CN1372330A - LED using scattered light media to make light conversion - Google Patents

LED using scattered light media to make light conversion Download PDF

Info

Publication number
CN1372330A
CN1372330A CN01142442A CN01142442A CN1372330A CN 1372330 A CN1372330 A CN 1372330A CN 01142442 A CN01142442 A CN 01142442A CN 01142442 A CN01142442 A CN 01142442A CN 1372330 A CN1372330 A CN 1372330A
Authority
CN
China
Prior art keywords
light
light emitting
medium
emitting diode
selected
Prior art date
Application number
CN01142442A
Other languages
Chinese (zh)
Other versions
CN1215575C (en
Inventor
王望南
黄文杰
Original Assignee
华上光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/794,899 priority Critical patent/US6614170B2/en
Application filed by 华上光电股份有限公司 filed Critical 华上光电股份有限公司
Publication of CN1372330A publication Critical patent/CN1372330A/en
Application granted granted Critical
Publication of CN1215575C publication Critical patent/CN1215575C/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

This invention discloses a LED or other light emitting devices such as laser diode (LD) containing light emitting components and scattering light media eg phosphor power (DPP) which absorbs a part ofthe light emitted by the light emitting components and radiates the light with the length different from that of the absorption light, is processed by the combination of the cystalline phosphor particles and the medium parlicles about ball shaped with the energy gap larger than 3eV (not absorbs blue light). DPP may also contains phosphor particles and bubbles (or pore gap) instead of medium prticles. The structure of LED cotnains the crystalline semiconductor particles sealed to epoxy resin, the wire connecting to the semiconductor chip, the metal wire frame connected to the wire and coveringscattering light medium eg the epoxy resin.

Description

以散射光媒介作光变换的发光二极管 Scattered light emitting diodes as a light conversion medium

发明领域本发明涉及一种发光二极管(LED),特别是有关于一种利用散射光媒介(scattering optical media)作光波长变换的发光二极管的制造。 Field of the Invention The present invention relates to a light emitting diode (LED), more particularly relates to a manufacturing medium scattered light (scattering optical media) as a light emitting diode of wavelength conversion.

相关技术说明发光二极管(LED)为熟知的固态发光装置,已广泛应用于指示器、显示器及光源。 Description of the related art light emitting diode (LED) is a solid state light emitting device is well known, has been widely used indicator, display and light source. 如同半导体元件,LED的特征在于具有良好的烧毁率(burn-outrate)、耐振性及持久的反覆开关(ON/OFF)操作。 As the semiconductor element, LED is characterized by having a good burn rate (burn-outrate), resistance to vibration and repeated persistent switch (ON / OFF) operation.

传统的LED一般发出光谱中的红光部分。 Usually conventional LED emits red part of the spectrum. 就光波长变换来说,例如使用不同的杂质掺杂于LED以改变所放射出红光的波长。 To the light wavelength conversion, for example using a different LED doped impurities to change the wavelength of red light emitted. 然而,上述利用杂质掺杂于LED的公知技术无法有效地放射出所有可见光谱范围的光。 However, the impurity doped in the above-described known technology can not LED effectively emits light to all the visible spectral range.

相对于红光,蓝光属于可见光谱的短波长部分。 With respect to the short wavelength portion of the red light, the blue part of the visible spectrum. 目前已开发出的技术,从LED产生较大范围的放射光以开发光谱中的蓝光部分。 Techniques have been developed, a greater range of light radiated from the LED to develop blue part of the spectrum. 波长较短的蓝光,其容许从蓝色LED的放射光改变成光谱中其他颜色的放射光,包含白光。 Shorter wavelength blue light, a blue LED which allows emitted light is changed to the color spectrum of the emitted light from the other, comprising a white light. 此可通过荧光或光波长变换来完成,其为吸收波长较短的光并重新放射波长较长的光的过程。 This can be accomplished by fluorescence or optical wavelength conversion, which is the shorter wavelength light absorption and re-radiation of long wavelength light process.

图1a是熟知的利用光波长变换的LED。 Figure 1a is well known in the LED with light of wavelength conversion. 此LED包含半导体晶粒1、接线2及3、引线架4及5、波长变换物质6以及环氧树脂封胶7。 This LED includes a semiconductor die 1, the wiring 2 and 3, the lead frame 4 and 5, the wavelength converting material 6 and 7 epoxy sealant. 当电流经由电性连接至引线架4及5的接线2及3而施加至作为LED的发光构件的半导体晶粒1时,产生一次光(primary light)。 When the current is connected to the lead frame via an electrical connection 4 and 5, 2 and 3 as applied to the semiconductor LED die emitting member 1, the primary light is generated (primary light). 含有特定磷光质的波长变换物质6,覆盖发光构件(即半导体晶粒1)并模制于树脂中。 Containing a specific wavelength converting material 6 phosphors, covers a light emitting member (i.e., the semiconductor die 1) and the molded resin. 半导体晶粒1的n电极及p电极通过接线2及3分别连接至引线架4及5。 The semiconductor die electrode and the p-n electrode 1 is connected to the lead frame 4 and 5, respectively, via a connection 2 and 3.

对于光波长变换而言,LED的有效元件为光波长变换物质6,其从半导体晶粒1部分吸收初始光并产生二次光(secondary light)。 For purposes of the wavelength conversion light, LED light effective wavelength conversion element 6 substance, which absorbs light from an initial portion of the semiconductor die and the secondary light (secondary light). 从半导体晶粒1产生光的部分(以下称作LED光)激发内含于光变换物质6的磷光质以产生与LED光不同波长的荧光。 Generating light from a portion of the semiconductor die 1 (hereinafter referred to as LED light) excitation light conversion material contained in the phosphors and the LED 6 to generate fluorescent light of different wavelengths. 由磷光质所放射出的荧光与LED光(其输出没有磷光质的激发)混合并放射输出。 Emitted by the phosphors of the phosphor and LED light (which does not output excitation phosphors) are mixed and output radiation. 因此,LED输出具有与通过发光构件(即半导体晶粒1)放射的LED光不同波长的光。 Therefore, LED having a different wavelength of light output by the light emitting member (i.e., the semiconductor die 1) emitted LED light.

包含于波长变换物质6中的磷光质可以是公知的荧光材料或是公知中有用的石榴石荧光材料的微晶体。 Phosphors contained in the wavelength converting material 6 may be in microcrystalline known fluorescent material or a well-known useful garnet fluorescent material. 就紫外线(UV)一次光放射而言,波长转换物质6包含稠密的磷光粉。 To ultraviolet (UV) light emission time, the wavelength converting material 6 containing the phosphor dense. 图1b是配合图1a中使用稠密磷光粉的熟知具有光波长变换的LED。 FIG 1b is a well known figure 1a with the use of the phosphor having a dense wavelength converted LED light. 磷光粉埋置于环氧树脂9中并稠密地沉积成薄的覆盖层于发光构件(即半导体晶粒1)的表面。 Phosphor powder embedded in epoxy resin and 9 are densely deposited on the surface layer of the light emitting member (i.e., the semiconductor die 1) of the thin covering. 就蓝色的一次光放射而言,波长转换物质6包含稀释的磷光粉。 To a blue light emission, the wavelength converting material 6 containing the phosphor dilution. 图1c是配合图1a中使用稀释磷光粉的熟知具有光波长变换的LED。 FIG. 1c with Figure 1a is well known in the phosphor diluted using an LED light wavelength conversion. 磷光粉埋置于环氧树脂9中并以稀释比例沉积于发光构件表面,如同厚的敷层、模糊球面或平面层,或如同镜片模制于半导体晶粒1。 Phosphor powder embedded in an epoxy resin layer 9 and the dilution ratio to be deposited on cladding surface of the light emitting member, as a thick, flat or spherical blur layer, or as a lens molded semiconductor die 1.

就光波长变换而言,熟知的LEDs(例如公开于图1a、图1b及图1c的LED)在放射光色彩均匀性的控制上有问题。 Respect to the light wavelength conversion, known LEDs (e.g. disclosed in FIGS. 1a, 1b and FIG. 1c, LED) has a problem in controlling uniformity of the emitted light colors. 半导体晶粒1所产生的一次光会由于晶粒1的电极而被局部阻隔,使得光的每个方向或角度的放射不均匀而造成特别的放射图案。 A semiconductor die light generated due to the primary electrodes of die 1 is locally barrier, such that light in each direction or angle of radiation caused by uneven particular radiation pattern. 然而,光波长变换物质6中所含的磷光粉则导致光均匀的放射。 However, the optical wavelength conversion in the phosphor contained in the material leads to 6 uniform light radiation. 在放射均匀性中的两冲突现象造成经由放射角度或方向控制光色彩均匀性的困难度,其导致无法控制光放射的色彩差异。 Two conflict phenomenon in the uniformity of the radiation caused by the control light color uniformity of the radiation through a difficult angle or direction, which results in differences in the color of light can not control radiation.

因此,在此技术中需要一种改善熟知具有光波长变换的改良式LED,特别是可以克服公知问题的LED。 Thus, this technique is well known in the need for an improved LED having an improved light wavelength conversion formula, in particular LED can be overcome known problems.

发明概述本发明提供一种发光二极管(LED)或其他发光装置,例如镭射二极管(laser diode,LD),包括:发光构件及散光媒介,例如介质磷光粉(dielectricphospher powder,DPP),此DPP吸收一部分由发光构件所放射的光并放射出波长不同于吸收光的光。 SUMMARY The present invention provides a light emitting diode (LED) or other light emitting devices, such as laser diodes (laser diode, LD), comprising: a light emitting member and astigmatism media, such as media phosphor powder (dielectricphospher powder, DPP), part of this absorbent DPP emitted by the light emitting element and emits light of a wavelength different from the light absorption. 在LED中光散射媒介或散布媒介的运用,例如介质颗粒(或任何具有能隙大于3eV的颗粒,其不会吸收光谱中的蓝光),改善了LED放射光的光均匀性。 LED in the use of light scattering or dispersion medium media, such as media particles (or any particles having an energy gap greater than 3eV, which does not absorb in the blue spectrum), improved light uniformity of the LED emitted light.

在本发明的优选实施例中,LED包含晶质的半导体晶粒,作为发光构件。 In a preferred embodiment of the present invention, LED comprising a semiconductor crystalline grains, as a light emitting member. 介质磷光粉是由近似球型的微介质颗粒及磷光颗粒混合物所制成。 Medium is made of the phosphor particles, and the micro-medium particles approximately spherical phosphor mixture. 此球型介质微颗粒也可以由宽能隙半导体或透明介质所制成。 This medium spherical microparticles may also be made of a wide bandgap semiconductor or a transparent medium. 此DPP形成散射光媒介,其折射指数、散射特性及光变换特性是由折射指数及介质颗粒半径所控制。 This DPP is formed scattered light medium of a refractive index, and light scattering characteristics transformation property is controlled by the index of refraction and a medium particle radius. 与没有DPP作光变换的传统LED相比,在LED中使用DPP容许LED发光构件(例如,晶质半导体晶粒)的有效的光引出、有效的光波长变换以及全部放射角的大体均匀的色彩分布和通过具有DPP的LED所产生的较宽的光放射角。 Compared with the conventional LED light is not converted as DPP, DPP efficient light extraction using an LED light emitting member allow (e.g., crystalline semiconductor grains) in the LED, the optical wavelength conversion efficient and uniform color substantially all of the radiation angle distribution and a wider radiation angle of light generated by the LED has the DPP.

此散射光媒介,例如DPP,也可以包含磷光颗粒及气泡(或孔隙)以替代介质颗粒。 This scattered light medium, a DPP e.g., may comprise phosphor particles and air bubbles (or voids) instead of the media particles. 此DPP的气泡能隙大于3eV,其不吸收光谱中的蓝光。 This bubble DPP energy gap greater than 3eV, blue light spectrum that is not absorbed. 此气泡可为空气气泡、氮气气泡及惰性气体气泡。 This bubble may be air bubble, bubbles of nitrogen gas and the inert gas bubbles. 再者,此DPP也可以为气泡、介质颗粒及磷光颗粒的混合物。 Again, this may be a mixture of DPP bubbles media particles and phosphor particles.

根据另一实施例,本发明提供一种发光二极管(LED),包括:发光构件(例如,晶质半导体晶粒),以及散射光媒介,例如介质磷光粉(DPP),此散射光媒介由晶质磷光颗粒及近似球型的微介质颗粒的混合物所制成。 According to another embodiment, the present invention provides a light emitting diode (the LED), comprising: a light emitting member (e.g., crystalline semiconductor die), and light scattering media, such as media the phosphor (a DPP), this light scattered by grain medium the mixture of micro particles of mass medium phosphor particles approximately spherical in shape and made.

又根据另一实施例,本发明提供一种发光二极管(LED),包括:发光构件(例如,一氮化铝铟镓(AlInGaN)晶质半导体晶粒),封胶于散射光媒介,例如介质磷光粉(DPP)。 According to yet another embodiment, the present invention provides a light emitting diode (the LED), comprising: a light emitting member (e.g., an indium gallium aluminum nitride (of AlInGaN) semiconductor crystalline grains), scattered light encapsulant medium, medium e.g. phosphor powder (DPP). 此DPP由微晶质氮化铝(AlN)的近似球型的微介质颗粒的混合物所制成。 This DPP is made of a mixture of micro particles of the medium microcrystalline aluminum (AlN) nitride approximately spherical in shape. 根据此特定实施例的LED也可以是白色的LED。 According to this particular embodiment of the LED may be a white LED.

又根据一实施例,本发明提供一种发光二极管(LED),包括:发光构件,例如氮化铟镓(InGaN)半导体晶粒,封胶于散射光媒介,例如介质磷光粉(DPP)。 According to a further embodiment, the present invention provides a light emitting diode (the LED), comprising: a light emitting member, such as indium gallium nitride (InGaN) semiconductor crystal, encapsulant light scattering media, such as media phosphor powder (DPP). 此DPP由半径在50到5000nm之间的非晶质氮化硅(Si3N4)的近似球型的微介质颗粒及半径在1000到10000nm之间的石榴石荧光材料的微晶体的混合物所制成。 This micro-DPP from the approximate radius of spherical media particles and between the radius of 50 to 5000nm of amorphous silicon nitride (Si3N4) in a mixture made of garnet fluorescent material microcrystals of between 1000 to 10000nm . 根据此特定实施例的LED也可以是白色的LED。 According to this particular embodiment of the LED may be a white LED.

根据一另外实施例,本发明提供一种发光二极管(LED),包括:发光构件,例如氮化铝铟镓(AlInGaN)半导体晶粒,封胶于散射光媒介,例如介质磷光粉(DPP)。 According to a further embodiment, the present invention provides a light emitting diode (the LED), comprising: a light emitting member, for example, aluminum indium gallium nitride (of AlInGaN) semiconductor crystal, encapsulant light scattering media, such as media phosphor powder (DPP). 此DPP由半径在50到5000nm之间的非晶质二氧化硅(SiO2)的近似球型的微介质颗粒及半径在1000到10000nm之间的石榴石荧光材料的微晶体的混合物所制成。 Mixture of microcrystalline garnet fluorescent material of this DPP by a radius between 50 and 5000nm amorphous silica (SiO2) and an approximate radius of the micro-spherical media particles is between 1000 to 10000nm made of . 根据此特定实施例的LED也可以是白色的LED。 According to this particular embodiment of the LED may be a white LED.

又根据一另外实施例,本发明提供一种发光二极管(LED),包括:发光构件,例如氮化铟镓(InGaN)半导体晶粒,封胶于散射光媒介,例如介质磷光粉(DPP)。 According to yet a further embodiment, the present invention provides a light emitting diode (the LED), comprising: a light emitting member, such as indium gallium nitride (InGaN) semiconductor crystal, encapsulant light scattering media, such as media phosphor powder (DPP). 此DPP由半径在50到5000nm之间的非晶质氮化镓(GaN)的近似球型的微介质颗粒及半径在1000到10000nm之间的石榴石荧光材料的微晶体的混合物所制成。 This DPP radius between 50 to 5000nm of the amorphous gallium nitride (GaN) is approximately spherical micro-particles and medium radius mixture microcrystals garnet fluorescent material between 1000 to 10000nm made . 根据此特定实施例的LED也可以是白色的LED。 According to this particular embodiment of the LED may be a white LED.

根据本发明优选实施例所示范的LED结构包括:晶质半导体晶粒,封胶于环氧树脂;接线,连接至半导体晶片;金属引线架,连接至接线;以及环氧树脂封胶,覆盖散射光媒介,例如介质磷光粉(DPP)。 LED structure according to an exemplary embodiment of the preferred embodiment of the present invention comprises: a crystalline semiconductor die, the epoxy resin encapsulant; wiring connected to the semiconductor wafer; a metal lead frame, to the junction; and an epoxy sealant, covering scattering optical media, such as media phosphor powder (DPP). 此DPP由近似球型的介质颗粒及晶质磷光颗粒混合物嵌埋于环氧树脂所制成。 This DPP approximately spherical particles from the medium and particulate mixture of crystalline phosphors embedded in an epoxy resin made.

附图简述为使上述及本发明其他优点与特征更明显易懂,以下特举优选实施例并结合附图作详细的说明。 BRIEF DESCRIPTION To make the above and other advantages and features of the present invention will be more apparent from the following preferred embodiments Laid held in conjunction with the accompanying drawings and the detailed description. 其中:图1a是公知的具有光波长变换的发光二极管的示意图;图1b是配合图1使用稠密磷光粉的熟知的具有光波长变换的发光二极管的示意图;图1c是配合图1使用稀释磷光粉的熟知的具有光波长变换的发光二极管的示意图。 Wherein: Figure 1a is a schematic view of a light emitting diode optical wavelength conversion is well-known; FIG. 1b is a schematic view of a light emitting diode optical wavelength conversion is well known to use dense phosphor powder 1 of FIG mating; FIG. 1c is in line with FIG. 1 diluted with the phosphor well known schematic diagram of a light emitting diode of wavelength conversion.

图1d是根据本发明的使用散射光媒介,例如介质磷光粉(DPP)的光波长变换的示意图;图2a及图2b是根据本发明另一实施例的使用散射光媒介,例如介质磷光粉(DPP)的具有光波长变换的发光二极管的示意图;以及图3a及图3b是根据本发明再一实施例的使用散射光媒介,例如介质磷光粉(DPP)的具有光波长变换的发光二极管或其他发光装置,例如镭射二极管(LD)的示意图。 Figure 1d is a use of light scattering medium of the present invention, for example, a schematic view of the phosphor medium (DPP) of the optical wavelength conversion; Figures 2a and 2b is a scattered light using an intermediary to another embodiment of the present invention, for example, the phosphor medium ( DPP) is a schematic view of a light emitting diode optical wavelength conversion; and FIGS. 3a and FIG. 3b is using scattered optical media further embodiment of the present invention, such as media phosphor powder (DPP) having a light emitting diode or other optical wavelength conversion a light emitting device, e.g. schematic laser diode (LD) is.

符号说明1、10、31~半导体晶粒;2、3、20、30、32、33~接线;4、5、34、35、40、50~金属引线架;6、36、60~波长变换物质;7、37、70~封胶; DESCRIPTION OF REFERENCE NUMERALS 1,10,31 - a semiconductor die; 2,3,20,30,32,33 wiring ~; ~ 4,5,34,35,40,50 metal lead frame; ~ 6,36,60 wavelength conversion substance; ~ 7,37,70 sealant;

8d、120、312~石榴石荧光材料微晶体;9、39、90~环氧树脂;10d、110、311~介质颗粒。 8d, 120,312 ~ garnet fluorescent material microcrystals; ~ 9,39,90 epoxy; 10d, 110,311 ~ media particles.

优选实施例的详细说明图1d是根据本发明的使用散射光媒介,例如介质磷光粉(DPP)的光波长变换的示意图,以应用于图1a的LED。 Detailed Description of the preferred embodiment according to the use of scattered light 1d is a medium of the present invention, for example, the phosphor medium (DPP) is a schematic diagram of the optical wavelength conversion, is applied to the LED of FIG. 1a. 图1a的波长变换物质6被介质磷光粉或DPP所取代。 6 is replaced by the phosphor medium or DPP wavelength converting material 1a in FIG. 根据本发明的DPP是由近似球型的微介质颗粒与晶质的磷光颗粒混合物嵌埋于环氧树脂9d所制成。 DPP according to the present invention is a mixture of phosphor particles of approximately spherical particles and micro-crystalline medium embedded in epoxy 9d made. 在LED中光散射媒介或散布媒介的运用,例如介质颗粒(任何具有能隙大于3eV的颗粒),改善了LED放射光的光均匀性。 LED in the use of light scattering or dispersion medium media, such as media particles (any particle capable of having a gap larger than 3eV), improved light uniformity of the LED emitted light. 嵌埋于环氧树脂9d的晶质磷光颗粒重量或体积浓度取决于环氧树脂层的厚度及磷光颗粒的尺寸及分布。 9d is embedded in epoxy crystalline phosphor particles by weight or volume concentration depends on the size and distribution of the phosphor particles and the thickness of the epoxy layer. 磷光颗粒的浓度一般为介质磷光粉(DPP)总体积的2%到25%。 The concentration of the phosphor particles is generally the phosphor medium (DPP) 2% to 25% by volume. 根据本发明的磷光颗粒包含钆(Gd)、钇(Y)、铈(Ce)及钕(Nd)基磷光质。 Containing gadolinium (Gd) phosphor particles according to the present invention, yttrium (Y), cerium (Ce) and neodymium (Nd) based phosphorescent.

介质磷光粉(DPP)是由近似球型的微介质颗粒及磷光颗粒混合物所制成。 The phosphor medium (DPP) is made of micro-particles and medium particles approximately spherical in shape phosphor mixture. 球形介质微颗粒可由宽能隙半导体或透明介质所制成。 Microparticles may be spherical media wide-gap semiconductor or a transparent medium made. 此DPP形成散射光媒介,其折射指数、散射特性及光变换特性是由折射指数及介质颗粒半径所控制。 This DPP is formed scattered light medium of a refractive index, and light scattering characteristics transformation property is controlled by the index of refraction and a medium particle radius. 与没有DPP作光变换的传统LED相比,在LED中使用DPP容许LED发光构件(例如,晶质半导体晶粒)的有效的光引出、有效的光波长变换以及全部放射角的大体均匀的色彩分布和通过具有DPP的LED所产生的较宽的光放射角。 Compared with the conventional LED light is not converted as DPP, DPP efficient light extraction using an LED light emitting member allow (e.g., crystalline semiconductor grains) in the LED, the optical wavelength conversion efficient and uniform color substantially all of the radiation angle distribution and a wider radiation angle of light generated by the LED has the DPP.

此散射光媒介,例如DPP也可以包含磷光颗粒,及气泡(或孔隙)以替代介质颗粒。 This light scattering media, such as DPP may comprise phosphor particles, and bubbles (or voids) instead of the media particles. 此DPP的气泡能隙大于3eV。 This bubble DPP energy gap greater than 3eV. 气泡因其表面张力而自然地成球型,其作用是用作本发明光波长变换的光散射媒介。 Bubbles due to surface tension naturally ball which functions as a light scattering medium of the present invention, an optical wavelength conversion. 此气泡可为空气气泡、氮气(N2)气泡及惰性气体气泡。 This bubble may be air bubble, nitrogen (N2) and bubble inert gas bubbles. 此气泡通过在环氧树脂9d模制期间注入对应气泡的气体而设置于环氧树脂9d上。 The bubbles 9d provided on the epoxy resin by injecting the gas bubbles during the corresponding epoxy molding 9d. 再者,此DPP也可以为气泡、介质颗粒及磷光颗粒的混合物。 Again, this may be a mixture of DPP bubbles media particles and phosphor particles.

根据本发明特定实施例的LED结构,包含:晶质半导体晶粒、由近似球型的微介质颗粒及晶质磷光颗粒的混合物嵌埋于环氧树脂9d所制成介质磷光粉(DPP)、接线,连接至半导体晶粒、金属引线架,连接至接线以传输电流至半导体晶粒以及环氧树脂封胶,覆盖介质磷光粉或DPP。 According to a particular embodiment of the LED structure of the present invention, comprising: a crystalline semiconductor die, approximately a mixture of micro-crystalline media particles and spherical phosphor particles of the phosphor powder embedded in the medium made of an epoxy resin 9d (DPP), wiring connected to the semiconductor die, the metal lead frame, for transmission to the junction current to the semiconductor die and an epoxy resin encapsulant, covering the phosphor medium or DPP.

根据本发明另一实施例中,此散射光媒介,例如DPP是由近似球型的微晶质氮化铝(AlN)的微介质颗粒所制成。 Embodiment, the light scattering medium, for example, DPP is made of approximately spherical microcrystalline aluminum nitride (AlN) dielectric micro particles according to another embodiment of the present invention. 又根据本发明另一实施例,此DPP是由半径在50到5000nm之间的非晶质氮化硅(Si3N4)的近似球型的微介质颗粒及半径在1000到10000nm之间的石榴石荧光材料的微晶体的混合物所制成。 According to yet another embodiment of the present invention, the DPP medium by micro particles, and approximately spherical radius between the radius of 50 to 5000nm of amorphous silicon nitride (Si3N4) garnet phosphor of between 1000 to 10000nm mixture of microcrystals made material. 在一另外实施例中,此DPP是由半径在50到5000nm之间的非晶质二氧化硅(SiO2)的近似球型的微介质颗粒10d及半径在1000到10000nm之间的石榴石荧光材料的微晶体8d的混合物嵌埋于环氧树脂9d所制成。 In a further embodiment, the DPP with a radius of between 50 to 5000nm amorphous silica (SiO2) approximately spherical micro-particles 10d and medium radius garnet fluorescent material of between 1000 to 10000nm mixture of crystallites embedded in an epoxy resin 8d 9d made. 又根据一另外实施例中,此DPP是由半径在50到5000nm之间的非晶质氮化镓(GaN)的近似球型的微介质颗粒10d及半径在1000到10000nm之间的石榴石荧光材料的微晶体8d的混合物嵌埋于环氧树脂9d所制成。 According to yet a further embodiment, the DPP with a radius of between 50 to 5000nm of the amorphous gallium nitride (GaN) is approximately 10d and micro media particles in a spherical radius between 1000 to garnet fluorescent 10000nm 8d is a mixture of microcrystalline material embedded in an epoxy resin made 9d.

图2a及图2b是绘示出根据本发明另一实施例的使用散射光媒介,例如介质磷光粉(DPP)的具有光波长变换的发光二极管的示意图。 Figures 2a and 2b is a schematic diagram illustrating the use of light scattering medium according to another embodiment of the present invention, for example, the phosphor medium (DPP) is a schematic view of a light emitting diode of the optical wavelength conversion. 本发明提供一种LED,包括:发光构件及散射光媒介,例如介质磷光粉(DPP),此DPP吸收一部分由发光构件所放射的光并放射出波长不同于吸收光的光。 The present invention provides the LED, comprising: a light emitting member and a light scattering medium, for example, the phosphor medium (DPP), part of this DPP absorbed by the light emitting element and emits light radiated light having a wavelength different from the absorbed light. 在根据本发明优选实施例中,此LED包含晶质半导体晶粒(氮化铟镓(InGaN)晶质半导体晶粒10),作为发光构件。 In a preferred embodiment of the present invention, the LED comprises a crystalline semiconductor grains ((the InGaN) semiconductor crystalline indium gallium nitride crystal 10), as a light emitting member. 此DPP是由近似球型的介质颗粒及晶质磷光颗粒混合物嵌埋于环氧树脂70所制成。 This DPP is approximately spherical dielectric particles, and a mixture of crystalline particles embedded in the phosphor 70 is made of epoxy resin. 嵌埋于环氧树脂封胶90的晶质磷光颗粒重量或体积浓度取决于环氧树脂层的厚度及磷光颗粒的尺寸及分布。 Embedded in epoxy resin sealant crystalline phosphor particles by weight or volume concentration of 90 depends on the size and distribution of the phosphor particles and the thickness of the epoxy layer. 磷光颗粒的浓度可为体积的2%到25%。 The concentration of the phosphor particles can be from 2% to 25% by volume. 根据本发明的磷光颗粒的使用,包含钆(Gd)、钇(Y)、铈(Ce)及钕(Nd)基磷光质。 The phosphorescent particles according to the present invention, comprises gadolinium (Gd), yttrium (Y), cerium (Ce) and neodymium (Nd) based phosphorescent. 特别地,此DPP波长变换物质60是由半径在50到5000nm之间的非晶质氮化硅(Si3N4)的近似球型的微介质颗粒110及半径在1000到10000nm之间的石榴石荧光材料的微晶体120的混合物嵌埋于环氧树脂90所制成。 In particular, the DPP wavelength converting material 60 is approximately spherical micro-particles in the medium 110 and a radius of between 50 to 5000nm amorphous silicon nitride (Si3N4) garnet fluorescent material of between 1000 to 10000nm mixture of microcrystalline 120 embedded in an epoxy resin 90 is made. 半导体晶粒10,作为LED中的发光构件,当电流经由电性连接至金属引线架40及50的接线20及30而施加于晶粒10时,产生一次光。 When a semiconductor die 10, as a light emitting member of the LED, when a current is connected to the metal wiring lead frame 40 and electrically via 20 and 50 are applied to the crystal grains 30 10, generates primary light. 含有DPP的波长变换物质60,覆盖发光构件(即半导体晶粒10)并模制于树脂中。 DPP wavelength conversion material containing 60, covering the light emitting member (i.e., the semiconductor die 10) and the molded resin. 半导体晶粒10的n电极及p电极通过接线20及30分别电性连接至金属引线架40及50。 n electrode and the p-electrode of the semiconductor die 10 is connected to the metal lead frame 50 through the wiring 40 and 20 and 30 electrically.

此散射光媒介,例如DPP也可以包含磷光颗粒、且以气泡(或孔隙)替代介质颗粒,此DPP的气泡能隙大于3eV。 This light scattering media, such as DPP may comprise phosphor particles and bubbles (or voids) instead of the media particles, gas bubbles is greater than the energy gap of this DPP 3eV. 气泡因其表面张力而自然地成球型,其作用是用作本发明光波长变换的光散射媒介。 Bubbles due to surface tension naturally ball which functions as a light scattering medium of the present invention, an optical wavelength conversion. 此气泡可为空气气泡、氮气(N2)气泡及惰性气体气泡。 This bubble may be air bubble, nitrogen (N2) and bubble inert gas bubbles. 此气泡通过在环氧树脂90模制期间注入对应气泡的气体而设置于环氧树脂90上。 This corresponds to the introduction of gas bubbles bubbles during molding of the epoxy resin 90 epoxy resin 90 is disposed on. 再者,此DPP也可以为气泡、介质颗粒及磷光颗粒的混合物。 Again, this may be a mixture of DPP bubbles media particles and phosphor particles.

根据本发明特定实施例的LED结构,包含:晶质半导体晶粒10,封胶于散射光媒介,例如介质磷光粉(DPP),其由近似球型的微介质颗粒及晶质磷光颗粒的混合物嵌埋于环氧树脂90所制成,接线20及30,连接至半导体晶粒10、金属引线架40及50,连接至接线以传输电流至半导体晶粒以及环氧树脂封胶90,覆盖散射光媒介,例如介质磷光粉或DPP。 According to a particular embodiment of the LED structure of the present invention, comprising: a crystalline semiconductor die 10, the encapsulant light scattering media, such as media the phosphor (a DPP), which is a similar mixture of micro-crystalline media particles and spherical particles of the phosphor embedded in epoxy resin 90 made of, wiring 20 and 30, 10 connected to the semiconductor die, the metal lead frame 40 and 50, for transmission to the junction current to the semiconductor die 90 and an epoxy encapsulant, covering scattering optical media, such as media or the phosphor DPP.

用于LED中的发光构件是一氮化镓化合物半导体,能够有效激发DPP中的石榴石荧光材料。 Means for emitting LED is a gallium nitride compound semiconductor capable of efficiently exciting the garnet fluorescent materials of DPP. LED中的发光构件是由在半导体制备过程中的基底上形成氮化铟镓(InGaN)光放射层所制成。 A light emitting member is an LED (InGaN) light emission layer is formed on the indium gallium nitride semiconductor substrate during the preparation of the steel. 发光构件的结构可为同质结构(homostructure)、异质结构(heterostructure)或双异质结构(doubleheterostructure)。 A light emitting member may be a homogeneous structure (homostructure), heterostructure (Heterostructure) structure or a double hetero (doubleheterostructure).

在根据本发明的特定实施例中,当电流施加于晶质半导体晶粒10时,产生波长λp在400到500nm之间的一次蓝绿光。 In accordance with a particular embodiment of the present invention, when a current is applied to the crystalline semiconductor die 10 to produce a blue-green wavelength λp between 400 to 500nm. 此DPP波长变换物质60吸收此一次蓝绿光并产生波长λs在550到660nm之间的二次黄橘光。 This DPP absorption wavelength converting material 60 and generates a one-time blue-green wavelength λs secondary light yellow-orange in between 550 to 660nm. 结果具有DPP的LED所出现的光是蓝绿光波长λp与黄橘光波长λs的总和,其出现人类肉眼的白光。 The sum of the results of DPP LED having blue-green light that appears yellow-orange wavelength λp and λs is the wavelength of light which appears white to the human eye.

白光的色彩品质取决于一次蓝绿光及二次黄橘光强度比率的全部放射角的分布,并由DPP波长变换物质60来控制。 White color quality depends on the distribution of a blue-green and orange light intensity ratio of the yellow secondary radiation angle of all, by the DPP 60 controls the wavelength conversion substance. DPP波长变换物质60是由半径Rs在Rs=50到1000nm之间的非晶质氮化硅(Si3N4)的近似球型的微介质颗粒110及半径Rm在Rm=1000到10000nm之间的石榴石荧光材料的微晶体120的混合物嵌埋于环氧树脂90所制成。 DPP wavelength converting material 60 is at a radius Rs = Rs amorphous silicon between 50 and 1000nm (Si3N4) micro approximately spherical media particles in Rm 110 and Rm = radius between 1000 to 10000nm garnet mixture of crystallites of the fluorescent material 120 is embedded in epoxy resin 90 made. Si3N4的近似球型的微介质颗粒的光散射特性强烈地取决于Rs,其中Rs=λp/2λne,且ne=1.3到1.5,其为环氧树脂封胶70的折射指数。 Si3N4 approximate light scattering properties of the micro-spherical media particles is strongly dependent on Rs of, where Rs = λp / 2λne, and ne = 1.3 to 1.5 which is the refractive index of the sealant 70 is an epoxy resin. 这容许一次蓝绿光及二次黄橘光强度比率的角度分布及由控制非晶质Si3N4的近似球型的微介质颗粒半径Rs的LED所放射的白光品质的控制。 This allows a blue-green and orange yellow light intensity ratio of the angular distribution of the secondary particles and the spherical radius of the micro-control medium approximation amorphous Si3N4 Rs of the white light emitted by the LED quality control.

由于Si3N4球型颗粒的折射指数ns=2.05接近InGaN晶质半导体晶粒10折射指数(其中nc=2.3到2.8)与环氧树脂封胶70(其中ne=1.3到1.5)相乘的平方根,所以根据本发明在LED中使用DPP有效地改善半导体晶粒10的一次光引出。 Since the refractive index of Si3N4 spherical particles of close ns = 2.05 InGaN crystalline semiconductor die 10 refractive index (where nc = 2.3 to 2.8) with an epoxy sealant 70 (wherein ne = 1.3 to 1.5) multiplied by the square root, so according to the present invention is used in an LED semiconductor die effectively improved DPP primary light extraction 10.

根据另一实施例,本发明提供一种发光二极管(LED),包括:发光构件(例如一氮化铝铟镓(AlInGaN)晶质半导体晶粒10),封胶于散射光媒介,例如介质磷光粉(DPP)。 According to another embodiment, the present invention provides a light emitting diode (the LED), comprising: a light emitting member (e.g. indium gallium aluminum nitride (of AlInGaN) crystalline semiconductor die 10), the encapsulant light scattering media, such as media phosphorescence powder (DPP). 此散射光媒介,例如DPP波长变换物质60由微晶质氮化铝(AlN)的近似球型的微介质颗粒的混合物嵌埋于环氧树脂90所制成。 This light scattering media, such as DPP wavelength converting material 60 from a mixture of microcrystalline aluminum (AlN) nitride micro approximately spherical media particles embedded in epoxy resin 90 made. 又根据另一实施例,本发明提供一种发光二极管(LED),包括:发光构件,例如一氮化铝铟镓(AlInGaN)晶质半导体晶粒10,封胶于介质磷光粉(DPP)。 According to yet another embodiment, the present invention provides a light emitting diode (the LED), comprising: a light emitting member, for example an indium gallium aluminum nitride (of AlInGaN) crystalline semiconductor die 10, a phosphor powder in a medium sealant (DPP). 此DPP波长变换物质60由半径在50到5000nm之间的非晶质氮化镓(GaN)及半径在1000到10000nm之间的石榴石荧光材料的微晶体的混合物嵌埋于环氧树脂90所制成。 This DPP wavelength converting material 60 by a radius of between 50 to 5000nm of the amorphous gallium nitride (GaN) and the mixture radius microcrystals garnet fluorescent material between 1000 to 10000nm 90 embedded in epoxy resin made.

图3a及图3b是根据本发明另一实施例的使用散射光媒介,例如介质磷光粉(DPP)的具有光波长变换的发光二极管或其他发光装置,例如镭射二极管(LD)的示意图。 Figures 3a and 3b is a use of light scattering medium according to another embodiment of the present invention, for example, the phosphor medium (DPP) having a light emitting diode or other light-optical wavelength conversion device, e.g. schematic laser diode (LD) is. 本发明提供一种LED(或其他发光装置,例如LD),包括;发光构件,例如透明封胶,及散射光媒介,例如孔隙或介质磷光粉(DPP),此散射光媒介吸收一部分由发光构件所放射的光并放射出波长不同于吸收光的光。 The present invention provides the LED (or other light emitting devices, such as the LD), comprising; a light emitting member such as a transparent sealant, and light scattering medium such as medium pore or the phosphor (a DPP), part of this scattered light is absorbed by the light emitting member intermediary the light emitted and emits light having a wavelength different from the absorbed light. 在散射光媒介直接加入至LED的透明封胶37,此封胶37选自:半球型镜片、环氧树脂、双凸透镜片(lenticular lens)、薄片玻璃、聚甲基丙烯酸甲酯(polymethyl methacylate,PMMA)的薄片塑胶及聚碳酸酯(polycarbonate)的薄片塑胶。 In the scattered light is directly added to the transparent medium of the LED sealant 37, the sealant 37 is selected from this: the hemispherical lens, an epoxy resin, a lenticular sheet (lenticular lens), a glass sheet, polymethyl methacrylate (polymethyl methacylate, PMMA) plastic and a polycarbonate sheet (polycarbonate) plastic sheet.

在根据本发明另一优选实施例中,此LED包含晶质半导体晶粒(氮化铟镓(InGaN)晶质半导体晶粒31),作为发光构件。 In a further preferred embodiment of the present invention, the LED comprises a crystalline semiconductor grains (indium gallium nitride (InGaN) semiconductor crystalline grains 31), as a light emitting member. 此DPP是由近似球型的介质颗粒及晶粒磷光颗粒混合物嵌埋于透明封胶37所制成。 This DPP is approximately media particles and spherical particles of the phosphor mixture of grains embedded in a transparent encapsulant 37 is made. 嵌埋于环氧树脂39的晶质磷光颗粒重量或体积浓度取决于环氧树脂层的厚度及磷光颗粒的尺寸及分布。 39 is embedded in epoxy crystalline phosphor particles by weight or volume concentration depends on the size and distribution of the phosphor particles and the thickness of the epoxy layer. 磷光颗粒的浓度可为体积的2%到25%。 The concentration of the phosphor particles can be from 2% to 25% by volume. 根据本发明的磷光颗粒粒的使用,包含钆(Gd)、钇(Y)、铈(Ce)及钕(Nd)基磷光质。 The particles of the phosphorescent particles according to the present invention, comprises gadolinium (Gd), yttrium (Y), cerium (Ce) and neodymium (Nd) based phosphorescent. 特别地,此DPP波长变换物质36是由半径在50到1000nm之间的非晶质二氧化硅(SiO2)的近似球型的微介质颗粒311及半径在1000到10000nm之间的石榴石荧光材料的微晶体312的混合物嵌埋于环氧树脂39所制成。 In particular, the DPP wavelength converting material 36 with a radius in the amorphous silica (SiO2) of between approximately 50 to 1000nm micro spherical media particles of the garnet fluorescent material 311 and a radius between 1000 to 10000nm mixture of microcrystalline 312 embedded in an epoxy resin 39 is made. 半导体晶粒31,作为LED中的发光构件,当电流经由电性连接至金属引线架34及35的接线32及33而施加于晶粒31时,产生一次光。 When a semiconductor die 31, as a light emitting member of the LED, when a current is connected to the metal lead frames 34 and 35 via the electrical wiring 32 and 33 is applied to the die 31, the primary light is generated. 含有DPP的波长变换物质36,覆盖发光构件(即半导体晶粒31)并模制于树脂中。 DPP wavelength conversion material containing 36, covering the light emitting member (i.e., the semiconductor die 31) and the molded resin. 半导体晶粒31的n电极及p电极通过接线32及33分别电性连接至金属引线架34及35。 The semiconductor die electrode and the p-n electrode 31 connected to the metal lead frames 34 and 35 through wiring 32 and 33 electrically.

此散射光媒介,例如DPP也可以包含磷光颗粒,且以气泡(或孔隙)以替代介质颗粒。 This light scattering media, such as DPP may comprise phosphor particles and bubbles (or voids) instead of the media particles. 此DPP的气泡能隙大于3eV。 This bubble DPP energy gap greater than 3eV. 气泡因其表面张力而自然地成球型,其作用是用作本发明光波长变换的光散射媒介。 Bubbles due to surface tension naturally ball which functions as a light scattering medium of the present invention, an optical wavelength conversion. 此气泡可为空气气泡、氮气(N2)气泡及惰性气体气泡。 This bubble may be air bubble, nitrogen (N2) and bubble inert gas bubbles. 此气泡通过在环氧树脂39模制期间注入对应气泡的气体而设置于环氧树脂39上。 The bubbles 39 provided on the epoxy resin is injected by a corresponding gas bubbles in the epoxy resin 39 during molding. 再者,此DPP也可以为气泡、介质颗粒及磷光颗粒的混合物。 Again, this may be a mixture of DPP bubbles media particles and phosphor particles.

根据本发明特定实施例的LED结构,包含:晶质半导体晶粒31,封胶于透明封胶37、接线32及33,连接至半导体晶粒31、金属引线架34及35,连接至接线以传输电流至半导体晶粒31以及环氧树脂封胶39,覆盖散射光媒介,例如介质磷光粉(DPP),其由近似球型的微介质颗粒及晶质磷光颗粒混合物嵌埋于环氧树脂37所制成。 According to a particular embodiment of the LED structure of the present invention, comprising: a crystalline semiconductor die 31, the transparent sealant sealant 37, wiring 32 and 33, 31 connected to the semiconductor die, the metal lead frames 34 and 35, to the junction to transmitting current to the semiconductor die 31 and an epoxy resin encapsulant 39, covering the light scattering medium, for example, the phosphor medium (a DPP), which is a mixture of particles of micro and medium particles approximately spherical crystalline phosphor is embedded in epoxy resin 37 made. 此散射光媒介直接加入至LED的透明封胶37,此封胶37选自:半球型镜片、环氧树脂、双凸透镜片(lenticularlens)、薄片玻璃、聚甲基丙烯酸甲酯(polymethyl methacylate,PMMA)的薄片塑胶及聚碳酸酯(polycarbonate)的薄片塑胶。 This scattered light is added directly to the LED medium transparent sealant 37, the sealant 37 is selected from: the hemispherical lens, an epoxy resin, a lenticular lens sheet (lenticularlens), sheet glass, polymethyl methacrylate (polymethyl methacylate, PMMA ) plastic and a polycarbonate sheet (polycarbonate) plastic sheet. 在本实施例中,示于图3a中的透明封胶37为半球型镜片。 In the present embodiment, shown in Figure 3a encapsulant 37 is transparent dome lens.

在根据本发明的特定实施例中,当电流施加于晶质半导体晶粒31时,产生波长λp在400到500nm之间的一次蓝绿光。 In accordance with a particular embodiment of the present invention, when a current is applied to the crystalline semiconductor die 31 to produce a blue-green wavelength λp between 400 to 500nm. 此DPP波长变换物质36吸收此一次蓝绿光并产生波长λs在550到660nm之间的二次黄橘光。 This DPP absorption wavelength converting material 36 and generates a one-time blue-green wavelength λs secondary light yellow-orange in between 550 to 660nm. 结果具有DPP的LED所出现的光是蓝绿光波长λp与黄橘光波长λs的总和,其出现人类肉眼的白光。 The sum of the results of DPP LED having blue-green light that appears yellow-orange wavelength λp and λs is the wavelength of light which appears white to the human eye.

白光的色彩品质取决于一次蓝绿光及二次黄橘光强度比率的全部放射角的分布,并由DPP波长变换物质36来控制。 White color quality depends on the distribution of a blue-green and orange light intensity ratio of the yellow secondary radiation angle of all, by the DPP 36 controls the wavelength conversion substance. DPP波长变换物质36是由半径Rs在Rs=50到1000nm之间的非晶质二氧化硅(SiO2)的近似球型的微介质颗粒311及半径在Rm=1000到10000nm之间的石榴石荧光材料的微晶体312的混合物嵌埋于环氧树脂39所制成。 DPP wavelength converting material 36 is at a radius Rs = Rs amorphous silica (SiO2) of between approximately 50 to 1000nm micro spherical media particles and the radius Rm = 311 garnet phosphor between 1000 to 10000nm the mixture of micro-crystalline material 312 embedded in epoxy resin 39 made. SiO2的近似球型的微介质颗粒的光散射特性强烈地取决于Rs,其中Rs=λp/2λne,且ne=1.3到1.5,其为透明封胶37的折射指数。 Light scattering properties of the micro media particles approximately spherical SiO2 is strongly dependent on Rs of, where Rs = λp / 2λne, and ne = 1.3 to 1.5 which is the refractive index of the encapsulant 37 is transparent. 这容许一次蓝绿光及二次黄橘光强度比率的角度分布及由控制非晶质SiO2的近似球型的微介质颗粒半径Rs的LED所放射的白光品质的控制。 This allows a blue-green and orange yellow light intensity ratio of the angular distribution of the secondary particles and the spherical radius of the micro-control medium approximation amorphous SiO2 Rs of the white light emitted by the LED quality control.

其他可使用于石榴石荧光材料的材料(例如图2b的120及图3b的312)包含被铈活化的石榴石荧光材料磷光质,其包含至少一种选自钇(Y)、镥(Lu)、钪(Sc)、镧(La)、钆(Gd)及钐(Sm)元素与至少一种选自铝(Al)、镓(Ga)及铟(In)元素。 Other materials can be used in the garnet fluorescent material (e.g., 120, and 312 of FIG. 3b Fig. 2b) comprising the cerium-activated garnet fluorescent phosphorescent material, which comprises at least one selected from yttrium (Y), lutetium (Lu) , scandium (Sc), lanthanum (La), gadolinium (Gd) and samarium (Sm) and at least one element selected from aluminum (Al), gallium (Ga) and indium (In) element. 举例而言,例如钇铝石榴石荧光材料(YAG磷光质)被铈活化,可使用于根据本发明的DPP中。 For example, a fluorescent material such as yttrium aluminum garnet (YAG phosphors) activated by cerium, DPP can be used in accordance with the present invention.

其他可使用于石榴石荧光材料的材料还包含选自:Ag:ZnS(蓝)、CuAuAl:ZnS(绿)、CuAl:ZnS(绿)、Mg4(F)GeO5:Mn(红)或Ce:YAG(黄绿)的磷光质。 Other materials can be used in the garnet fluorescent material further comprises a selected: Ag: ZnS (blue), CuAuAl: ZnS (green), CuAl: ZnS (green), Mg4 (F) GeO5: Mn (red) or Ce: YAG (yellow-green) of the phosphors. 其他可使用于石榴石荧光材料的材料还包含选自:香豆素(Coumarin6)(优质绿,很有效率)、Fluorol 7GA(黄绿,很有效率)、DOCI(绿,衰减长度短)、玫瑰红(Rhodamine 110)(黄,很有效率)、DCM(橘,普通效率)、吡啶(Pyridine 1)(红,效率不佳)或吡啶(Pyridine 2)(深红,效率不佳)的磷光质。 Other materials can be used in the garnet fluorescent material further comprises a selected from: coumarin (Coumarin6) (high-quality green, very efficient), Fluorol 7GA (yellow-green, very efficient), doci (green, short decay length), rose Bengal (Rhodamine 110) (yellow, very efficient), DCM (orange, normal efficiency), pyridine (pyridine 1) (red, inefficient) or pyridine (pyridine 2) (magenta, inefficient) phosphor quality.

虽然此处所讨论的是关于LED,然而可了解到根据本发明的方法也有益于其他光源(例如平面光源,镭射二极管)。 Although we discussed herein is related to the LED, but can be understood also benefit other sources (e.g. a planar light source, laser diode) according to the method of the present invention. 再者,虽然此处的一些讨论是关于白色LED,然而也可以了解到根据本发明的方法也有益于其他波长的发射体。 Furthermore, although some of the discussion herein relates to a white LED, however, may also be understood according to the invention is also useful at other wavelengths of emitters. 根据本发明的具有DPP的LED的应用领域至少包含电子学、仪表安装、电子设备和户外型显示器,用于汽车、航空器的显示器,或任何其他照明设备。 The field of application with LED DPP present invention comprises at least electronics and instrumentation, electronic equipment and outdoor displays, automotive, aircraft display, or any other lighting device.

虽然本发明已以优选的实施例详细说明如上,然该实施例并非用以限定本发明于本文所公开的确切形式,任何本领域的技术人员,在不脱离本发明的精神和范围内,当可做出改变和修饰,同样地,本文所公开的任何制备步骤也可以通过其他达到实质相同结果的步骤来替代,因此所有包含于本发明范围内的更动,当以后面所附的权利要求所界定者为准。 While the invention has been described in detail preferred embodiments described in detail, this embodiment is not intended to limit the invention to the precise forms disclosed herein, anyone skilled in the art, without departing from the spirit and scope of the invention, when changes and modifications may be made, in the same manner, any of the preparation steps disclosed herein may be replaced by other steps to achieve substantially the same result, so all modifiers included within the scope of the present invention, when the back of the appended claims to and their equivalents.

Claims (37)

1.一种发光二极管,包括:发光构件以放射光,包含透明封胶;以及散射光媒介,加入至所述透明基底。 1. A light emitting diode, comprising: a light emitting member to emit light, comprising a transparent sealant; and a light scattering medium, added to the transparent substrate.
2.权利要求1的发光二极管,其中所述散射光媒介选自:空气气泡、氮气气泡及惰性气体气泡。 The light emitting diode as claimed in claim 1, wherein said light scattering medium is selected from: air bubbles, bubbles of nitrogen gas and the inert gas bubbles.
3.权利要求1的发光二极管,其中所述散射光媒介的能隙大于3eV。 The light emitting diode of claim 1, wherein said light scattering medium energy gap greater than 3eV.
4.权利要求1的发光二极管,其中所述散射光媒介不会吸收蓝光。 4. The light emitting diode of claim 1, wherein said scattering medium does not absorb blue light.
5.权利要求1所述的发光二极管,还包括:晶质半导体晶粒,其中所述散射光媒介嵌埋于所述环氧树脂;接线,连接至所述半导体晶片;以及金属引线架,连接至所述接线以将电流传输至所述半导体晶粒。 5. The light emitting diode according to claim 1, further comprising: a crystalline semiconductor die, wherein said light scattering medium embedded in the epoxy resin; wiring connected to the semiconductor wafer; and a metal lead frame, connector to the terminal to transmit a current to the semiconductor die.
6.权利要求1的发光二极管,还包括:晶质半导体晶粒,封胶于所述散射光媒介;接线,连接至所述半导体晶片;以及金属引线架,连接至所述接线以将电流传输至所述半导体晶粒;其中所述半导体晶粒选自:氮化合物半导体晶粒、氮化镓化合物半导体晶粒、晶质氮化铟镓的半导体晶粒以及晶质氮化铝铟镓的半导体晶粒。 6. The light emitting diode as claimed in claim 1, further comprising: a crystalline semiconductor die, to the scattered light encapsulant medium; wiring connected to the semiconductor wafer; and a metal lead frame, connected to the terminal to transmit current to the semiconductor die; wherein said semiconductor die is selected from: nitrogen compound semiconductor crystal, a gallium nitride compound semiconductor die, the semiconductor die and a crystalline aluminum gallium indium nitride crystalline semiconductor indium gallium nitride grains.
7.权利要求1的发光二极管,其中所述透明封胶还包括选自:钆、钇、铈及钕基磷光质的石榴石荧光材料。 7. The light emitting diode of claim 1, wherein the transparent encapsulant comprises a further selected: gadolinium, yttrium, cerium and neodymium-based phosphors of garnet fluorescent material.
8.权利要求1的发光二极管,其中所述透明封胶还包括选自:Ag:ZnS、CuAuAl:ZnS、CuAl:ZnS、Mg4(F)GeO5:Mn及Ce:YAG的石榴石荧光材料。 The light emitting diode of claim 1, wherein the transparent encapsulant comprises a further selected: Ag: ZnS, CuAuAl: ZnS, CuAl: ZnS, Mg4 (F) GeO5: Mn and Ce: YAG of a garnet fluorescent material.
9.权利要求1的发光二极管,其中所述透明封胶还包括选自:香豆素、Fluorol 7GA、DOCI、玫瑰红、DCM、吡啶1及吡啶2的石榴石荧光材料。 The light emitting diode as claimed in claim 1, wherein the transparent encapsulant comprises a further selected from: coumarins, Fluorol 7GA, DOCI, rose red, DCM, pyridine and pyridine 1 2 garnet fluorescent material.
10.权利要求1的发光二极管,其中所述散射光媒介是磷光颗粒及孔隙的混合物。 The light emitting diode as claimed in claim 1, wherein said light scattering medium is a mixture of phosphor particles and pores.
11.权利要求1的发光二极管,其中所述散射光媒介还包括由晶质磷光颗粒及介质颗粒所制成的介质磷光粉。 11. The light emitting diode as claimed in claim 1, wherein said medium further comprises a light scattering medium, the phosphor of the phosphor particles and crystalline particles made of medium.
12.权利要求11的发光二极管,其中所述磷光颗粒的浓度为所述介质磷光粉总体积的2%到25%。 The light emitting diode as claimed in claim 11, wherein the concentration of the phosphor particles is 2% to 25% of the total volume of the medium the phosphor.
13.权利要求11的发光二极管,其中所述介质颗粒选自:微晶质氮化铝、非晶质氮化硅、非晶质氮化镓及非晶质二氧化硅。 The light emitting diode as claimed in claim 11, wherein the media particles are selected from: microcrystalline aluminum nitride, amorphous silicon nitride, amorphous gallium nitride, and amorphous silica.
14.权利要求11的发光二极管,其中所述介质颗粒选自:半径在50到5000nm之间的非晶质氮化硅、半径在50到5000nm之间的非晶质二氧化硅及半径在50到5000nm之间的非晶质氮化镓。 14. A light emitting diode as claimed in claim 11, wherein the media particles are selected from: amorphous silicon nitride radius of between 50 to 5000nm, the radius of the amorphous silica and a radius of between 50 to 50 at 5000nm between the amorphous gallium nitride to 5000nm.
15.权利要求11的发光二极管,其中所述磷光颗粒是半径在1000到10000nm之间的石榴石荧光材料的微晶体。 15. The light emitting diode as claimed in claim 11, wherein the radius of said phosphor particles are in fine crystal garnet fluorescent material between 1000 to 10000nm.
16.权利要求11的发光二极管,其中所述磷光颗粒选自:钆、钇、铈及钕基磷光质。 The light emitting diode as claimed in claim 11, wherein said phosphor particles are selected from: Gd, Y, Ce, and Nd phosphorescent group.
17.权利要求11的发光二极管,其中所述磷光颗粒包括含有至少一种选自:钇、镥、钪、镧、钆及钐元素与至少另一种选自:铝、镓及铟元素的被铈活化的石榴石荧光材料。 17. The light emitting diode as claimed in claim 11, wherein said phosphor particles comprise at least one selected from the group comprising: yttrium, lutetium, scandium, lanthanum, gadolinium and samarium with at least one other element selected from: aluminum, gallium and indium element being garnet fluorescent material activated by cerium.
18.权利要求11的发光二极管,其中所述透明封胶选自:半球型镜片、环氧树脂、双凸透镜片、薄片玻璃、聚甲基丙烯酸甲酯的薄片塑胶及聚碳酸酯的薄片塑胶。 18. A light emitting diode as claimed in claim 11, wherein the transparent encapsulant is selected from: plastic dome lens sheet, an epoxy resin, a lenticular lens, sheet glass, polymethyl methacrylate and polycarbonate plastic sheet.
19.权利要求1的发光二极管,其中所述散射光媒介吸收一部分由所述发光构件所放射的光并放射出波长不同于所述吸收光的光。 19. A light emitting diode as claimed in claim 1, wherein the medium absorbs a part of light scattered by the light emitting element and emits light radiated light having a wavelength different from the absorbed light.
20.权利要求1的发光二极管,其中以镭射二极管(LD)替代所述发光二极管。 20. The light emitting diode as claimed in claim 1, wherein the laser diode (LD) in place of the light emitting diode.
21.一种镭射二极管,包括:发光构件以放射光,包含透明封胶;以及散射光媒介,加入至所述透明基底。 21. A laser diode, comprising: a light emitting member to emit light, comprising a transparent sealant; and a light scattering medium, added to the transparent substrate.
22.权利要求21的镭射二极管,其中所述散射光媒介选自:空气气泡、氮气气泡及惰性气体气泡。 22. A laser diode as claimed in claim 21, wherein said light scattering medium is selected from: air bubbles, bubbles of nitrogen gas and the inert gas bubbles.
23.权利要求21的镭射二极管,其中所述散射光媒介的能隙大于3eV。 23. The laser diode of claim 21, wherein said light scattering medium energy gap than 3eV.
24.权利要求21的镭射二极管,其中所述散射光媒介不会吸收蓝光。 24. The laser diode of claim 21, wherein said light scattering medium does not absorb blue light.
25.权利要求21的镭射二极管,其中所述透明封胶还包括选自:钆、钇、铈及钕基磷光质的石榴石荧光材料。 25. The laser diode of claim 21, wherein the transparent encapsulant comprises a further selected: gadolinium, yttrium, cerium and neodymium-based phosphors of garnet fluorescent material.
26.权利要求21的镭射二极管,其中所述透明封胶还包括选自:Ag:ZnS、CuAuAl:ZnS、CuAl:ZnS、Mg4(F)GeO5:Mn及Ce:YAG的石榴石荧光材料。 26. A laser diode as claimed in claim 21, wherein the transparent encapsulant comprises a further selected: Ag: ZnS, CuAuAl: ZnS, CuAl: ZnS, Mg4 (F) GeO5: Mn and Ce: YAG of a garnet fluorescent material.
27.权利要求21的镭射二极管,其中所述透明封胶还包括选自:香豆素、Fluorol 7GA、DOCI、玫瑰红、DCM、吡啶1及吡啶2的石榴石荧光材料。 27. The laser diode of claim 21, wherein the transparent encapsulant comprises a further selected from: coumarins, Fluorol 7GA, DOCI, rose red, DCM, pyridine and pyridine 1 2 garnet fluorescent material.
28.权利要求21的镭射二极管,其中所述散射光媒介是磷光颗粒及孔隙的混合物。 28. The laser diode of claim 21, wherein said light scattering medium is a mixture of phosphor particles and pores.
29.权利要求21的镭射二极管,其中所述散射光媒介还包括由晶质磷光颗粒及介质颗粒所制成的介质磷光粉。 29. The laser diode of claim 21, wherein said medium further comprises a light scattering medium, the phosphor of the phosphor particles and crystalline particles made of medium.
30.权利要求29的镭射二极管,其中所述磷光颗粒的浓度为所述介质磷光粉总体积的2%到25%。 30. The laser diode of claim 29, wherein the concentration of the phosphor particles is the medium 2 to 25% of the total volume of the phosphor.
31.权利要求29的镭射二极管,其中所述介质颗粒选自:微晶质氮化铝、非晶质氮化硅、非晶质氮化镓及非晶质二氧化硅。 31. The laser diode as claimed in claim 29, wherein the media particles are selected from: microcrystalline aluminum nitride, amorphous silicon nitride, amorphous gallium nitride, and amorphous silica.
32.权利要求29的镭射二极管,其中所述介质颗粒选自:半径在50到5000nm之间的非晶质氮化硅、半径在50到5000nm之间的非晶质二氧化硅及半径在50到5000nm之间的非晶质氮化镓。 32. The laser diode of claim 29, wherein the media particles are selected from: amorphous silicon nitride radius of between 50 to 5000nm, the radius of the amorphous silica and a radius of between 50 to 50 at 5000nm between the amorphous gallium nitride to 5000nm.
33.权利要求29的镭射二极管,其中所述磷光颗粒是半径在1000到10000nm之间的石榴石荧光材料的微晶体。 33. The laser diode of claim 29, wherein the radius of said phosphor particles are in fine crystal garnet fluorescent material between 1000 to 10000nm.
34.权利要求29的镭射二极管,其中所述磷光颗粒选自:钆、钇、铈及钕基磷光质。 34. The laser diode of claim 29, wherein said phosphor particles are selected from: Gd, Y, Ce, and Nd phosphorescent group.
35.权利要求29的镭射二极管,其中所述磷光颗粒包括含有至少一种选自:钇、镥、钪、镧、钆及钐元素与至少另一种选自:铝、镓及铟元素的被铈活化的石榴石荧光材料。 35. The laser diode of claim 29, wherein said phosphor particles comprise at least one selected from the group comprising: yttrium, lutetium, scandium, lanthanum, gadolinium and samarium with at least one other element selected from: aluminum, gallium and indium element being garnet fluorescent material activated by cerium.
36.权利要求21的镭射二极管,其中所述透明封胶选自:半球型镜片、环氧树脂、双凸透镜片、薄片玻璃、聚甲基丙烯酸甲酯的薄片塑胶及聚碳酸酯的薄片塑胶。 36. The laser diode of claim 21, wherein the transparent encapsulant is selected from: plastic dome lens sheet, an epoxy resin, a lenticular lens, sheet glass, polymethyl methacrylate and polycarbonate plastic sheet.
37.权利要求21的发光二极管,其中所述散射光媒介吸收一部分由所述发光构件所放射的光并放射出波长不同于所述吸收光的光。 37. The light emitting diode as claimed in claim 21, wherein the medium absorbs a part of light scattered by the light emitting element and emits light radiated light having a wavelength different from the absorbed light.
CNB011424427A 2000-12-29 2001-11-28 LED using scattered light media to make light conversion CN1215575C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/794,899 US6614170B2 (en) 2000-12-29 2001-02-26 Light emitting diode with light conversion using scattering optical media

Publications (2)

Publication Number Publication Date
CN1372330A true CN1372330A (en) 2002-10-02
CN1215575C CN1215575C (en) 2005-08-17

Family

ID=25164032

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011424427A CN1215575C (en) 2000-12-29 2001-11-28 LED using scattered light media to make light conversion

Country Status (3)

Country Link
JP (1) JP2002261328A (en)
CN (1) CN1215575C (en)
TW (1) TW516247B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008031281A1 (en) * 2006-09-13 2008-03-20 Helio Optoelectronics Corporation A plugin, combined with a cooler, and thermoelectric separate led bulb
CN100394622C (en) 2004-04-16 2008-06-11 华上光电股份有限公司 Gallium nitride-based light emitting diode
CN100405621C (en) 2005-09-29 2008-07-23 上海乐金广电电子有限公司 Manufacturing method of white light source
CN100485976C (en) 2004-07-14 2009-05-06 凯鼎科技股份有限公司 LED encapsulation body
CN1777999B (en) 2003-02-26 2010-05-26 美商克立股份有限公司 Composite white light source and method for fabricating
CN101872819A (en) * 2009-04-21 2010-10-27 富士迈半导体精密工业(上海)有限公司;沛鑫能源科技股份有限公司 Yellow light emitting diode and light emitting device
CN101882615A (en) * 2010-07-12 2010-11-10 陕西科技大学 Nano particle light distribution LED
CN101924177A (en) * 2010-08-03 2010-12-22 陕西科技大学 Light-emitting diode with light distributing function and preparation method thereof
CN101976721A (en) * 2004-09-21 2011-02-16 美商克立股份有限公司 Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension
CN102468395A (en) * 2010-11-04 2012-05-23 浙江雄邦节能产品有限公司 Ceramic substrate LED apparatus
CN101897040B (en) 2007-12-11 2013-06-12 皇家飞利浦电子股份有限公司 Side emitting device with hybrid top reflector
CN103622190A (en) * 2012-08-21 2014-03-12 李伟 High simulation flower with optical excitation chemistry color light emission and light-emitting method thereof
US8778601B2 (en) 2010-03-05 2014-07-15 Rohm and Haas Electronic Materials Methods of forming photolithographic patterns
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US10164158B2 (en) 2003-09-18 2018-12-25 Cree, Inc. Molded chip fabrication method and apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
KR100693463B1 (en) * 2005-10-21 2007-03-05 한국광기술원 Light diffusion type light emitting diode
DE102006005042A1 (en) * 2006-02-03 2007-08-09 Tridonic Optoelectronics Gmbh A light emitting device with non-activated phosphor
US7842960B2 (en) 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
TWI342628B (en) * 2007-08-02 2011-05-21 Lextar Electronics Corp Light emitting diode package, direct type back light module and side type backlight module
TW200921929A (en) * 2007-11-02 2009-05-16 Innolux Display Corp Light emitting diode
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777999B (en) 2003-02-26 2010-05-26 美商克立股份有限公司 Composite white light source and method for fabricating
US10164158B2 (en) 2003-09-18 2018-12-25 Cree, Inc. Molded chip fabrication method and apparatus
CN100394622C (en) 2004-04-16 2008-06-11 华上光电股份有限公司 Gallium nitride-based light emitting diode
CN100485976C (en) 2004-07-14 2009-05-06 凯鼎科技股份有限公司 LED encapsulation body
CN101976721A (en) * 2004-09-21 2011-02-16 美商克立股份有限公司 Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension
CN100405621C (en) 2005-09-29 2008-07-23 上海乐金广电电子有限公司 Manufacturing method of white light source
WO2008031281A1 (en) * 2006-09-13 2008-03-20 Helio Optoelectronics Corporation A plugin, combined with a cooler, and thermoelectric separate led bulb
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
CN101897040B (en) 2007-12-11 2013-06-12 皇家飞利浦电子股份有限公司 Side emitting device with hybrid top reflector
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
CN101872819A (en) * 2009-04-21 2010-10-27 富士迈半导体精密工业(上海)有限公司;沛鑫能源科技股份有限公司 Yellow light emitting diode and light emitting device
US8778601B2 (en) 2010-03-05 2014-07-15 Rohm and Haas Electronic Materials Methods of forming photolithographic patterns
CN101882615A (en) * 2010-07-12 2010-11-10 陕西科技大学 Nano particle light distribution LED
CN101924177A (en) * 2010-08-03 2010-12-22 陕西科技大学 Light-emitting diode with light distributing function and preparation method thereof
CN102468395A (en) * 2010-11-04 2012-05-23 浙江雄邦节能产品有限公司 Ceramic substrate LED apparatus
CN103622190A (en) * 2012-08-21 2014-03-12 李伟 High simulation flower with optical excitation chemistry color light emission and light-emitting method thereof

Also Published As

Publication number Publication date
TW516247B (en) 2003-01-01
JP2002261328A (en) 2002-09-13
CN1215575C (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP5260018B2 (en) Semiconductor element
KR100867788B1 (en) Light emitting device
KR100948109B1 (en) Light emitting diode comprising a thin phosphor-conversion film
US8552448B2 (en) Light emitting device
AU720234B2 (en) Light emitting device and display
JP3824917B2 (en) Method of manufacturing a casting material
US7750359B2 (en) Package design for producing white light with short-wavelength LEDS and down-conversion materials
US8729788B2 (en) Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
JP5326705B2 (en) The light-emitting device
US6924514B2 (en) Light-emitting device and process for producing thereof
US8487337B2 (en) Side view surface mount LED
CN100502066C (en) Light-radiating semiconductor component with a luminescence conversion element
US7045956B2 (en) Light emitting diode with wavelength conversion
KR100450647B1 (en) Luminescent array, wavelength-converting sealing material and light source
US20050092980A1 (en) Broad-spectrum A1(1-x-y)InyGaxN light emitting diodes and solid state white light emitting devices
CN1913188B (en) Phosphor-converted LED devices having improved light distribution uniformity and its manufacture method
EP1363335A2 (en) White color light emitting device
JP4666891B2 (en) Emitting devices using nanoparticles
US20070012931A1 (en) White semiconductor light emitting device
US8008673B2 (en) Light-emitting device
US6294800B1 (en) Phosphors for white light generation from UV emitting diodes
US7217959B2 (en) Single-chip white light emitting device
EP1142034B1 (en) A light emitting diode device comprising a luminescent substrate that performs phosphorescent conversion
US20020084745A1 (en) Light emitting diode with light conversion by dielectric phosphor powder
JP3065258B2 (en) Emitting device and display device using the same

Legal Events

Date Code Title Description
C10 Entry into substantive examination
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model