CN1396458A - Six-axle acceleration sensor with dual E-shaped circular membranes and cross beam structure - Google Patents

Six-axle acceleration sensor with dual E-shaped circular membranes and cross beam structure Download PDF

Info

Publication number
CN1396458A
CN1396458A CN 02137897 CN02137897A CN1396458A CN 1396458 A CN1396458 A CN 1396458A CN 02137897 CN02137897 CN 02137897 CN 02137897 A CN02137897 A CN 02137897A CN 1396458 A CN1396458 A CN 1396458A
Authority
CN
China
Prior art keywords
circular
diaphragm
sensitive
acceleration
membrane
Prior art date
Application number
CN 02137897
Other languages
Chinese (zh)
Other versions
CN1227535C (en
Inventor
戈瑜
吴仲城
葛运建
申飞
马军
汪小龙
卞亦文
钱朋安
钱敏
Original Assignee
中国科学院合肥智能机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院合肥智能机械研究所 filed Critical 中国科学院合肥智能机械研究所
Priority to CN 02137897 priority Critical patent/CN1227535C/en
Publication of CN1396458A publication Critical patent/CN1396458A/en
Application granted granted Critical
Publication of CN1227535C publication Critical patent/CN1227535C/en

Links

Abstract

A 6D acceleration sensor for measuring three axial accelerations and angular accelerations in 3D space coordinate system features that the thick-film technology is used, the dual E-shaped circular ceramic membranes and cross beam are used as sensitive elastic substance, and the force-sensitive thick-film resistors are sintered on the ceramic substance for bridging. It can be used for the robot.

Description

一种双E型圆膜片十字梁结构的六轴加速度传感器 A dual six-axis acceleration sensor diaphragm E circular cross-beam structure

技术领域 FIELD

本发明涉及仿人机器人、多指灵巧手、机器人柔顺控制以及虚拟现实技术等机器人传感器领域,特别涉及一种能够同时实现对六轴向加速度信息敏感的一体化传感器结构,以及实现对三轴向线加速度和三轴向角加速度信息独立获取方法的一种双E型圆膜片十字梁结构的六轴加速度传感器。 The present invention relates to a humanoid robot, the robot sensor field of multi-fingered dexterous hand, robot compliance control and virtual reality technology, and particularly relates to a simultaneously achieved six axial acceleration sensor integrated structure sensitive information, and achieving the three-axial six-axis acceleration sensors and tri-axial linear acceleration independent angular information acquisition method of a dual diaphragm E circular cross beam structure.

目前广泛采用的微电子机械技术所提出和生产的基本上是单轴向到三轴向加速度传感器,而角加速度传感器是以单轴向为主,无论是基于压电、压阻等结构的加速度传感器,有一个共同的特点是传感器内部都有惯性质量块;另外有一种三轴向加速度传感器是采用三个独立的单轴向线加速度传感器采用正交的方法集成,这种方法存在一个重要的问题是惯性质量质心不一致,不是在同一个空间坐标系反映被测量。 Proposed so far widely used in MEMS technology and the production of substantially uniaxially to a tri-axial acceleration sensor, angular acceleration sensor and is uniaxially oriented, either based on the acceleration structure of a piezoelectric, piezoresistive, etc. sensor, there is a common feature of the inertial mass has an internal sensor; Further there is a tri-axial acceleration sensor is a three separate uniaxial orthogonal linear acceleration sensor integrated approach, this approach has a significant the problem is that the inertial mass centroid inconsistent, is not reflected in the same space coordinate system is measured. 实际上在机器人研究中,被控制对象的运动一般是在三维空间中进行的,被测对象在运动过程中存在三维的线加速度和三维的角加速度。 Indeed studies robot, movement of the object to be controlled is generally carried out in the three-dimensional space, three-dimensional linear acceleration and angular acceleration measured three-dimensional object is present during motion.

加速度传感器是机器人最重要的内部传感器之一,由于机器人运动过程中,负载的位置/姿态及运动的变化,将会带来附加的动载荷,而智能机器人机械臂的运动是三维空间中进行的,机械手或机械臂的各个关节是同时运动的,因此在工作过程中,负载在三维空间中存在三维线加速度和三维角加速度。 The acceleration sensor is one of the most important internal sensor of the robot, since the robot movement, the change in the load position / posture and movement, will bring an additional dynamic load, intelligent robot manipulator is moved in three dimensional space is performed , each joint manipulator or robotic arm are moved simultaneously, so that during operation, the load and the presence of three-dimensional angular linear acceleration in three dimensional space.

对于基于力反馈柔顺控制的操作型智能机器人而言,是通过装在机械手腕部的六轴力传感器来实现对控制过程中的力的测量,由于负载的位置/姿态及运动变化所产生附加载荷的影响,从力传感器的输出中无法得到对力反馈控制所需要的接触力信息。 For intelligent robot operation based on the force feedback in terms of compliance control, the control is achieved during the measurement of the force by the six-axis force sensor mounted mechanical wrist portion, the load position / posture and the motion of the additional load generated effect, the output from the force sensor can not give information on the contact force required for the force feedback control. 如果在进行力测量的同时能够获得机械手各个关节位置姿态变化和加速度信息,则可以直接利用这些信息进行位置/姿态和惯性力的补偿,获取真正动力学解耦的六维接触力和负载力信息。 If both the measured force can be obtained during each change of the posture and position of the joint manipulator acceleration information, this information can be directly compensated position / orientation and the inertial force, the contact force obtain six-dimensional force and the load information of the real decoupling kinetics .

本发明的技术方案是:一种双E型圆膜片十字梁结构的六轴加速度传感器,包括法兰盘固定底座(1)、下E型圆膜片(2)、惯性质量块(3)、上E型圆膜片(4)、上膜片连接圆片(5)、十字梁(6)、外壳(7)、密封圈(8)、底盖板(9)、下膜片连接圆片(10),它们共同构成双E型圆膜片十字梁结构的六轴加速度传感器,其特征在于:十字梁(6)对接在上膜片连接圆片(5)和下膜片连接圆片(10)的十字槽中并固定于其中间,上膜片连接圆片(5)的上表面与上E型圆膜片(4)连接,上E型圆膜片(4)的周边为均布惯性质量块(3),质量块(3)在三维空间保持惯性从而产生惯性力并作用于弹性体;下膜片连接圆片(10)的下表面与下E型圆膜片(2)连接,下E型圆膜片(2)与传感器底座(1)固定在一起。 Aspect of the present invention is: A dual six-axis acceleration sensor diaphragm E circular cross-beam structure, the flange comprising a stationary base (1), the E-type circular membrane (2), the inertial mass (3) , the E-type circular diaphragm (4), connected to the diaphragm wafer (5), the cross beams (6), the housing (7), the sealing ring (8), a bottom cover (9), connected to the diaphragm round sheet (10), which together form a six-axis acceleration sensor E double circular diaphragm cross beam structure, wherein: the cross beam (6) butt (5) connected to the diaphragm and the lower diaphragm disc is connected on the wafer (10) cross grooves and secured thereto intermediate the upper surface of the diaphragm connected to the wafer (5) and the E-type circular membrane (4) is connected to the periphery of the circular diaphragm E (4) of both cloth inertial mass (3), the mass (3) held in the three-dimensional space to generate inertia forces and inertia acts on the elastic member; the disc connected to the diaphragm (10) at the lower surface of the circular diaphragm E (2) connections, E circular membrane (2) with a sensor base (1) together.

外壳(7)和底座(1)通过螺纹联结在一起,它们之间的空腔充满了油介质,密封圈(8)安装在外壳(7)与底座(1)之间的连接部分,用于防止空腔内的介质溢出。 Housing (7) and the base (1) are coupled together by screwing, the cavity between them is filled with oil medium, the sealing ring (8) mounted on the connecting portion between the housing (7) with the base (1), for preventing the medium from escaping the cavity. 空腔中填充的油介质用于实现合适的阻尼控制,以改善传感器输出信号特性。 The cavity filled with oil medium suitable for realizing the damping control, to improve the characteristics of the sensor output signal.

所述的下E型圆膜片(2)、十字梁(6)、上E型圆膜片(4)的材料为97%的AL2O3烧结体陶瓷。 E said lower circular membrane (2), the cross beams (6), the E-type circular diaphragm (4) is a material of 97% AL2O3 ceramic sintered body.

这种立体结构可以将线加速度ax、ay测量与角加速度αx、αy测量分别置于两个E型圆膜片上,安装底座(1)方便与被测对象之间的机械连接,惯性质量块(3)在被测对象运动过程中运动发生变化时带来惯性力并作用于上下E型圆膜片(4)、(2)和十字梁(6)的弹性体上。 Such three-dimensional structures may be linear acceleration ax, ay and the measured angular acceleration αx, αy E measurements were placed on two circular diaphragm mounting base (1) and facilitate the mechanical connection between the object to be measured, the inertial mass bringing an inertial force (3) changes in the movement of the object measured during the movement in the vertical and E acting circular diaphragm (4), (2) and the cross beam (6) is an elastic body.

本发明还提供一种用于同时获取三维线加速度和三维角加速度信息的方法,其特征在于下E型圆膜片(2)、十字梁(6)、上E型圆膜片(4)上烧结有钌系厚膜力敏电阻,其位置如图3、图4所示。 The present invention also provides a method for simultaneously obtaining a three-dimensional three-dimensional angular and linear acceleration information, wherein the E-shaped circular diaphragm (2), the cross beams (6), the upper circular diaphragm E (4) sintering the ruthenium-based thick film piezoresistor, position 3, 4 shown in FIG. 上下E型圆膜片(4)、(2)敏感面内的电阻对称布置,每个电阻离圆心距离相等,该厚膜力敏电阻通过不同的敏感桥路布置方式实现对六维加速度信息的获取,并通过解耦消除相互之间的耦合,同时实现三维线加速度和三维角加速度的全加速度信息独立获取;X、Y方向角加速度信息获取敏感桥路采用在上E型圆膜片(4)平面内互相垂直布置,其厚膜力敏电阻布置位置方向与下E型圆膜片(2)相同,其中:上E型圆膜片(4)敏感面上电阻R1y、R2y、R3y、R4y用来实现对角加速度αx的测量;上E型圆膜片(4)敏感面上电阻R1x、R2x、R3x、R4x用来实现对角加速度αy的测量;十字梁(6)上的四个厚膜电阻布置在同一梁平面内,并采用沿上下、左右对称轴对称布置,用来获取力矩αz的信息;下E型圆膜片(2)、和上E型圆膜片(4)的两个敏感方向要求保持一致,X、Y方向力信息获取敏感桥路电阻R1 E vertical circular diaphragm (4), (2) surface sensitive resistance in a symmetrical arrangement, each resistor equidistant from the center of the thick film piezoresistor achieve six dimensional acceleration information through different arrangement of sensitive bridge acquiring, by decoupling eliminate mutual coupling, while achieving the full three-dimensional acceleration information and three-dimensional angular acceleration of the line obtained independently; X, Y direction sensitive angular information acquisition in an E-type bridge using a circular diaphragm (4 ) within a plane disposed perpendicular to each other, which is a thick film piezoresistor disposed at a position E direction circular membrane (2) the same, wherein: the E-type circular diaphragm (4) surface sensitive resistance R1y, R2y, R3y, R4y used to implement the measurement of the angular acceleration αx; E on the circular diaphragm (4) surface sensitive resistance R1x, R2x, R3x, R4x to achieve measurement of the angular acceleration αy; four thick on the cross beam (6) film resistors arranged in the same plane beam, and the use of vertical, arranged symmetrically about the symmetry axis for obtaining information torque αz; in E circular membrane (2), and the E-type circular diaphragm (4) of the two sensitive directions called for consistency, X, Y direction of the force sensitive information acquiring resistance bridge R1 x、R2x、R3x、R4x及R1y、R2y、R3y、R4y,采用在下E型圆膜片(2)平面内互相垂直布置。 x, R2x, R3x, R4x and R1y, R2y, R3y, R4y, using an E-type lower circular membrane (2) within a plane disposed perpendicular to each other. Z方向线加速度信息获取敏感电阻R1z、R2z、R3z、R4z是布置在下E型圆膜片(2)上沿X、Y敏感方向相交45度方向,其中:下E型圆膜片(2)敏感面上电阻R1x、R2x、R3x、R4x用来实现对线加速度ax的测量; Z-direction acceleration information acquisition sensitive resistive wire R1z, R2z, R3z, R4z is the (2) arranged on the lower circular diaphragm E the X, Y sensitivity direction intersecting 45 degree direction, wherein: the E-type circular membrane (2) sensitive surface resistance R1x, R2x, R3x, R4x used to achieve linear acceleration ax of the measurement;

下E型圆膜片(2)敏感面上电阻R1y、R2y、R3y、R4y用来实现对线加速度ay的测量;下E型圆膜片(2)敏感面上电阻R1z、R2z、R3z、R4z用来实现对线加速度az的测量;上E型圆膜片(4)敏感面上的电阻R1z、R2z、R3z、R4z还可以提供一路对线加速度az的冗余信息;采用本发明所述的十字梁连接双E型圆膜结构可以实现对同一空间坐标系内的三维线加速度和三维角加速度同时测量,并且本发明通过改变上下双E型膜(4)、(2)的结构尺寸和敏感单元位置,可以实现对传感器ax、ay、az、αx、αy的量程和灵敏度调整。 Under E circular membrane (2) surface sensitive resistance R1y, R2y, R3y, R4y to achieve measurement of linear acceleration ay; in E circular membrane (2) surface sensitive resistance R1z, R2z, R3z, R4z to achieve measurement of the linear acceleration az; E on the circular diaphragm (4) surface sensitive resistance R1z, R2z, R3z, R4z way redundant information may also provide for the linear acceleration az; using the present invention E cross beam connecting circular double film structure can be achieved the simultaneous measurement of three-dimensional angular and linear acceleration in the same spatial coordinate system, and the present invention is by changing the vertical double E-type membrane (4), (2) the size and structure of sensitive unit location, the sensor may be implemented ax, ay, az, αx, αy range and sensitivity adjustment.

在前面所述的结构中,十字梁(6)既是上下双E型圆膜的联接体和力传递构件,又是获取Z方向角加速度αz信息的敏感弹性体,且实际的输出信号与输入力负载之间线性优良,其它的力分量对其理论上没有影响,实测中的耦合干扰极小。 In the previously described structure, the actual output signal with the input force the cross beams (6) both the upper and lower circular double E-film body and force transmitting coupling member, and the Z direction is to obtain angular acceleration information αz sensitive elastomer, and excellent linearity between the load, the other force component no effect on its theoretically, the measured minimum interference coupling. 通过十字梁尺寸的变化可以很方便地调整Z方向角加速度信息获取的量程和灵敏度,克服了Z方向的刚度与其他方向刚度差异较大而引起各方向加速度分量灵敏度之间差异较大的问题。 You can easily adjust the sensitivity of the Z direction and the angular acceleration information acquired range by varying the size of cross beams, to overcome the Z-direction stiffness and the stiffness in the other direction to cause a large difference in acceleration between the respective directions between major problem component sensitivity.

以上所述的十字梁连接的双E型圆膜结构的六维加速度传感器及其信号获取方式中所述的敏感单元是通过厚膜工艺实现,根据敏感单元的设计位置通过光刻的方法制作掩膜板。 Six sensitive axis accelerometer unit circle E-type double film structure above the cross beam and connected to the signal acquisition mode is achieved by a thick film process, according to the design position sensitive cells produced by the method of photolithography masking the diaphragm. 通过丝网印刷的方法将具有力敏特性的厚膜浆料印刷在传感器弹性体上相应的位置,再在一定的温度下烧结。 By a screen printing method will have a corresponding position of the force sensitive thick film paste printed on the elastomer sensor, and then sintered at a constant temperature. 传感器制作过程中各种参数调整、工艺实现十分方便。 Sensor production process of various parameter adjustment process to achieve very convenient.

该传感器的结构和敏感桥路布置方式可适用于金属弹性体的应变式六维加速度传感器或获取六维加速度信息的装置,并可适用于不同尺寸和量程要求的六维加速度传感器或装置。 Sensitive bridge structure and arrangement of the sensor means is adapted to strain six-axis accelerometer metal elastic body or six Vega obtain speed information, and applicable to six-axis accelerometer or devices of different sizes and range requirements.

本发明的有益效果是:本发明对目前机器人学研究中日趋活跃的微驱动操作技术、多指灵巧手及临场感技术研究中迫切需要小尺寸和小量程的六维加速度传感器有十分重要的意义。 The advantages are: the invention of the present study robotics increasingly active micro-drive operation, multi-axis accelerometer means six research dexterous hands and telepresence technology in urgent need of small size and small scale has great significance .

通过采用厚膜工艺在以陶瓷为弹性体材料的双E型圆膜片及十字梁上烧结敏感元件实现对六维加速度信息的获取,这种结构、工艺和信号获取方法容易实现从微小型化尺寸到大尺寸的各种不同量程六维加速度传感器的设计,并可以通过改变膜片和梁的厚度、尺寸等结构参数实现对传感器各个方向的灵敏度调整,以满足不同场合下机器人全力感知系统的使用要求。 By using thick film technology in the ceramic material is an elastomeric diaphragm and a circular double E-beam firing cross member to achieve access to the sensitive six dimensional acceleration information, such a configuration, the signal acquisition process and the method is easy to implement miniaturization design of various sizes to large-scale six-dimensional acceleration sensor, and can achieve the sensitivity adjustment of the sensors in various directions by changing the parameters of the membrane structure and the beam thickness, size, etc., to meet different occasions full perception robotic system Requirements.

本发明采用的十字梁连接的双E型圆膜结构,可以实现对三维线加速度和三维角加速度信息的同时获取,解决了以力矩形式获取线加速度信息和获取角加速度信息之间的矛盾,克服了目前一般多维加速度传感器的强耦合问题;本发明采用的十字梁形式结构,既是本发明的双E型圆膜的联结和力传递构件,同时又是获取Mz力矩的敏感弹性体,这种独立的十字梁结构克服了Z方向角加速度与其他方向线加速度和角加速度之间的相互干扰问题,并且通过改变十字梁的结构尺寸容易实现灵敏度的调整,克服了目前一些专利中Z向的刚度与其他方向刚度不一致的问题,有较大的调整空间和灵活性。 E circular double film structure of the present invention is employed in a cross-beam connection may be achieved of the three-dimensional information and three-dimensional angular acceleration of lines acquired simultaneously solve the contradiction between the angular acceleration information obtaining line information and the acquired in the form of torque to overcome the general problem of the strong coupling of a multidimensional acceleration sensor; and a coupling force in the form of a cross beam configuration employed in the present invention, both the circular double-E film of the present invention, the transmission member, but it is also the moment Mz acquired sensitive elastomer, such independent cross beam structure overcomes the problems of mutual interference angular acceleration in the Z direction between the linear and angular accelerations in other directions, and to adjust the sensitivity easily achieved by changing the size of the cross beam structure, overcomes some patents with current Z-direction stiffness the other direction rigidity inconsistencies, there is greater room for adjustment and flexibility. 下面结合附图和实施例对本发明作进一步的详细说明:附图说明图1为本发明的外形结构剖面示意图。 The present invention is further described in detail below in conjunction with the accompanying drawings and examples: BRIEF DESCRIPTION OF outline configuration diagram of a cross-sectional schematic view of the present invention.

图2为金属圆膜片结构尺寸剖面图。 FIG 2 is a cross-sectional size of the circular metal diaphragm structure of FIG.

图3为上下E型圆膜片上敏感电阻布置位置示意图。 E 3 is the vertical circular diaphragm disposed position sensitive resistive FIG.

图4为中间十字梁陶瓷上敏感电阻布置位置示意图。 4 is a schematic view of the position sensing resistor disposed on the intermediate cross beam ceramics.

图5为传感器受到力ax、ay、az作用下E型圆膜片应变图。 FIG 5 is subjected to a force sensor ax, E circular diaphragm strain diagram in ay, az effect.

图6为传感器受到力矩αx、αy作用下的E型圆膜片应变图。 FIG 6 is a torque sensor by αx, E strain circular diaphragm in FIG αy action.

图7为传感器受到力矩αz作用下的应变立体示意图和敏感平面应变图。 7 is a perspective schematic view of the sensor is strained and FIG under plane strain sensitive moment αz effect.

图1为本发明的外形结构剖面示意图。 An outline configuration diagram of a schematic cross-sectional view of the present invention. 两个E型圆膜片2、4通过中间陶瓷十字梁6固接在一起,十字梁6和E型圆膜片2、4之间通过固接在两圆膜片上的膜片与圆片5、10上的十字槽连接。 E two circular intermediate ceramic membrane 2,4 through the cross beams 6 affixed together, E and cross beams 6 by circular membrane fixed on two circular diaphragm between the diaphragm and the wafer 2, 4 connecting the cross slot 5,10.

整个六维力传感器的坐标是以上E型圆膜片4的表面中心O为基准,金属圆片的固定同样是以O为圆心,并且十字槽的宽度等于十字梁6的厚度,方向与下E型圆膜片2和上E型圆膜片4上的敏感电阻方向一致。 Throughout the six-dimensional coordinates of the force sensor is above the circular surface of the diaphragm center E O 4 as a reference, the same is a metal disc fixed to the center O, and a width equal to the thickness of the cross slot of the cross beam 6, and the direction E consistent circular diaphragm 2 and 4 on the sensing resistor circular diaphragm on the E direction.

其中上E型圆膜片4外部与惯性质量块3连接,安装基座1的外径大于惯性质量块外径,例如惯性质量块3外径可以选择为φ18mm,安装基座1外径选择为φ20mm。 Wherein E on the outside of the circular diaphragm 4 is connected to the inertial mass 3, the outer diameter of the mounting base 1 is larger than the outer diameter of the inertial mass, the inertial mass, for example, an outer diameter of 3 to 18 mm can be selected, an outer diameter of the mounting base is selected φ20mm. 惯性质量块3、安装基座1应选择不同的材料,惯性质量块3的材料和尺寸的选择根据所设计的传感器要求灵敏度和量程来定,安装基座1可选择铝合金材料或其他金属材料,二者也可以根据惯性质量块来选择相同的金属材料。 3 the inertial mass, mounting base 1 should choose different materials, materials and dimensions of the inertial mass 3 selected according to the designed sensitivity and range sensors require to be, selectively a mounting base or other metal materials aluminum alloy , both may also be selected according to the same metal material as the inertial mass.

E型圆膜片2、4和十字梁6的铝合金膜片连接圆片5、10外径为φ5mm,相对陶瓷膜片粘贴的面上加工宽度为0.2mm的十字沟槽,沟槽的宽度与十字梁6的厚度相等,沟槽的宽度与陶瓷十字梁6宽度相同,以保证相互之间无间隙配合,陶瓷十字梁6的宽度为5mm,与圆膜片连接圆片5、10的外径相同,高度选择为12mm。 E circular diaphragm 4 and aluminum film 6 are connected to the cross beam 5, 10, an outer diameter of the wafer f5mm, the relative width of the working surface of the ceramic diaphragm attached to the cross grooves of 0.2mm, the width of the trench equal to the thickness of the cross beam 6, 6 are the same width as the groove cross beam ceramic, to ensure no clearance fit between each other, the width of the cross beam 6 of the ceramic is 5mm, 5, 10 and connect the outer circular diaphragm wafer the same diameter, height selected to be 12mm.

图1、2中上E型圆膜片4和金属圆片6之间通过703胶固接在一起,上下E型圆膜片结构形状对称。 E on FIG. 1 and 2 circular diaphragm 4 and the metal disc 703 by the adhesive 6 between the fixing together the upper and lower circular diaphragm structure E symmetrical in shape. 对于采用金属弹性体结构的这种形式的六维加速度传感器,上、下E型圆膜片连接圆片5、10和十字梁6,上下圆膜片可做成整体结构形式。 For the six-axis accelerometer using this form metal elastic body structure, the upper and lower discs connected to the diaphragm circular E 5,10 and cross beam 6, upper and lower circular diaphragm structure may be formed integrally.

上、下E型圆膜片4、2连接上、下圆片5和10的结构形状如图3所示。 The upper and lower circular diaphragm E 4,2 connection structural shape 5 and the wafer 10 is shown in Fig. 其中与十字梁6固接的一面中间加工有宽度为0.2mm的十字槽以方便与十字梁6之间的连接。 6 wherein a cross beam fixedly attached to the processing side of the middle connector having a width of 0.2mm between the cross groove 6 to facilitate the cross beam.

图3和图4为上、下E型圆膜片4、2和十字梁6陶瓷上烧结电阻位置示意图。 Figure 3 and FIG. 4 is a schematic view of the resistance to the lower position E sintered circular ceramic diaphragm 6 and the cross beams 4,2. 图3表示上、下E型圆膜片4、2敏感面上电阻位置图,其中:下E型圆膜片2敏感面上电阻R1x、R2x、R3x、R4x用来实现对线加速度ax的测量;下E型圆膜片2敏感面上电阻R1y、R2y、R3y、R4y用来实现对线加速度ay的测量;下E型圆膜片2敏感面上电阻R1z、R2z、R3z、R4z用来实现对线加速度az的测量; Figure 3 shows the upper and lower circular diaphragm E 4,2-sensitive surface of the position of FIG resistance, wherein: the E-type circular diaphragm 2 surface sensitive resistance R1x, R2x, R3x, R4x to achieve measurement of the linear acceleration ax ; the E circular diaphragm 2 surface sensitive resistance R1y, R2y, R3y, R4y to achieve measurement of linear acceleration ay; in E circular diaphragm 2 surface sensitive resistance R1z, R2z, R3z, R4z used to implement az of the linear acceleration measurement;

上E型圆膜片4敏感面上电阻R1y、R2y、R3y、R4y用来实现对角加速度αx的测量;上E型圆膜片4敏感面上电阻R1x、R2x、R3x、R4x用来实现对角加速度αy的测量。 E upper circular surface sensitive resistance membrane 4 R1y, R2y, R3y, R4y to achieve measurement of the angular acceleration αx; E on the circular surface of the membrane 4 sensitive resistive R1x, R2x, R3x, R4x used to achieve measuring the angular acceleration αy.

上E型圆膜片2敏感面上的电阻R1z、R2z、R3z、R4z可以提供一路对线加速度az的冗余信息。 R1z circle sensitive resistance film 2 on the surface of the E-type, R2z, R3z, R4z redundancy information may be provided along the linear acceleration az.

上下E型圆膜片4、2敏感面内的24个电阻按照图5所示位置对称布置,每个膜片的中间6个电阻位于相对圆心直径为φ6,且每个电阻离圆心距离相等。 24 resistance within the upper and lower surface of the E-4,2-sensitive diaphragm circularly symmetrically arranged in the position shown in FIG. 5, each intermediate diaphragm located opposite the center of the resistor 6 having a diameter of phi] 6, and a center equidistant from each resistor.

图4表示陶瓷十字梁6上的一个敏感面内厚膜电阻烧结位置示意图,图中的电阻R1、R2、R3、R4用来实现对Z向角加速度αz的测量,四个电阻按照图中位置对称布置,且尽量远离对称轴,电阻的方向与对称轴相交一角度,例如图中的30度方向。 Figure 4 shows a sensitive surface of the cross beam 6 of the ceramic sintered thick film resistor schematic position, FIG resistors R1, R2, R3, R4 Z direction to achieve measurement of the angular acceleration αz, four resistors position according to FIG. symmetrical arrangement, and as far away from the axis of symmetry, the resistance in the direction intersecting the axis of symmetry at an angle such as 30 degrees direction in the drawing.

图5为传感器膜片在三种不同的惯性力作用下的应变情况剖视图。 FIG 5 is a strain of the sensor membrane at three different cross-sectional view of the inertia force. 其中A表示传感器在如图所示平面内受到X方向惯性力Fx的作用,由于力作用平面在上E型圆膜片4上,上E型圆膜片4上的电阻R1x、R2x、R3x、R4x都不发生变化,下E型圆膜片2产生如图所示的变形,下E型圆膜片2上的电阻R1x、R2x、R3x、R4x组成的桥路有输出,输出信号与所加力Fx满足函数关系,通过输出的值得到所加力大小,而圆膜片上的其他电阻阻值不发生变化,也就不产生输出。 Wherein A represents a sensor in the X-direction as shown in FIG plane by the inertia force Fx, the force acting on the plane circular diaphragm 4 E, E on the resistor R1x circular diaphragm 4, R2x, R3x, R4X is not changed, the E-type circular diaphragm is deformed as shown in Figure 2, the lower bridge resistor R1x E circular diaphragm on 2, R2x, R3x, R4x composed of an output, the output signal applied force Fx satisfying function, the output worth by urging the size, and the other resistor on the circular diaphragm does not change, it does not generate an output. X方向的惯性力大小与其线加速度成正比关系。 Its size inertial force line X-direction proportional to the acceleration.

对于Y方向来说,输入输出及传感器受力变形与X方向相同,其测量原理也相同,Y方向的惯性力大小与其线加速度成正比关系。 For the Y direction, the input and output of the same deformation force sensor X direction, which is the same measurement principle, the inertia force of the line in the Y direction and its magnitude is proportional to the acceleration.

图5B表示沿Y方向惯性力Fy的传感器圆膜片变形情况。 5B shows the Y-direction inertial force Fy circular diaphragm deformation sensor.

图5C中表示的是传感器受到如图所示的惯性力F作用时变形,其方向与Z方向一致。 FIG. 5C indicates the deformation sensor is subjected to an inertial force F is applied as shown, the direction of which coincides with the Z-direction. 由于上下E型膜片4、2上的R1z、R2z、R3z,、R4z都发生变化,其组成的电桥输出与所加力大小满足一定函数关系,可以通过输出的值得到惯性力Fz的大小,实现对惯性力FZ的测量,实际使用中采用下敏感面电桥输出,敏感面电桥输出作为冗余信息。 Since the 4,2 R1z vertical Diaphragm E, R2z, R3z ,, R4z are changed, the bridge output with the composition satisfies a certain size urging function, can output worth magnitude inertia force Fz , FZ achieve measurement of the inertial force, the sensitive surface of the bridge output, the sensitive surface of the bridge output under actual use employed as the redundant information.

图6为被测对象有角加速度αx、αy时,传感器受到相应惯性力矩Mx、My作用下的E型圆膜片应变图。 FIG 6 is a measured object has an angular acceleration αx, when αy, the inertia moment of the sensor is correspondingly Mx, E circular diaphragm strain My role in FIG.

图6A为传感器受到惯性力矩Mx时的变形剖视图,使得上下E型圆膜片4、2产生如图所示的变形。 Fig 6A cross-sectional view of the modified inertia moment Mx sensor is subjected to such vertical E 4,2 circular diaphragm is deformed as shown in FIG.

传感器上敏感面上的电阻R1y、R2y、R3y、R4y都产生变化,两组桥路都会产生输出,角加速度变化大小与传感器电阻变化产生的输出满足固定的函数关系。 R1y sensitive resistor on the sensor surface, R2y, R3y, R4y are changed and the output will produce two bridge, the angular acceleration change the size of the output produced by the sensor and the variable resistance function satisfying fixed.

图6B表示当传感器受到惯性力矩My作用时变形情况,所产生的效果与Mx力矩相同。 6B shows the case when the sensor is deformed by action of inertia moment My, Mx effect produced by the same moment. 如图6B所示。 As shown in FIG 6B.

图7为传感器被测对象有加速度αz时产生的惯性力矩Mz作用下的应变立体示意图和敏感平面应变图。 7 is the strain measured object sensor and a schematic perspective view in plane strain sensitive inertia moment Mz action produced acceleration αz.

图7表示传感器受到惯性力矩作用下中间十字梁6的变形情况,图中7(A)表示十字梁的敏感面应变情况,图7(B)表示受到图(A)同样的惯性力矩情况下应变立体图。 FIG 7 shows an intermediate cross beam sensor is subjected to the inertia moment of action of the deformation, FIG. 7 (A). 6 represents the sensitive surface of the cross beam of the strain of FIG. 7 (B) represented by (A) to the same moment of inertia in the case of strain FIG perspective. 在如图所示的惯性力矩作用下,电阻R1、R4受到拉应力,R2、R3受到压应力,通过特定的电桥即输出一与所加惯性力矩Mz成函数关系的输出信号,从而可以实现对惯性力矩Mz的测量,并且在这种情况下,其它桥路没有信号输出。 Under the action of the moment of inertia as shown, resistors R1, R4 subjected to tensile stress, R2, R3 subjected to compressive stress, i.e., an output an output signal as a function of Mz of moment of inertia applied by a specific bridge, which can achieve inertia moment Mz is measured, and in this case, there is no other bridge output signals. 惯性力矩的大小与被测的角加速度成正比关系。 Angular acceleration is proportional to the size of the moment of inertia and tested.

具体实施方式 Detailed ways

:本发明采用厚膜工艺,用丝网印刷技术将力敏电阻浆料和导电体浆料印刷在E型圆膜片和十字梁的陶瓷基体特定位置上,经烧结形成24个厚膜应变电阻,构成六组分别获取六维加速度信息的桥路。 : The present invention uses thick film technology with screen printing technique force-sensitive resistive paste and the conductor paste is printed on the ceramic body a specific position E circular diaphragm and the cross beam, 24 is formed by sintering a thick film resistor strain constituting the six groups were acquired six dimensional acceleration information bridge.

为了实现小量程和高灵敏度的测量,E型圆膜片厚度采用0.2~0.4mm,十字梁的厚度采用0.2~0.4mm。 In order to achieve a small measurement range and high sensitivity, E circular diaphragm thickness using 0.2 ~ 0.4mm, the thickness of the cross beam using a 0.2 ~ 0.4mm. 当采用金属作为弹性体时,上下E型圆膜和中间十字梁可以加工成为一体化结构,根据前面所述的敏感单元布置方式通过贴应变片电阻的方式实现对三维线加速度三维角加速度信息的获取,这种方式的各个方向量程和灵敏度调整可以通过改变上下E型圆膜或中间十字梁部分的结构尺寸来实现,这样本发明可以应用于需要小量程、高灵敏度的六维加速度传感器和使用六维加速度传感器装置。 When metal is used as the elastic body, the upper and lower circular membrane E and the intermediate cross beam may be processed into an integrated structure, to achieve the three-dimensional angular acceleration information line manner gauge resistance paste according sensitive cell arrangement according to the foregoing acquired, the range and sensitivity adjustment in all directions in this manner may be achieved by varying the vertical circular film or E size of the intermediate structure of the beam cross section, so that the present invention may be applied needs a small-scale, high sensitivity and the use of six-axis accelerometer six-axis accelerometer means.

为了实现上述的结构,本发明加工制造方法包括下述的几个步骤:首先分别加工两个圆形陶瓷膜片2、4和陶瓷十字梁6,在上面预定位置烧结好厚膜力敏电阻;其次加工两个直径φ5mm、厚度为2mm的E型圆膜片连接圆片5、10,在合金圆片一个侧面中间加工一个十字沟槽,再将E型圆膜片连接圆片5、10无沟槽面粘贴在陶瓷圆膜片非敏感面的中心位置,同时保证金属圆片的十字沟槽与E型圆膜片的敏感方向一致;最后将陶瓷十字梁6对接在两个E型膜片连接圆片5、10的十字沟槽中并固定。 To achieve the above structure, the manufacturing method of the present invention comprises the following steps: firstly processed separately two circular ceramic diaphragm 4 and a ceramic cross beam 6, the thick film piezoresistor good sintering at a predetermined position thereon; Secondly, two processing f5mm diameter, a thickness of 2mm E 5,10 circular disc connected to the diaphragm, a cross groove processing in the middle of a side surface of the wafer alloy, then E circular disc connected to the diaphragm without 5,10 sensitive surface of the groove center position of the non-pasted surface of the ceramic disk diaphragm, while ensuring consistency sensitive cross direction E trench metal discs with circular diaphragm; final ceramic cross beam 6 at two abutment diaphragm E cross grooves 5, 10 are connected and fixed disks.

为了方便电桥供电输入和信号输出引线连接,在每个E型圆膜片的边缘上烧结银引线焊点,引线按照预定的敏感桥路布置和信号获取方式将厚膜电阻连接在一起,在每个E型圆膜片与十字梁固定在一起之前,首先分别将每个膜片上的输入输出引线焊接在E型圆膜片的银焊点内边缘。 In order to facilitate the bridge power supply input and a signal output lead, silver sintering the bond pad on the edge of each circular diaphragm E, and signal acquisition mode lead arrangement connected to the thick film resistor bridge in accordance with a predetermined sensitivity, in prior to securing together the respective first input-output wiring on the diaphragm is welded in each circular diaphragms E silver solder circular edge of each diaphragm and E cross beam. 外引线在传感器上下E型圆膜片固定后焊接在下E型圆膜片的外边缘提供给外接变送器。 The outer lead is provided to external transmitter in the vertical outer edge of the sensor fixing E circular diaphragm after welding E lower circular diaphragm.

Claims (3)

1.一种双E型圆膜片十字梁结构的六轴加速度传感器,包括法兰盘固定底座(1)、下E型圆膜片(2)、惯性质量块(3)、上E型圆膜片(4)、上膜片连接圆片(5)、十字梁(6)、外壳(7)、密封圈(8)底盖板(9)、下膜片连接圆片(10),其特征在于:十字梁(6)对接在上膜片连接圆片(5)和下膜片连接圆片(10)的十字槽中并固定于其中间,上膜片连接圆片(5)的上表面与上E型圆膜片(4)连接,在上E型圆膜片(4)的周边为均布惯性质量块(3),质量块(3)在三维空间保持惯性从而产生惯性力并作用于弹性体;下膜片连接圆片(10)的下表面与下E型圆膜片(2)连接,下E型圆膜片(2)与传感器底座(1)固定在一起;外壳(7)和底座(1)通过螺纹联结在一起,它们之间的空腔充满了油介质,密封圈(8)安装在外壳(7)与底座(1)之间的连接部分,用于防止空腔内的介质溢出;所述的下E型圆膜片(2)、十字梁(6)、上E型圆 A six-axis acceleration sensor E double circular cross-beam structure of the diaphragm, comprising a stationary base flange (1), the E-type circular membrane (2), the inertial mass (3), the E-type circular the membrane (4), connected to the diaphragm wafer (5), the cross beams (6), the housing (7), the sealing ring (8) the bottom plate (9), connected to the diaphragm wafer (10) characterized in that: the cross beam (6) abut on the disc connected to the diaphragm (5) connected to the diaphragm wafer and the lower (10) cross grooves and secured thereto intermediate, upper disc connected to the diaphragm (5) E connected to the upper surface of the circular diaphragm (4), at the periphery of the E-shaped circular diaphragm (4) is uniformly distributed in the inertial mass (3), the mass (3) to generate an inertial force of inertia held in three-dimensional space and acting on the elastic member; the lower surface of the diaphragm connecting wafer (10) at the lower E circular membrane (2) is connected to the E circular membrane (2) with a sensor base (1) together; housing ( 7) and the base (1) are coupled together by screwing, the cavity between them is filled with oil medium, the sealing ring (8) mounted on the connecting portion between the housing (7) with the base (1), for preventing empty medium overflow chamber; E under the circular membrane (2), the cross beams (6), the circular E 片(4)的材料为97%的AL2O3烧结体陶瓷,均布惯性质量块(3)为金属铜合金材料,上膜片连接圆片(5)和下膜片连接圆片(10)的金属圆片为铝合金材料。 Sheet material (4) is 97% AL2O3 ceramic sintered body, the uniform inertial mass (3) is a copper alloy material, connecting the diaphragm disks (5) connected to the diaphragm and the lower disc (10) is a metal disc aluminum alloy material.
2.一种用于同时测量三维线加速度和三维角加速度信息的方法,其特征在于:下E型圆膜片(2)、十字梁(6)、上E型圆膜片(4)上烧结有钌系厚膜力敏电阻,力敏电阻位置为上下双E型圆膜片(4)、(2)敏感面内的厚膜力敏电阻通过不同的敏感桥路布置方式实现对六轴向加速度信息的获取,并通过标定求出维间耦合关系,对六组桥路输出解耦处理实现三轴向线加速度和三轴向角加速度信息独立获取;所有三轴向线加速度和角加速度定义以上E型圆膜片(4)敏感面中心定义,其中圆膜片轴线为Z向,相应X、Y方向符合卡笛生坐标右旋方向来定义;X、Y方向角加速度信息获取敏感桥路采用在上E型圆膜片(4)平面内互相垂直布置,其厚膜力敏电阻布置方向与下E型圆膜片(2)相同,其中:上E型圆膜片(4)敏感面上电阻R1y、R2y、R3y、R4y用来实现对角加速度αx的测量;上E型圆膜片(4)敏 2. A method for simultaneously measuring the three-dimensional angular and linear acceleration information, wherein: the E-type circular membrane (2), the cross beams (6), sintered E upper circular diaphragm (4) ruthenium-based thick film piezoresistor, piezoresistor vertical position E double circular diaphragm (4), (2) a force in the thick-sensitive surface sensitive resistance bridge sensitivity is achieved by different arrangements of six axially obtaining acceleration information, and is obtained by calibrating the coupling relationship between the dimensions of the bridge output decoupled six groups to achieve three-axis linear acceleration and angular acceleration information obtained independently triaxial; all three axis linear and angular accelerations defined E above circular membrane (4) defines the center of the sensitive surface, wherein the circular diaphragm axis Z, the corresponding X, Y coordinate direction in line with a right-handed Cartesian green direction is defined; X, Y direction sensitive angular acceleration information obtaining bridge E employed in circular diaphragm (4) arranged perpendicular to each other within a plane, which is arranged in the thick film piezoresistor direction E of the lower circular membrane (2) the same, wherein: (4) on the sensitive surface of the circular diaphragm E resistor R1y, R2y, R3y, R4y to achieve measurement of the angular acceleration αx; E on the circular diaphragm (4) Min 面上电阻R1x、R2x、R3x、R4x用来实现对角加速度αy的测量;十字梁(6)上的四个厚膜电阻布置在十字梁平面内,并采用沿上下、左右对称轴对称布置,用来获取角加速度αz的信息;下E型圆膜片(2)、和上E型圆膜片(4)的两个敏感方向要求保持一致,X、Y方向线加速度信息获取敏感桥路电阻R1x、R2x、R3x、R4x及R1y、R2y、R3y、R4y,采用在下E型圆膜片(2)平面内互相垂直布置,Z方向线加速度信息获取敏感电阻R1z、R2z、R3z、R4z是布置在下E型圆膜片(2)上沿X、Y敏感方向相交45度方向,其中:下E型圆膜片(2)敏感面上电阻R1x、R2x、R3x、R4x用来实现对线加速度ax的测量;下E型圆膜片(2)敏感面上电阻R1y、R2y、R3y、R4y用来实现对线加速度ay的测量;下E型圆膜片(2)敏感面上电阻R1z、R2z、R3z、R4z用来实现对线加速度az的测量;其中上E型圆膜片(2)敏感面上的电阻R1z、R2z、R3z、R4z还可以 Surface resistance R1x, R2x, R3x, R4x to achieve measurement of the angular acceleration αy; four thick film resistors are arranged on the cross beam (6) in the plane of the cross beam, and using a vertical, symmetrical axisymmetric arrangement, information used to obtain the angular acceleration αz; in E circular membrane (2), and the two sensitive directions E circular diaphragm (4) is consistent with the requirements, X, Y direction linear acceleration information acquisition sensitive resistor bridge R1x, R2x, R3x, R4x and R1y, R2y, R3y, R4y, using an E-type lower circular membrane (2) are arranged perpendicular to each other within a plane, Z-direction wires acceleration information acquisition sensitive resistive R1z, R2z, R3z, R4z is arranged at the lower E X along the circular membrane (2), sensitive to the Y direction intersecting 45 degree direction, wherein: the E-type circular membrane (2) surface sensitive resistance R1x, R2x, R3x, R4x used to achieve linear acceleration ax, measured; the E circular membrane (2) surface sensitive resistance R1y, R2y, R3y, R4y to achieve measurement of linear acceleration ay; in E circular membrane (2) surface sensitive resistance R1z, R2z, R3z , R4z to achieve measurement of the linear acceleration az; E wherein the circular membrane (2) surface sensitive resistance R1z, R2z, R3z, R4z can 供一路对线加速度az的冗余信息,用于传感器校准;中间十字梁(6)结构上的四个敏感面都可以按照前述方式布置电阻,提供冗余角加速度αz信息,用于对角加速度αz的校准和补偿,十字梁(6)最多可同时提供3路冗余信息。 Way for linear acceleration az of redundant information for sensor calibration; intermediate cross beam (6) on the four sensitive surface resistance structures may be arranged in the aforementioned manner, the angular acceleration αz provides redundant information, for the angular acceleration αz calibration and compensation, the cross beams (6) can provide up to 3-way redundant information.
3.根据权利要求书1或2所述的以十字梁(6)连接的双E型圆膜结构或敏感桥路布置方式,其特征在于:通过改变敏感元件位置或弹性体结构尺寸,可以独立实现传感器的各个方向输出灵敏度调整和量程改变,以满足不同量程和不同灵敏度要求的六维加速度传感器和六维加速度装置的实际需要;通过选择金属弹性体材料加工成上述结构,同样可以构成本发明所表述的应变式六维加速度信息获取的传感器或装置;选择金属弹性体时,十字梁(6)与双E型圆膜片可以采用整体加工形式的一体化结构,通过改变十字梁(6)的高度、宽度和厚度,以及不同的上下E型圆膜片(4)、(2)几何尺寸可以实现对传感器的六个加速度分量的灵敏度进行独立调控,在不影响检测精度前提下,保证传感器满足不同应用场合的量程要求。 According to claims 1 or 2 to the cross beam (6) E-type double film structure or circular arrangement sensitive bridge connection, wherein: the sensing element by changing the position or size of the elastomeric structure may be independently in all directions to achieve the sensor output sensitivity adjustment and range changes to meet the actual needs of different ranges and different sensitivities required six-dimensional acceleration sensor and a six dimensional acceleration apparatus; by choice of metal elastomeric material is processed into the above-described configuration, the same may be constructed according to the present invention means a strain sensor or six-dimensional acceleration information acquired expressed; metal elastomer is selected, the cross beam (6) with double circular diaphragm E may take the form of a whole processing integrated structure, by changing the cross beams (6) height, width and thickness, and different uplink E circular diaphragm (4), (2) the sensitivity can be achieved geometry six acceleration component sensor is individually adjustable, without affecting the detection accuracy of the premise, to ensure that the sensor range to meet the requirements of different applications. 十字梁(6)连接的双E型膜这种立体结构可以将线加速度ax、ay测量与角加速度αx、αy测量分别置于两个E型圆膜片上,安装底座(1)方便与被测对象之间的机械连接,惯性质量块(3)在被测对象运动过程中运动发生变化时带来惯性力并作用于上下E型圆膜片(4)、(2)和十字梁(6)弹性体上。 (6) connected to this three-dimensional structure of the double E-type membrane may be cross-beam linear acceleration ax, ay and the measured angular acceleration αx, αy E measurements were placed on two circular diaphragm mounting base (1) and is conveniently mechanical connection between the target object, the inertial mass (3) change when the inertial force caused in the tested object motion occurs during movement and acting on the upper and lower E circular diaphragm (4), (2) and the cross beams (6 ) elastic body.
CN 02137897 2002-07-02 2002-07-02 Six-axle acceleration sensor with dual E-shaped circular membranes and cross beam structure CN1227535C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02137897 CN1227535C (en) 2002-07-02 2002-07-02 Six-axle acceleration sensor with dual E-shaped circular membranes and cross beam structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02137897 CN1227535C (en) 2002-07-02 2002-07-02 Six-axle acceleration sensor with dual E-shaped circular membranes and cross beam structure

Publications (2)

Publication Number Publication Date
CN1396458A true CN1396458A (en) 2003-02-12
CN1227535C CN1227535C (en) 2005-11-16

Family

ID=4749167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02137897 CN1227535C (en) 2002-07-02 2002-07-02 Six-axle acceleration sensor with dual E-shaped circular membranes and cross beam structure

Country Status (1)

Country Link
CN (1) CN1227535C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417927C (en) 2005-03-28 2008-09-10 发那科株式会社 Six-axis force sensor
CN100449316C (en) 2006-08-13 2009-01-07 重庆大学 Arrangement structure of sensing elements of six-axle acceleration transducer
CN100498342C (en) 2004-05-04 2009-06-10 Fm设备股份有限公司 Power meter for measuring and calculation of forces on bodies
CN1860355B (en) 2003-09-30 2011-04-06 新田株式会社 Multi-axis sensor unit and multi-axis sensor utilizing it
CN102175892A (en) * 2011-01-26 2011-09-07 边义祥 Multidimensional acceleration sensor with cored piezoelectric rods and acceleration measurement method
CN102183676A (en) * 2010-12-20 2011-09-14 昆明理工大学 Low-frequency/ultralow-frequency acceleration transducer with polyvinylidene fluoride piezoelectric films
CN102680739A (en) * 2012-05-08 2012-09-19 南京航空航天大学 Calibration platform and calibration method for six-dimensional acceleration sensor
CN105115685A (en) * 2015-08-28 2015-12-02 南车青岛四方机车车辆股份有限公司 Vehicle body mass center testing system and method based on overall vehicle vibration simulation test bench
CN108068139A (en) * 2016-11-14 2018-05-25 发那科株式会社 Force checking device and robot

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100478662C (en) 2005-12-16 2009-04-15 中国科学院合肥物质科学研究院 Three-dimensional finger sensor and its information acquiring method
JP4929918B2 (en) 2006-08-21 2012-05-09 パナソニック株式会社 Compound sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1860355B (en) 2003-09-30 2011-04-06 新田株式会社 Multi-axis sensor unit and multi-axis sensor utilizing it
CN100498342C (en) 2004-05-04 2009-06-10 Fm设备股份有限公司 Power meter for measuring and calculation of forces on bodies
CN100417927C (en) 2005-03-28 2008-09-10 发那科株式会社 Six-axis force sensor
CN100449316C (en) 2006-08-13 2009-01-07 重庆大学 Arrangement structure of sensing elements of six-axle acceleration transducer
CN102183676A (en) * 2010-12-20 2011-09-14 昆明理工大学 Low-frequency/ultralow-frequency acceleration transducer with polyvinylidene fluoride piezoelectric films
CN102183676B (en) 2010-12-20 2013-03-06 昆明理工大学 Low-frequency/ultralow-frequency acceleration transducer with polyvinylidene fluoride piezoelectric films
CN102175892A (en) * 2011-01-26 2011-09-07 边义祥 Multidimensional acceleration sensor with cored piezoelectric rods and acceleration measurement method
CN102175892B (en) 2011-01-26 2013-05-01 边义祥 Multidimensional acceleration sensor with cored piezoelectric rods and acceleration measurement method
CN102680739A (en) * 2012-05-08 2012-09-19 南京航空航天大学 Calibration platform and calibration method for six-dimensional acceleration sensor
CN105115685A (en) * 2015-08-28 2015-12-02 南车青岛四方机车车辆股份有限公司 Vehicle body mass center testing system and method based on overall vehicle vibration simulation test bench
CN105115685B (en) * 2015-08-28 2019-01-11 中车青岛四方机车车辆股份有限公司 Car body mass center test macro and method based on vehicle vibration test platform
CN108068139A (en) * 2016-11-14 2018-05-25 发那科株式会社 Force checking device and robot
US10471604B2 (en) 2016-11-14 2019-11-12 Fanuc Corporation Force detection device and robot

Also Published As

Publication number Publication date
CN1227535C (en) 2005-11-16

Similar Documents

Publication Publication Date Title
Kane et al. A traction stress sensor array for use in high-resolution robotic tactile imaging
DE602004001000T2 (en) Simple force determination and torque determination with several transmission parts and several sensors
US4951510A (en) Multidimensional force sensor
US6474133B1 (en) Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
Mei et al. An integrated MEMS three-dimensional tactile sensor with large force range
US5083466A (en) Multidimensional force sensor
US4854050A (en) Contact-sensing probe
EP0538899B1 (en) Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
US7311009B2 (en) Microelectromechanical systems contact stress sensor
US7900513B2 (en) Multi-axial angular velocity sensor
US8966996B2 (en) Force sensor
US7757571B2 (en) Force Sensor
US5365799A (en) Sensor for force/acceleration/magnetism using piezoelectric element
EP0731357A1 (en) Acceleration sensor using piezoelectric element
EP0381187B1 (en) Force detector using resistance elements
JP2909729B2 (en) 6-component load cell
US6378381B1 (en) Sensor using capacitance element
JP2005140727A (en) Strain gauge type sensor and strain gauge type sensor unit using the same
US4905523A (en) Force detector and moment detector using resistance element
EP1621859B1 (en) Force-detecting device
Dario Tactile sensing: Technology and applications
US6031317A (en) Piezoelecric shock sensor
JP2005106679A (en) Multiaxial sensor unit and multiaxial sensor using the same
US4747313A (en) Tactile sensor
US4967605A (en) Detector for force and acceleration using resistance element

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right