CN1319486C - Non-invasive glucose-meter - Google Patents

Non-invasive glucose-meter Download PDF

Info

Publication number
CN1319486C
CN1319486C CN 02815242 CN02815242A CN1319486C CN 1319486 C CN1319486 C CN 1319486C CN 02815242 CN02815242 CN 02815242 CN 02815242 A CN02815242 A CN 02815242A CN 1319486 C CN1319486 C CN 1319486C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
beam
reference
light source
infrared
wavelength
Prior art date
Application number
CN 02815242
Other languages
Chinese (zh)
Other versions
CN1545394A (en )
Inventor
乔纳森·格利茨
Original Assignee
乔纳森·格利茨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement

Abstract

一种用于测量眼睛(13)中物质的浓度的设备,眼睛具有视网膜(17),该设备包括测量光源(4),测量光源(4)产生具有第一波长的测量光束,该物质在第一波长具有非零的第一吸收系数。 A method of measuring the eye (13) of the concentration of a substance in an apparatus for, with the eye retina (17), the apparatus comprising a measuring light source (4), the measurement light source (4) generating a first measurement beam having a wavelength of the substance in the first a wavelength having a non-zero first absorption coefficient. 该设备进一步包括基准光源(6),基准光源(6)产生具有第二波长的基准光束,该物质在第二波长具有大致等于零的第二吸收系数。 The apparatus further comprises a reference light source (6), the reference light source (6) generating a reference beam having a second wavelength, the substance having a second absorption coefficient substantially equal to zero at a second wavelength. 该设备进一步包括光组合器(1),可以定位光组合器(1),以便视网膜(17)至少回射部分测量光束,而且视网膜(17)至少回射部分基准光束。 The apparatus further comprises an optical combiner (1), may be positioned optical combiner (1), to the retina (17) at least partially retroreflected measuring beam, and the retina (17) at least partially retroreflected reference beam. 该设备进一步包括检测器(9),可以定位检测器(9),以接收回射测量光束和回射基准光束。 The apparatus further comprises a detector (9), may be positioned a detector (9), to receive retroreflected measuring beam and the reference beam retroreflected. 通过产生测量信号,检测器(9)响应具有第一波长的光,而通过产生基准信号,检测器(9)响应具有第二波长的光。 (9) in response to light having a first wavelength by generating a measurement signal, the detector, the reference signal is generated by the detector (9) in response to light having a second wavelength. 该设备进一步包括连接到该检测器的电路。 The apparatus further comprises a detector connected to the circuit. 该电路响应测量信号和基准信号测量眼睛(13)中物质的浓度。 The measurement circuit is responsive to the measurement signal and the reference signal in the concentration of substances in the eye (13).

Description

非侵入式葡萄糖计 Non-invasive glucose meter

技术领域 FIELD

本发明涉及一种用于确定物质的浓度方法和设备,尤其涉及一种用于确定眼睛中的物质浓度的方法和设备。 The present invention relates to a method and apparatus for determining the concentration of substances, particularly to a method and apparatus for determining the concentration of a substance in the eye.

背景技术 Background technique

为了解决非侵入式葡萄糖计的问题,在过去的几十年中,建议了许多系统。 In order to solve the problem of non-invasive glucose meter, in the past few decades, many proposed system.

所有这些系统的主要缺点均是信噪比非常差,这样就需要非常庞大的计算系统,从而产生不一致的而且不可重复的结果。 The main disadvantage of all these systems are very poor signal to noise ratio, thus requiring very large computing systems, resulting in inconsistent and unrepeatable results.

发明内容 SUMMARY

根据本发明实施例的一个方面,一种方法可确定眼中物质的浓度。 According to one aspect of the embodiment of the present invention, a method of determining the concentration of the substance in the eyes. 眼睛具有角膜、瞳孔、虹膜、晶状体、眼液以及视网膜。 Eye having a cornea, a pupil, iris, lens, retina and eye drops. 该方法包括提供具有第一红外波长的测量光束,所述物质在第一红外波长具有非零的第一吸收系数。 The method includes providing a first measuring beam of an infrared wavelength, the substance having a non-zero first absorption coefficient in a first infrared wavelength. 该方法进一步包括提供具有第二红外波长的基准光束,所述物质在第二红外波长具有大致等于零的第二吸收系数。 The method further includes providing a second reference infrared beam having a wavelength, the substance having a second absorption coefficient substantially equal to zero in the second infrared wavelength. 该方法进一步包括利用测量光束照射视网膜,从而使测量光束通过角膜、瞳孔、晶状体以及眼液。 The method further comprises irradiating the retina with the measuring beam, so that the measuring beam through the cornea, pupil, lens and eye drops. 该方法进一步包括利用基准光束照射视网膜,从而使基准光束通过角膜、瞳孔、晶状体以及眼液。 The method further comprises using the reference beam is irradiated retina, so that the reference beam through the cornea, pupil, lens and eye drops. 该方法进一步包括从视网膜至少反射部分测量光束,反射的测量光束通过眼液、晶状体、瞳孔以及角膜,从而产生具有所述第一红外波长的回射测量光束。 The method further comprises measuring beam reflected from the retina at least partially, the measuring beam reflected by the eye drops, the lens, the pupil and the cornea, resulting in retroreflected measuring beam having the first wavelength infrared. 该方法进一步包括从视网膜至少反射部分基准光束,反射的基准光束通过眼液、晶状体、瞳孔以及角膜,从而产生具有所述第二红外波长的回射基准光束。 The method further comprising reflecting at least part of the retina from the reference beam, the reference beam reflected by the eye drops, the lens, the pupil and the cornea, resulting in retroreflected reference beam having the second wavelength infrared. 该方法进一步包括提供检测器,该检测器适于响应具有所述第一红外波长的光的照射,产生测量信号,而且适于响应具有所述第二红外波长的光的照射,产生基准信号。 The method further comprises providing a detector, the detector is adapted in response to said first irradiation light having an infrared wavelength, generating a measurement signal, and adapted to respond to the second illumination light having infrared wavelengths, a reference signal is generated. 该方法进一步包括利用回射测量光束照射检测器。 The method further comprises using a measurement beam retroreflecting detector is irradiated. 该方法进一步包括利用回射基准光束照射检测器。 The method further comprises using the reference beam is irradiated retroreflective detector. 该方法进一步包括根据检测器输出的测量信号和基准信号,确定眼睛内物质的浓度。 The method further comprises the measurement signal and the reference signal outputted from the detector, to determine the concentration of the substance in the eye.

根据本发明的另一个方面,一种设备可测量眼睛中物质的浓度,眼睛具有视网膜。 According to another aspect of the present invention, an apparatus to measure the concentration of substances in the eye, the eye having a retina. 该设备包括测量光源,用于产生具有第一红外波长的测量光束。 The measuring apparatus comprises a light source for generating a measuring beam having a first wavelength infrared. 所述物质对该第一红外波长的光束具有非零的第一吸收系数。 The material of the light beam having the first wavelength infrared non-zero first absorption coefficient. 该设备进一步包括基准光源,用于产生具有第二红外波长的基准光束。 The apparatus further includes a reference source for generating a reference beam having a second infrared wavelength. 所述物质对该第二红外波长的光具有基本等于零的第二吸收系数。 The material of the second infrared light having a second wavelength absorption coefficient substantially equal to zero. 该设备进一步包括光组合器,该光组合器包括分色涂层。 The apparatus further comprises an optical combiner, the optical combiner comprises a dichroic coating. 可以将该光组合器设置在使视网膜至少回射部分测量光束和使视网膜至少回射部分基准光束的位置。 The optical combiner may be provided on the retina at least partially retroreflected measuring beam and at least the retroreflective part of the retina of the reference beam position. 该设备进一步包括检测器,可以将该检测器设置在接收回射测量光束和回射基准光束的位置。 The apparatus further comprises a detector, the detector can be disposed retroreflected measuring beam and the reference beam receiving position retroreflection. 通过产生测量信号,该检测器响应具有所述第一红外波长的光,而通过产生基准信号,该检测器响应具有所述第二红外波长的光。 By generating a measurement signal, which detector in response to the first infrared light having a wavelength, and by generating a reference signal, the detector response to light having the second wavelength infrared. 该设备进一步包括与该检测器相连的电路,该电路响应测量信号和基准信号测量眼睛中物质的浓度。 The apparatus further includes a circuit connected to the detector circuit is responsive to the measurement signal and the reference signal measuring the concentration of substances in the eye.

附图说明 BRIEF DESCRIPTION

图1示出根据本发明优选实施例的非侵入式葡萄糖计的电气-光学结构的原理图;图2示出根据另一个实施例的非侵入式葡萄糖计的电气-光学结构的原理图;图3示出与优选实施例有关的电子电路的原理图。 FIG 1 illustrates a non-invasive glucose electric preferred embodiment of the present invention meter - schematic of the optical configuration; FIG. 2 is shown in accordance with an electrical non-invasive glucose meter in another embodiment - schematic of the optical configuration; FIG. 3 shows a schematic diagram of an electronic circuit according to the preferred embodiment of the embodiment.

具体实施方式 Detailed ways

本发明实施例的一个目的是提供一种非侵入式葡萄糖计,它具有良好信噪比,从而使测量具有一致性、可重复性以及可靠性。 An object of embodiments of the present invention to provide a non-invasive glucose meter which has a good signal to noise ratio, so that the measurement consistent, repeatable and reliable.

本发明实施例的另一个目的是提供这样一种进行非侵入式葡萄糖测量的设备,用户可以简单、容易地操作它,并且该设备体积小而且价格低廉。 Another object of embodiments of the present invention is to provide a non-invasive glucose measurement device, the user can simply and easily operate it, and the apparatus is small and inexpensive.

本发明实施例的进一步目的是提供一种可以在室内、室外以及各种环境下使用的非侵入式葡萄糖计。 A further object of embodiments of the present invention is to provide a non-invasive glucose meter which may be used in indoor and outdoor environments and various.

通过利用眼睛的特性来作为光学设备,可以实现本发明实施例的目的。 By using the properties of the eye as an optical apparatus of the embodiment can achieve the objectives of the present invention. 装备了聚焦装置和焦面的各种光学设备均表现回射现象,即:在入射光束所来自方向的同一个方向上,向后反射该光束。 Various optical apparatus equipped with a focal plane of the focusing means and the retroreflective phenomenon showed that: in the same direction from the direction of the incident light beam, the light beam reflected back. 本发明实施例建议了一种利用眼睛的回射特性,确定眼液(玻璃体)中的葡萄糖浓度或其他物质的浓度的电气-光学设备。 Embodiment of the invention proposes utilizing the retroreflective properties of the eye, to determine the concentration of the electric eye drops (vitreous) glucose concentration, or other materials - the optical device.

该设备的特定实施例至少具有两个红外(IR)发射机,以在眼睛方向发射两个不同波长带。 A specific embodiment of the apparatus having at least two infrared (IR) transmitter to emit two different wavelength bands in the direction of the eye. 其他实施例利用一个宽带发射体和两个窄带滤波器发射不同波长带。 Other embodiments utilize a broadband emitter and two narrow-band emission filters of different wavelength bands. 波段之一位于葡萄糖具有高吸收系数的波长上,另一个波长用作基准。 One wavelength band is located having a glucose high absorption coefficient, the other used as a reference wavelength. 利用基准光束补偿虹膜的变化,从而可以在各种光线条件下使用该系统。 Using the reference beam to compensate changes of the iris, the system can be used under various lighting conditions.

IR检测器与发射体位于同一个光路上,并且利用分束器(光组合器),因此,从眼睛回射的光束向前返回检测器。 IR emitter and detector in the same optical path, and with a beam splitter (optical combiner), therefore, returns back from the eye detector light beam emitted forward.

回射光束两次通过眼睛,首先,通过角膜、晶状体以及眼液(玻璃体),之后聚焦到视网膜上,随后,通过眼液、晶状体以及角膜反射到检测器。 Retroreflected beam through the eye twice, first through the cornea, lens and eye drops (vitreous body), then focuses on the retina, and then, through eye drops, the lens and the corneal reflection to the detector. 因为眼睛内的光路长,所以即使在低浓度的葡萄糖中,吸收信号仍非常显著,吸收信号与(αλx)的指数相关。 Since the optical path length within the eye, even in low concentrations of glucose, the signal is still significant absorption, the absorption signal associated with the index (αλx) a.

吸收的幅度与 The magnitude of the absorption 成正比,其中x是通过吸收介质的光路的长度,而αλ是葡萄糖在波长λ处的吸收系数。 Proportional, where x is the length of the optical path through the absorbing medium, the absorption coefficient αλ glucose at the wavelength λ.

利用来自眼睛、穿过吸收介质内长光路的回射光,本发明的特定实施例可以克服所有先前建议的系统的主要缺陷,而且它本身具有良好信噪比。 Use from the eye through the absorbing medium return light within a long optical path, the particular embodiments of the present invention can overcome the main drawback of all previous suggested systems, and which itself has a good signal to noise ratio. 正如在优选实施例描述的那样,该光学系统简单,而且因为具有良好信噪比,所以对信号进行处理也简单、廉价。 In a preferred embodiment, as described above, the optical system is simple, and because good signal to noise ratio, so the signal processing is also simple and inexpensive.

图1示出根据本发明优选实施例的非侵入式葡萄糖计的电气-光学结构的原理图。 FIG 1 shows an electrical meter according to the non-invasive glucose preferred embodiment of the present invention - a schematic diagram of an optical structure. 光组合器1位于系统10的中心。 An optical combiner 10 in the center of the system. 光组合器1由4层构成:分色涂层2、光学玻璃25、全息分束器3以及护罩玻璃21。 Optical combiner 1 is constituted by four layers: a dichroic coating 2, 25 optical glass, holographic beam splitter 3 and a cover glass 21. 涂覆在光学玻璃25上的分色涂层2的中心波长对应于光源4的波长。 Center wavelength of a dichroic coating on the coated optical glass 25 corresponding to the wavelength of the light source 2 to 4. 光源4、6和11优选是激光二极管,或大功率红外发光二极管。 4, 6 and the light source 11 is preferably a laser diode, or a high-power infrared light emitting diode. 分色涂层2使50-60%的IR光束通过,而以90°角使40-50%的IR光束反射到眼睛13。 2 that the dichroic coating of the IR beam by 50-60%, whereas a 90 ° angle so that 40-50% of the IR beam 13 is reflected to the eye.

在光组合器1的光学玻璃25的另一面,存在全息分束器3,该全息分束器3具有对应于光源6的波长的中心波长。 The other surface of the optical glass of an optical combiner 25, the presence of the holographic beam splitter 3, the holographic beam splitter 3 having a wavelength corresponding to the center wavelength of the light source 6. 该全息分束器使50-60%中心波长的光束通过,而以270°角使40-50%的光束反射到眼睛13。 The holographic beam enables the center wavelength of the light beam by 50-60%, and at 270 ° angle so that 40-50% of the reflected light beam 13 to the eye. 利用透镜5和7使两个光源的光束18接近平行光束。 5 and 7 by the lens 18 of the beam close to a parallel beam of two light sources. 光束18在同一光路上,而且优选具有约2mm的直径。 The same optical path the light beam 18, and preferably has a diameter of about 2mm.

光束18通过角膜14进入虹膜22、晶状体15和眼液16,然后大致聚焦到视网膜上的焦点23。 The light beam 18 through the cornea 14 into the iris 22, lens 15 and drops 16 and substantially focused onto the focal point on the retina 23. 部分光束被视网膜反射,而且因为它是来自同一个焦点23,所以它恰好来自位于光束18的光路上的眼睛,但是方向相反,并利用在光组合器1方向传播的光束19表示它。 The retina is reflected partial light beams, but also because it is a focal point 23 from the same, it is just located on the optical path of the beam 18 from the eye, but in the opposite directions, and the light beam propagating in a direction of the optical combiner 19 is represented. 光束通过眼睛两次,因此吸收介质中的光路是长的,而且吸收信号与(αλx)的指数相关,它比已经建议的任何其他方法中的吸收信号都强得多。 Two light beams through the eye, the absorption medium in the optical path is long, and the absorption signals associated with the index (αλx), the absorption signal other than any already proposed methods are much stronger. 50-60%的光束19通过分束器3,通过透镜8聚焦到IR检测器9上。 50-60% of the light beam 19 through the beam splitter 3, to focus IR detector 9 through the lens 8. 该检测器可以是硅检测器或PbS检测器,或本技术领域内已知的任何类型的IR检测器。 The detector may be a detector or a silicon detector PbS, or known in the art be any type of IR detector.

为了主要接收回射光束19,而不接收例如角膜反射的、被系统10看作噪声的其他反射光,系统10应该优选位于至少距离眼睛100mm的位置。 Received back to the main light beam 19, for example, without receiving the reflected cornea, the system 10 is regarded as noises other reflected light, the system 10 should preferably be located at least 100mm distance of the eye.

光组合器1的一种替代结构可以是仅具有分色涂层2的光组合器。 An alternative optical combiner may be a structure having only a dichroic coating 2 of the optical combiner. 在该方法中,利用马达12,两个光源4和11改变位置以断续反射光束。 In this method, using the 12, 11 and two light sources 4 motor to change position intermittently reflected beam. 在该变换例中,分色涂层2是用于光源4和11的两个波长的宽带涂层。 In this embodiment the transformation, the dichroic coating layer 2 is a coating for a broadband two-wavelength light source 4 and 11.

图2示出根据本发明另一个实施例的非侵入式葡萄糖计的电气-光学结构的原理图。 FIG 2 shows an electrical non-invasive glucose according to another embodiment of the present invention meter - schematic of the optical configuration. 在该实施例中,仅使用一个宽带光源4,它可以是小型灯泡。 In this embodiment, only a broadband light source 4, which may be a small lamp. 马达11驱动的滤光轮(filter wheel)7用于选择要求的波长。 Filter wheel 11 driven by a motor (filter wheel) 7 to select the required wavelength. 在为了分析葡萄糖浓度或其他物质的浓度而需要两个以上的波长时,该实施例具有优势。 When more than two wavelengths to analyze the concentrations of glucose or other materials is required, this embodiment has an advantage.

图3示出与本发明的优选实施例有关的电子电路的原理图。 Figure 3 shows a schematic embodiment of an electronic circuit associated with the preferred embodiment of the present invention. 中央处理单元(CPU)1,例如日本的Epson公司生产的Epson 6200控制该系统的运行过程。 A central processing unit (CPU) 1, for example, Japanese Epson Corporation Epson 6200 produced during the operation of the control system.

利用开关3接通该电路,从而将优选为锂电池的电源16连接到该电路。 3 is turned on by the switching of the circuit, so that the lithium battery power supply 16 is preferably connected to the circuit. 经过自检后,CPU使“准备就绪”显示在诸如液晶显示器(LCD)的显示单元2上。 After self-test, CPU so that the "Ready" is displayed on the display unit such as liquid crystal display (LCD) 2. 为了进行测量,启动开关4。 For measurement start switch 4. 然后,CPU开始测量过程。 Then, CPU start the measurement process. 在一替代实施例中,它顺序地通过放大器10启动光源15、通过放大器11启动光源14以及通过放大器12启动马达13。 In an alternative embodiment, it sequentially passes through the amplifier 10 to start a light source 15, a light source 14 through the amplifier 11 and to start the starter motor 13 via an amplifier 12. IR检测器5将眼睛的回射光信号变换为电压信号,该电压信号被放大器6放大,然后被滤波器7滤波。 IR detector 5 retroreflected light signal into the eye to a voltage signal, the voltage signal is amplified by an amplifier 6, a filter 7 and then filtered. 模数(A/D)变换器8将该模拟信号变换为数字信号,并由CPU存储。 Analog to digital (A / D) converter 8 converts the analog signal into a digital signal by the CPU is stored. 在收到对应于这两个波长的测量数据后,利用存储在E2PROM 9内的校准参数,CPU根据吸收程度计算葡萄糖的浓度。 After receiving the two wavelengths corresponding to the measurement data using the calibration parameters stored in E2PROM 9, the CPU calculates concentration of glucose in accordance with the degree of absorption.

利用其他波长,同样的结构可以用于测量眼液中其他物质的浓度。 The use of other wavelengths, the same structure can be used to measure the concentration of other substances in eye drops.

尽管根据特定优选实施例对本发明进行了描述,但是对于本技术领域内的普通技术人员,其他实施例也是显而易见的,包括不具有在此描述的全部特征和优点的实施例,它们也在本发明范围内。 Although embodiments in accordance with certain preferred according to the present invention has been described, but those of ordinary skill in the art, other embodiments are apparent, including an embodiment without all of the features and advantages described herein, which are also the present invention range. 因此,应由所附权利要求来确定本发明范围。 Therefore, by the appended claims to determine the scope of the present invention.

Claims (21)

  1. 1.一种用于确定眼睛中物质的浓度的方法,所述眼睛具有角膜、瞳孔、虹膜、晶状体、眼液以及视网膜,该方法包括:提供具有第一红外波长的测量光束,所述物质在所述第一红外波长具有非零的第一吸收系数;提供具有第二红外波长的基准光束,所述物质在所述第二红外波长具有基本等于零的第二吸收系数;利用测量光束照射所述视网膜,从而使所述测量光束通过所述角膜、瞳孔、晶状体以及眼液;利用基准光束照射所述视网膜,从而使所述基准光束通过所述角膜、瞳孔、晶状体以及眼液;所述视网膜至少反射部分测量光束,反射的测量光束通过眼液、晶状体、瞳孔以及角膜,从而产生具有第一红外波长的回射测量光束;视网膜至少反射部分所述基准光束,反射的基准光束通过眼液、晶状体、瞳孔以及角膜,从而产生具有所述第二红外波长的回 A method for concentration of substances in the eye for determining an eye having a cornea, a pupil, iris, lens, retina and eye drops, the method comprising: providing a first measuring beam of an infrared wavelength, the substance the first infrared wavelength having a non-zero first absorption coefficient; providing a reference beam having a second infrared wavelength, the substance having a second absorption coefficient substantially equal to zero in the second infrared wavelength; said light beam irradiated measurement retina, so that the measuring beam through the cornea, pupil, lens and eye drops; the retina irradiated with the reference beam, such that the reference beam through the cornea, pupil, lens and eye drops; at least the retina the reflected portion of the measurement beam, the measuring beam reflected by the eye drops, the lens, the pupil and the cornea, thereby producing a first retroreflected measuring beams having infrared wavelengths; retinal least partially reflecting the reference beam, the reference beam reflected by the eye drops, the lens , the pupil and the cornea, thereby producing a second infrared wavelength back 基准光束;提供检测器,该检测器适于响应具有所述第一红外波长的光的照射,产生测量信号,和适于响应具有所述第二红外波长的光的照射,产生基准信号;利用所述回射测量光束照射所述检测器;利用所述回射基准光束照射所述检测器;以及根据所述检测器输出的测量信号和基准信号,确定所述眼睛内物质的浓度。 Reference beam; providing a detector, the detector is adapted in response to said first irradiation light having an infrared wavelength, generates a measurement signal, and adapted to respond to said second irradiation light having an infrared wavelength, generating a reference signal; using the retroreflective measurement beam irradiates the detector; using the retroreflective irradiating the reference beam detector; and a substance concentration measurement of the eye and reference signals output from the detector, is determined in accordance with.
  2. 2.根据权利要求1所述的方法,其中所述物质包括葡萄糖。 2. The method according to claim 1, wherein the substance comprises glucose.
  3. 3.根据权利要求1所述的方法,其中由第一红外光源提供所述测量光束,而由第二红外光源提供所述基准光束。 3. The method according to claim 1, wherein said infrared light source provided by the first measurement beam, the reference beam is provided by a second infrared light source.
  4. 4.根据权利要求3所述的方法,其中所述第一红外光源包括激光二极管或红外发光二极管。 4. The method according to claim 3, wherein the first infrared light source comprises a laser diode or an infrared light emitting diode.
  5. 5.根据权利要求3所述的方法,其中所述第二红外光源包括激光二极管或红外发光二极管。 5. The method according to claim 3, wherein the second infrared light source comprises a laser diode or an infrared light emitting diode.
  6. 6.根据权利要求1所述的方法,其中由宽带光源提供所述测量光束,并且由该宽带光源提供所述基准光束。 6. The method according to claim 1, wherein the broadband light source providing the measuring beam and the reference beam provided by this broadband light source.
  7. 7.根据权利要求6所述的方法,其中通过第一带通滤光器发射所述测量光束,而通过第二带通滤光器发射所述基准光束。 7. The method according to claim 6, wherein the measuring beam emitted by the first bandpass filter, and the reference beam emitted by a second band pass filter.
  8. 8.根据权利要求1所述的方法,其中所述测量光束与所述回射测量光束基本平行,而且所述基准光束与所述回射基准光束基本平行。 8. The method according to claim 1, wherein said measuring beam and measuring the retroreflective substantially parallel light beams and the reference beam and the reference beam substantially parallel to the retroreflective.
  9. 9.根据权利要求1所述的方法,其中所述对物质的浓度的确定对虹膜的变化不敏感。 9. The method according to claim 1, wherein said determining a change of the concentration of the substance is not sensitive to the iris.
  10. 10.一种用于测量具有视网膜的眼睛中的物质浓度的设备,该设备包括:测量光源,产生具有第一红外波长的测量光束,所述物质对所述第一红外波长的光束具有非零的第一吸收系数;基准光源,产生具有第二红外波长的基准光束,所述物质对所述第二红外波长的光具有基本等于零的第二吸收系数;光组合器,包括分色涂层,可以定位该光组合器,以便所述视网膜至少回射部分测量光束,并且所述视网膜至少回射部分基准光束;检测器,可以定位该检测器,以接收所述回射测量光束和所述回射基准光束,通过产生测量信号,该检测器响应具有所述第一红外波长的光,而通过产生基准信号,该检测器响应具有所述第二红外波长的光;以及电路,连接到所述检测器,该电路响应所述测量信号和所述基准信号来测量所述眼睛中物质的浓度。 10. A method for measuring the concentration of a substance having a device in the retina of the eye, the apparatus comprising: a measurement light source, generating a first measurement beam having an infrared wavelength, the substance having a non-zero flux of the first wavelength infrared a first absorption coefficient; a reference light source, generating a reference beam having a second infrared wavelength, said second material having a substantially zero coefficient of absorption for infrared light of the second wavelength; optical combiner, comprising a dichroic coating, the optical combiner may be positioned so that the retina at least partially retroreflected measuring beam and the reference beam at least partially retinal retroreflector; detector, the detector may be positioned to receive the retroreflected measuring beam and the return outgoing reference beam, a measurement signal is generated by the detector in response to the first infrared light having a wavelength, and by generating a reference signal, the detector response to light having the second wavelength infrared; and a circuit connected to the detector, which circuit is responsive to the measurement signal and the reference signal to measure the concentration of substances in the eye.
  11. 11.根据权利要求10所述的设备,其中所述物质包括葡萄糖。 11. The apparatus of claim 10, wherein the substance comprises glucose.
  12. 12.根据权利要求10所述的设备,其中所述光组合器进一步包括光学玻璃层、全息分束器层以及护罩玻璃层。 12. The apparatus according to claim 10, wherein said optical combiner comprises a further layer of an optical glass, holographic beam splitter layer and a cover glass layer.
  13. 13.根据权利要求10所述的设备,该设备进一步包括与所述测量光源和基准光源相连的马达。 13. The apparatus according to claim 10, the apparatus further comprising a motor coupled to the measuring light and the reference light.
  14. 14.根据权利要求10所述的设备,其中所述测量光源包括第一红外光源,所述基准光源包括第二红外光源。 14. The apparatus according to claim 10, wherein said measurement light source comprises a first infrared light source, the second light source comprises an infrared reference source.
  15. 15.根据权利要求14所述的设备,其中所述第一红外光源包括激光二极管或红外发光二极管。 15. The apparatus according to claim 14, wherein the first infrared light source comprises a laser diode or an infrared light emitting diode.
  16. 16.根据权利要求14所述的设备,其中所述第二红外光源包括激光二极管或红外发光二极管。 16. Apparatus according to claim 14, wherein the second infrared light source comprises a laser diode or an infrared light emitting diode.
  17. 17.根据权利要求10所述的设备,其中所述测量光源包括宽带光源,所述基准光源包括宽带光源。 17. The apparatus according to claim 10, wherein said measurement light source comprises a broadband light source, the reference light source comprises a broadband light source.
  18. 18.根据权利要求17所述的设备,其中通过所述第一带通滤光器发射所述测量光束,而通过所述第二带通滤光器发射所述基准光束。 18. The apparatus according to claim 17, wherein said measuring beam through said first band pass emission filter, while the reference beam emitted by said second band pass filter.
  19. 19.根据权利要求10所述的设备,其中所述测量光束与所述回射测量光束基本平行,所述基准光束与所述回射基准光束基本平行。 19. The apparatus according to claim 10, wherein said measuring beam and measuring the retroreflective substantially parallel light beam, the reference beam and the reference beam substantially parallel to the retroreflective.
  20. 20.根据权利要求10所述的设备,其中所述电路包括中央处理单元(CPU)、存储器和显示器。 20. The apparatus according to claim 10, wherein said circuit comprises a central processing unit (CPU), a memory and a display.
  21. 21.根据权利要求10所述的设备,其中所述电路进一步连接到所述测量光源和所述基准光源。 21. The apparatus according to claim 10, wherein said circuit is further connected to the measuring light and the reference light source.
CN 02815242 2001-08-02 2002-08-01 Non-invasive glucose-meter CN1319486C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US30960401 true 2001-08-02 2001-08-02

Publications (2)

Publication Number Publication Date
CN1545394A true CN1545394A (en) 2004-11-10
CN1319486C true CN1319486C (en) 2007-06-06

Family

ID=23198894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02815242 CN1319486C (en) 2001-08-02 2002-08-01 Non-invasive glucose-meter

Country Status (5)

Country Link
US (3) US7308293B2 (en)
EP (1) EP1418840B1 (en)
JP (2) JP4494779B2 (en)
CN (1) CN1319486C (en)
WO (1) WO2003012486A3 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319486C (en) 2001-08-02 2007-06-06 乔纳森·格利茨 Non-invasive glucose-meter
CA2418399A1 (en) * 2002-02-11 2003-08-11 Bayer Healthcare, Llc Non-invasive system for the determination of analytes in body fluids
GB2407378B (en) 2003-10-24 2006-09-06 Lein Applied Diagnostics Ltd Ocular property measuring apparatus and method therefor
GB2409033B (en) * 2003-12-12 2006-05-24 Lein Applied Diagnostics Ltd Extended focal region measuring apparatus and method
JP5001934B2 (en) * 2005-04-15 2012-08-15 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Noninvasive system and method for measuring body glucose
US8452365B2 (en) * 2005-05-25 2013-05-28 Bayer Healthcare Llc Methods of using Raman spectral information in determining analyte concentrations
US7603151B2 (en) * 2006-08-22 2009-10-13 Bayer Healthcare Llc Non-invasive methods of using spectral information in determining analyte concentrations
EP2077748A2 (en) * 2006-08-22 2009-07-15 Bayer Healthcare, LLC A method for correcting a spectral image for optical aberrations using software
GB2451443B (en) 2007-07-30 2012-12-26 Lein Applied Diagnostics Ltd Optical measurement apparatus and method therefor
JP5200518B2 (en) * 2007-12-07 2013-06-05 株式会社豊田中央研究所 Intraocular substance measuring device
GB2457302B (en) 2008-02-11 2013-04-10 Lein Applied Diagnostics Ltd Measurement apparatus and method therefor
US9164073B1 (en) 2008-02-11 2015-10-20 Pavel Nosovitskiy Multi-functional, discrete determination of concentrations of gases in a gaseous mixture
US8219169B2 (en) * 2008-02-11 2012-07-10 Glucovista Inc. Apparatus and method using light retro-reflected from a retina to non-invasively measure the blood concentration of a substance
US8185325B2 (en) * 2008-02-11 2012-05-22 Pavel Nosovitskiy Multi-functional, discrete and mutually exclusive method for determining concentrations of gases in a gaseous mixture
US20110004080A1 (en) * 2008-04-11 2011-01-06 Glucovista, Llc Method for non-invasive analysis of a substance concentration within a body
US8611975B2 (en) * 2009-10-28 2013-12-17 Gluco Vista, Inc. Apparatus and method for non-invasive measurement of a substance within a body
US8903466B2 (en) 2009-10-28 2014-12-02 Glucovista Inc. Apparatus and method for non-invasive measurement of a substance within a body
US8380270B2 (en) * 2010-01-26 2013-02-19 Chromologic Llc Non-invasive ocular monitoring
US8452362B2 (en) * 2010-01-26 2013-05-28 Chromologic Llc Method and system for monitoring hydration
CN103025538B (en) 2010-05-07 2016-08-10 博威系统有限责任公司 For one or more items inserted into the apparatus and method in a mobile cap
WO2012109116A3 (en) 2011-02-07 2013-04-25 Quantum Catch Corporation Noninvasive eye-property monitoring, including aqueous-humor glucose monitoring as an indication of blood glucose level
US9247876B2 (en) 2011-03-02 2016-02-02 Brien Holden Vision Diagnostics, Inc. Ocular fundus camera system and methodology
CN103908264B (en) * 2012-12-28 2016-05-11 台医光电科技股份有限公司 Non-invasive glucose monitoring device
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
US9696254B2 (en) * 2015-04-12 2017-07-04 Taiwan Biophotonic Corporation Device and method for alignment
CN105445237B (en) * 2015-12-31 2018-01-05 哈尔滨工业大学 A method for measuring liquid absorption coefficient under electric fields.
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389A (en) * 1852-11-09 Steering submarine vessels
US3958560A (en) 1974-11-25 1976-05-25 Wayne Front March Non-invasive automatic glucose sensor system
US4014321A (en) 1974-11-25 1977-03-29 March Wayne F Non-invasive glucose sensor system
US4877322A (en) 1987-04-30 1989-10-31 Eyedentify, Inc. Method and apparatus for measuring blood oxygen levels in selected areas of the eye fundus
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
US5318022A (en) 1991-03-01 1994-06-07 John Taboada Method and apparatus for determining hemoglobin oxygenation such as in ocular and other vascular beds
JP3093871B2 (en) 1991-05-22 2000-10-03 三井金属鉱業株式会社 Optical blood glucose level non-destructive measuring apparatus
US5433197A (en) 1992-09-04 1995-07-18 Stark; Edward W. Non-invasive glucose measurement method and apparatus
US5560356A (en) 1994-02-23 1996-10-01 Vitrophage, Inc. Diagnostic system and method using an implanted reflective device
US5523883A (en) * 1994-03-22 1996-06-04 Kigre, Inc. Field adjustable beam splitter
US5774213A (en) 1995-04-21 1998-06-30 Trebino; Rick P. Techniques for measuring difference of an optical property at two wavelengths by modulating two sources to have opposite-phase components at a common frequency
US5743262A (en) * 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
JP3592416B2 (en) 1995-10-31 2004-11-24 晃敏 吉田 Apparatus for measuring intraocular substance
DE69633377T2 (en) 1995-12-13 2005-09-22 Yoshida, Akitoshi, Asahikawa Device for indicating intraocular substances by measuring the reflected light from the eye
JP3599878B2 (en) * 1996-03-01 2004-12-08 テルモ株式会社 Blood glucose meter
JPH09308623A (en) 1996-05-24 1997-12-02 Hitachi Ltd Non-invasive biochemical measuring instrument
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
US5776060A (en) 1997-02-20 1998-07-07 University Of Alabama In Huntsville Method and apparatus for measuring blood oxygen saturation within a retinal vessel with light having several selected wavelengths
US6574501B2 (en) 1998-07-13 2003-06-03 Childrens Hospital Los Angeles Assessing blood brain barrier dynamics or identifying or measuring selected substances or toxins in a subject by analyzing Raman spectrum signals of selected regions in the eye
US6853854B1 (en) 1998-09-18 2005-02-08 Q Step Technologies, Llc Noninvasive measurement system
US6134458A (en) * 1998-12-15 2000-10-17 Futrex Inc. Light probe for a near-infrared body chemistry measurement instrument
US6542134B1 (en) 1999-03-24 2003-04-01 Intel Corporation Projection system
US6305804B1 (en) 1999-03-25 2001-10-23 Fovioptics, Inc. Non-invasive measurement of blood component using retinal imaging
US6494576B1 (en) 1999-09-30 2002-12-17 L'esperance, Jr. Francis A. Method and apparatus for spectrophotometry of the eye
US6494578B1 (en) * 2000-07-13 2002-12-17 The Regents Of The University Of California Virtual reality peripheral vision scotoma screening
US7039446B2 (en) 2001-01-26 2006-05-02 Sensys Medical, Inc. Indirect measurement of tissue analytes through tissue properties
CN1319486C (en) 2001-08-02 2007-06-06 乔纳森·格利茨 Non-invasive glucose-meter
US6998247B2 (en) 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US6895264B2 (en) 2002-08-26 2005-05-17 Fovioptics Inc. Non-invasive psychophysical measurement of glucose using photodynamics
US20040049389A1 (en) * 2002-09-10 2004-03-11 Paul Marko Method and apparatus for streaming text to speech in a radio communication system
US6968222B2 (en) 2003-05-02 2005-11-22 Oculir, Inc. Methods and device for non-invasive analyte measurement
US6958039B2 (en) 2003-05-02 2005-10-25 Oculir, Inc. Method and instruments for non-invasive analyte measurement
US6975892B2 (en) 2003-10-21 2005-12-13 Oculir, Inc. Methods for non-invasive analyte measurement from the conjunctiva

Also Published As

Publication number Publication date Type
JP2004537356A (en) 2004-12-16 application
JP4494779B2 (en) 2010-06-30 grant
US7643859B2 (en) 2010-01-05 grant
US8364219B2 (en) 2013-01-29 grant
WO2003012486A3 (en) 2003-10-23 application
JP2010051815A (en) 2010-03-11 application
EP1418840B1 (en) 2011-11-16 grant
EP1418840A4 (en) 2005-12-07 application
US20100152558A1 (en) 2010-06-17 application
US20040260159A1 (en) 2004-12-23 application
CN1545394A (en) 2004-11-10 application
US20080111971A1 (en) 2008-05-15 application
US7308293B2 (en) 2007-12-11 grant
EP1418840A2 (en) 2004-05-19 application
WO2003012486A2 (en) 2003-02-13 application

Similar Documents

Publication Publication Date Title
US5581356A (en) High purity tunable forensic light source
US4863261A (en) Method of and apparatus for measuring the extent of clouding of the lens of a human eye
US4877322A (en) Method and apparatus for measuring blood oxygen levels in selected areas of the eye fundus
US20040141184A1 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
US3229564A (en) Reflectometer
US4449535A (en) Apparatus for measuring in situ the state of oxidation-reduction of a living organ
US5608520A (en) Plasma emission spectroscopy method of tumor therapy
US6758563B2 (en) Eye-gaze tracking
US5657116A (en) Ocular lens measuring apparatus
US3783874A (en) Method and apparatus for effecting photo-coagulation
US6264328B1 (en) Wavefront sensor with off-axis illumination
US6796710B2 (en) System and method of measuring and controlling temperature of optical fiber tip in a laser system
US20100051808A1 (en) Imaging System Using Infrared Light
US20060281982A1 (en) Method and apparatus for the non-invasive sensing of glucose in a human subject
US6226089B1 (en) Method of and system for measuring glucose concentration
Vos et al. Absolute spectral reflectance of the fundus oculi
US20160081547A1 (en) Eye tracking and gaze fixation detection systems, components and methods using polarized light
CN1694644A (en) Optical mapping apparatus with adjustable depth resolution and multiple functionality
WO1992017765A1 (en) Method and apparatus for glucose concentration monitoring
US7835074B2 (en) Mini-scope for multi-directional imaging
US6572229B2 (en) Back projection visual field tester
US7292323B2 (en) Optical fiber detection method and system
US6952435B2 (en) Speckle free laser probe beam
US4434800A (en) Tympanometric apparatus
US20040239942A1 (en) Optical coherence tomography device

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C41 Transfer of the right of patent application or the patent right
ASS Succession or assignment of patent right

Owner name: GLUCOVISTA LLC

Free format text: FORMER OWNER: JONATHAN GERLITZ

Effective date: 20140522