CN1330281A - Automatic signal tracking system for wireless 3D glasses - Google Patents

Automatic signal tracking system for wireless 3D glasses Download PDF

Info

Publication number
CN1330281A
CN1330281A CN 00109691 CN00109691A CN1330281A CN 1330281 A CN1330281 A CN 1330281A CN 00109691 CN00109691 CN 00109691 CN 00109691 A CN00109691 A CN 00109691A CN 1330281 A CN1330281 A CN 1330281A
Authority
CN
China
Prior art keywords
signal
synchronization
liquid crystal
wireless
microprocessor
Prior art date
Application number
CN 00109691
Other languages
Chinese (zh)
Inventor
林明彦
Original Assignee
艾派克科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾派克科技股份有限公司 filed Critical 艾派克科技股份有限公司
Priority to CN 00109691 priority Critical patent/CN1330281A/en
Publication of CN1330281A publication Critical patent/CN1330281A/en

Links

Abstract

An automatic signal tracking system for wireless 3D glasses is disclosed, which features that the service life of battery for wireless 3D glasses can be elongated from 100 hr to more than 1000 hr by improving the precision and efficiency of recognizing signals.

Description

一种无线3维眼镜用信号自动跟踪系统 A radio signal with 3D glasses tracking system

本发明涉及一种无线3维眼镜用信号自动跟踪系统。 The present invention relates to a wireless signal with a three-dimensional glasses automatic tracking system.

请参阅图1,图1为现有的一般红外线3维眼镜信号接收端电子电路的结构示意图,其中该红外线3维眼镜的无线信号接收电路100包含有一红外线信号接收器101、一信号处理电路102、一液晶快门驱动电路103、一升压电路104、一电池105及开关106。 Please refer to FIG. 1, FIG. 1 is a conventional general infrared 3D glasses signal schematic structure of an electronic circuit of the receiving side, wherein the infrared signal receiving circuit 3 dimensional glasses 100 includes an infrared signal receiver 101, a signal processing circuit 102 , a liquid crystal shutter driving circuit 103, a boosting circuit 104, a battery 105 and a switch 106. 其中该红外线信号接收器101、信号处理电路102、液晶快门驱动电路103及升压电路104所需使用的电力由该电池105所供应。 Wherein the power required for use of the infrared signal receiver 101, a signal processing circuit 102, a liquid crystal shutter driving circuit 103 and the boost circuit 104 supplied by the battery 105. 一般而言,该红外线信号接收器101的平均使用工作电流约在1mA(毫安)以上,该信号处理电路102的平均使用工作电流亦约在1mA,而该液晶快门驱动电路103及升压电路104两者的平均使用工作电流约在0.1mA,使得整体的平均总使用工作电流约在2.1mA。 Average working current general use, the infrared signal receiver 101 is about 1mA (mA) or more, the average operating current using signal processing circuit 102 is also about 1mA, and the liquid crystal shutter driving circuit 103 and booster circuit using both the average operating current of 104 about 0.1mA, so that the overall average of the total used in the operating current of about 2.1mA. 因此,对于传统的一个直径为20mm的水银电池而言,该水银电池的供电功率一般约为220mAH(毫安小时),所以在使用传统的信号接收电子电路时,现有的红外线3维眼镜只能连续使用约一百小时。 Thus, with the conventional battery having a diameter of 20mm of mercury, the mercury of the battery power supply is generally about 220mAh (mAh), so that when using a conventional electronic signal receiving circuit, the conventional three-dimensional glasses only infrared It can be used continuously for about one hundred hours.

在上述现有红外线3维眼镜的无线信号接收电路100中,该无线信号接收电路100无法减少其平均总使用工作电流的原因,在于该红外线信号接收器101必须时刻接收红外线载波步信号107,且该信号处理电路102也须不停地处理信号,因此对于上述的水银电池而言,该系统现有的无线信号接收电路100的连续使用时间的极限只能达到一百小时。 100 of the above-described conventional wireless infrared signal receiving circuit of the three-dimensional glasses, the wireless signal reception circuit 100 is not used to reduce the average total reasons operating current, wherein the infrared signal receiver 101 must always receives an infrared synchronization signal carrier 107, and the signal processing circuit 102 processing a signal must also be kept, and therefore the above-described mercury cells, the limit of the continuous use time of the conventional system, the wireless signal reception circuit 100 can only reach one hundred hours.

因此,本发明的目的是针对上述的缺点,提出有效的解决方案,以增加连续使用时间并提高至一千小时以上,使得无线3维眼镜的使用变得更加方便。 Accordingly, an object of the present invention is directed to the above-mentioned drawbacks, proposed an effective solution to increase the continuous use time and increasing to more than one thousand hours, so that the use of 3-dimensional glasses wireless more convenient.

本发明的无线3维眼镜用信号自动跟踪系统,通过提高信号辨认的精确度与辨认的效率,使得红外线信号接收器及信号处理电路无须全时段地工作,只须利用极少时间即可自动同步跟踪无线信号,而在大部份的时间中,红外线信号接收器及信号处理电路皆处于待机状态,不但减少平均总电流的消耗,并将平均总电流减低至0.2mA以下,使得连续使用时间可由现有的一百小时延长至一千小时以上,令3维眼镜的利用变得更加方便。 3-D glasses of the present invention, the wireless signal is automatic tracking system, by increasing the accuracy and efficiency of identification of the identification signal, so that an infrared signal receiver and the signal processing circuit need not work full-time, using only very little time to automatically synchronize tracking a radio signal, and in most of the time, the infrared signal receiver and signal processing circuits are in the standby state, only to reduce the total current consumption average, and the average total current is reduced to 0.2mA or less, so that the continuous use time can be the existing one hundred hours extended to more than one thousand hours, make use of 3-D glasses easier.

通过使用主信号自动辨认跟踪的逻辑理论,并配合信号接收电子电路的改良,使得本发明只须侦测无线同步信号数个周期,即可关闭信号接收器所使用的电源及令信号处理电路由工作状态进入待机状态,达到节省电力的目的。 By using the master automatically identify the signal tracking logic theory, and with an improved signal reception electronic circuit, such that the present invention only the synchronization signal detecting radio several cycles, the receiver can power off signal used by the signal processing circuit and so state and enters the standby state, to achieve the purpose of saving electricity.

上述的说明为本发明的无线3维眼镜用信号自动跟踪系统的简单解说,为加强本发明使用上的了解与认识,现结合附图对本发明提供一完整的解说。 Wireless 3D glasses above description of the present invention illustrating a simple signal automatic tracking system for strengthening the understanding and awareness of the use of the present invention, in conjunction with the accompanying drawings now provide a complete explanation of the present invention.

图1为一般红外线3维眼镜信号接收端电子电路的结构示意图;图2为一般无线3维眼镜所使用的同步信号的示意图;图3为本发明信号自动识别跟踪的逻辑示意图;图4为本发明一种无线3维眼镜用信号自动跟踪系统的结构方法示意图;本发明提供一种无线3维眼镜用信号自动跟踪系统,通过使用自动识别跟踪的逻辑理论,并配合信号接收电子电路的改良,使得本发明的无线3维眼镜用的信号自动跟踪系统只须侦测无线同步信号数个周期,即可关闭信号接收器所使用的电源并使信号处理电路由工作状态进入待机状态,因此可达到节省电力的目的。 FIG 3 Schematic signal automatic identification and tracking of the present invention;; FIG. 1 is a schematic structure of a general three-dimensional glasses infrared signal receiving terminal of the electronic circuit; FIG. 2 is a schematic synchronization signal is generally used wireless 3D glasses of FIG. 4 is an inventive radio 3-dimensional structural schematic glasses automatic tracking method of signal systems; the present invention provides a three-dimensional spectacle wireless signal automatic tracking system, automatic identification of tracing using logics, and electronic circuit with improved signal reception, signal tracking system of the present invention is such that the radio is a three-dimensional glasses wireless synchronization detection signal only several cycles, to turn off the power and signal processing circuit used by the receiver into standby operating state, and therefore can be achieved the purpose of saving electricity. 在说明本发明实施例之前,先针对本发明所提出的信号自动识别跟踪的逻辑理论做一说明。 Before describing embodiments of the present invention, the automatic recognition logic to make a theoretical explanation for the tracking signal provided by the present invention.

本发明所提出的信号自动识别跟踪逻辑理论在时间的先后次序上可分为三阶段说明,第一阶段为自动同步时区。 Automatic identification signal tracking logic theory proposed by the present invention in the order of time can be divided into three stages described, the first stage is automatically synchronized zone. 也即本发明所提出的信号自动识别跟踪系统是根据此三阶段的逻辑理论,实际应用于3维立体眼镜的领域。 I.e., automatic identification signal tracking system proposed by the present invention is the three-phase logic theory, actually used in a three-dimensional stereoscopic glasses. 以下说明本发明所提出的逻辑理论。 Logic theory proposed the following description of the present invention.

物理量的定义:在说明本发明的逻辑理论前先定义一些物理量,以方便以下的说明。 Defined quantities: Description logic before the teachings of the present invention to define some physical quantity, to facilitate the following description. 现请参阅图2,图2为一般无线3维眼镜所使用的同步信号的示意图。 Referring now to FIG. 2, FIG. 2 is a schematic view of a general wireless synchronization signal 3D glasses used for. 一般无线3维液晶快门眼镜所使用的无线同步信号为一周期变化的方波信号,此方波信号是无线3维液晶快门眼镜的信号接收器所接收到的同步信号S,而信号处理电路则根据此同步信号S用以开启或关闭3维眼镜上的左、右液晶快门,本发明里假设当同步信号S为“0”的状态时,表示显示器在“0”的时间间隔中扫描立体影像的左影像,此时信号处理电路将左液晶快门开启而将右液晶快门关闭;另外,当同步信号为S“1”的状态时,表示显示器在“1”的时间间隔中扫描立体影像的右影像,此时信号处理电路将右液晶快门开启而将左液晶快门为关闭。 Wireless synchronization signals generally to wireless 3-dimensional liquid crystal shutter glasses used for a cycle of the square wave signal, the square wave signal is a wireless 3-dimensional liquid crystal shutter glasses of the signal received by the receiver to the synchronization signal S, the signal processing circuit is according to this synchronization signal S for turning on or off when the three-dimensional glasses on the left and right liquid crystal shutter, in the present invention is assumed that, when the synchronization signal S is "0" state, indicating the stereoscopic image display scanning in the "0" time interval the left-eye image, the left case the signal processing circuit of the liquid crystal of the right shutter open and close the liquid crystal shutter; Further, when the synchronizing signal is the state S "1", showing the stereoscopic image display scanned at time "1" interval of the right image signal processing circuit at this time will be the right and left liquid crystal shutters open the liquid crystal shutter is closed. 以下为了方便说明本发明,先定义一些物理量。 The following description of the invention For convenience, define physical quantities.

周步周期Tw 表示同步信号S一周期的时间间隔。 Tw represents a period of weeks Step S a synchronizing signal period time interval.

同步半周期Th表示同步信号S为“0”或“1”的状态时的半周期时间间隔。 Th represents a half-cycle synchronous synchronization signal S is "0" or the half-cycle time as a state of "1" interval.

同步半周期T0表示同步信号S为“0”状态时的时间间隔。 Synchronization half cycle T0 represents the time when a synchronization signal S is "0" state interval.

同步半周期T1表示同步信号S为“1”状态时的时间间隔。 Synchronization half cycle T1 represents a time when the synchronization signal S "1" state interval.

正极性转态T+同步信号S由“0”状态转变成“1”的状态。 T + transient positive polarity synchronization signal S changes from "0" state to state "1".

负极性转态T-同步信号S由“1”状态转变成“0”的状态。 T- transient negative state transition from the synchronization signal S "1" state to "0".

影像扫描时间Tscan在同步半周期Th中,表示显示器电子枪扫描立体影像的扫描时间。 Scanning synchronization in time Tscan half period Th, the display indicates the electron gun scan the scan time stereoscopic image.

可容许误差漂移时间Tdrift在同步半周期Th中,表示显示器电子枪为遮蔽及回扫的时间。 Allowable time drift errors in the synchronization Tdrift half period Th, the display showing an electron gun to shield and retrace time.

本发明所实施的信号自动识别跟踪的基本精神为,利用现有的微处理器,根据时间的先后次序实施信号识别、同步触发及自动同步等三阶段的处理。 The embodiment of the present invention, the signal automatic identification and tracking of the basic spirit, using conventional microprocessor, embodiments according to the order of time signal identification, the synchronization is triggered automatically and three-stage synchronization process. 在第一时区中即信号识别时区,启动信号接收器以接收同步信号S,同时利用一个同步周期的时间Tw,精密侦测出同步信号半周期的时间Th;在第二时区中即同步触发时区,精密侦测下一同步半周期的触发时间,以正确启动第三时区的自动同步时区;而在第三时区中即自动同步时区,则关闭信号接收器,并令微处理器以中断方式产生同步信号。 I.e., signal identification area, activating a signal receiver to receive the synchronization signal S, while utilizing a time Tw synchronization cycle precision to detect the synchronizing signal half cycle time Th in a first time zone; i.e., synchronization is triggered in the second time zone zone precision synchronization detection time to trigger the next half cycle, the correct time zone start the automatic synchronization of the third time zone; and in the third time zone is automatically synchronized time zone, the signal receiver is turned off, so that the microprocessor to interrupt and produce synchronization signal. 以下分别叙述各时区的工作原理。 The following works are described as each time zone.

信号识别:如图3的信号自动识别跟踪逻辑示意图所示,令Ssync为实际的同步信号、Strack为自动跟踪的同步信号、TD为信号识别时区、TT为同步触发时区、TA为自动同步时区、而Thm为测量的半周期的时间间隔。 Signal recognition: FIG signal automatic identification and tracking logic 3 shown in the schematic, so Ssync actual synchronous signal, to Strack synchronization signal automatic tracking, the TD for the signal recognition section, TT is synchronous triggering zone, the TA is automatically sync area, and Thm is the measured half-period time interval. 在第一时区即信号识别时区TD中,其最重要的工作即是利用实际的同步信号Ssync的特征,在最短时间内正确识别出信号的正确性,并同时利用微处理器测量出该实际的同步信号Ssync半周期的时间Th,以提供在第三时区Ta中,微处理器所产生的自动跟踪的同步信号Strack的依据。 In the first time zone i.e. the signal recognition area TD, the most important task that is using the actual synchronous signal Ssync is characterized, in the shortest time to correctly identify the correctness of the signal, while using a microprocessor and the actual measured synchronizing signal Ssync half cycle time Th, to provide a third time zone Ta, the automatic tracking Strack synchronization signal generated by a microprocessor based. 本发明将实际的该同步信号Ssync的特征归纳为三项。 The present invention is characterized in that the actual synchronization signal Ssync is reduced to three.

特征之一:实际的同步信号Ssync的相邻两半周期的间隔必须一致,也即表示实际的同步信号Ssync为“0”或“1”的状态的时间间隔T0与T1必须一致。 One of the features: the actual spacing between adjacent synchronizing signal Ssync halves period must be consistent, i.e. the actual synchronous signal Ssync represented as "0" state in time or "1" must be consistent with the interval T0 T1.

特征之二:实际的同步信号Ssync的正极性转态T+、负极性转态T-必须交替变化。 The second characteristic: the actual synchronization signal Ssync transient positive polarity T +, T- negative transient changes must alternate.

特征之三:实际的同步信号Ssync的同步半周期T0与T1必须在某一有限区间,为了去除液晶快门的闪烁现象,立体画面的扫描频率通常须提高至100Hz与120Hz之间,由此可限定该实际的同步信号Ssync的半周期的频率T0与T1必须在100Hz与120Hz之间。 Wherein three: the actual synchronization signal Ssync half period T0 must be synchronized in a certain limited range, in order to remove flicker liquid crystal shutter, the stereoscopic picture scanning frequency is typically 100Hz to be raised to between T1 and 120Hz, which limits the actual frequency of the half-cycle of the synchronizing signal Ssync T0 and T1 must be between 100Hz and 120Hz.

利用此三项的特征,微处理器即可在实际的同步信号Ssync的相邻两半周期时区的时间内,识别出正确的同步信号,并侦测出T1与T0之后取其平均值即可测量的半周期的时间间隔Thm。 After use of this feature is three, the microprocessor can in a time zone adjacent to the actual synchronization signal Ssync halves cycle, identify the correct synchronization signal, and detect the average value to T0 and T1 half-cycle time interval measured Thm.

同步触发如图3所示,在第二时区即同步触发时区TT中,其最重要的工作即是侦测出正极性转态或负极性转态发生的时间点Tt,并根据该时间点Tt以启动第三时区的作业。 Synchronous triggering 3, i.e., time zone in the second synchronization area TT of the trigger, i.e., the most important work is to detect transient positive or negative time Tt transient occurs, and in accordance with the point time Tt to start work third time zone.

自动同步如图3所示,在第三时区即同自动同步时区TA中,其最重要的工作即是在同步触发的时间点Tt之后,根据所测量半周期的时间间隔Thm,由微处理器以中断方式自动产生一可自动跟踪的同步信号Strack。 Auto Sync 3, i.e., after the third time zone is automatically synchronized with the time area TA, the most important work that is synchronized in time Tt of the trigger, according to the measured half-period time interval Thm, by the microprocessor to interrupt automatically generate a synchronizing signal automatically tracks the Strack. 由于微处理器的测量精度有限,测量同步触发的所造成的时间误差及测量半周期的误差,会使得自动跟踪的同步信号Strack与实际同步信号Ssync间产生一时间漂移的现象Sdrift。 Due to the limited measurement accuracy of the microprocessor, the time synchronization error measurement trigger caused by the half-cycle and measurement errors, the synchronization signal causes the actual synchronous signal Ssync Strack and automatic tracking of a time shift between a phenomenon of Sdrift. 本发明图3所列举的例子是令同步触发的时间Tt为正确,而测量的半周期的时间间隔Thm略小于实际同步信号半周期的时间间隔Th,其差异的时间间隔为口t,因此会产生一向前漂移的现象Sdrift。 Examples of the invention of FIGURE 3 include the synchronizer triggering time Tt is correct, and the half-cycle time interval measured Thm slightly less than the actual synchronous signal half-cycle time interval Th, the time difference interval for the mouth t, therefore generating a forward drift phenomenon Sdrift. 相对于实际同步信号Ssync的时序,令自动跟踪同步信号Ssack向前漂移,可得到一额外好处,即可利用向前漂移所赞成的时间差来提前开启或关闭液晶快门,以抵消液晶快门开启或关闭时所需的反应时间。 The actual timing of the synchronizing signal with respect to Ssync, so that the automatic tracking synchronization signal Ssack forward drift, an additional benefit is obtained, the time difference can be favored by using the drift forward to open or close the liquid crystal shutter in advance to turn on or off the liquid crystal shutter counteract when the desired reaction time. 但是,当此向前漂移的时间超过了可容许误差漂移时间范围Tdrift时,则液晶快门开启或关闭的时间变成太早,会造成漏光的现象,也即本发明的自动跟踪系统必须再次重新启动,重覆执行第一、第二、及第三时区的工作,以确保无法造成漏光的现象。 However, when this time-drift exceeds the allowable time drift error Tdrift, the liquid crystal shutter opening or closing time becomes too early, cause light leakage, i.e., the automatic tracking system of the present invention must again re start, repeat the implementation of the first, second, and third time zone to ensure that can not cause light leakage. 以下,理论说明向前漂移的现象,并以实际的数字说明可容许同步的最大时间间隔。 The following theoretical explanation of the phenomenon of drift forward, and the actual figures show maximum allowable time synchronization interval.

假设微处理器所测得同步信号的半周期为Thm,而时实际同步信号的半周期为Th,且令Th>Thm,则可计算出以下的物理量。 The measured signal is assumed synchronous microprocessor half cycle Thm, the actual half-cycle of the synchronizing signal Th, and let Th> Thm, the following quantities can be calculated.

同步半周期的测量误差 Δt=Th-Thm可容许自动同步的最大半周期数 N=Tdrift/Δt可容许自动同步的最大时间间隔 T=NxTh以实际量列举说明时,例如,同步半周期Th=10-2sec,而可容许误差漂移时间Tdrift=10-4sec,则在微处理器的测量精度各为Δt=10-7sec及10-8sec时,N及T的值各别如下: Synchronization measurement error half cycle Δt = Th-Thm allowable automatic synchronization maximum half cycles N = Tdrift / Δt allowable maximum time for automatic synchronization interval T = NxTh actual amount include instructions such as synchronous half cycle Th = 10-2sec, the allowable time drift error Tdrift = 10-4sec, then the microprocessor in each measurement accuracy Δt = 10-7sec 10-8sec and when the respective values ​​of N and T are as follows:

由上可知,假如测量误差Δt可达10-8sec时,可容许自动同步的最大时间间隔为1秒,即于1秒内还可以让液晶快门的开关时间与书面扫描时间同步;而在测量误差Δt达10-7sec时,可容许自动同步的最大时间间隔为10秒,即于10秒内还可以让液晶快门的开关时间与画面扫描时间同步。 From the above, if the time Δt measurement error of up to 10-8sec, the maximum allowable time for automatic synchronization interval is 1 second, i.e. within one second switching time also allows the liquid crystal shutter is synchronized with the writing scanning time; and measurement errors when Δt of 10-7sec, automatically the maximum allowable time synchronization interval is 10 seconds, i.e., within 10 seconds also allows switching time of the liquid crystal shutter is synchronized with screen scanning time.

目前,一般市面上所销售的微处理器(micro-processor)其所使用的振动频率以可达1MHz至10MHz,亦即其时间精确度最小可达10-5sec至10-7秒之间,可用来作为本发明的信号自动识跟踪系统的中央处理器,配合本发明的信号自动识别跟踪逻辑为设计基础的软件及电子电路的设计,即可令无线3维眼镜的使用时间由现在的100小时延长至1000小时以上,其理由为说明如下。 At present, generally marketed in the microprocessor (micro-processor) they use the vibration frequency of up to 1MHz to 10MHz, i.e. which time the minimum achievable accuracy between 10-5sec to 10-7 seconds, can be used as a signal of the present invention to automatically recognize tracking system central processor, with the present invention automatically identify the signal tracking logic design basis for the design of electronic circuits and software, to enable the wireless 3D glasses using the time from the current 100 hours extended to 1000 hours or more for the reason described below. 根据前述,使用红外线方式的现有无线3维眼镜,因为其所设计的红外线接收电路必须使用所有的时间,不停地令红外线信号接收器及信号电路工作。 According to the foregoing, the conventional way of infrared wireless 3D glasses, because it was designed to use an infrared receiving circuit must be all the time kept so infrared ray signal receiving and signal circuit. 在电流的消耗上,该红外线信号接收器的平均使用工作电流约在1mA(毫安),而该信号处理电路的平均使用工作电流也约在1mA。 In the current consumption, the use of the average working current of the infrared signal receiver is about 1mA (mA), using the average operating current of the signal processing circuit is also about 1mA. 因此,对于传统一个直径为20mm的水银电池而言,该水银电池的供电功率一般约为220mAH(毫安小时),现有的红外线3维无线眼镜只能连续使用约一百小时。 Thus, with the conventional battery having a diameter of 20mm of mercury, the mercury of the battery power supply is generally about 220mAh (mAh), a conventional three-dimensional wireless infrared glasses only about one hundred hours of continuous use. 然而,根据本发明的理论及实际使用的控制电路,在使用振动频率为1HMz,也即其时间精确度最小可达10-6秒的微处理器时,且在同步信号频率为50Hz(若以半周期计则为100Hz),其可容许自动同步的最大时间间隔为1秒时,即只要用3个半周期的时间,即可达到信号识别、同步触发及自动同步等功效,使得在3个半周期之后的1秒间内,虽然关闭红外线信号接收器及信号处理电路(其实际的电气动作实施例中说明),还可以让液晶快门的开关时间与书面扫描同步,因而使得该红外线信号接收器及信号处理电路的平均消耗电流,由2mA骤降为百分之三,因此对于供电功率为220mAH(毫安小时)的水银电池而言,其可连续使用时间由100小时提高至3000小时(理论值)。 However, according to the theory and practical use of the control circuit of the present invention, a vibration frequency of 1HMz, i.e. its minimum achievable time accuracy microprocessor 10-6 sec, and the synchronizing signal frequency of 50Hz (In terms of half period count was 100Hz), the maximum time which may permit the automatic time synchronization interval is one second, i.e. as long as three half-cycle time, signal identification can be achieved, and the synchronization is triggered automatically synchronized and other effects, such that in three within from 1 second after half cycle, although the off infrared signal receiver and a signal processing circuit (embodiment examples illustrating the electrical operation of the embodiment), but also allows the switching time of the liquid crystal shutter is synchronized with the writing scanning, thereby making the infrared ray signal receiving and an average current consumption of the signal processing circuit, to three percent by the dip 2mA, so for mercury 220mAh battery power (mAh) terms, which may improve the continuous use time of 100-3000 hours ( theoretical value). 以下,透过实施例来说明本发明的一种3维无线眼镜用信号自动跟踪系统。 Hereinafter, the embodiment will be described through a 3-dimensional glasses according to the present invention the radio signal tracking system.

实施例现请参阅图4,图4为本发明实施例的系统方块示意图。 Example Referring now to Figure 4, which illustrates a system block schematic of an embodiment of the present invention. 本发明实施例1由一无线信号接收部200所组成。 Example 1 of the present embodiment of the invention 200 consisting of a radio signal receiving unit. 其中无线信号接收部200包括有一无线信号接收电路201、一微处理器202、一液晶快门驱动电路203、一电池204、双向控制电子开关205、206、一升压电路207及一重新启动开关208。 Wherein the wireless signal reception unit 200 includes a wireless signal receiver circuit 201, a microprocessor 202, a liquid crystal shutter driving circuit 203, a battery 204, the bidirectional controlled electronic switch 205, 206, a boosting circuit 207 and a switch 208 restarts . 该无线信号接收电路201的功能,是接收一左右同步载波信号210,并将该载波信号去除后还原并输出一左右同步信号211。 The wireless signal receiving function circuit 201, is received around a carrier sync signal 210, and restores and outputs a synchronizing signal 211 left after removal of the carrier signal. 该微处理器202的功能,是接收一左右同步信号211,利用左右同步信号211的三个半周期时间,以实施信号识别的处理及同步触发的处理,之后进入自动同步的处理,使得在三个半周期后该微处理器202即可开闭电子开关205,令无线信号接收电路201进入无动作状态,同时该微处理器202根据所测得的测量半周期的时间间隔,以中断方式每隔半周期自动产生及输出一左液晶快门驱动信号212及一右液晶快门驱动信号213,用以自动同步驱动左、右液晶快门。 The function of the microprocessor 202, a sync signal is received around 211, using the left and right half-cycle time of three synchronization signal 211, to trigger the process, and a synchronization signal identifying the embodiment, after entering automatic synchronization process, such that the three after the half-cycle of the microprocessor 202 to open and close the electronic switch 205, to enable the wireless signal reception circuit 201 enters the non-operating state, while the microprocessor 202 based on the measurements made half-cycle time interval, to interrupt each automatically generates and outputs a left signal 212 and the liquid crystal shutter driving a right liquid crystal shutter drive signal every half cycle 213, a drive to automatically synchronize the left and right liquid crystal shutter. 一般,微处理器在中断模式作业时,只有在中断执行程序时才需消耗电力,而其他时间内则处于待机的状态,其所消耗的电流通常只有几个毫安(μA)。 Only generally, microprocessor interrupt mode of operation, only the power consumption required to interrupt execution of the program, while the other times in the standby state, the current consumption of which it is usually only a few milliamperes (μA). 另外,该微处理器202必须于“可容许自动同步的最大时间间隔”内,重新实施信号识别、同步触发及自动同步等三阶段的处理。 Further, the microprocessor 202 must be in the "maximum permissible time automatic synchronization interval" the re-execution signal identification, the synchronization is triggered automatically and three-stage synchronization process. 该液晶快门驱动回路203接收一左液晶快门驱动信号212及一右液晶快门驱动信号213,并根据升压电路207所提供的电压,将该左液晶快门驱动信号212及右液晶快门驱动信号213的电压提高后,输出一升压后的左液晶快门驱动信号214及一升压后的右液晶快门驱动信号215。 The liquid crystal shutter driving circuit 203 receives a left signal 212 and the liquid crystal shutter driving a liquid crystal shutter driving the right signal 213, and 207 provided by the voltage boosting circuit, the liquid crystal shutter driving the left signal 212 and right signal 213 of the liquid crystal shutter driving after the voltage is increased, the output of the left liquid crystal shutters after a boost driving signal to the right after the liquid crystal shutter 214 and a boost driving signal 215. 该微处理器202的另一功能,是在所设定的“暂时停止左右液晶快门动作的时间范围”内,如果该信号识别的处理,无法识别出正确的同步信号时,则令微处理器输出一电压为零的左液晶快门驱动信号及输出一电压为零的一右液晶快门驱动信号,以停止左右液晶快门的动作。 Another function of the microprocessor 202 is set in the "temporarily stop the operation of the left and right liquid crystal shutter time" and if the signal recognition process, can not identify the correct synchronizing signal, the microprocessor so that a left output voltage is zero drive signal and a liquid crystal shutter right liquid crystal shutter outputs a drive signal voltage is zero, to stop the operation of the left and right liquid crystal shutters. 该微处理器202的另一功能,是在所设定的“自动关闭硬件系统的时间范围”内,如果该信号识别的处理,无法门识别出正确的同步信号时,则令微处理器关闭电子开关205,以关闭该无线信号接收回201所使用的电源,同时令微处理器亦关闭电子开关206,以关闭该升压电路207及液晶快门驱动回路203所使用的电源,最后令微处理器进入待机状态,以达到自动关闭电源的目的。 When another function of the microprocessor 202 is set in the "automatic closing time hardware system", if the signal recognition process, the door can not identify the correct synchronization signal, the microprocessor then let off electronic switch 205 to turn off the radio signal received back power source 201 is used, so that while the microprocessor is also close the electronic switch 206 to turn off the boost circuit 207 and the liquid crystal shutter driving circuit 203 used in the power, so that the last microprocessor enters the standby state, for the purpose of automatically turning off the power. 该微处理器202于待机的状态时所消耗的电流只有几个毫安培(μA),几乎不损耗电流。 The current in the standby state 202 the microprocessor consumes only a few milliamperes (μA), almost no loss current. 该微处理器202的再度启动是通过一外部的重新启动动作209(Reset)以开启重新启动开关208,以重新设定该无线信号接收部200各部电路的正确动作,令该微处理器202由待机状态进入正常运作的状态,并令该微处理器202开启电子开关205,以供应该无线信号接收电路201所使用的电源,同时令微处理器202也开启电子开关206,以供应该升压电路207及液晶快门驱动电路203所使用的电源,并令该微处理器202开始重复执行信号自动识别跟踪软件系统。 The microprocessor 202 is started again by the restart an external operation 209 (Reset) to turn on the restart switch 208, to reset the correct operation of the circuit of each part of the wireless signal reception unit 200, enabling the microprocessor 202 by the standby mode to the normal operation state, enabling the microprocessor 202 and the electronic switch 205 is turned on to supply the radio signal receiving circuit used in the power supply 201, the microprocessor 202 is also open at the same time so that the electronic switch 206, to supply the boosted the power supply circuit 207 and the liquid crystal shutter driving circuit 203 is used, enabling the microprocessor 202 and is re-executed signal tracking software automatic identification system.

本发明的保护范围由权利要求书决定,任何本领域的技术人员,在本发明的精神和内容的范围内,所作的改进和替换,应被视为属于本发明的保护范围。 The scope of the present invention is determined by the claims, anyone skilled in the art within the scope and spirit of the present disclosure, modifications and substitutions made, should be considered as being within the scope of the present invention.

Claims (11)

1.一种无线3维眼镜用信号自动跟踪系统,包含有一无线信号接收硬件系统及一信号自动识别跟踪软件系统,其中该无线信号接收硬件系统包含有:一无线信号接收电路,接收一左右同步载波信号,并将该载波信号去除后还原并输出一左右同步信号;一微处理器,接收一左右同步信号及一重新启动开关的设定,根据该左右同步信号的时序,以重复执行自动识别跟踪软件系统,并输出一无线信号接收开关信号、一升压电路开关信号、一左液晶快门驱动信号及一右液晶快门驱动信号,另外该微处理器根据该重新启动开关的设定,以启动该无线信号接收硬件系统;一液晶快门驱动电路,接收一左液晶快门驱动信号及一右液晶快门驱动信号,并将其升压后输出一升压后的左晶快门驱动信号及一升压后的右液晶快门驱动信号;一电池,提供该无线信号接收硬件 1. A radio signal with three-dimensional glasses automatic tracking system, includes a radio signal receiving hardware system and a signal tracking software automatic identification system, wherein the wireless signal receiving hardware system comprising: a wireless signal receiving circuit receiving a sync about carrier signal, and after removal of the carrier signal and outputs the restored left and right a synchronization signal; a microprocessor, receives a synchronizing signal and a left restart setting switch, a timing synchronization signal to the left, to repeatedly perform the automatic recognition tracking software, and outputs a wireless signal reception switch signal, a boosting circuit switch signal, a left signal and a liquid crystal shutter driving right liquid crystal shutter drive signal, the microprocessor in accordance with the additional sets the restart switch, to start the after a liquid crystal shutter driving circuit for receiving a liquid crystal shutter driving left and right liquid crystal shutter signal and a driving signal, and outputs the boosted left a crystal shutter driving signal and a boost after it boosted; the wireless signal receiving hardware system right liquid crystal shutter driving signal; a battery, provides the radio signal received hardware 统的电源;一无线信号接收器电子开关,接收一无线信号接收开关信号,并根据该信号输出或关闭该无线信号接收电路所使用的电源;一升压电路电子开关,接收一升压电路开关信号,并根据该信号输出或关闭该升压电路及液晶快门驱动电路所使用的电源;一升压电路,将该电池所提供的电压进行适当的升压;一重新启动开关,重新启动无线3维眼镜用信号自动跟踪系统。 Power system; a wireless signal receiver is an electronic switch, a wireless signal receiver receives a switching signal, and based on the output signal or power down the radio signal receiving circuit used; a boosting circuit of the electronic switch, a booster circuit receiving switch signal, and outputs the signal or power down the boost circuit and the liquid crystal shutter driving circuit according to the used; a boosting circuit, the voltage provided by the battery boost appropriate; a restart switch, restart the wireless 3 3D glasses signal tracking system.
2.如权利要求1所述的无线3维眼镜用信号自动跟踪系统,其特征在于,该无线信号接收电路所接收的该左右同步载波信号可为垂直扫描同步信号的载波信号,或为垂直扫描同步信号频率除半后的载波信号。 2. The wireless 3D glasses according to claim 1 Signal automatic tracking system, wherein the wireless signal received by the receiving circuit carrier sync signal around the carrier signal may be a vertical synchronizing signal scanning, vertical scanning or a synchronization signal frequency of the carrier signal in addition to a half.
3.如权利要求1所述的无线3维眼镜用信号自动跟踪系统,其特征在于,该信号自动识别跟踪软件系统根据时间先后依序重复执行一信号识别的处理、一同步触发的处理及一自动同步的处理。 3. The wireless 3D glasses according to claim 1 Signal automatic tracking system, wherein the signal tracking software system has automatic identification sequence is repeatedly performed according to a processing time of the identification signal, a synchronization processing and a trigger automatic synchronization process.
4.如权利要求3所述的信号自动识别跟踪软件系统,其特征在于,该信号识别的处理,是在一同步信号周期中测量相邻两半周期的时间间隔,该两时间间隔的误差,若是小于某一预设的数值时,则测量所得的同步信号为正确的信号,且由测量所得的两半周期的时间间隔取得一平均值,并令其为测量半周期的时间间隔,若该测量半周期的时间间隔在某一有限区间范围内时,则测量所得的同步信号为正确的信号;该信号识别的处理,还为在一同步信号周期中,其信号极性转态若为正极性转态、负极性转态与正极性转态的连续交替变化时,则测量所得的同步信号为正确的信号;该信号识别的处理,还为在一同步信号周期中,其信号极性转态若为负极性转态、正极性转态与负极性状态的连续交替变化时,则测量所得的同步信号为正确的信号。 4. The signal according to claim 3, automatic identification and tracking software system, characterized in that the signal recognition process, a synchronizing signal period is measured in two half-cycle time interval error of the two adjacent intervals, If less than a predetermined time value, the resulting measurement signal synchronizing signal is correct, and obtaining a mean value from the two resulting half-cycle time of the measurement interval, and allowed to measure the half-cycle time interval, if the measured half-cycle time interval within a finite interval range, the resulting measurement signal synchronizing signal is correct; the signal recognition process, also in a period of the synchronization signal, which signal polarity is positive if transited of transient, transient negative polarity and positive polarity alternated continuously transited, the measurement is correct synchronizing signal resulting signal; the signal recognition process, but also as a synchronizing signal cycle, which turn signal polarity If the state is transited negative polarity, positive polarity alternating continuous rotation state and the negative state, the measurement of the obtained synchronizing signal is the correct signal.
5.如权利要求4所述的信号自动识别跟踪软件系统,其特征在于,在所述信号识别的处理中,该测量半周期的时间间隔,必须强制使其略小于实际同步信号半周期的间隔。 5. A signal as claimed in claim 4, wherein the automatic identification and tracking software system, characterized in that the signal recognition process, the measured half-period time interval, it must force slightly less than a half cycle of actual synchronous signal interval .
6.如权利要求3所述的信号自动识别跟踪软件系统,其特征在于,该同步触发的处理,在信号识别处理之后,侦测出下一个信号极性转态的发生时间。 6. The signal according to claim 3, automatic identification and tracking software, wherein processing the synchronization trigger, after the signal recognition process, detecting the occurrence time of the next signal polarity of the transient.
7.如权利要求3所述的信号自动识别跟踪软件系统,其特征在于,该自动同步的处理,在同步触发处理之后,令微处理器输出一无线信号接收关闭的信号至无线信号接收器电子开关,以关闭该无线信号接收电路的电源,同时令微处理器进入待机的状态,但每隔该测量半周期的时间间隔,以中断方式自动产生及输出一左液晶快门驱动信号及一右液晶快门驱动信号。 7. Automatic Identification signal tracking software system according to claim 3, wherein the automatic synchronization process, after a synchronization trigger processing, so that the microprocessor outputs a signal to close the received wireless signal to the wireless signal receiver electronics a switch to turn off the power of the radio signal receiving circuit, so that while the microprocessor into the standby state, but every half-cycle of the measurement interval, to interrupt automatically generates and outputs a left signal and a liquid crystal shutter driving the right LCD The shutter driving signal.
8.如权利要求3所述的信号自动识别跟踪软件系统,其特征在于,该信号自动识别跟踪软件系统设定有一可容许自动同步的最大时间范围,令该信号识别的处理、同步触发的处理及自动同步的处理的重复执行的间隔,必须小于该可容许自动同步的最大时间范围,并于重复执行之前,令微处理器输出一无线信号接收开启的信号至无线信号接收器电子开关,以输出该无线信号接收电路所使用的电源。 Automatic identification signal as claimed tracking software processing system of claim 3 synchronous triggering claims, characterized in that the identification signal is automatically set a tracking software system the maximum allowable range of the automatic time synchronization, so that the signal recognition process, and automatic synchronization interval processing is repeatedly executed, must be less than the maximum allowable time synchronization automatically and repeatedly performed before, so that the microprocessor outputs a signal to the electronic switch wireless signal receiver receives a wireless signal is turned to the output power of the wireless signal receiving circuit used.
9.如权利要求3所述的信号自动识别跟踪软件系统,其特征在于,该信号自动识别跟踪软件系统设定有一暂时停止左右液晶快门动作的时间范围,即在该时间范围内如果该信号识别的处理,无法识别出正确的同步信号时,令微处理器输出一电压为零的左液晶快门驱动信号及输出一电压为零的一右液晶快门驱动信号,以停止左右液晶快门的动作。 9. The signal according to claim 3, automatic identification and tracking software, wherein the automatic signal recognition system is set in a tracking software to temporarily stop the operation of the left and right liquid crystal shutter time, i.e., if the signal is identified within the time range when processing can not identify the correct synchronization signal, the microprocessor outputs a voltage is zero so the left driving signal and a liquid crystal shutter right liquid crystal shutter outputs a drive signal voltage is zero, to stop the operation of the left and right liquid crystal shutters.
10.如权利要求3所述的信号自动识别跟踪软件系统中,该信号自动识别跟踪软件系统设定有一自动关闭硬件系统的时间范围,令在该时间范围内如果该信号识别的处理,无法识别出正确的同步信号时,令微处理器输出一无线信号接收关闭的信号至该无线信号接收器电子开关,以关闭该无线信号接收电路所使用的电源,同时令微处理也输出一升压电路关闭的信号至该升压电路电子开关,以关闭该升压电路及液晶快门驱动电路所使用的电源,最后令处理器进入待机状态。 Signal tracking software automatic identification system according to claim 3, the signal tracking software automatic identification system is set in a range of auto-off time of the system hardware, so that if the identification signal is processed within that time can not be recognized when the correct synchronization signal, so that the microprocessor receives output signals off a wireless signal to the wireless signal receiver electronic switch to turn off the power of the radio signal receiving circuit used, so that while the microprocessor also outputs a boost circuit off signal to the electronic switch of the boost circuit, the boost circuit to turn off the power supply and the liquid crystal shutter driving circuit is used, so that finally the processor into a standby state.
11.如权利要求1所述的无线3维眼睛用信号自动跟踪系统,其特征在于,该重新启动开关为一开关,通过一重新启动的动作可重新启动该微处理器,使该微处理器由待机状态进入运作的状态,并令该微处理器输出一无线信号接收开启的信号至该无线信号接收器电子开关,以输出该无线信号接收电路所使用的电源,同时令微处理器也输出一升压电路开启的信号至该升压电路电子开关,以输出该升压电路及液晶快门驱动电路所使用的电源,并令该微处理器开始重复执行信号自动识别跟踪软件系统。 Wireless 3-dimensional eye as claimed in claim 1, characterized in that the signal automatic tracking system, the restart switch is a switch, the microprocessor can be restarted by restarting an operation of the microprocessor from the standby mode to the operation state, and to make the turn signals the microprocessor outputs the received wireless signal to a wireless signal receiver of the electronic switch, the output of the power supply to the radio signal receiving circuit used, but also to make the output of the microprocessor a boosting circuit open signal to the electronic switch boost circuit, the boost circuit to output the power supply and the liquid crystal shutter driving circuit is used, enabling the microprocessor and the signal is re-executed automatic identification system tracking software.
CN 00109691 2000-06-21 2000-06-21 Automatic signal tracking system for wireless 3D glasses CN1330281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 00109691 CN1330281A (en) 2000-06-21 2000-06-21 Automatic signal tracking system for wireless 3D glasses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 00109691 CN1330281A (en) 2000-06-21 2000-06-21 Automatic signal tracking system for wireless 3D glasses

Publications (1)

Publication Number Publication Date
CN1330281A true CN1330281A (en) 2002-01-09

Family

ID=4579796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00109691 CN1330281A (en) 2000-06-21 2000-06-21 Automatic signal tracking system for wireless 3D glasses

Country Status (1)

Country Link
CN (1) CN1330281A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004322A (en) * 2010-08-31 2011-04-06 深圳市晶盛科技有限公司 3D spectacles and energy saving control method and controller of same
CN102045577A (en) * 2010-09-27 2011-05-04 昆山龙腾光电有限公司 Observer tracking system and three-dimensional stereo display system for three-dimensional stereo display
CN102196275A (en) * 2010-03-05 2011-09-21 Tcl集团股份有限公司 Stereoscopic display system and synchronous fault tolerance method thereof
CN102215054A (en) * 2010-04-02 2011-10-12 歌尔声学股份有限公司 3D (three-dimensional) glasses system and signal processing method thereof
CN102262432A (en) * 2011-08-04 2011-11-30 惠州Tcl移动通信有限公司 An intelligent phone Modem System and method for automatically restart after crash
CN102316350A (en) * 2010-07-06 2012-01-11 X6D有限公司 Universal 3D Glasses
CN102338935A (en) * 2010-07-16 2012-02-01 晨星半导体股份有限公司 Display device and related spectacles
CN102360238A (en) * 2011-08-25 2012-02-22 深圳Tcl新技术有限公司 Power-supply control system for 3D (three dimensional) glasses and 3D glasses
CN102368825A (en) * 2011-09-19 2012-03-07 青岛海信电器股份有限公司 Energy-saving control method of 3D glasses
CN102375241A (en) * 2010-08-11 2012-03-14 Tcl集团股份有限公司 Synchronizing signal windowing fault tolerance method of switching type stereo glasses
WO2012083523A1 (en) * 2010-12-21 2012-06-28 海尔集团公司 Eyeglass, shutter eyeglasses, stereoscopic display system
CN102566068A (en) * 2009-05-25 2012-07-11 索尼公司 Synchronization circuits and methods usable in shutter glasses
CN102638700A (en) * 2012-04-11 2012-08-15 深圳Tcl新技术有限公司 Anti-interference method for 3D (three-dimensional) glasses and 3D glasses
CN103096105A (en) * 2011-10-27 2013-05-08 三星电子株式会社 Multiple-view device and control method, display apparatus and control method, and display system
CN103475890A (en) * 2013-09-02 2013-12-25 深圳Tcl新技术有限公司 3D (three-dimensional) glasses and anti-interference method thereof
CN102073140B (en) * 2009-11-25 2015-04-15 歌尔声学股份有限公司 Three-dimensional glasses and control method thereof
US9225974B2 (en) 2011-10-27 2015-12-29 Samsung Electronics Co., Ltd. Multi-view device of display apparatus and control method thereof, and display system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566068A (en) * 2009-05-25 2012-07-11 索尼公司 Synchronization circuits and methods usable in shutter glasses
CN102566068B (en) * 2009-05-25 2014-11-26 索尼公司 Synchronization circuits and methods usable in shutter glasses
CN102073140B (en) * 2009-11-25 2015-04-15 歌尔声学股份有限公司 Three-dimensional glasses and control method thereof
CN102196275A (en) * 2010-03-05 2011-09-21 Tcl集团股份有限公司 Stereoscopic display system and synchronous fault tolerance method thereof
CN102215054A (en) * 2010-04-02 2011-10-12 歌尔声学股份有限公司 3D (three-dimensional) glasses system and signal processing method thereof
CN102215054B (en) * 2010-04-02 2015-04-08 歌尔声学股份有限公司 3D (three-dimensional) glasses system and signal processing method thereof
CN102316350A (en) * 2010-07-06 2012-01-11 X6D有限公司 Universal 3D Glasses
CN102338935B (en) * 2010-07-16 2014-02-12 晨星软件研发(深圳)有限公司 Display device and related spectacles
CN102338935A (en) * 2010-07-16 2012-02-01 晨星半导体股份有限公司 Display device and related spectacles
CN102375241B (en) * 2010-08-11 2013-11-06 深圳Tcl新技术有限公司 Synchronizing signal windowing fault tolerance method of switching type stereo glasses
CN102375241A (en) * 2010-08-11 2012-03-14 Tcl集团股份有限公司 Synchronizing signal windowing fault tolerance method of switching type stereo glasses
CN102004322A (en) * 2010-08-31 2011-04-06 深圳市晶盛科技有限公司 3D spectacles and energy saving control method and controller of same
CN102045577A (en) * 2010-09-27 2011-05-04 昆山龙腾光电有限公司 Observer tracking system and three-dimensional stereo display system for three-dimensional stereo display
CN102045577B (en) * 2010-09-27 2013-03-27 昆山龙腾光电有限公司 Observer tracking system and three-dimensional stereo display system for three-dimensional stereo display
WO2012083523A1 (en) * 2010-12-21 2012-06-28 海尔集团公司 Eyeglass, shutter eyeglasses, stereoscopic display system
CN102262432B (en) * 2011-08-04 2013-08-14 惠州Tcl移动通信有限公司 System and method for automatic rebooting subsequent to crash of Modem of smart phone
CN102262432A (en) * 2011-08-04 2011-11-30 惠州Tcl移动通信有限公司 An intelligent phone Modem System and method for automatically restart after crash
CN102360238A (en) * 2011-08-25 2012-02-22 深圳Tcl新技术有限公司 Power-supply control system for 3D (three dimensional) glasses and 3D glasses
CN102360238B (en) * 2011-08-25 2013-11-20 深圳Tcl新技术有限公司 Power-supply control system for 3D (three dimensional) glasses and 3D glasses
CN102368825B (en) * 2011-09-19 2013-06-26 青岛海信电器股份有限公司 Energy-saving control method of 3D glasses
CN102368825A (en) * 2011-09-19 2012-03-07 青岛海信电器股份有限公司 Energy-saving control method of 3D glasses
CN103096105A (en) * 2011-10-27 2013-05-08 三星电子株式会社 Multiple-view device and control method, display apparatus and control method, and display system
US9225974B2 (en) 2011-10-27 2015-12-29 Samsung Electronics Co., Ltd. Multi-view device of display apparatus and control method thereof, and display system
CN102638700B (en) * 2012-04-11 2015-11-18 深圳Tcl新技术有限公司 3D glasses anti-interference method and 3D glasses
CN102638700A (en) * 2012-04-11 2012-08-15 深圳Tcl新技术有限公司 Anti-interference method for 3D (three-dimensional) glasses and 3D glasses
CN103475890A (en) * 2013-09-02 2013-12-25 深圳Tcl新技术有限公司 3D (three-dimensional) glasses and anti-interference method thereof
CN103475890B (en) * 2013-09-02 2016-09-21 深圳Tcl新技术有限公司 The anti-interference method of 3D glasses and 3D glasses

Similar Documents

Publication Publication Date Title
CN100338945C (en) Flash detecting device and image pickup device
EP0855633B1 (en) Electronic timepiece
US20030193574A1 (en) Imaging device
EP1213818A1 (en) Electronic device method, method of controlling electronic device, method of estimating charge in rechargeable battery, and method of charging rechargeable battery
US7797557B2 (en) Method of and device for detecting a cable connection with a root hub
TW527840B (en) Synchronization of a low power oscillator with a reference oscillator in a wireless communication device utilizing slotted paging
TW480759B (en) Electronic machine, charged electronic machine and control method of electronic machine
JP2003091365A (en) Coordinate input device
JPH10225191A (en) Controller and control method for stepping motor and time measuring unit
US4434363A (en) Photoelectric switching apparatus
EP1026559A1 (en) Electronic watch with generating function
US7638973B2 (en) System for controlling voltage balancing in a plurality of lithium-ion cell battery packs and method thereof
JPH06138512A (en) Camera provided with solar battery
CN1189023C (en) Solid state photographic equipment
EP0782334A2 (en) Telecine signal conversion method and up-converter
CN104794433A (en) Fingerprint recognition system and fingerprint recognition method
EP1004167B1 (en) Method and device for maintaining a time grid defined by a high clock frequency by means of a low clock frequency
TWI283398B (en) Interface device and method for regulating synchronization
TWI635420B (en) Low interference system and method for synchronization, identification and tracking of visual and interactive systems
CN1175574C (en) Circuit arrangement for generating a clock-pulse signal having a frequency synchronous with a reference clock-pulse signal
KR101538498B1 (en) Method and appratus for battery gaging in portable terminal
EP0133574A1 (en) Clock frequency detector
JP2005039307A (en) Method and apparatus for detecting error
JP2000078089A (en) Optical information communication equipment
EP1158481A3 (en) A video display apparatus and display method

Legal Events

Date Code Title Description
C10 Request of examination as to substance
C06 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)