A kind of electric power application optical communication network structure
CN108111930A (en) * 2017-12-15 2018-06-01 中国人民解放军国防科技大学 More bare die high-order optical exchange structures based on high-density storage
CN109660312A (en) * 2018-12-27 2019-04-19 广东电网有限责任公司佛山供电局 A kind of transformer station process layer optical network structure and reconstructing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548238B (en) * 2014-11-25 2016-09-01 Chunghwa Telecom Co Ltd Internet video packet switching device with protection function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724167A (en) * 1995-11-14 1998-03-03 Telefonaktiebolaget Lm Ericsson Modular optical cross-connect architecture with optical wavelength switching
US20020057861A1 (en) * 2000-06-08 2002-05-16 An Ge Optical IP switching router architecture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449342C (en) 2007-02-08 2009-01-07 东南大学 Compact 1XN light power shunt
CN101304294B (en) 2008-06-24 2011-09-21 中兴通讯股份有限公司 Non-obstruction optical network apparatus as well as optical network node end-to-end service non-obstruction decussation method
CN101547381B (en) 2009-05-08 2011-08-24 北京科技大学 Multicast RWA method with signal power attenuation limit in all-optical network
WO2015066830A1 (en) * 2013-11-05 2015-05-14 华为技术有限公司 Wavelength routing device
CN106301665A (en) * 2015-05-27 2017-01-04 中国电力科学研究院 A kind of electric power application optical communication network structure
CN106301665B (en) * 2015-05-27 2019-02-05 中国电力科学研究院 A kind of electric power application optical communication network structure
CN105099956A (en) * 2015-06-25 2015-11-25 华为技术有限公司 Exchange network system and data exchange method
CN105099956B (en) * 2015-06-25 2018-08-14 华为技术有限公司 Switching network system and method for interchanging data
US10505867B2 (en) 2015-06-25 2019-12-10 Huawei Technologies Co., Ltd. Switch fabric system and data switching method
CN108111930A (en) * 2017-12-15 2018-06-01 中国人民解放军国防科技大学 More bare die high-order optical exchange structures based on high-density storage
CN109660312A (en) * 2018-12-27 2019-04-19 广东电网有限责任公司佛山供电局 A kind of transformer station process layer optical network structure and reconstructing method

Also Published As

Publication number Publication date
CN1324830C (en) 2007-07-04

Similar Documents

Publication Publication Date Title
Chan et al. Analysis of least congested path routing in WDM lightwave networks
Cheung Acoustooptic tunable filters in narrowband WDM networks: System issues and network applications
EP0687085B1 (en) Optical drop/insert multiplexer
JP4064450B2 (en) Optical communication network
US8625994B2 (en) Directionless reconfigurable optical add-drop multiplexer systems and methods
US7983560B2 (en) Modular WSS-based communications system with colorless add/drop interfaces
US6115517A (en) Optical communication network apparatus and optical switching network
US5627925A (en) Non-blocking optical cross-connect structure for telecommunications network
EP0759681B1 (en) Optical cross-connect system
JP4382635B2 (en) Optical transmission equipment
US6542268B1 (en) Optical channel cross connect for telecommunication systems in wdm technology (wavelength division multiplexing) having a double spatial switching structure of optical flows strictly not blocking and interposed functional units operating on single channels
CA2061919C (en) Optical switch and switching module therefor
JP2888272B2 (en) Optical network and relay node
EP1162860A2 (en) Scalable WDM optical IP router architecture
US7016608B1 (en) Optical network units preconfigured to accept predetermined subsets of wavelengths
US7164861B2 (en) Node apparatus, optical wavelength division multiplexing network, and system switching method
JP6244304B2 (en) Scalable optical switch and switching module
Hu et al. Multicasting optical cross connects employing splitter-and-delivery switch
CA2285128C (en) Switch for optical signals
US5724167A (en) Modular optical cross-connect architecture with optical wavelength switching
JP4875237B2 (en) Wavelength division multiplex transmission method using wavelength converter
Saleh et al. Evolution toward the next-generation core optical network
CA1290474C (en) Cross-connection of wavelength-division-multiplexed high speed channels
US20080181605A1 (en) Multi-degree optical node architectures
CN1290282C (en) Non-uniform light convergence device and divergence device and layered mixing light cross-linking system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right