CN1360751A - Method and device for correcting corrupted useful signal - Google Patents

Method and device for correcting corrupted useful signal Download PDF


Publication number
CN1360751A CN 00810035 CN00810035A CN1360751A CN 1360751 A CN1360751 A CN 1360751A CN 00810035 CN00810035 CN 00810035 CN 00810035 A CN00810035 A CN 00810035A CN 1360751 A CN1360751 A CN 1360751A
Prior art keywords
Prior art date
Application number
CN 00810035
Other languages
Chinese (zh)
Original Assignee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19931312 priority Critical
Application filed by 西门子公司 filed Critical 西门子公司
Publication of CN1360751A publication Critical patent/CN1360751A/en



    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • H03D3/008Compensating DC offsets


在一个信息传输系统的接收部件(100;200;300;400)中校正由于相邻信道干扰引起的有用信号失真的方法,这个相邻信道干扰在有用信道中产生一个特别的矩形干扰脉冲,其中,在第一步骤中确定相邻信道干扰的起始时刻或结束时刻,在第二步骤中在使用关于起始时刻或结束时刻的信息的情况下实施偏移校正。 The receiving member (100; 200; 300; 400) of an information transmission system, since the channel interference correction method for distortion caused by the useful signal, the adjacent channel interference of a particular rectangle adjacent channel interference pulses in a useful, wherein embodiment a case where an offset correction determined in the first step adjacent channel interference start time or end time, in the second step using the information about the start time or the end time.


校正有用信号失真的方法和装置 A method and apparatus useful for correcting signal distortion

本发明涉及按照权利要求1的前叙部分、在一个特别是按照TDD或TDMA方法工作的信息传输系统的接收部件中校正有用信号失真的方法以及实施这个方法的装置。 The present invention relates according to the preamble of claim 1, a useful method for correcting signal distortion in the received part information transmission system operating according to a particular TDMA or TDD method and apparatus of this method.

在移动无线系统中基于频谱的有限资源多路访问方法或复用法是绝对必要的,以便使从百万直到亿的数量级的用户数目成为可能。 In the mobile radio system based on the limited resources of spectrum multiple access or multiplexing method is absolutely necessary in order to make an order of magnitude from the number of users up to one million million possible. 必须如此建立多用户的访问形式并且必须如此形成接收部件,不发生信息传输的不允许的干扰。 Access must thus established and must form a multi-user receiving member thus formed, the interference does not allow transmission of information occurs.

已知频分复用、时分复用和码分复用作为基本的多路访问方法,并且事实上在移动无线网中应用了所有三种方法。 Known frequency division multiplexing, time division multiplexing and code division multiplexing as the basic multiple access method, in a mobile radio network and in fact all three methods are applied. 特殊的时分复用方法、实际用作TDD(时分复用)或者TDMA(时分多址)、在数字移动无线网有较大扩展,其中其与频分复用方法(FDMA=频分多址)如此多样组合,预先规定多个载频。 The special time-division multiplexing method, as the actual TDD (time division multiplexing) or TDMA (Time Division Multiple Access), in a digital mobile radio networks have a greater extension with which frequency division multiplexing method (FDMA = Frequency Division Multiple Access) so diverse combination, a predetermined plurality of carrier frequencies. 如此按照GSM标准预先规定具有相互200kHz的间隔的载频,并且预先确定在每个载频上划分为八个时隙(时隙)。 Thus, according to the GSM standard each having a predetermined carrier frequency spacing of 200kHz, and determined in advance on each carrier frequency is divided into eight time slots (slots).

对于无绳电话时分复用技术得到越来越多的应用,其中在这里预先规定在FDMA和TDMA之间的组合。 For time-division multiplexing technology is a cordless phone more and more applications, wherein the predetermined composition where between the FDMA and TDMA. 在欧洲无绳电话的DECT标准中应用直到十个频道,这些频道分别对于上行链路和下行链路划分为十二个时隙。 Application of the channel until ten European Cordless Telephone DECT standard, these channels are for the uplink and downlink time slots are divided into twelve.

可以按照直接转换原理构造在TDD或TDMA系统中的接收机。 The receiver may be in a TDD or TDMA system constructed in accordance with the direct conversion principle. 在如此的接收机中由于在接收机的模拟部分中、特别是在接收混频器中产生的平方部分相邻信道干扰引起矩形干扰,该干扰在通常的数字调制中导致误码率的提高。 In such a receiver, since the analog part of the receiver, especially in the square portion generated in the receiver mixer due to adjacent channel interference rectangular interference that result in increased error rate at the conventional digital modulation. 为了满足在例如GSM系统的系统协议中确定的、关于误码率的高要求,对混频器的传输特性提出高要求,以开创的电路技术目前不可能满足这个要求。 In order to meet the protocol determined in the system such as the GSM system, the requirement of high error rate, high demands on the transmission characteristics of the mixer in order to create the circuit technology is currently impossible to meet this requirement.

因此建议,借助于与干扰联系的信号幅度的改变(偏移)的迭代、计算的确定通过在混频器之后连接的校正设备事后校正提到的干扰。 Therefore recommended, iterative change (offset) of the interference signal amplitude by means of contact, determined by calculating the interference correction apparatus connected to the mixer after the correction afterwards mentioned. 可是这与高的计算费用和相应提高的电流消耗联系,并因此降低了可能的最大通话持续时间,其表明每个移动电话的基本功率参数。 But this consumption and high computing costs and a corresponding increase in the current contact, and thus reducing the maximum possible duration of the call, which indicates the basic power parameters for each mobile phone.

因此本发明基于这个任务,给出一个按照开头所述的改善的、节省费用和电流的方法以及实施该方法的装置。 Thus, the present invention is based on the apparatus of this task, according to a given improvement in the beginning, the cost savings and current methods and embodiments of the method.

关于其方法方面通过具有权利要求1的特征解决这个任务,关于其装置方面通过具有权利要求8的特征解决这个任务。 1 with respect to its characteristic aspects of the method as claimed in claim solve this task by having, on its apparatus aspect in claim 8, characterized by having a claim to solve this task.

本发明包含这个基本观念,首先确定干扰的开始时刻并接着根据这个了解以关于计算过程较少费用的并因此节省电流的方式实施校正过程,通过应用模拟的校正过程对此几乎没有计算费用(狭义)。 The present invention includes the basic concept, the start time is first determined and then based on this interference and thus to save the current understanding of the process less costly manner on the calculation of a correction process, by applying the analog correction process this hardly costed (narrow ).

在一个优选的实施中为了确定干扰开始时刻首先实施一个总信号的微分并接着实施一阶导数与预定阈值的阈值鉴别。 In a preferred embodiment in order to determine the start timing of interference a first embodiment of a differential signal and then the total threshold discriminator embodiment a first derivative with a predetermined threshold value. 该阈值与有用信号的最大可能的陡度一致,为了避免错误探测与一个适当选择的安全系数相乘。 This is consistent with the maximum possible threshold steepness of the useful signal, in order to avoid erroneous detection multiplied by an appropriate safety factor chosen. 不仅总信号的一阶导数的形成而且其与提到的阈值的比较都表明程序修改,在集成电路技术中或者借助于适当的软件-在本来已执行的复杂的数字信号处理(DSP=数字信号处理)的范围内毫无困难地并以较低的电流消耗可以实现这个程序修改。 A derivative formed not only first order the total signal and a threshold value which show mentioned comparison program modifications, in integrated circuit technology or by means of the appropriate software - in the complex digital signal processing have been executed (DSP = Digital Signal the process) range without difficulty and at a low current consumption can be achieved to modify the program.

可是有选择地这也是可能的,为了确定干扰的开始时刻预先规定一个特殊的探测元件(例如探测二极管)或相应功能的电路(例如所谓的RSSI电路),与载波信号相比其特别利用了干扰器的频率偏移。 But it is also possible to selectively, in order to determine the start time of a predetermined specific interference detector elements (e.g., detecting diode) or corresponding functional circuitry (e.g., a so-called RSSI circuit), in particular compared with the carrier signal using the interference a frequency shifter.

在利用关于干扰开始时刻的信息的情况下实施的真正校正过程可以作为基于信号幅度的数字化值的计算过程或也有选择地作为模拟的“减法”安排。 Correcting the real implementation of the process in the case of using information about the start time of the interference it can be based on a calculation of the digitized values ​​of signal amplitude or have an analog selectively "subtraction" arrangement.

在第一情况下,首先特别实现一方面在从有用信号的上升边缘直到干扰开始时刻的时间内并另一方面在从干扰开始时刻直到有用信号的下降边缘的时间内总信号的(数字)平均值形成,接着实现这二个已计算出的平均值的减法。 In the first case, first, particularly, on the one hand and the other hand to achieve a time until the falling edge of the total signal of the useful signal (digital) from the average interference in the start time until the start time of the interference from useful signal rising edge time value is formed, followed by two to achieve this subtraction that has been calculated the average. 这也是可能的,在干扰器探测时确定干扰信号能量并从干扰开始时刻起从总信号能量中减去干扰信号能量。 It is also possible to determine the interference signal power and the interference signal is subtracted from the total energy of the signal energy from the start time when the disturbance detection jammers. 在后者的情况下,在数值化相应的能量值之后,在真正计算的意义上的减法是可能。 In the latter case, after the energy corresponding numerical values, in the sense of the real subtraction calculation it is possible.

在实施根据本发明方法的装置中-根据上面给出的根据本发明方法的特征-预先规定一个用于确定干扰开始时刻的检测介体和输入端方面与这个检测介体连接的校正介体用于实施偏移校正。 In the apparatus embodiment of the method according to the invention - according to the characteristics given above, the method according to the invention - for determining a predetermined correction mediator and mediator detecting interference terms input start time to this connection by detecting mediator offset correction to the embodiment. 上面已经指明检测介体的实施可能性。 The above embodiments have indicated the possibility of detecting mediator. 如果使用探测元件或者探测电路,则其后面特别连接一个校正级用于考虑输出信号波形的校正器特性和/或一个脉冲形成级。 If the detection element or detection circuit is connected in particular behind a correction stage of the adjustment characteristic for the output signal waveforms and / or a pulse forming stage. 真正的校正介体在模拟实施中可以具有一个模拟减法设备;在数字计算偏移量或者校正量的情况下预先规定一个参考值存储器和数字的减法级和特别一个在这些单元前面串联的平均值计算级。 Correcting real mediator in an analog embodiment may have an analog subtraction device; the case of calculating the offset correction amount or predetermined in a digital subtraction stage and a particular average value of these cells in series in front of a digital reference value memory and calculation stage.

根据图在其余的从分权利要求或者下面的描述中优选的实施例中得出本发明优点和实用性。 FIG advantages obtained in the embodiment and practical requirements of the remaining sub-rights, or from the following description in accordance with preferred. 从这些图中指出:图1a和1b在直接转换接收机中有用信号和干扰信号的或者实际混频器的总信号的时间相关性的示范描述。 It noted from these figures: Figures 1a and an exemplary time correlation of the total signal in a direct conversion receiver useful and interfering signals, or the actual mixer 1b described.

图2以方框图的形式图解描述第一实施形式,图3以方框图的形式图解描述第二实施形式,图4以方框图的形式图解描述第三实施形式,图5以方框图的形式图解描述第四实施形式,在图1a中分别描述了具有载频f1和电平P1的有用信号以及具有载频f2和电平P2的干扰信号的时间曲线,这些信号在理想的接收混频器中出现。 Figure 2 illustrates in block form a first embodiment is described, in block diagram form in FIG. 3 illustrates a description of the second embodiment, FIG. 4 illustrates in block diagram form described third embodiment, the fourth embodiment described with FIG. 5 illustrates in block diagram form form, in FIG. 1a, respectively, are described having a carrier frequency f1 and the useful signal level P1 and the time profile of the interference signal having a carrier frequency f2, and the level P2, the signals appear at the receiver over the mixer. 以tA表示有用信号脉冲的起始时刻(上升边缘),并以tE表示其结束时刻(下降边缘),而t0表示-在该实施例中在有用信号脉冲的上升边缘之前开始的-干扰信号的结束时刻。 In the starting time tA represents a useful signal pulse (rising edge), and is represented by its end time tE (falling edge), and t0 represents - In this embodiment, prior to the rising edge of the start pulse of the useful signal - signal interference end time.

在图1b中描述了依赖于时间的实际接收混频器的相应输出信号,其中这个时间轴以在图1a中的时间轴为基础。 Describes the respective output signals actually received mixer time-dependent in Figure 1b, in which the time axis to the time axis in Figure 1a is based.

在图2中为了描述本发明的第一实施例指出了一个由混频器101、一个连接在这个混频器之后的放大器级102、一个连接在这放大器之后的低通滤波器103、一个连接在这个低通滤波器之后的微分级104、一个连接在这个微分级之后的阈值鉴别器105和一个并联于微分级104连接在低通滤波器103之后并通过阈值鉴别器105的输出信号控制的偏移补偿级106形成的布置100。 In FIG 2 purpose of describing a first embodiment of the present invention being indicated by the mixer 101 a, 102 an amplifier stage is connected after the mixer, after which the amplifier is connected to a low-pass filter 103, a connection in the differentiation stage 104 after the low-pass filter, a connecting threshold discriminator after the differentiation stage 105 and a parallel to the differentiation stage 104 is connected after the low pass filter 103 and the output signal 105 is controlled by the threshold discriminator offset compensation stage 106 formed by arrangement 100. 偏移补偿级106包含(在图中没有单独描述)一个用于数字化平均值形成的平均值形成级和一个用于减去在相邻信道干扰的结束时刻t0(图1a)之前或之后检测的平均电平值的减法级。 Offset compensation stage 106 comprises (not separately depicted in the drawing) for forming the average of the average number of forming stages and for subtracting a detected before the end time T0 (FIG. 1a) or adjacent channel interference after the average level value subtraction stage. 微分级在本身已知的方式中可以作为模拟的微分器或作为数字的、按照硬件实现的微分级实施或通过可编程的信号处理在移动无线终端设备的DSP的范围内实现。 Micro fractionated manner known per se may be used as an analog or as a digital differentiator, implemented within range of the mobile radio terminal device according to the differentiation stage DSP hardware embodiment or by a programmable signal processing.

对于这种情况,即必须考虑多个干扰,预先规定多个设备用于存储检测的干扰时刻以及相应的电平值。 In this case, a plurality of interference must be considered i.e., a predetermined plurality of storage devices for detecting the interference time and the corresponding level value.

在长的有用信号脉冲串的情况下所指出的布置是有益的,其是通过多个作为短的干扰脉冲叠加的并因此对于在GSM标准的情况下多存储区运行是重要的。 In the case where the useful signal burst length indicated is advantageous arrangement, which is superimposed by a plurality of short interfering pulses and thus to run multiple storage area it is important in the case of the GSM standard.

在图3中指出了与图2相比改进的布置200,在这个布置中同样预先规定一个混频器201、一个连接在该混频器之后的放大器级202以及偏移补偿级207。 Indicated in Figure 3 as compared to FIG improved arrangement 2200, in the same arrangement in a predetermined mixer 201, an amplifier stage 202 and connected to the offset compensation stage 207 after the mixer. 在此在一个并联处理支路中布置一个低通滤波器203,并且在这个低通滤波器之后连接一个探测二极管204用于检测干扰信号。 In this arrangement, a low-pass filter 203 in a parallel processing branch, and diode 204 connected to a probe for detecting the interference signal after the low pass filter. 探测二极管之后连接一个脉冲形成电路205并且在脉冲形成电路之后连接一个时间检测级206用于检测时刻t0(图1a)。 After detecting diode connected to a pulse forming circuit 205 and is connected to a time after the pulse forming circuit 206 for detecting a detection stage time T0 (Figure 1a).

在这个改进中,与在图2中指出的实施相比进一步降低计算费用并因此降低电流消耗和/或由于在此没有干扰信号的有限带宽而提高了干扰信号的结束或者开始时刻的确定的准确性。 In this modification, as compared with the stated embodiment in FIG. 2, and thus further reduce the computational cost of reducing current consumption and / or determined accurately because here there is no band-limited signal interference to improve the start time or the end of an interference signal sex.

在图4中作为一个另外的实施例概括描述了一个布置300-再度以功能方框图的形式,在这个布置中以类似于图3的方式混频器301的输出端一方面与一个(在这里可控制实施的)放大器级302并且另一方面与低通滤波器303以及连接在这个低通滤波器之后的探测二极管304连接。 A further embodiment of a general description of the arrangement again in the form of a functional block diagram 300 in this arrangement is similar to the output terminal 3 of the embodiment of FIG mixer 301 with one aspect (herein can be used as in FIG. 4 embodiment of control) and on the other amplifier stage 302 connected to the low-pass filter 303 and the detection diode 304 is connected after the low-pass filter. 不仅在可控制的放大器302之后而且在探测二极管304之后分别连接一个A/D转换器305a、305b。 After only controllable amplifier 302 and after detecting diodes 304 are respectively connected to an A / D converter 305a, 305b. 第一A/D转换器305a的输出端与加法级306的第一输出端连接,第二A/D转换器305b的输出端与用于校正探测器特性和具有在放大器302上调整的放大系数A1的增益的校正电路307连接。 Output of the first A / D converter 305a and the first stage output of the adder 306 is connected to the output terminal of the detector for correcting the characteristic of the second A / D converter 305b, and has an amplification factor adjusted in the amplifier 302 A1 is the gain correction circuit 307 is connected. 校正级307的输出端经过一个反演器308与加法级306的第二输入端。 Correction stage output terminal 307 via a inverse input end 308 and a second addition stage 306. 总共就提到的元件306至308的布置功能上实现从总信号电平中减去一方面关于探测二极管304的探测器特性并且另一方面关于放大器级302中增益的已校正的干扰信号电平。 Achieve subtracted from the total signal level on the one hand the interference signal level detector for detecting the characteristic of the diode 304 and on the other hand the gain of the amplifier stage 302 is corrected on the arrangement of the functional elements of a total of 306 to 308 mentioned at .

在图5中作为方框图指出了一个另外的、由接收混频器401、低通滤波器402、连接在低通滤波器之后的探测电路403和一个用于校正探测器特性的模拟校正电路404形成的布置400,在这个布置中接收混频器401和校正电路404的输出端分别与二个运算放大器405a、405b的非反号的输入端连接,其输出端最后通向放大器级406。 In FIG. 5, a block diagram for a further pointed out, is formed by the 401, the low pass filter 402, a low pass filter connected after detection circuit 403 and an analog correction circuit for correcting a reception mixer 404 Detectors arrangement 400, in this arrangement receiving mixer 401 and the output terminal of the correction circuit 404, respectively 405a, 405b of the non-inverting input terminal connected to the number two operational amplifiers, which leads to output of the last amplifier stage 406. 通过运算放大器405a、405b实现从总信号中模拟减去(还是关于探测器特性已校正的)干扰信号,并最后放大差动信号。 Operational amplifier 405a, 405b to achieve an analog signal is subtracted from the total (or on the corrected characteristics of the probe) the interference signal, and finally amplified differential signal.

最后指出的布置特别有提高动态的优点,因为已经在基带中修改干扰信号。 Finally arrangement especially improves the dynamic advantages, as it has been modified in the baseband interference signal.

本发明的实施不局限于在这里描述的实例,而且在多种变体中也是可能的,由于上面的阐述专业人员可以毫无困难地推断。 Embodiment of the present invention is not limited to the examples described herein, but also in a variety of variants are possible, due to the above described inference professionals without difficulty.

Claims (13)

1.在一个、特别按照TDD或TDMA方法工作的信息传输系统的接收部件(100;200;300;400)中校正由于相邻信道干扰引起的有用信号失真的方法,这个相邻信道干扰在有用信道中产生一个特别的矩形干扰脉冲,其特征在于,在第一步骤中确定相邻信道干扰的起始时刻或结束时刻,在第二步骤中在使用关于起始时刻或结束时刻的信息的情况下实施偏移校正。 1. In a particularly according to the reception component (100; 200; 300; 400) information transmission system of TDD or TDMA methods work because the method of correcting the useful signal the adjacent channel interference caused by distortion, the adjacent channel interference in a useful generating a special case of rectangular channel interference pulses, characterized in that, in a first step in determining adjacent channel interference in the starting time or ending time, in a second step, using the information about the start time or the end time of the the offset correction embodiment.
2.按照权利要求1的方法,其特征在于,为了确定相邻信导干扰的起始时刻或结束时刻在第一分步骤中实施总干扰信号的微分(104)并在第二分步骤中实施一阶导数与一个预定阈值的阈值鉴别(105)。 2. The method according to claim 1, characterized in that, in order to determine the starting instant of adjacent channel interference or end differential guide (104) and total interference signal in the second embodiment in a first embodiment of sub-step time substeps a first derivative with a predetermined threshold value of the threshold discriminator (105).
3.按照权利要求1的方法,其特征在于,借助于探测元件或探测电路(204;304;403)、特别是在利用干扰的频率偏移的情况下实施相邻信道干扰的起始时刻或结束时刻的确定。 3. The method according to claim 1, characterized in that, by means of the detection element or the detection circuit (204; 304; 403), in particular embodiments the starting moment of the adjacent channel interference in the case of using the frequency offset of interference or It determines the end of time.
4.按照上述权利要求之一的方法,其特征在于,偏移校正包含直到干扰的起始时刻或结束时刻或者从干扰的起始时刻或结束时刻起总信号的数字平均值形成,并接下来减去(306)已计算出的平均值。 4. The method of any one of the preceding claims, wherein the starting time offset correction comprises or until the end time or interference from the digital signal formed from the average of the total starting time or ending time of the interference, and subsequently subtracting (306) the calculated average value.
5.按照权利要求2或3的方法,其特征在于,在探测干扰时检测干扰信号能量,并接着从干扰开始时刻起或直到干扰结束时刻从总信号能量中减去干扰信号能量。 The method according to claim 2 or claim 3, wherein the interference detection signal energy upon detection of interference, and then the interference from the starting time or ending time of the interference until the interference signal is subtracted from the total energy of the signal energy.
6.按照权利要求5的方法,其特征在于,减法作为按照信号能量值数字化的计算上的减法(306)实施。 6. The method according to claim 5, characterized in that as the subtraction (306) in accordance with the embodiment subtraction calculated on the digitized signal energy values.
7.按照权利要求5的方法,其特征在于,通过模拟方式、特别是借助于运算放大器布置(405a、405b)实施减法。 7. A method according to claim 5, characterized in that, by way of simulation, in particular by means of the operational amplifier arrangement (405a, 405b) carrying out subtraction.
8.实施按照上述要求之一的方法的装置(100;200;300;400),其特征在于,检测介体用于确定相邻信道干扰的开始时刻或结束时刻,并且输入端方面与检测介体连接的校正介体(106;207;306;405a、405b)用于实施偏移校正。 8. The apparatus according to embodiment (100; 200; 300; 400) of one of the above method claims, characterized in that the mediator detecting adjacent channel interference for determining a start time or end time, and the input terminal of the detection aspect mediated correction mediator connecting member (106; 207; 306; 405a, 405b) for performing an offset correction.
9.按照权利要求8的装置,其特征在于,检测介体具有一个微分级(104)和一个连接在这个微分级之后的阈值鉴别器(105)。 9. The apparatus according to claim 8, wherein the mediator is detected having a differentiation stage (104) and a differentiation stage connected after the threshold discriminator (105).
10.按照权利要求8的装置,其特征在于,检测介体具有一个探测元件(204;304;403)、特别是一个HF探测二极管、和一个连接在这个探测元件之后的校正级和/或脉冲形成级(205;307;404)。 10. The apparatus according to claim 8, wherein the mediator has a detector detecting element (204; 304; 403), in particular a HF detecting diode, and a correcting stage and / or after the pulse detecting element is connected forming stage (205; 307; 404).
11.按照权利要求8至10之一的装置,其特征在于,校正介体具有一个A/D转换器(305a、305b)、一个参考值存储器和一个数字减法级(306、308)。 11. The apparatus according to any one of claims 8 10, wherein the mediator has a corrected A / D converter (305a, 305b), a reference value memory stage and a digital subtractor (306, 308).
12.按照权利要求11的装置,其特征在于,在参考值存储器和数字减法级前面串联一个平均值形成级。 12. The apparatus according to claim 11, wherein the subtraction stage connected in series in front of the reference value memory and a number average formation stage.
13.按照权利要求8至10之一的装置,其特征在于,校正介体具有一个模拟减法设备、特别是一个运算放大器布置(405a、405b)。 13. The apparatus according to any one of claims 8 10, characterized in that the correction mediator has an analog subtraction device, in particular an operational amplifier arrangement (405a, 405b).
CN 00810035 1999-07-07 2000-05-12 Method and device for correcting corrupted useful signal CN1360751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19931312 1999-07-07

Publications (1)

Publication Number Publication Date
CN1360751A true CN1360751A (en) 2002-07-24



Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00810035 CN1360751A (en) 1999-07-07 2000-05-12 Method and device for correcting corrupted useful signal

Country Status (5)

Country Link
EP (1) EP1195001A1 (en)
JP (1) JP2003504927A (en)
CN (1) CN1360751A (en)
HU (1) HU0201819A2 (en)
WO (1) WO2001005025A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128236A1 (en) * 2001-06-11 2002-08-01 Infineon Technologies Ag Method for compensating a step-shaped DC disturbance in a digital baseband signal of a homodyne radio receiver
EP1474862A2 (en) 2002-02-01 2004-11-10 Philips Electronics N.V. Additive dc component detection included in an input burst signal
DE102004047424A1 (en) 2004-09-28 2006-04-06 Micronas Gmbh Circuit and method for carrier recovery
DE102004048572A1 (en) 2004-10-04 2006-04-13 Micronas Gmbh Method and circuit arrangement for suppressing an orthogonal disturbance
DE102004054893A1 (en) 2004-11-12 2006-05-24 Micronas Gmbh Method and circuit arrangement for channel filtering analog or digitally modulated TV signals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4201194A1 (en) * 1992-01-18 1993-07-22 Sel Alcatel Ag Method and circuit for offset correction in a TDMA funkempfaenger
EP0594894B1 (en) * 1992-10-28 1999-03-31 Alcatel DC offset correction for direct-conversion TDMA receiver
US5838735A (en) * 1996-07-08 1998-11-17 Telefonaktiebolaget Lm Ericsson Method and apparatus for compensating for a varying d.c. offset in a sampled signal
EP0863606B1 (en) * 1997-03-05 2003-09-24 Nec Corporation Direct conversion receiver capable of cancelling DC offset voltages

Also Published As

Publication number Publication date
WO2001005025A1 (en) 2001-01-18
EP1195001A1 (en) 2002-04-10
HU0201819A2 (en) 2002-09-28
JP2003504927A (en) 2003-02-04

Similar Documents

Publication Publication Date Title
AU702217B2 (en) Method and apparatus for automatic gain control in a digital receiver
US6597898B1 (en) Automatic gain control method and device
JP3183078B2 (en) Control signal generating circuit, an automatic gain control circuit using the same, the communication system using the receiver and this using the same
EP0786859B1 (en) Power amplifying circuit and method
CN1153371C (en) Power control in multi-carrier radio transmitter
US5301364A (en) Method and apparatus for digital automatic gain control in a receiver
EP1091516A1 (en) Base station device and method of suppressing peak current
CN1210889C (en) Calibration system for array antenna receiving apparatus
DE60206451T2 (en) Peak limiter and device for amplifying a multicarrier signal
US20050009489A1 (en) Radio receiver and radio signal processing method
DE60026254T2 (en) Glitch reducer with glitch detection in audio signal
US6321073B1 (en) Radiotelephone receiver and method with improved dynamic range and DC offset correction
CN1164027C (en) Power amplifying circuit with power supply regulator for controlling adjacent and alternate channel power
US7415083B2 (en) AGC scheme and receiver for use in a wireless communication system
US4032847A (en) Distortion adapter receiver having intersymbol interference correction
US7336738B2 (en) Demodulation timing generation circuit and demodulation apparatus
EP0594894B1 (en) DC offset correction for direct-conversion TDMA receiver
EP1195892B1 (en) Method and corresponding transmitter for predistorting a wideband radio signal to avoid clipping
EP0673125A1 (en) Apparatus for automatically controlling gain, communication apparatus, and method for automatically controlling gain
EP1338114B1 (en) Training sequence for a radio communications system
CN1136741C (en) Transmission power control method for mobile communication system, mobile terminal and base station
US5905946A (en) Method for estimating a channel and a receiver
KR100273492B1 (en) Radio receiver for spread spectrum signal
US5083304A (en) Automatic gain control apparatus and method
CN1068471C (en) Method and apparatus for automatic gain control and dc offset cancellation in quadrature receiver

Legal Events

Date Code Title Description
C10 Request of examination as to substance
C06 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)