CN1319146C - Integration of ald tantalum nitride and alpha-phase tantalum for copper metallization application - Google Patents

Integration of ald tantalum nitride and alpha-phase tantalum for copper metallization application Download PDF

Info

Publication number
CN1319146C
CN1319146C CN 02821269 CN02821269A CN1319146C CN 1319146 C CN1319146 C CN 1319146C CN 02821269 CN02821269 CN 02821269 CN 02821269 A CN02821269 A CN 02821269A CN 1319146 C CN1319146 C CN 1319146C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
tantalum
copper
ald
application
nitride
Prior art date
Application number
CN 02821269
Other languages
Chinese (zh)
Other versions
CN1575517A (en )
Inventor
陈岭
仲华
肖恩·M·瑟特尔
迈克尔·X·杨
奚明
文森特·库
吴典晔
艾伦·乌业
诺曼·纳卡希玛
巴里·金
张弘
Original Assignee
应用材料公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4411Cooling of the reaction chamber walls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45582Expansion of gas before it reaches the substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers

Abstract

本发明提供了一种用于在衬底上形成金属互连的方法。 The present invention provides a method for forming a metal interconnect on a substrate. 一方面,本方法包括沉积含难熔金属的阻挡层,所述阻挡层的厚度小于2nm使得其呈现类晶体结构,并足以抑制至少一部分金属层上的原子迁移;通过交替地引入一次或多次含金属化合物的脉冲和一次或多次含氮化合物的脉冲,在至少一部分阻挡层上沉积晶种层;并在至少一部分晶种层上沉积第二金属层来生成互连。 In one aspect, the method comprising depositing a refractory metal barrier layer, the barrier layer has a thickness such that it presents less than 2nm type crystal structure, and is sufficient to inhibit migration of atoms on at least a portion of the metal layer; alternatively by introducing one or more times pulse metal compound-containing nitrogen-containing compound and one or more pulses, depositing a seed layer on at least a portion of the barrier layer; and generating a second interconnect metal layer is deposited on at least a portion of the seed layer.

Description

作为用于铜金属化的阻挡层的原子层沉积氮化钽和α相钽 As the atomic layer deposition of tantalum nitride and α for copper metallization barrier layer to the tantalum

技术领域 FIELD

本发明的实施例涉及用于制备集成电路器件的方法。 Embodiments of the present invention relates to a process for the preparation of an integrated circuit device. 更具体地,本发明的实施例涉及利用一个或多个循环沉积工艺来形成金属互连结构。 More particularly, embodiments of the invention relate to using one or more cyclic deposition process to form a metal interconnect structure.

背景技术 Background technique

由于集成电路(IC)器件的结构尺寸按比例降至亚1/4微米的范围,所以电阻和电流密度已成为急需考虑并改善的因素。 Since the structural size of integrated circuits (IC) devices to scale down to sub-quarter micron range, the resistance and the current density has become an urgent need to consider factors and improved. 多层互连结构提供了贯穿IC器件的导电路径,其中的IC器件被形成在高宽比(aspect ratio)较高的构造(feature)中,包括接头、插塞、通孔、线(line)、导线和其他构造。 Multilayer interconnection structure providing a conductive path through the IC device, wherein the IC device is formed in a high aspect ratio (aspect ratio) higher configuration (feature), including connectors, plugs, vias, line (line) , wires and other structures. 在衬底(substrate)上形成互连的典型方法包括沉积一层或多层,蚀刻其中的至少一层来形成一个或多个构造,在构造中沉积阻挡层,并沉积一层或多层来填满构造。 A typical method of forming an interconnect on a substrate (Substrate) comprises depositing one or more layers, wherein at least one layer etching to form one or more configurations, depositing a barrier layer structure, and one or more layers deposited to fill construction. 通常,构造在设置于下层导电层和上层导电层之间的介电层内形成。 Typically, structure is formed within the dielectric layer is disposed between the lower conductive layer and an upper conductive layer. 互连在构造内形成以连接上层导电层和下层导电层。 Interconnections are formed to connect the upper conductive layer and the lower conductive layer in the structure. 可靠地形成这些互连构造对电路的生成,以及单个衬底和模片(die)上的电路密度和质量的提高是重要的。 Generating circuit, and the circuit density and quality on individual substrates and die (Die) surely form the interconnect fabric are important.

近来,由于铜及其合金的电阻率小于铝,所以铜已成为填充亚微米、高宽比较高的互连构造的首选金属。 Recently, due to the resistivity of copper is less than aluminum and its alloys, it has become the preferred copper metal filling sub-micron, high aspect interconnect structure. 但是,铜更容易扩散进周围的材料内,并能改变相邻层的电子器件特性(例如形成层间的导电路径),从而降低了整个电路的可靠性,并可能导致器件损坏。 However, copper diffuses more readily into the surrounding material, and can change the characteristics of the electronic device (e.g., a conductive path is formed between the layers) an adjacent layer, thereby reducing the reliability of the overall circuit and may result in damage to the device.

因此,在铜金属化之前沉积阻挡层来防止或阻碍铜原子的扩散。 Accordingly, the barrier layer is deposited prior to the copper metallization to prevent or impede the diffusion of copper atoms. 阻挡层通常含有难熔金属,例如钨、钛、钽及其氮化物,所有这些材料的电阻率都大于铜。 The barrier layer generally contains a refractory metal, such as tungsten, titanium, tantalum, and their nitrides, all of these materials have a resistivity greater than copper. 为在构造内沉积阻挡层,阻挡层必须沉积在构造的底面及其侧壁上。 Is deposited in the configuration of the barrier layer, the barrier layer must be deposited on the bottom surface and sidewall configuration. 因此,构造底部上的阻挡层的附加量不仅增加了构造的总电阻,而且成为多层互连结构的上层金属互连和下层金属互连之间的障碍。 Thus, the amount of the additional barrier layer only on the bottom configuration increases the total resistance of the structure, and a barrier between the upper layer and the lower layer metal interconnect metal interconnection multilayer interconnection structure.

因此,需要一种使互连的电阻最小的形成金属互连结构的改进方法。 Accordingly, a need for an improved method of forming a minimum resistance metal interconnect structure interconnects.

发明内容 SUMMARY

本发明提供了一种用于在衬底上形成金属互连的方法。 The present invention provides a method for forming a metal interconnect on a substrate. 一方面,本方法包括沉积含难熔金属的阻挡层,所述阻挡层的厚度呈现类晶体结构,并足以抑制至少一部分金属层上的原子迁移。 In one aspect, the method comprising depositing a refractory metal barrier layer, said barrier layer exhibits a thickness of type crystal structure, and is sufficient to inhibit at least a portion of the metal atoms on the migration layer. 通过交替地引入一次或多次含金属化合物的脉冲和一次或多次含氮化合物的脉冲,在至少一部分阻挡层上沉积晶种层,并在至少一部分晶种层上沉积第二金属层来生成互连。 Alternately generated by introducing one or more metal-containing compound pulse and a pulse of one or more nitrogen-containing compound, depositing a seed layer on at least a portion of the barrier layer, and depositing a second metal layer on at least a portion of the seed layer interconnection.

另一方面,本方法包括在衬底表面上沉积第一金属层;通过交替地引入一次或多次含钛化合物的脉冲、一次或多次含硅化合物的脉冲和一次或多次含氮化合物的脉冲,在至少一部分第一金属层上沉积厚度小于约20埃的钛硅氮化物层;沉积双合金晶种层,并在至少一部分双合金晶种层上沉积第二金属层。 On the other hand, the method includes depositing a first metal layer on the substrate surface; pulsed-containing titanium compound once or several times by alternately introduced, one or more silicon compounds and one pulse or more nitrogen-containing compounds pulse, a thickness of less than about 20 angstroms, of titanium silicon nitride layer is deposited on at least a portion of the first metal layer; two-alloy seed layer is deposited, and depositing a second metal layer on at least a portion of the dual alloy seed layer.

另一方面,本方法还包括在至少一部分金属层上沉积厚度小于约20埃的双层阻挡,沉积双合金晶种层,并在至少一部分双合金晶种层上沉积第二金属层。 Another aspect, the method further comprises depositing a barrier bilayer thickness of less than about 20 angstroms, the two-alloy seed layer is deposited, and depositing a second metal layer on at least a portion of the dual alloy seed layer on at least a portion of the metal layer. 双层阻挡包括通过交替地引入一次或多次含钽化合物的脉冲和一次或多次含氮化合物的脉冲而沉积的第一氮化钽层和第二α相钽层。 A first double barrier layer of tantalum nitride and a second α or tantalum-containing compound comprises a pulse by alternately introducing a plurality of times and a pulse of one or more nitrogen-containing compound and a tantalum layer deposited phase.

另一方面,本方法包括在衬底表面上沉积第一金属层;通过交替地引入一次或多次含钽化合物的脉冲和一次或多次含氮化合物的脉冲,在至少一部分第一金属层上沉积厚度小于约20埃的氮化钽阻挡层;沉积双合金晶种层,其包括铜和选自铝、镁、钛、锆、锡及其组合的金属;并在至少一部分双合金晶种层上沉积第二金属层。 On the other hand, the method includes depositing a first metal layer on the substrate surface; pulse once or tantalum containing compound and the nitrogen-containing compound once or more times the pulse by a plurality of times, alternately, at least a portion of the first metal layer deposited to a thickness of less than about 20 angstroms of tantalum nitride barrier layer; depositing a dual alloy seed layer comprises copper and selected from aluminum, magnesium, titanium, zirconium, tin, and combinations of metals; and at least a portion of the seed layer alloy bis the second metal layer is deposited.

附图说明 BRIEF DESCRIPTION

为能详细地获悉并理解本发明的上述特征,可参照在附图中所说明的其实施例,从而对以上简短概括的本发明进行更具体的描述。 It is able to learn and understand that the above features of the present invention, as described with reference to the accompanying drawings embodiments thereof, the present invention thus briefly summarized above will be more specifically described in detail. 但是,应该注意附图仅说明了本发明的典型实施例,因此不应认为是限制其范围,因为本发明包括其他等效的实施例。 However, it should be noted that the drawings illustrate only typical embodiments of the present invention and are therefore not to be considered limiting of its scope, for the invention includes other equally effective embodiments.

图1图示了根据这里所描述的各种实施例的处理工艺顺序。 FIG 1 illustrates a process order of processing in accordance with various embodiments described herein.

图2A-2D是根据这里所描述的实施例的互连制备的不同阶段的示例性晶片的示意性横截面视图。 Figures 2A-2D are schematic cross-sectional view of an exemplary wafer according to the different stages of the manufacturing interconnected embodiment described herein.

图3图示了根据这里所描述循环沉积技术用来形成薄阻挡层的示例性处理室200的示意性部分横截面。 FIG 3 illustrates a schematic partial cross-section of an exemplary processing chamber deposition techniques for forming a thin circular barrier layer 200 in accordance with the description herein.

图4图示了适于进行这里所描述的互连制备顺序的示例性集束工具的示意性平面图。 FIG 4 illustrates a schematic plan view suitable for an exemplary cluster tool serially interconnected described herein.

图5是其中具有根据这里所描述的沉积技术而沉积的氮化钛阻挡层的构造的透射电子显微镜(TEM)图像。 FIG 5 is a barrier layer having a titanium nitride deposited according to the techniques described herein and deposited structure of a transmission electron microscope (TEM) image.

图6是表示多层互连结构的部分横截面视图的TEM图像。 FIG 6 is a TEM image showing a partial cross-sectional view of a multilayer interconnection structure.

具体实施方式 detailed description

本发明提供了形成一个或多个互连结构的工艺过程序列。 The present invention provides a process sequence of forming one or a plurality of interconnect structures. 与现有技术的互连相比较,根据这里所描述的实施例而形成的互连结构具有更低的总电阻率和更好的电性能,尤其适用于制造存储器以及集成电路制备中用到的逻辑结构。 Compared with the prior art interconnect, an interconnect structure in accordance with embodiments described herein is formed having a lower resistivity and better overall electrical performance, especially used for the manufacture of an integrated circuit memory, and the preparation of logical structure. 所述互连结构的形成包括至少部分沉积在底层(underlying)金属层上的薄阻挡层、至少部分沉积在所述阻挡层上的晶种层、以及至少部分沉积在所述晶种层上的本体金属层的形成。 The interconnect structure comprises forming at least a portion of the thin barrier layer is deposited on the bottom layer (the underlying) layer of metal, at least part of the seed layer is deposited on the barrier layer, and at least partially deposited on the seed layer bulk metal layer is formed. 这里所用的术语“互连”指集成电路内形成的任意导电路径。 As used herein, the term "interconnection" refers to any electrically conductive path is formed within an integrated circuit. 这里所用的术语“本体金属(bulkmetal)”指相对于用来形成互连结构所沉积的其他金属,这里沉积的金属量更大。 As used herein, the term "bulk metal (bulkmetal)" means with respect to the other for forming the deposited metal interconnect structure, a larger amount of metal deposited here.

图1图示了根据本发明的实施例的工艺流程顺序。 FIG 1 illustrates a process sequence according to an embodiment of the present invention. 首先,例如如步骤480所示,薄阻挡层至少部分沉积在底层衬底表面上,例如下层金属互连或金属栅。 First, for example as shown in step 480, a thin barrier layer at least partially deposited on the substrate surface of the base, for example, a metal underlying metal interconnect or gate. 根据这里所描述的循环层沉积技术进行阻挡层沉积,以便提供优异的阻挡性能,并允许底层金属层持续生长穿过阻挡层而进入上层金属互连或随后沉积的金属层内。 The metal layer is cyclical layer deposition techniques described herein barrier layer deposition, in order to provide excellent barrier properties, and allowing continued growth of the underlying metal layer through the barrier layer into the upper layer metal interconnection or subsequently deposited. 一方面,阻挡层是含难熔金属层,例如钽、钛和钨,并且可包括难熔金属氮化物材料,例如氮化钽(TaN)。 In one aspect, the barrier layer is a layer containing a refractory metal, such as tantalum, titanium and tungsten, and may include a refractory metal nitride material, such as tantalum nitride (TaN). 另一方面,阻挡层是TaN和α相钽的薄双层。 On the other hand, a thin barrier layer is a bilayer of TaN and α phase Ta. 另一方面,阻挡层还可以是由含难熔金属的化合物、含硅化合物和含氮化合物而形成的三元材料。 On the other hand, the barrier layer may also be a ternary material containing refractory metal compound, a silicon-containing compound and a nitrogen-containing compound is formed. 阻挡层也可作为后续的金属化过程的润湿层、粘合层或胶层。 The barrier layer may also be used as the subsequent wetting layer metallization process, the adhesive layer or adhesive layer.

这里所用的“薄层”指沉积在衬底表面上的材料层,厚度小于约20埃或更少,例如约10。 As used herein, "sheet" means a layer of material deposited on the substrate surface, a thickness of less than about 20 Angstroms or less, for example about 10. 阻挡层的厚度如此薄以致相邻的金属互连的电子能够隧穿过阻挡层。 The thickness of the barrier layer is so thin that electrons adjacent metal interconnects can be tunnel through the barrier layer. 因此,阻挡层通过降低总电阻率,提供优良的器件可靠性从而显著提高了金属互连的电性能。 Accordingly, the barrier layer is formed by reducing the overall resistivity provides excellent device reliability, thereby significantly improving the electrical properties of the metal interconnects.

根据这里所述的循环沉积方法而沉积的薄阻挡层显示出外延生长的现象。 The cyclic deposition process described herein and a thin barrier deposition layer exhibits epitaxial growth phenomenon. 换句话说,阻挡层呈现与底层相同或基本相同的结晶特性。 In other words, the underlying barrier layer exhibit the same or substantially the same crystalline properties. 结果,生长出的基本是单晶,使得阻挡层和底层之间的界面没有空隙形成。 As a result, substantially a single crystal grown, such that the interface between the barrier layer and the underlayer without void formation. 同样,随后沉积在阻挡层上的金属层呈现相同或基本相同的外延生长特性,即继续形成单晶。 Similarly, the metal layer is then deposited on the barrier layer exhibits the same or substantially the same epitaxial growth characteristics, i.e., continue to form a single crystal. 因此,在这个界面处没有生成空隙。 Therefore, no void is generated at this interface. 所得的类似单晶的结构消除了空隙的形成,从而显著增加了器件的可靠性。 The resulting single crystal structures similar to eliminate void formation, thereby significantly increasing the reliability of the device. 单晶结构在仍能提供优异的阻挡性能的同时,还减小了互连的总电阻。 In the single crystal structure still providing excellent barrier properties while also reducing the overall resistance of the interconnect. 而且,我们相信由于互连材料界面上相似且均匀的晶体取向,单晶的生长减小了对电迁移和应力迁移的敏感度。 Moreover, since we believe that a similar interface on the interconnect material and uniform crystal orientation, crystal growth reduces the sensitivity of electromigration and stress migration.

这里所用的“循环沉积”指连续地引入两种或多种反应性化合物以在衬底表面上沉积出单层材料。 As used herein, "cyclical deposition" refers continuously introducing two or more reactive compounds to deposit a single layer of material on the substrate surface. 这两种或多种反应性化合物是交替地引入处理室的反应区的。 The two or more reactive compounds are alternatively introduced into a reaction zone of the process chamber. 通过时间延迟来分开各种反应性化合物,以使每种化合物粘附在衬底表面上并/或在衬底表面上反应。 By delaying the time to separate the various reactive compound, so that each compound to adhere and / or react on the substrate surface on the substrate surface. 一方面,第一前体或化合物A被脉冲输入反应区内后,进行第一时间延迟。 After one aspect, a first precursor or compound A is pulsed into the reaction zone, a first time delay. 接着,第二前体或化合物B被脉冲输入反应区内后,进行第二时间延迟。 Next, a second precursor or compound B is pulsed input after the reaction zone, a second time delay. 如果例如钛硅氮化物的三元材料是所期望的,则例如第三化合物(C)被定量/脉冲输入反应区内后,进行第三时间延迟。 If, for example, titanium silicon nitride ternary material is desired, then a third example, the compound (C) is dosed / pulsed into the reaction zone after, a third time delay. 在每次时间延迟期间,例如氩气的惰性气体被引入处理室内,来清洗反应区或去除反应区的任意残留反应性化合物。 During each time delay an inert gas such as argon is introduced into the processing chamber to purge the reaction zone or remove any residual reactive compound in the reaction zone. 或者,清洗气在整个沉积过程中可连续地流动,使得在反应性化合物脉冲输入之间的时间延迟期间仅有清洗气流动。 Alternatively, the purge gas may flow continuously throughout the deposition process, such that the time between the pulse input reactive compounds purge gas only flows during the delay. 反应性化合物被交替地脉冲输入,直至在衬底表面上形成所期望的膜或膜层厚度。 Reactive compounds are alternatively pulsed input, until a desired film or film thickness on the substrate surface.

这里所用的“衬底表面”指在其上进行膜处理的任意衬底表面。 "Substrate surface" as used herein refers to any treatment of the substrate surface film thereon. 例如,取决于应用,衬底表面可包括硅、硅氧化物、掺杂硅、锗、砷化镓、玻璃、蓝宝石和例如金属、金属氮化物、金属合金和其他导电材料的任意其他材料。 For example, depending on the application, the substrate surface may include silicon, silicon oxide, doped, and a metal, silicon germanium, gallium arsenide any glass, sapphire, nitrides such as metal, metal alloys, and other conductive materials other materials. 衬底表面还可包括例如二氧化硅和碳掺杂硅氧化物的介电材料。 The substrate surface may also include a dielectric material such as silicon dioxide and carbon doped silicon oxide.

这里所用的“脉冲输入”或“定量输入”意指一定量的特定化合物被间歇地或非连续地引入处理室的反应区内。 As used herein, "pulse input" or "quantitative Input" is meant an amount of a particular compound is intermittently or continuously introduced into the reaction zone of the process chamber. 取决于脉冲的持续时间,每次脉冲内的特定化合物的量可随时间变化。 Depends on the pulse duration, the amount of a particular compound within each pulse may vary over time. 每次脉冲的持续时间是可变的,这取决于许多因素,例如所用的处理室的体积容量、耦合到所述处理室的真空系统及特定化合物本身的挥发性/反应性。 Duration of each pulse is variable, depending on many factors, for example, the volume capacity of the process chamber employed, the vacuum system coupled to the volatility of the processing chamber itself and the particular compound / reactivity.

术语“化合物”意在包括一种或多种前体、氧化剂、还原剂、反应物和催化剂,及其组合。 The term "compound" is intended to include one or more precursors, oxidants, reductants, reactants and catalyst, and combinations thereof. 术语“化合物”也意在包括一组化合物,例如当两种或多种化合物同时被引入处理装置时。 The term "compound" is also intended to include a group of compounds, for example, when two or more compounds are simultaneously introduced into the processing apparatus. 例如,一组化合物可包括一种或多种催化剂,以及一种或多种前体。 For example, a group of compounds may include one or more catalysts, and one or more precursors. 术语“化合物”还意在包括例如通过解离或离子化而呈活化态或激发态的一种或多种前体、氧化剂、还原剂、反应物、和催化剂,或其组合。 The term "compound" is also meant to include for example, form an activated state by dissociation or ionization or excitation state of one kind or more precursors, oxidants, reductants, reactants, and catalysts, or combinations thereof.

我们相信在衬底表面上物理吸附、吸附、吸收或化学吸附单层反应物所用的表面吸引力是自限式的,这是因为由于衬底表面具有有限个反应物可利用的位点,所以在给定脉冲期间仅有一个单层被沉积在衬底表面上。 We believe that the physically adsorbed on the substrate surface, adsorption, absorption or chemisorption attractive surface monolayer of reactants used are self-limiting, and it is because the substrate surface has a finite number of sites available to the reactants, the during a given pulse is only a single layer is deposited on the substrate surface. 一旦有限个位点被反应物占据,则反应物的进一步沉积将受阻。 Once the finite number of sites are occupied by the reactants, the reaction was further deposited will be hindered. 可重复这个循环来达到所期望厚度的层。 This cycle can be repeated to achieve the desired layer thickness.

仍参照图1,如步骤485所示的,晶种层至少部分沉积在阻挡层上。 Still referring to FIG. 1, as shown in step 485, the seed layer at least partially deposited on the barrier layer. 可利用任意传统沉积技术,例如化学气相沉积(CVD)、物理气相沉积(PVD)、电镀、或无电镀来沉积晶种层。 It may utilize any conventional deposition technique, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), electroplating, or electroless deposited seed layer. 优选地,晶种层保形地(conformally)沉积在底层阻挡层上,所形成的厚度在约100-500之间。 Preferably, the seed layer conformally (conformally) is deposited on the underlying barrier layer, the thickness is formed between about 100-500. 一方面,晶种层是传统的铜晶种层。 In one aspect, a conventional seed layer is a copper seed layer. 另一方面,晶种层是双合金晶种层。 On the other hand, two-alloy seed layer is a seed layer. 示例性的双合金晶种层包括:1)利用含有未掺杂的铜的目标材料而沉积的未掺杂的铜,2)利用含有约2.0原子百分比的铝的铜-铝目标材料而沉积的含有约2.0原子百分比的铝的铜合金,3)利用含有约2.0原子百分比的锡的铜-锡目标材料而沉积的含有约2.0原子百分比的锡的铜合金,及4)利用含有约2.0原子百分比的锆的铜-锆目标材料而沉积的含有约2.0原子百分比的锆的铜合金。 Exemplary two-alloy seed layer comprising: 1) the use of a copper-containing undoped undoped target material deposited copper, 2) containing about 2.0 atomic percent using copper aluminum - aluminum target material deposited copper-aluminum alloy containing about 2.0 atomic percent, and 3) the use of copper-tin containing about 2.0 atomic percent - tin target material deposited Cu alloys containing about 2.0 atomic percent, and 4) use containing about 2.0 atomic percent zirconium copper - zirconium target material deposited copper alloys containing about 2.0 atomic percent zirconium.

如步骤487所示的,本体金属层至少被部分沉积在晶种层上。 Step, the bulk metal layer is at least partially deposited on the seed layer 487 as shown. 也可利用任意传统沉积技术,例如化学气相沉积(CVD)、物理气相沉积(PVD)、电镀、或无电镀来沉积金属层。 It may be by any conventional deposition technique such as chemical vapor deposition (CVD), physical vapor deposition (PVD), electroplating, or electroless deposited metal layers. 金属层优选包括任意导电材料,例如铝、铜、钨或其组合。 The metal layer preferably comprises any conductive material, such as aluminum, copper, tungsten or combinations thereof.

图2A-2D是在制备的不同阶段的示例性互连结构的示意图。 Figures 2A-2D are a schematic diagram of an exemplary interconnect structure at different stages of preparation. 图2A示出了其上形成有介电层112的底层金属层110。 FIG. 2A shows that the dielectric layer is formed on the underlying metal layer 112 is 110. 图2B示出了至少部分沉积在底层金属层110上的阻挡层130。 2B shows at least partially deposited on the underlying metal layer 110 of the barrier layer 130. 底层金属层110可含有任意导电金属,例如铝、铜、钨或其组合,并且可形成为互连构造的一部分,例如插塞、通孔、接头、线、导线,而且还可作为金属栅电极的一部分。 Underlying metal layer 110 may comprise any conductive metal, e.g., aluminum, copper, tungsten, or combinations thereof, and may be formed as part of the interconnect structure, e.g. plugs, vias, connectors, cable, wire, but also as a metal gate electrode a part of. 图2C示出了至少部分沉积在阻挡层130上的晶种层140,且图2D示出了至少部分沉积在晶种层140上的本体金属层142。 2C shows a seed layer 140 is deposited on at least a portion of the barrier layer 130, and FIG 2D shows the portion of the body at least a metal layer 142 is deposited on the seed layer 140.

参照图2A,介电层112可以是任意介电材料,包括无论是目前已知的或是将要被发现的低介电常数的介电材料(k≤4.0)。 2A, the dielectric layer 112 can be any dielectric material, including both currently known or to be of low dielectric constant dielectric materials found (k≤4.0). 例如,介电层112可以是硅的氧化物或碳掺杂的硅氧化物。 For example, dielectric layer 112 may be silicon oxide or carbon-doped silicon oxide. 利用传统的公知技术,介电层112已被蚀刻来形成其中的构造114。 Using conventional known techniques, dielectric layer 112 has been etched to a structure 114 which is formed. 构造114可以是插塞、通孔、接头、线、导线、或任意其他互连元件。 114 may be configured plugs, vias, connectors, cable, wire, or any other interconnect element. 一般地,构造114具有垂直的侧壁116和底面118,其高宽比约4∶1或更大,例如约6∶1。 Generally, constructed with vertical sidewalls 114 and bottom 116 118, which aspect ratio about 4 or greater, for example about 6. 底面118暴露出下层金属互连110的至少一部分。 At least a portion of the bottom surface 118 to expose the underlying metal interconnect 110.

参照图2B,阻挡层130保形地沉积在构造114的底面118及侧壁116上。 2B, a barrier layer 130 conformally deposited on the bottom surface 118 of structure 114 and the sidewall 116. 优选地,通过向其内设置有衬底的反应区以约100sccm-1000sccm的流速在约1.0秒或更短的时段内提供一个或多个含钽化合物的脉冲,并以约100sccm-1000sccm的流速在约1.0秒或更短的时段内提供一个或多个含氮化合物的脉冲,阻挡层含有沉积厚度小于约20或更薄的氮化钽,优选约10。 Preferably, the reaction zone to which the substrate is disposed about 100sccm-1000sccm flow rate to provide one or more pulses of the tantalum-containing compound within a period of about 1.0 seconds or less, and a flow rate of about 100sccm-1000sccm to a nitrogen-containing compound or a plurality of pulses within a period of about 1.0 second or less, the barrier layer is a deposition thickness of less than about 20 tantalum nitride or less, preferably about 10. 示例性含钽化合物包括:t-丁基亚氨基-三(二乙基氨基)钽(TBTDET);五(乙基甲基氨基)钽(PEMAT);五(二甲基氨基)钽(PDMAT);五(二乙基氨基)钽(PDEAT);t-丁基亚氨基-三(二乙基甲基氨基)钽(TBTMET);t-丁基亚氨基-三(二甲基氨基)钽(TBTDMT);二(环戊二烯基)钽化三氢((Cp)2TaH3);二(甲基环戊二烯基)钽化三氢((CpMe)2TaH3);其衍生物;及其组合。 Exemplary tantalum-containing compound comprising: t- butylimino - tris (diethylamino) tantalum (of TBTDET); pentakis (ethylmethylamino) tantalum (PEMAT); pentakis (dimethylamino) tantalum (PDMAT) ; five (diethylamino) tantalum (PDEAT); t- butylimino - tri (ethylmethylamino) tantalum (TBTMET); t- butylimino - tris (dimethylamino) tantalum ( TBTDMT); bis (cyclopentadienyl) tantalum three of the hydrogen ((Cp) 2TaH3); bis (cyclopentadienyl) tantalum three of the hydrogen ((CpMe) 2TaH3); derivatives; and combinations thereof . 示例性含氮化合物包括:氨;肼;甲基肼;二甲基肼;t-丁基肼;苯肼;偶氮基异丁烷(azoisobutane);叠氮基乙烷;其衍生物;及其组合。 Exemplary nitrogen-containing compounds include: ammonia; hydrazine; methylhydrazine; dimethylhydrazine; T-butylhydrazine; phenylhydrazine; azo group isobutane (azoisobutane); azido-ethane; derivatives thereof; and a combination thereof.

应该理解,这些化合物或任意其他以上未列出的化合物在室温下可以是固体、液体或气体。 It should be understood that the compounds or any other compounds not listed above may be solid at room temperature, liquid, or gas. 例如,PDMAT在室温下是固体,而TBTDET在室温下是液体。 For example, PDMAT is solid at room temperature, but is liquid at room temperature TBTDET. 因此,在引入处理室之前,非气相前体要经过升华或蒸发步骤,而这都是本领域公知的。 Thus, prior to introduction into the processing chamber, via a non-vapor phase precursor for a sublimation or evaporation steps, which are well known in the art. 如本领域公知的,例如氩气、氦气、氮气、氢气或其混合物的载气也可用来帮助将化合物输入处理室内。 As is known in the art, for example, a carrier gas, argon, helium, nitrogen, hydrogen or mixtures thereof can also be used to assist the compound input processing chamber.

按顺序进行每个脉冲输入,并伴随着速度在约200sccm-1000sccm之间的单独的非反应性气体流。 For each input pulse sequence, along with the speed of individual non-reactive gas flow is between about 200sccm-1000sccm. 单独的非反应性气体流可在每个反应性化合物的脉冲输入之间脉冲地输入,或者可在整个沉积过程中连续地引入单独的非反应性气体流。 Separate non-reactive gas stream may enter between pulses of each pulse input reactive compounds, or may be continuously introduced into a separate non-reactive gas flow throughout the deposition process. 无论是脉冲的还是连续的,单独的非反应性气体流起到去除反应区的任意多余反应物的作用,从而防止反应性化合物进行不需要的气相反应,并且也起到去除处理室的任意反应副产物的作用,类似于清洗气。 Whether or continuous, individual non-reactive gas flow acts to remove any excess of reactants in the reaction zone of the pulse, thereby preventing the undesired reaction of the compound gas phase reaction, and also functions as the reaction removing any of the processing chamber action byproducts, similar purge gas. 除了这些作用,连续的非反应性气体的单独流动帮助将反应性化合物脉冲地传输到衬底表面,类似于载气。 In addition to these effects, a single continuous flow of non-reactive gas to help transmit pulsed reactive compound to the substrate surface, similar to the carrier gas. 这里所用的术语“非反应性气体”指不会参与金属层形成的一种气体或气体混合物。 As used herein, the term "non-reactive gas" means a gas or gas does not participate in a mixture of a metal layer formed. 示例性的非反应性气体包括氩气、氦气、氮气、氢气或其组合。 Exemplary non-reactive gas comprises argon, helium, nitrogen, hydrogen, or combinations thereof.

“反应区”意在包括与正在被处理的衬底表面流体连接的任意空间。 "Reaction zone" is intended to include any space connected to the substrate surface of the fluid being processed. 反应区可包括在气源和衬底表面之间的处理室内的任意空间。 The reaction zone may comprise any spatial processing chamber between a gas source and the substrate surface. 例如,反应区包括衬底设置在其中的定量阀下游的任意空间。 For example, the reaction zone comprises any space in which a substrate disposed downstream of the dosing valve.

每次脉冲输入/定量输入的持续时间是可变的,并可被调节,例如可借此来适应处理室的体积容量及与其耦合的真空系统的容量。 The duration of each pulse input / quantitative input is variable and can be adjusted, for example, whereby the capacity to accommodate the volume capacity of the processing chamber and the vacuum system coupled thereto. 此外,化合物的定量输入时间可根据化合物的流速、化合物的压力、化合物的温度、定量阀的类型、所用控制装置的类型、及化合物在衬底表面上的吸附能力而变化。 Further, the input time quantitative compound according to the flow rate of the pressure, of compounds of the temperature of the compound, the type of dosing valve, the control varies with the type of device, and the adsorption capacity of the compound on the substrate surface. 定量输入时间也可基于正被形成的层的类型和正被形成的器件的几何结构而变化。 Quantitative input time may vary based on the type of geometry that is being formed and the layer being formed of a device.

一般地,每次脉冲输入的持续时间或“定量输入时间”一般为1.0秒或更少。 Generally, the duration of each pulse input or "quantitative input time" is generally 1.0 second or less. 但是,定量输入时间可在几微秒到几毫秒,到几秒,甚至到几分钟的范围内。 However, the input time can be quantified in several microseconds to a few milliseconds to a few seconds, even in the range of a few minutes. 一般,定量输入时间应足够长,从而为一定体积的化合物提供充足的时间吸附/化学吸附到衬底的整个表面上,并在其上形成化合物层。 Usually, quantitative input time should be long enough to provide sufficient time for the adsorption volume of a compound / chemical adsorption onto the entire surface of the substrate, and forming a compound layer thereon.

图3图示了示例性处理室200的示意性部分横截面,该处理室能够利用循环层沉积、原子层沉积、数字化学气相沉积和快速化学气相沉积技术来形成阻挡层。 FIG 3 illustrates a schematic partial cross-section of an exemplary processing chamber 200, the chamber can be utilized loop layer deposition, atomic layer deposition, digital chemical vapor deposition, and rapid chemical vapor deposition techniques to form a barrier layer. 术语“循环层沉积”、“原子层沉积”、“数字化学气相沉积”和“快速化学气相沉积”这里可互相交换地使用,指气相沉积技术,通过该技术两种或多种化合物被按顺序引入处理室的反应区内,并在衬底表面上沉积出薄层材料。 The term "cyclical layer deposition", "atomic layer deposition", "digital chemical vapor deposition" and "rapid chemical vapor deposition" used herein may be exchanged, refer vapor deposition techniques, are sequentially by which two or more compounds introduced into the reaction zone of the process chamber, and depositing a thin layer of material on the substrate surface. 这种处理室200可从位于加利福尼亚的圣克拉拉的应用材料公司获得,其简短说明如下。 This is obtained from the processing chamber 200 may be located in Santa Clara, California Applied Materials, the following brief description thereof. 更详细的说明可在2001年12月21日提交的题为“Gas Delivery Apparatus and Method For AtomicLayer Deposition”的共同受让的美国专利申请No.10/032,284中找到,作为参考资料这里引用了其内容。 A more detailed description can be application No.10 / 032,284, entitled found in US Pat December 21, 2001 filed "Gas Delivery Apparatus and Method For AtomicLayer Deposition" commonly assigned, cited here as a reference its contents .

处理室200可被集成进集成处理平台内,例如也可从应用材料公司获得的EnduraTM平台。 The processing chamber 200 may be integrated into the integrated processing platform, for example, may be obtained from the internet EnduraTM Applied Materials, Inc. EnduraTM平台的细节在1999年11月30日提交的题为“Integrated Modular Processing Platform”的共同受让的美国专利申请No.09/451,628中有描述,作为参考资料这里引用了其内容。 Details EnduraTM platform in the US patent entitled November 30, 1999 filed "Integrated Modular Processing Platform" commonly assigned application No.09 / 451,628 are described as references here cited its content.

参照图3,室200包括室体202和设置在其内的衬底支架212,室体202具有在其侧壁204中形成的条阀208。 Referring to Figure 3, chamber 200 includes a chamber 202 and disposed on the substrate holder 212 within chamber 202 having strips 204 formed in its side wall 208 of the valve. 衬底支架212安装在提升电机214上,来升高和降低衬底支架212及设置在其上的衬底210。 The substrate holder 212 is mounted on a lift motor 214 to raise and lower the substrate holder 212 and substrate 210 disposed thereon. 衬底支架212也可包括在处理过程中用来将衬底210固定在衬底支架212上的真空吸盘、静电吸盘、或夹持环。 The substrate holder 212 may also be used to include a substrate 210 is fixed on the substrate holder 212 in the vacuum chuck, an electrostatic chuck, or a clamp ring during processing. 而且,可利用嵌入的加热元件,例如电阻加热器来加热衬底支架212,或可利用例如设置在衬底支架212上的加热灯的辐射热来加热衬底支架212。 Furthermore, the heating element is embedded can be used, such as a resistance heater to heat the substrate holder 212, or may be provided, for example by radiation heat on the substrate holder 212 of the heating lamps to heat the substrate holder 212. 清洗环222可设置在衬底支架212上,从而限定出清洗通道224,其提供清洗气以防止在衬底210的周边部分上的沉积。 Cleaning rings 222 may be disposed on the substrate holder 212, to define a washing channel 224, which provides a purge gas to prevent deposition on the peripheral portion of the substrate 210.

输气装置230设置在室体202的上部,用来向室200提供气,例如处理气和/或清洗气。 Gas delivery means 230 is provided at an upper portion of the chamber body 202 for providing the gas to the chamber 200, such as the processing gas and / or purge gas. 真空装置278与抽吸通道279相连,用来抽空室200中的气体,并帮助维持室200的抽吸区266内所期望的压力或所期望的压力范围。 Vacuum means connected to the suction passage 278 279, for evacuating the gas chamber 200, and helps maintain the suction zone 266 of the chamber 200 a desired pressure or a desired pressure range.

输气装置230包括室盖232,其具有在其中间部分内形成的膨胀通道234。 Air delivery system 230 includes a chamber lid 232, having formed therein an inner passage between the expansion portion 234. 室盖232还包括从膨胀通道234延伸到室盖232的周边部分的底面260。 Chamber lid 232 further includes a channel 234 that extends from the expansion chamber 260 to the bottom surface of the peripheral portion of the lid 232. 底面260的大小和形状可充分地覆盖设置在衬底支架212上的衬底210。 The bottom surface 260 is sized and shaped sufficiently cover the substrate 210 disposed on the substrate holder 212. 膨胀通道234的内径从上部237向邻近室盖232的底面260的下部235逐渐增加。 Expansion of the inner diameter of the channel 234 of the bottom surface 260 of the lower portion of the cover 232 gradually increases from 235 to 237 adjacent to the upper chamber. 随着气体流过膨胀通道234,由于气体的膨胀,通过它流动的气体速度会减小。 As the gas flows through the expansion channel 234, since the expansion of the gas, which flows through the gas velocity decreases. 减小的气速降低了吹走吸附在衬底210的表面上的反应物的可能性。 Reducing the gas velocity reduces the likelihood blown adsorbed on the surface of the substrate 210 of the reactants.

输气装置230还包括至少两个具有一个或多个端口的高速启动阀242。 Air delivery system 230 further comprises at least two or more ports having a valve 242 of the high-speed activation. 至少一个阀242是每种反应性化合物专用的。 At least one valve 242 is dedicated to each reactive compound. 例如,第一阀是含难熔金属的化合物专用的,例如钽和钛,而第二阀是含氮化合物专用的。 For example, the first valve is a refractory metal compound containing a dedicated, for example, tantalum and titanium, and the second valve is a specific nitrogen-containing compound. 如果希望三元材料,则第三阀是另一种化合物专用的。 If desired ternary material, the third valve is dedicated to another compound. 例如,如果硅化物是所期望的,则另一种化合物可以是含硅的化合物。 For example, if the silicide is desired, then another compound may be a silicon-containing compound.

阀242可以是任意能够精确并重复地将短脉冲的化合物输入室体202内的阀。 242 may be any valve capable of accurately and repeatedly in the valve chamber 202 a short input pulse compound thereof. 在某些情况下,阀242的开/关循环周期或脉冲可约为100毫秒或更短。 In some cases, valve 242 on / off cycles or pulses may be about 100 milliseconds or less. 阀242可由系统计算机直接控制,例如大型机,或由面向特定的室/应用的专用控制器来控制,例如在2001年3月7日提交的题为“ValveControl System For ALD Chamber”的共同待审的美国专利申请No.09/800,881中详细描述的可编程逻辑计算机(PLC),作为参考资料这里引用了其内容。 Valve 242 may direct a computer control system, such as a mainframe, or a chamber-specific / dedicated controller to control application, for example in co-pending, 2001, entitled, filed March 7, "ValveControl System For ALD Chamber" of U.S. Patent application No.09 / 800,881 described in detail in the programmable logic computer (PLC), cited here as a reference the contents. 例如,阀242可以是电控(EC)阀,如日本Fujikin公司市售的部件号为FR-21-6.35 UGF-APD的阀。 For example, valve 242 may be electrically controlled (EC) valve, as described in Japanese commercially available from Fujikin part No. FR-21-6.35 UGF-APD valve.

为方便控制并自动操作整个装置,集成处理装置可包括含有中央处理单元(CPU)142、存储器144和支持电路146的控制器140。 To facilitate the control and automatic operation of the whole apparatus can comprise an integrated processing apparatus comprising a central processing unit (CPU) 142, support circuits 146 and memory 144 of the controller 140. CPU 142可以是一种任意形式的计算机处理器,其用在工业环境中来控制各种传动和压力。 CPU 142 may be one of any form of computer processor, for use in industrial settings for controlling various drives and pressures. 存储器144与CPU 142连接,可以是一种或多种容易获得的存储器,例如随机访问存储器(RAM)、只读存储器(ROM)、软盘、硬盘、或任意其他形式的数字存储器、本地或远程存储器。 CPU 142 is connected with memory 144, may be one or more of readily available memory such as random access memory (RAM), a read only memory (ROM), floppy disk, hard disk, or any other form of digital storage, local or remote memory . 软件指令和数据可被编码,并存储在存储器144内,用来指示CPU 142。 Software instructions and data can be coded and stored within the memory 144, to indicate the CPU 142. 支持电路146也与CPU 142连接,用来以传统方式支持处理器142。 The support circuits 146 are also connected to the CPU 142, used to support processor 142 in a conventional manner. 支持电路146可包括缓存、电源、时钟电路、输入/输出电路、子系统等。 The support circuits 146 may include cache, power supplies, clock circuits, input / output circuitry, subsystems, and the like.

在具体实施例中,通过向衬底表面循环地引入PDMAT和氨而形成TaN阻挡层。 In a particular embodiment, the TaN barrier layer is formed by introducing ammonia into the substrate surface and PDMAT cyclically. 为开始TaN层的循环沉积,例如氩气的载气/惰性气体被引入处理室200内以稳定其压力和温度。 Depositing a TaN layer as the start of the cycle, for example, argon carrier gas / inert gas is introduced into the process chamber 200 to stabilize the pressure and temperature. 在沉积过程中允许载气连续地流动,使得仅有氩气在每种化合物的脉冲输入之间流动。 Allowing carrier gas during the deposition process flows continuously, so that only an argon gas flow between input pulses for each compound. 在室内温度和压力已分别稳定在约200℃-300℃和约1Torr-5Torr之后,由气源238以约100sccm-400sccm的流速,脉冲时间约为0.6秒或更短来提供PDMAT的第一脉冲输入。 After the room temperature and pressure has stabilized at about 200 ℃ -300 ℃ about 1Torr-5Torr, from the gas source 238 at a flow rate of about 100sccm-400sccm, pulse time of about 0.6 seconds or less to provide a first pulse of the input PDMAT . 然后由气源239以约200sccm-600sccm的流速,脉冲时间约为0.6秒或更短来提供氨的脉冲输入。 Then the flow rate from the gas source 239 to about 200sccm-600sccm, a pulse time of about 0.6 seconds or less to provide a pulse input of ammonia.

PDMAT和氨的脉冲输入之间可暂停约1.0秒或更短,优选暂停约0.5秒或更短,更优选暂停约0.1秒或更短。 PDMAT and the pause between the ammonia input pulse of about 1.0 seconds or less, preferably about 0.5 seconds or less to suspend, pause and more preferably from about 0.1 seconds or less. 在各个方面,脉冲输入之间的时间减少至少提供了更高的处理量。 In various aspects, the time between the pulse input at least reduced to provide a higher amount of processing. 结果,脉冲输入氨之后也暂停约1.0秒或更短,约0.5秒或更短,或者约0.1秒或更短。 As a result, after the ammonia input pulse and pause of about 1.0 seconds or less, about 0.5 seconds or less, or about 0.1 seconds or less. 气源240通过各个阀242连续地提供在约100sccm-1000sccm之间流动的氩气,例如约100sccm-400sccm。 Gas source 240 provided argon gas continuously between about 100sccm-1000sccm flow through the respective valve 242, for example about 100sccm-400sccm. 一方面,当氨的脉冲进入时,PDMAT的脉冲可能仍在室内。 On the one hand, when the pulse of ammonia entering, PDMAT pulse may still be room. 一般,载气和/或抽吸排空的持续时间应足够长以防止在反应区中PDMAT和氨的脉冲混合在一起。 In general, the duration of the carrier gas and / or suction evacuation should be long enough to prevent the pulses PDMAT and ammonia are mixed together in the reaction zone.

室压约1.0-5.0Torr时,加热器的温度维持在约100℃-300℃。 When the chamber pressure of about 1.0-5.0Torr, the heater temperature is maintained at about 100 ℃ -300 ℃. 优选地,沉积温度在约200℃-250℃之间。 Preferably, the deposition temperature of between about 200 ℃ -250 ℃. 由PDMAT的脉冲输入、暂停、氨的脉冲输入和暂停组成的每个循环周期提供了每循环厚度在约0.3-1.0之间的钽氮化物层。 A pulse input PDMAT, suspension, and the ammonia pulse input each cycle consisting of suspension per cycle provides a tantalum nitride layer thickness is between about 0.3-1.0 of. 可重复这个交替的顺序,直至达到所期望的厚度,即少于约20,例如约10。 The alternating sequence may be repeated, until a desired thickness, i.e. of 20Å and less than about, e.g. about 10. 因此,该沉积方法需要10-70个循环周期,更具体地是20-30个循环周期。 Thus, the deposition process requires 10 to 70 cycles, more particularly between 20 and 30 cycles.

另一方面,通过提供一个或多个含难熔金属的化合物的脉冲输入、一个或多个含氮化合物的脉冲输入及一个或多个含硅化合物的脉冲输入,沉积出厚度小于约20(例如10)的三元阻挡层。 On the other hand, by providing one or more pulses input containing a refractory metal compound, a nitrogen-containing compound or a plurality of pulse input and a pulse input or more silicon-containing compounds deposited having a thickness of 20Å and less than about ( e.g. 10 Ȧ) ternary barrier layer. 调节每次脉冲以提供所期望的组成、含硅量、厚度、密度和难熔金属-硅的氮化物层的阶梯覆盖(step coverage)。 Adjusting each pulse to provide the desired composition, silicon content, thickness, density, and a refractory metal - step coverage (step coverage) of the silicon nitride layer. 这里所用的“三元阻挡层”指包括三种主要元素的组合物的材料,例如钛、氮和硅。 "Three barrier layer" as used herein refers to a material comprising three main elements of the composition, such as titanium, nitrogen and silicon. 示例性的“三元阻挡层”也可包括钽、氮和硅。 Exemplary "Three barrier layer" may also include tantalum, nitrogen and silicon.

在上述相同的工艺条件下,按顺序进行每次脉冲输入,并伴随有单独的载气/惰性气体流。 In the same process conditions as described above, in order for each input pulse, and is accompanied by a separate carrier gas / inert gas stream. 单独的载气/惰性气体流可在每次反应性化合物的脉冲输入之间脉冲地引入,或者可在整个沉积工艺过程中连续地引入。 Separate the carrier gas / inert gas stream may be introduced between the pulses each pulse input reactive compounds, or may be introduced continuously throughout the deposition process.

优选地,三元阻挡层含有钛硅氮化物。 Preferably, ternary barrier layer containing titanium silicon nitride. 在这个实施例中,每个循环周期包括含钛化合物的脉冲输入、暂停、含硅化合物的脉冲输入、暂停、含氮化合物的脉冲输入和暂停。 In this embodiment, each cycle comprises a titanium-containing compound input pulse, pause, pulse input of the silicon-containing compound, pause, pause, and pulse input of the nitrogen-containing compound. 示例性的含钛化合物包括四(二甲基氨基)钛(TDMAT)、四(乙基甲基氨基)钛(TEMAT)、四(二乙基氨基)钛(TDEAT)、四氯化钛(TiCl4)、四碘化钛(TiI4)、四溴化钛(TiBr4)和其他钛的卤化物。 Exemplary titanium-containing compound include tetrakis (dimethylamino) titanium (TDMAT), tetrakis (ethylmethylamino) titanium (TEMAT), tetrakis (diethylamino) titanium (TDEAT), titanium tetrachloride (of TiCl4 ), titanium tetraiodide (TiI4), titanium tetrabromide (TiBr4), and other titanium halides. 示例性的含硅化合物包括硅烷、乙硅烷、甲基硅烷、二甲基硅烷、氯代硅烷(SiH3Cl)、二氯代硅烷(SiH2Cl2)和三氯代硅烷(SiHCl3)。 Exemplary silicon-containing compounds include silane, disilane, methylsilane, dimethylsilane, chlorosilane (SiH3Cl), dichloro silane (SiH2Cl2), and trichlorosilane (SiHCl3). 示例性的含氮化合物包括:氨、肼;甲基肼;二甲基肼;t-丁基肼;苯肼;偶氮基异丁烷;叠氮基乙烷;其衍生物;及其组合。 Exemplary nitrogen-containing compounds include: ammonia, hydrazine; methylhydrazine; dimethylhydrazine; T-butylhydrazine; phenylhydrazine; azo group isobutane; azido-ethane; derivatives; and combinations thereof .

为开始TixSiyN层的循环沉积,将氩气引入处理室200来稳定其中的压力和温度。 To start the cycle TixSiyN deposited layer, argon gas introduced into the processing chamber 200 to stabilize the pressure and temperature therein. 这种单独的氩气流在整个沉积工艺过程中连续地流动,使得在每种化合物的脉冲输入之间仅有氩气流动。 Such a separate stream of argon flow continuously throughout the deposition process so that only the argon gas between the pulse input flow for each compound. 单独的氩气流以约100sccm-1000sccm流动,例如在约100sccm-400sccm之间。 A separate stream of argon at about 100sccm-1000sccm flow, for example between about 100sccm-400sccm. 一方面,在室内温度和压力已分别稳定在约250℃和约2Torr之后,以约10sccm-1000sccm的流速,脉冲时间约为0.6秒或更短来提供TDMAT的脉冲输入。 In one aspect the flow rate, temperature and pressure in the chamber has stabilized at about 250 deg.] C after about 2 Torr, from about 10sccm-1000sccm, a pulse time of about 0.6 seconds or less to provide the TDMAT pulse input. 然后以约5sccm-500sccm的流速,脉冲时间约为1秒或更短来提供硅烷的脉冲输入。 Then about 5sccm-500sccm flow rate, the pulse time of about 1 second or less to provide a pulse input silane. 然后以约100sccm-5000sccm的流速,脉冲时间约为0.6秒或更短来提供氨的脉冲输入。 Then at a flow rate of about 100sccm-5000sccm, pulse time of about 0.6 seconds or less to provide a pulse input of ammonia.

TDMAT和硅烷的脉冲输入之间可暂停约1.0秒或更短,优选暂停约0.5秒或更短,更优选暂停约0.1秒或更短。 TDMAT and the pause between the pulses input silane of about 1.0 seconds or less, preferably about 0.5 seconds or less to suspend, pause and more preferably from about 0.1 seconds or less. 硅烷和氨的脉冲输入之间可暂停约1.0秒或更短,优选暂停约0.5秒或更短,更优选暂停约0.1秒或更短。 Pause between the silane and ammonia pulse input of about 1.0 seconds or less, preferably about 0.5 seconds or less to suspend, pause and more preferably from about 0.1 seconds or less. 脉冲输入氨之后也暂停约1.0秒或更短,约0.5秒或更短,或者约0.1秒或更短。 After the ammonia input pulse and pause of about 1.0 seconds or less, about 0.5 seconds or less, or about 0.1 seconds or less. 一方面,当硅烷的脉冲进入时,TDMAT的脉冲可能仍在室内,且当氨的脉冲进入时,硅烷的脉冲可能仍在室内。 On the one hand, when the pulse into the silane, TDMAT pulse may still be room, and when the pulse of ammonia into the silane pulse may still be room.

室压约1.0-5.0Torr下,加热器的温度维持在约100℃-300℃。 About 1.0-5.0Torr lower chamber pressure, heater temperature is maintained at about 100 ℃ -300 ℃. 由TDMAT的脉冲输入、暂停、硅烷的脉冲输入、暂停、氨的脉冲输入和暂停组成的每个循环周期提供了每循环厚度在约0.3-1.0之间的钛硅氮化物层。 TDMAT is input from the pulse, pause, pulse input silane, pause, and the ammonia pulse input each cycle consisting of suspension per cycle provides the thickness of the titanium silicon between about 0.3-1.0 nitride layer. 可重复这个交替的工艺顺序,直至达到所期望的厚度,即少于约20,例如约10。 This process may be repeated alternating order, until the desired thickness, i.e. of 20Å and less than about, e.g. about 10. 因此,该沉积方法需要10-70个循环周期。 Thus, the deposition process requires 10 to 70 cycles.

另一方面,厚度为小于约20或更少,例如约10的α相钽(α-Ta)层可沉积在至少一部分已先沉积的二元层(TaN)或三元层(TiSiN)上。 On the other hand, a thickness of less than about 20 or less, for example about [alpha] 10 tantalum phase of (α-Ta) may be deposited on at least a portion of the layer has been deposited first binary layer (TaN) or ternary layer (TiSiN) on. 可利用传统技术,例如PVD和CVD来沉积α-Ta层,以形成双层叠层。 Conventional techniques may be utilized, for example, PVD and CVD α-Ta layer is deposited to form a two-layered laminate. 例如,双层叠层可包括通过上述循环层沉积而沉积的TaN部分,和通过高密等离子物理气相沉积(HDP-PVD)而沉积的α-Ta部分。 For example, TaN bilayer may comprise a stack portion through said cyclical layer deposition deposited by high density plasma and physical vapor deposition (HDP-PVD) deposited portion of α-Ta. 相对于β相钽,由于α相钽的电阻较低,所以α相是优选的。 With respect to the β-phase tantalum, tantalum due to the low resistance phase α, α-phase is therefore preferred.

进一步说明,叠层的α-Ta部分可利用离子化金属等离子(IMP)室沉积,例如可从加利福尼亚的圣克拉拉的应用材料公司获得的VectraTM室。 Further described, α-Ta may utilize partial stack ionized metal plasma (IMP) deposition chamber, e.g. VectraTM chamber available from Applied Materials of Santa Clara, California company. IMP室包括目标材料、线圈和偏置衬底支架部件,并也可被集成进也可从应用材料公司获得的EnduraTM平台内。 IMP chamber includes a target material, and the coil member biasing the substrate holder, and can also be integrated into the inner, also available from Applied Materials, Inc. EnduraTM internet. 约0.5kW-5kW的功率应用在目标材料上,约0.5kW-3kW的功率应用在线圈上。 About 0.5kW-5kW power applied to the target material, about 0.5kW-3kW power applied to the coil. 频率约13.56MHz,约200W-500W的功率还应用在衬底支架部件以使衬底偏置。 Frequency of about 13.56MHz, power of about 200W-500W also be applied to the substrate holder member so that the substrate bias. 氩气以约35sccm-85sccm的速率流进室内,并以约5sccm-100sccm的速率向室内加入氮气。 Argon gas is about 35sccm-85sccm flow rate into the chamber at a rate of about 5sccm-100sccm nitrogen is added to the chamber. 室压通常在约5mTorr-100mTorr之间,而室温在约20℃-300℃之间。 Chamber pressure is typically between about 5mTorr-100mTorr, and the temperature is between about 20 ℃ -300 ℃.

上述阻挡层膜可从后沉积处理工艺中受益,例如等离子处理工艺或化学处理工艺。 The barrier layer film may benefit from the post-deposition treatment process, such as a plasma treatment process or a chemical treatment process. 等离子处理工艺可降低电阻,提高产率。 Plasma treatment process can decrease the resistance, to improve the yield. 典型的等离子处理可包括氩等离子、氮等离子、或氮和氢等离子。 A typical plasma treatment may include argon plasma, nitrogen plasma, or nitrogen and hydrogen plasma. 等离子处理可在发生阻挡层沉积的同一沉积室中或不同的室中进行。 Plasma treatment can occur in the same deposition chamber barrier layer is deposited or a different chamber. 如果等离子处理在同一室中发生,则等离子体可以是原位等离子体或由远程等离子源发送的等离子体,例如远程感应耦合源或微波源。 If the processing takes place in the same plasma chamber, the plasma may be sent in situ plasma or a plasma by the remote plasma source, such as a remote microwave source or an inductively coupled source.

虽然不希望被理论所限,但我们相信例如氮化钽膜的等离子处理通过喷溅出氮而降低了一个或多个亚层的氮含量,从而降低了电阻率。 While not wishing to be bound by theory, it is believed, for example, ion tantalum nitride film or the like by sputtering process and reduces the nitrogen the nitrogen content of one or more sub-layers, thereby reducing resistivity. 例如,我们认为相对于非等离子处理过的氮化钽层,等离子处理使得氮化钽层含有更多的钽。 For example, we believe that with respect to non-plasma treated tantalum nitride layer, plasma treatment such that the tantalum nitride layer contains more tantalum. 换句话说,利用等离子处理工艺,1∶1的Ta∶N膜可转变为2∶1的Ta∶N膜。 In other words, using a plasma treatment process, the film 1:1 Ta:N Ta:N can be transformed into the film 2:1. 可获得对于0.004微米(40埃)厚的膜,其层电阻约等于1200微欧姆厘米或更低的氮化钽膜。 Obtained for 0.004 micron (40 Angstroms) thick film layer resistance which is approximately equal to 1200 micro ohm centimeters or lower tantalum nitride film.

因此,其他非化学反应性气体可用来从阻挡层物理地置换氮,例如氖气(Ne)、氙气(Xe)、氦气(He)和氢气(H2)。 Thus, other non-chemically reactive gas barrier layer may be used to physically displace from nitrogen, neon gas (Ne), xenon (Xe), helium (He) and hydrogen (H2). 一般地,为了优先喷射出N,更希望等离子气体原子或分子的原子质量接近N的原子质量,而不是接近Ta。 Generally, to preferentially ejected N, more desirably plasma gas atomic mass of atoms or molecules N atomic mass close to, but not close Ta. 但是,如果特定气体优先进行反应来去除N,而留下Ta时,则可利用化学反应工艺过程。 However, if the specific gas to remove priority reacting N, leaving Ta, the process may be a chemical reaction.

化学处理工艺过程也能降低电阻,提高产率。 A chemical treatment process can also reduce the resistance, to improve the yield. 典型的化学处理可包括暴露于铝化合物或硅化合物。 Typical chemical treatments may include exposure to aluminum compound or a silicon compound. 这些化合物可包括但不限于DMAH、TMA、硅烷、二甲基硅烷、三甲基硅烷和其他有机硅烷化合物。 These compounds may include but are not limited to DMAH, TMA, silane, dimethylsilane, trimethylsilane and other organosilane compounds. 化学处理通常在约1Torr-10Torr的压力下、约200℃-400℃的温度下进行。 Chemical treatment is typically carried out at a temperature of about 200 ℃ -400 ℃ at a pressure of approximately 1Torr-10Torr. 化学处理之后,已观察到根据上述方法沉积的氮化钽膜相对于未进行化学处理的膜,其去湿能力得以改善。 After the chemical treatment, it has been observed with respect to the film is not subjected to chemical treatment in accordance with the above-described method of depositing a tantalum nitride film, which dehumidifying ability is improved.

后续沉积处理工艺过程可在形成阻挡层之后进行。 Subsequent deposition treatment process may be performed after forming the barrier layer. 或者,该处理可在各个单层的沉积之间进行,或在每个循环周期的沉积之间进行。 Alternatively, the process may be carried out between the deposition of individual layers, or between each of the deposition cycle. 例如,处理工艺过程可在每形成约0.003-0.005微米(30-50埃)的层之后进行,或在约每7-10个循环周期后进行。 For example, the treatment process may be performed after forming a layer of about 0.003-0.005 m (30-50 Å) in each of, or after about 7-10 cycles per cycle.

而且,在沉积阻挡层130之前,可清洗已图案化的或蚀刻过的衬底介电层112来去除表面的自然氧化物或其他污染物。 Further, prior to deposition of the barrier layer 130 may be patterned clean etched substrate or dielectric layer 112 to remove the natural oxide surface, or other contaminants. 例如,在远程等离子源(例如可从位于加利福尼亚的圣克拉拉的应用材料公司获得的反应预清洗室)内,反应性气体被激发成等离子体。 For example, in a remote plasma source (e.g., available from the reaction in California, Applied Materials, Inc. of Santa Clara, preclean chamber), the reactive gas is excited into a plasma. 通过将远程等离子源连接到金属CVD或PVD室,也可在这些室内完成预清洗。 By a remote plasma source connected to the metal CVD or PVD chamber, it may also be accomplished in the pre-washing chamber. 或者,具有输气装置的金属沉积室可改为通过现有的气体入口(例如位于衬底上方的气体分配喷头)来传送预清洗气体等离子体。 Alternatively, the metal deposition chamber having a gas delivery apparatus may be changed (e.g., the gas distribution showerhead positioned above the substrate) by a conventional gas inlet to transmit pre-cleaning gas plasma.

一方面,反应预清洗工艺过程形成来自一种或多种反应性气体的等离子体的自由基,例如氩气、氦气、氢气、氮气、含氟化合物及其组合。 In one aspect, the reaction pre-cleaning process during the formation of free radicals from a plasma of one or more reactive gases such as argon, helium, hydrogen, nitrogen, fluorine-containing compounds, and combinations thereof. 例如,反应性气体可包括四氟化碳(CF4)和氧气(O2)的混合物,或氦气(He)和三氟化氮(NF3)的混合物。 For example, the reactive gas may comprise a mixture of carbon tetrafluoride (CF4) and oxygen (O2) or helium (He) and a mixture of nitrogen trifluoride (NF3) is. 更优选地,反应性气体是氦气和三氟化氮的混合物。 More preferably, the reactive gas is a mixture of helium and nitrogen trifluoride.

氩气等离子处理之后,室压增加到约140mTorr,基本由氢气和氦气组成的处理气体被引入处理区。 After argon plasma treatment, the chamber pressure increased to about 140 mTorr, the process gas consists essentially of hydrogen and helium is introduced into the treatment zone. 优选地,这种处理气体包括约5%的氢气和约95%的氦气。 Preferably, the process gas comprises from about 5% hydrogen and about 95% helium. 通过应用约50瓦-500瓦的功率来产生氢等离子体。 To hydrogen plasma is generated by application of about 50 watts -500 watts. 将氢等离子体维持约10秒-300秒。 The hydrogen plasma is maintained for about 10 seconds -300 seconds.

再参照图2C,可利用高密等离子物理气相沉积(HDP-PVD)来沉积晶种层140,以能实现较好的保形覆盖。 Referring again to Figure 2C, the plasma density may be utilized physical vapor deposition (HDP-PVD) seed layer 140 is deposited, in order to achieve a better conformal coverage. HDP-PVD室的一个实例是可从加利福尼亚的圣克拉拉的应用材料公司获得的自离子化等离子SIPTM室,可将其集成进从应用材料公司获得的EnduraTM平台。 One example of HDP-PVD chamber is ionized plasma from SIPTM chamber available from Applied Materials of Santa Clara, California company, which may be integrated into available from Applied Materials, Inc. EnduraTM internet. 当然,也可利用其他技术,例如物理气相沉积、化学气相沉积、无电镀和电镀。 Of course, other techniques may also be utilized, such as physical vapor deposition, chemical vapor deposition, electroless plating and electroplating.

典型的SIPTM室包括目标材料、线圈和偏置衬底支架部件。 Typical SIPTM chamber includes a target material, and the coil member biasing the substrate holder. 为形成铜晶种层,约0.5kW-5kW的功率应用在目标材料上,约0.5kW-3kW的功率应用在线圈上。 To form a copper seed layer of about 0.5kW-5kW power applied to the target material, about 0.5kW-3kW power applied to the coil. 并应用频率约13.56MHz下约200W-500W的功率来偏置衬底。 And applying a frequency of about 13.56MHz power at about 200W-500W to the substrate bias. 氩气以约35sccm-85sccm的速率流进室内,并以约5sccm-100sccm的速率向室内加入氮气。 Argon gas is about 35sccm-85sccm flow rate into the chamber at a rate of about 5sccm-100sccm nitrogen is added to the chamber. 室压通常在约5mTorr-100mTorr之间。 Chamber pressure is typically between about 5mTorr-100mTorr.

或者,可通过任意合适技术,例如物理气相沉积、化学气相沉积、无电沉积或其组合技术,来沉积含有铜合金的晶种层140。 Alternatively, by any suitable technique, such as physical vapor deposition, chemical vapor deposition, electroless deposition technique, or combinations thereof, deposited seed layer 140 containing copper alloy. 优选地,铜合金晶种层140含有铝,且是利用上述PVD技术沉积的。 Preferably, the copper alloy seed layer 140 contains aluminum and is deposited using the PVD technique. 在沉积过程中,处理室的压力维持在约0.1mtorr-10mtorr之间。 During deposition, the processing chamber pressure is maintained between about 0.1mtorr-10mtorr. 目标材料包括铜和原子重量百分比在约2-10之间的铝。 Target material include copper and aluminum atomic weight percentage of between about 2-10. 目标材料可以是在约5kW-100kW的功率下直流偏置的。 It may be the target material at a power of about 5kW-100kW DC bias. 支架可以是在约10W-1000W的功率下射频偏置的。 Scaffold can be at a power of approximately 10W-1000W RF bias. 铜合金晶种层140的沉积厚度至少约5,且在约5-500之间。 Depositing a copper alloy seed layer thickness of at least about 140 5, and at between about 5-500.

参照图2D,可利用化学气相沉积(CVD)、物理气相沉积(PVD)、电镀或其组合来形成金属层142。 Referring to Figure 2D, can be by chemical vapor deposition (CVD), physical vapor deposition (PVD), electroplating, or combinations thereof to form the metal layer 142. 例如,由含有二甲基氢化铝(DMAH)和氢气(H2)或氩气(Ar)的气体混合物或其他含DMAH的混合物的反应可沉积铝(Al)层,由含有Cu+2(hfac)2(六氟乙酰丙酮铜)、Cu+2(fod)2(七氟二甲基辛二烯烃铜)、Cu+1hfac TMVS(六氟乙酰丙酮铜三甲基乙烯基硅烷)或其组合的气体混合物可沉积CVD铜层,并且由含有六氟化钨(WF6)和还原气体的气体混合物可沉积CVD钨层。 For example, containing dimethyl aluminum hydride (DMAH) and the reaction of hydrogen (H2) or argon (Ar) gas mixture or other mixture containing DMAH may be deposited aluminum (Al) layer, containing Cu + 2 (hfac) 2 (hexafluoroacetylacetonate copper), Cu + 2 (fod) 2 (heptafluoro-dimethylocta-diene copper), Cu + 1hfac TMVS (copper hexafluoroacetylacetonate trimethylvinylsilane) gas or a combination thereof the mixture CVD copper layer may be deposited, and a reducing gas and a gas mixture containing tungsten hexafluoride (of WF6) CVD tungsten layer may be deposited. 由铜目标材料、铝目标材料或钨目标材料可沉积PVD层。 A target material of copper, aluminum or tungsten target material, the target material may be deposited PVD layer.

而且,金属层142可以是难熔金属化合物,包括但不限于钛(Ti)、钨(W)、钽(Ta)、锆(Zr)、铪(Hf)、钼(Mo)、铌(Nb)、钒(V)和铬(Cr)等。 Further, the metal layer 142 may be a refractory metal compound, including but not limited to, titanium (Ti), tungsten (W), tantalum (Ta), zirconium (Zr), hafnium (Hf), molybdenum (Mo), niobium (Nb) , vanadium (V) and chromium (Cr) and the like. 通常,难熔金属与反应组分结合,例如氯(Cl)或氟(F),并与另一种气体一起提供以形成难熔金属化合物。 Typically, the refractory metal components in conjunction with the reaction, such as chlorine (Cl) or fluorine (F.), And provided together with another gas to form a refractory metal compound. 例如,四氯化钛(TiCl4)、六氟化钨(WF6)、五氯化钽(TaCl5)、四氯化锆(ZrCl4)、四氯化铪(HfCl4)、五氯化钼(MoCl5)、五氯化铌(NbCl5)、五氯化钒(VCl5)或四氯化铬(CrCl4)可作为含难熔金属的化合物气体。 For example, titanium tetrachloride (of TiCl4), tungsten hexafluoride (of WF6), tantalum five (TaCl5 are) chloride, zirconium tetrachloride (of ZrCl4), hafnium (HfCl4) tetrachloride, molybdenum pentachloride (MoCl5), niobium pentachloride (NbCl5), five vanadium (VCl5) chromium dichloride or tetrakis (CrCl4) chloride is used as the gas containing a refractory metal compound.

优选地,金属层142是铜,在电镀单元内形成,例如可从加利福尼亚的圣克拉拉的应用材料公司获得的ElectraTMCu ECP装置。 Preferably, the metal layer 142 is copper, are formed in the plating cell, ElectraTMCu ECP devices such as those available from Applied Materials of Santa Clara, California company. ElectraTMCuECP装置也可集成进也可从应用材料公司获得的EnduraTM平台。 ElectraTMCuECP means may also be integrated into the EnduraTM platform available from Applied Materials, Inc.

在题为“Electro-deposition Chemistry”的共同受让的美国专利No.6,113,771中描述了铜电解质溶液和铜电镀技术,作为参考文献这里引用了其内容。 Entitled "Electro-deposition Chemistry" commonly assigned U.S. Patent No.6,113,771 describes an electrolytic solution of copper and copper electroplating techniques, and references cited therein as its contents. 一般地,电镀浴的铜浓度大于约0.7M,硫酸铜浓度约为0.85,pH值约为1.75。 Generally, the copper concentration of the plating bath is greater than about 0.7M, the concentration of copper sulfate of about 0.85, pH value of about 1.75. 电镀浴也可包含各种本领域公知的添加剂。 Electroplating bath may also contain various additives known in the art. 浴温在约15℃-25℃之间。 Bath temperature between about 15 ℃ -25 ℃. 偏压在约-15伏到15伏之间。 Bias between about -15 volts to 15 volts. 一方面,正偏压在约0.1伏到10伏之间,而负偏压在约-0.1到-10伏之间。 In one aspect, a positive bias between about 0.1 volts to 10 volts and the negative bias of about -10 volts to between -0.1.

可选地,金属层142沉积之后,可进行热退火工艺过程,使晶片处于约100℃-400℃温度下约10分钟到1小时,优选约30分钟。 Alternatively, after the metal layer 142 is deposited, thermal annealing process may be performed, the wafer is about 10 minutes to 1 hour at a temperature of about 100 ℃ -400 ℃, preferably about 30 minutes. 以约100sccm-10000sccm的速率引入例如氦气、氢气、氮气或其混合物的载气/清洗气。 For example the introduction of helium, hydrogen, nitrogen, or a mixture thereof at a rate of about 100sccm-10000sccm carrier gas / purge gas. 室压维持在约2Torr-10Torr之间。 The chamber pressure is maintained between about 2Torr-10Torr. 射频功率在约13.56MHz的频率下约为200W-1000W,且衬底间距优选在约300密尔-800密尔之间。 RF power of about 200W-1000W at a frequency of about 13.56MHz, and the substrate spacing is preferably between about 300 mils -800 mils.

沉积之后,可对所得结构的顶部进行平坦化。 After deposition, can be planarized top of the resultant structure. 可用化学机械抛光(CMP)装置,例如可从加利福尼亚的圣克拉拉的应用材料公司获得的MirraTM装置。 Using chemical mechanical polishing (CMP) apparatus, e.g. MirraTM apparatus available from Applied Materials of Santa Clara, California company. 可选地,在上述后续层的沉积之间可对结构的中间表面进行平坦化。 Alternatively, the intermediate may be planarized surface structure between the deposition of subsequent layers above.

图4是示例性多室处理装置600的示意性俯视图,其适于用来进行以上公开的沉积序列。 FIG 4 is a schematic top view of an exemplary multi-chamber processing apparatus 600, which is adapted for performing the above disclosed sedimentary sequence. 这种处理装置600可以是加利福尼亚的圣克拉拉的应用材料公司市售的EnduraTM装置。 Such processing means 600 may be Applied Materials of Santa Clara, California commercially available from EnduraTM apparatus. 在1993年2月16日授权的题为“StageVacuum Wafer Processing System and Method”的美国专利No.5,186,718中公开了类似的多室处理装置,作为参考文献这里引用了其内容。 It discloses a similar multi-chamber processing apparatus "StageVacuum Wafer Processing System and Method", US Patent No.5,186,718 February 16, 1993 and entitled, as the references cited its content.

装置600一般包括用来将衬底送入装置600和从装置600中取出衬底的负荷固定室602、604。 Apparatus 600 generally includes a means for feeding the substrate 600 and the substrate is taken out from the load lock chamber 600 of the apparatus 602. 通常,由于装置600处于真空条件下,所以负荷固定室602、604可将引入装置600内的衬底“吸出”(pump down)。 Generally, since the device 600 is under vacuum, the load lock chamber 602, 604 may be incorporated within the substrate means 600 "suck out" (pump down). 第一机械手610可在负荷固定室602、604与第一套一个或多个衬底处理室612、614、616、618(所图示的有四个)之间传送衬底。 The first robot 610 may load lock chamber 602, 604 with the first set of one or more substrate processing chambers (with four illustrated) transferring a substrate between 612,614,616,618. 每个处理室612、614、616、618可配备成能进行许多衬底处理操作,例如循环层沉积、化学气相沉积(CVD)、物理气相沉积(PVD)、蚀刻、预清洗、脱气、定位和其他衬底工艺过程。 Each processing chamber 612,614,616,618 may be equipped to perform a number of substrate processing operations can, for example, cyclical layer deposition, chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, degas, positioning and other substrate processes. 第一机械手610还能将衬底传递到一个或多个传送室622、624,并从传送室中取出衬底。 The first robot 610 can also transfer substrates to one or more transfer chambers 622 and 624, and the substrate is taken out from the transfer chamber.

传送室622、624在允许将衬底在装置600内传递的同时,并被用来维持超高真空状态。 Transfer chambers 622, 624 while allowing the transfer of the substrate in the device 600 and is used to maintain ultrahigh vacuum state. 第二机械手630可在传送室622、624与第二套一个或多个衬底处理室632、634、636、638之间传送衬底。 The second robot 630 may transfer substrates between the transfer chambers 622, 624 and the second set of one or more substrate processing chambers 632,634,636,638. 类似于处理室612、614、616、618,处理室632、634、636、638可配备成能进行多种不同衬底处理操作,例如循环层沉积、化学气相沉积(CVD)、物理气相沉积(PVD)、蚀刻、预清洗、脱气、定位。 612,614,616,618 similar to the processing chamber, the processing chamber may be equipped to 632,634,636,638 can be a plurality of different substrate processing operation, such as cyclical layer deposition, chemical vapor deposition (CVD), physical vapor deposition ( PVD), etch, pre-clean, degas, orientation. 衬底处理室612、614、616、618、632、634、636、638中的任一个如果对于装置600进行的具体工艺过程是不需要的,都可从装置600中除去。 Substrate processing chamber according to any one 612,614,616,618,632,634,636,638 if a particular process is performed to the device 600 is not needed, it can be removed from the apparatus 600.

在一种结构方案中,每个处理室632和638可以是适于沉积晶种层的物理气相沉积室、化学气相沉积室或循环沉积室;每个处理室634和636可以是适于沉积阻挡层的循环沉积室、化学气相沉积室或物理气相沉积室;每个处理室612和614可以是适于沉积介电层的物理气相沉积室、化学气相沉积室或循环沉积室;并且每个处理室616和618可以是配备成能够为互连构造蚀刻孔或开口的蚀刻室。 In one configuration, each processing chamber 632 and 638 may be adapted to a physical vapor deposition chamber of a deposition of a seed layer, a chemical vapor deposition chamber or deposition chamber cycles; each processing chamber 634 and 636 may be adapted to deposit a barrier loop layer deposition chamber, a chemical vapor deposition chamber or a physical vapor deposition chamber; each of the processing chambers 612 and 614 may be a physical vapor deposition chamber suitable for depositing a dielectric layer, a chemical vapor deposition chamber or deposition chamber cycle; and each process chambers 616 and 618 may be equipped to be able to interconnect etch chamber configured to etch apertures or openings. 装置600的这种具体结构方案是用来说明本发明,并非用来限制本发明的范围。 This particular configuration of an apparatus 600 are intended to illustrate the present invention and are not intended to limit the scope of the invention.

我们相信厚度大于约20埃的难熔金属氮化物层将终止下层金属互连的生长模式。 We believe that a thickness of greater than about 20 angstroms refractory metal nitride layer growth is terminated underlying metal interconnect pattern. 厚度大于或等于约20埃的难熔金属氮化物层将建立其自身独特的生长模式,这种模式将被更高层的互连首先采用,直至更高层的互连达到特定厚度并建立其自身的模式,从而形成不同的晶体结构。 Thickness of greater than or equal to about 20 Angstroms refractory metal nitride layer to establish its own unique growth mode, which will be a more first interconnect level until a higher layer reaches a certain thickness of the interconnect and establish its own pattern, thereby forming a different crystal structure. 这种现象发生是因为:在初始沉积阶段,后续沉积的层的生长模式通常类似于其底层的生长模式,但是一旦后续层达到特定厚度,则所述后续层将呈现其自身的内在模式。 This phenomenon occurs because: In the initial deposition phase, the subsequent growth pattern of the deposited layer is generally similar to the underlying growth patterns, but when the subsequent layer reaches a certain thickness, then the subsequent layer exhibits its own inherent pattern.

例如氮化钽自然趋向于形成厚度不小于20埃的无定形结构。 Such as tantalum nitride natural tendency of the amorphous structure to a thickness of not less than 20 angstroms. 在厚度小于约20埃时,TaN类似其底层的生长模式。 When the thickness is less than about 20 angstroms, TaN similar growth pattern of the underlying. 因此,后续铜互连层令人惊讶地穿过阻挡层而生长,所述阻挡层是根据本发明的方法沉积的,呈现类似于底层铜互连的生长模式。 Thus, surprisingly the subsequent copper layers through the barrier layer growth, the barrier layer is deposited according to the method of the present invention, exhibit similar growth pattern of the underlying copper interconnect. 换句话说,厚度小于约20埃的TaN阻挡层使得铜粒能够较好地生长,使得铜粒能够穿过TaN阻挡层延伸生长,或简单地说,就是铜在氮化钽阻挡层上呈现出外延生长。 In other words, a thickness less than about 20 angstroms TaN barrier layer can be such that the copper particles grow well, so that the copper particles can be grown through extend TaN barrier layer, or simply, that copper exhibits a tantalum nitride barrier layer on the epitaxial growth.

图5是构造300的透射电子显微镜(TEM)图像,构造300具有根据上述沉积技术而在其内沉积的氮化钽阻挡层310。 FIG 5 is a configuration 300 of a transmission electron microscope (TEM) image 300 having the above configuration deposition techniques in a tantalum nitride barrier layer 310 is deposited therein. 构造300的高宽比为5∶1,并在200mm的晶片上形成。 Configuration 300 5:1 aspect ratio, and is formed on a 200mm wafer. 阻挡层310由氮化钽组成,并是在250℃、2Torr下沉积出的。 The barrier layer 310 made of tantalum nitride, and at 250 deg.] C, deposited under 2Torr. 每个循环周期持续约2秒,并进行了30个循环周期。 Each cycle lasts about 2 seconds, and a 30 cycle. 氮化钽阻挡层310的厚度约为15埃。 The thickness of the tantalum nitride barrier layer 310 is about 15 Å. 如所示的,阻挡层310是保形的(conformal),表明在整个构造300中阶梯覆盖较好。 As shown, the barrier layer 310 is conformal (Conformal), indicating that the entire construction 300 is preferably in step coverage.

图6是表示多层互连结构400的部分横截面的TEM图像。 6 is a partial cross-sectional TEM image of a multilayer interconnect structure 400. 多层互连结构400包括下层铜互连405、氮化钽阻挡层410和上层铜互连420。 Multilayer interconnection structure 400 includes a lower copper interconnect 405, a tantalum nitride barrier layer 410 and the upper layer copper interconnection 420. 下层铜互连405的铜粒生长穿过阻挡层410,延伸进上层铜互连420内,从而表明氮化钽阻挡层410的外延生长。 Lower copper interconnection copper particles 405 grow through the barrier layer 410, extends into the upper layer copper interconnection 420, indicating that the epitaxial growth layer 410 of tantalum nitride barrier. 阻挡层410由氮化钽组成,并是在250℃、2Torr下沉积出的。 Barrier layer 410 made of tantalum nitride, and at 250 deg.] C, deposited under 2Torr. 每个循环周期持续约2秒,并进行了30个循环周期。 Each cycle lasts about 2 seconds, and a 30 cycle. 阻挡层410的厚度约为10埃,这个厚度足以抑制铜迁移进介电层内。 The thickness of the barrier layer 410 is about 10 Å, this thickness is sufficient to inhibit migration of copper into the dielectric layer.

利用TEM仪器测量参照图3和4所示和描述的阻挡层310和410。 Measurement by TEM instrument 3 and the barrier layer shown and described in 4310 and 410. 应该理解,这种测量技术及任意其他用来测量沉积层厚度的技术都存在边缘误差。 It should be understood that this and any other measurement techniques used to measure the thickness of the deposited layer exists in the art an edge error. 因此,这里所提供的厚度是近似的,且是根据目前已知的最好技术来量化的,但并非意在限制本发明的范围。 Therefore, the thickness provided herein are approximate, and are based on the best currently known techniques to quantify, but is not intended to limit the scope of the invention.

下面的实例意在提供本发明的一个实施例的非限制性说明。 The following examples are intended to illustrate one non-limiting embodiment of the present invention is provided.

实例:利用循环沉积在下层铜层上沉积出厚约为20的TaN层。 Example: The cyclic deposition to deposit the TaN layer thickness of about 20 on the lower copper layer. 通过物理气相沉积在TaN层上沉积出厚约为100的铜合金晶种层。 Deposited by physical vapor deposition thickness of about 100 copper alloy seed layer is formed on the TaN layer. 铜合金晶种层含有浓度约为2.0个原子百分比的铝,并且是通过PVD,利用由浓度约为2.0个原子百分比的铝组成的铜-铝目标材料而沉积出的。 The copper alloy seed layer comprises a concentration of about 2.0 atomic percent aluminum, and is formed by PVD, aluminum with copper by the percentage concentration of about 2.0 atoms - aluminum deposited in the target material. 然后利用ECP沉积本体铜层来填满构造。 It is then deposited by an ECP bulk copper layer to fill the structure. 接着在氮气(N2)和氢气(H2)的环境中,约380℃的温度下将衬底热退火约15分钟。 Followed by nitrogen (N2) and hydrogen (H2) in the environment at a temperature of about 380 deg.] C thermal annealing of the substrate for about 15 minutes.

构造总电阻显著降低,上层铜层令人惊讶地呈现出类似于下层铜层的晶粒生长。 Configuration significantly reduces the total resistance, the upper copper layer surprisingly exhibits similar grain growth of the underlying copper layer. 与50的PVD Ta相比较,TaN层的阻挡性能呈现出更长的无故障工作时间(TTF)。 PVD Ta 50 compared with the barrier properties of the TaN layer exhibits a longer time to failure (TTF). 另外,TaN层表现出更低的接触电阻和紧密的扩散分布。 Further, TaN layer exhibits a lower contact resistance distribution and diffusion tight. TaN层还呈现出优异的形态学特性,包括光滑的表面形态和针孔自由表面。 TaN layer also exhibit excellent morphological properties, including a smooth surface morphology and a pinhole free surface.

此外,根据这里所描述的PDMAT和氨工艺过程沉积的TaN膜表现出不同寻常的膜均匀性。 Further, according to the TaN film PDMAT and ammonia processes described herein exhibit deposited film uniformity unusual. 膜厚度与沉积循环次数成线性比例,从而保证了精确的厚度控制。 Deposited film thickness is linearly proportional to the number of cycles, thus ensuring precise thickness control. 并发现在200mm的衬底上,对于10埃,厚度均匀性是1.8%;对于100埃,厚度均匀性是2.1%。 And found that a 200mm substrate, for 10 angstroms, the thickness uniformity is 1.8%; 100 angstroms thickness uniformity was 2.1%. 沉积膜呈现出非同寻常的保形覆盖,至少在某些结果中接近100%。 Deposited film exhibits unusual conformal coverage close to 100% in at least some results.

最后,铜合金晶种层表现出对TaN层优异的粘合/润湿性能。 Finally, the copper alloy seed layer exhibit excellent adhesion / wetting properties of the TaN layer. (PVD)铜晶种层在沉积的阻挡层上呈现出优选的{111}取向。 (PVD) copper seed layer presents a preferred orientation of {111} on the barrier layer deposited. {111}晶体取向是优选的,这是因为这种取向提供了较大的晶粒尺寸,并由于更大的晶粒尺寸从而呈现出较好的电迁移电阻。 {111} crystal orientation is preferable, because such orientation provides a larger grain size, grain size and due to the greater thus showing a good electromigration resistance.

虽然前述部分涉及本发明的实施例,但在不偏离本发明的基本范围以及由所附的权利要求所确定的范围的情况下,可设计本发明的其他进一步 While the foregoing is directed to embodiments of the present invention, part, but without departing from the basic scope thereof and the scope of the appended claims is determined, according to the present invention can be designed further to other

Claims (17)

  1. 1.一种在衬底上形成金属互连的方法,包括:在衬底表面上沉积第一金属层;通过交替地引入一次或多次含金属化合物的脉冲和一次或多次含氮化合物的脉冲,在至少一部分第一金属层上沉积含难熔金属的阻挡层,直至所述含难熔金属的阻挡层的厚度小于20埃,该阻挡层的厚度使得所述阻挡层呈现类晶体结构,并足以抑制原子迁移;在至少一部分所述阻挡层上沉积晶种层;以及在至少一部分所述晶种层上沉积第二金属层,其中所述第一金属层的晶粒生长延伸穿过所述阻挡层进入所述第二金属层内。 1. A method of forming a metal interconnection on a substrate, comprising: depositing a first metal layer on the substrate surface; alternatively by introducing one or more metal-containing compounds and one pulse or more nitrogen-containing compounds pulse, deposited on at least a portion of the first metal layer containing a refractory metal barrier layer, until the thickness of the barrier layer containing a refractory metal is less than 20 angstroms, the thickness of the barrier layer such that the barrier layer exhibits the crystal structure class, and sufficient to inhibit the migration of atoms; depositing a seed layer on at least a portion of said barrier layer; and depositing a second metal layer on at least a portion of the seed layer, wherein the grain growth of the first metal layer through the said second barrier layer into the metal layer.
  2. 2.如权利要求1所述的方法,其中所述含难熔金属的阻挡层包括氮化钽。 2. The method according to claim 1, wherein said barrier layer containing refractory metal comprises tantalum nitride.
  3. 3.如权利要求1所述的方法,其中重复每次脉冲输入,直至所述含难熔金属的阻挡层的厚度小于10埃。 The method of claim 1 wherein each pulse repetition input, until the thickness of the barrier layer containing a refractory metal is less than 10 Angstroms as claimed in claim.
  4. 4.如权利要求1所述的方法,其中所述交替的脉冲输入被重复10-70次来形成所述含难熔金属的阻挡层。 4. The method according to claim 1, wherein said alternating input pulse is repeated 10-70 times to form the refractory metal-containing barrier layer.
  5. 5.如权利要求1所述的方法,还包括在每次含金属化合物的脉冲输入和每次含氮化合物的脉冲输入过程中连续地流入清洗气。 5. The method according to claim 1, further comprising a metal-containing compound in each pulse input and a pulse input each nitrogen-containing compound during the purge gas flows continuously.
  6. 6.如权利要求5所述的方法,其中所述清洗气包括氩气、氮气、氦气或其组合。 6. The method according to claim 5, wherein said purge gas comprises argon, nitrogen, helium, or combinations thereof.
  7. 7.如权利要求1所述的方法,其中通过一时间延迟把每次含金属化合物的脉冲输入和含氮化合物的脉冲输入分开。 7. The method according to claim 1, wherein the time delay by a pulse input pulse input to separate nitrogen-containing compound and the metal-containing compounds each.
  8. 8.如权利要求7所述的方法,其中每次时间延迟对于一定量的含金属化合物或一定量的含氮化合物吸附在所述衬底表面上是足够长的。 8. The method according to claim 7, wherein each amount of time delay for the amount of metal-containing compound or nitrogen-containing compound is adsorbed on the surface of the substrate is sufficiently long.
  9. 9.如权利要求8所述的方法,其中所述时间延迟足够长以去除所述衬底表面上的未吸附的分子。 9. The method according to claim 8, wherein said delay time is not long enough to remove the adsorbed molecules on the substrate surface.
  10. 10.如权利要求1所述的方法,其中所述含氮化合物选自氨;肼;甲基肼;二甲基肼;t-丁基肼;苯肼;偶氮基异丁烷;叠氮基乙烷;其衍生物;及其组合。 10. The method according to claim 1, wherein the nitrogen-containing compound selected from ammonia; hydrazine; methylhydrazine; dimethylhydrazine; T-butylhydrazine; phenylhydrazine; azo group isobutane; azide ethane; derivatives; and combinations thereof.
  11. 11.如权利要求1所述的方法,其中所述含金属化合物选自四(二甲基氨基)钛;四(乙基甲基氨基)钛;四(二乙基氨基)钛;四氯化钛);四碘化钛;四溴化钛;t-丁基亚氨基-三(二乙基氨基)钽;五(乙基甲基氨基)钽;五(二甲基氨基)钽;五(二乙基氨基)钽;t-丁基亚氨基-三(二乙基甲基氨基)钽;t-丁基亚氨基-三(二甲基氨基)钽;二(环戊二烯基)钽化三氢;二(甲基环戊二烯基)钽化三氢;其衍生物;及其组合。 11. The method according to claim 1, wherein said metal-containing compound is selected from tetrakis (dimethylamino) titanium; tetrakis (ethylmethylamino) titanium; tetrakis (diethylamino) titanium; tetrachloride titanium); titanium tetraiodide; titanium tetrabromide; T-butylimino - tris (diethylamino) tantalum; pentakis (ethylmethylamino) tantalum; pentakis (dimethylamino) tantalum; penta ( diethylamino) tantalum; T-butylimino - tri (ethylmethylamino) tantalum; T-butylimino - tris (dimethylamino) tantalum; bis (cyclopentadienyl) tantalum of three hydrogen; bis (cyclopentadienyl) tantalum of three hydrogen; derivatives; and combinations thereof.
  12. 12.如权利要求1所述的方法,其中所述第一金属层和第二金属层各个都包括钨、铜或其组合。 12. The method according to claim 1, wherein said first metal layer and second metal layers each comprise tungsten, copper, or combinations thereof.
  13. 13.如权利要求1所述的方法,其中所述晶种层包括沉积在所述阻挡层上的第一晶种层和沉积在所述第一晶种层上的第二晶种层。 13. The method according to claim 1, wherein the seed layer comprises depositing a first seed layer and the second layer is deposited on the seed layer on the first seed layer of the barrier.
  14. 14.如权利要求13所述的方法,其中所述第一晶种层包括铜和选自铝、镁、钛、锆、锡及其组合的金属的铜合金晶种层,或者其中所述第一晶种层包括选自铝、镁、钛、锆、锡及其组合的金属。 14. The method according to claim 13 wherein the first, wherein the first seed layer comprises copper and the copper alloy seed layer is selected from aluminum, magnesium, titanium, zirconium, tin, and combinations of metals, or a seed layer comprises a metal selected from aluminum, magnesium, titanium, zirconium, tin, and combinations thereof.
  15. 15.一种在衬底上形成金属互连的方法,包括:在衬底表面上沉积第一金属层;通过交替地引入一次或多次含钛化合物的脉冲、一次或多次含硅化合物的脉冲和一次或多次含氮化合物的脉冲,在至少一部分所述第一金属层上沉积厚度小于20埃的钛硅氮化物层;沉积双合金晶种层;以及在至少一部分所述双合金晶种层上沉积第二金属层,其中所述第一金属层的晶粒生长延伸穿过所述钛硅氮化物层进入所述第二金属层内。 15. A method of forming a metal interconnection on a substrate, comprising: depositing a first metal layer on the substrate surface; pulsed-containing titanium compound once or several times by alternately introduced, one or more silicon-containing compound pulse and one or more nitrogen-containing compounds pulses, is deposited on at least a portion of the thickness of the first metal layer of titanium is less than 20 angstroms a silicon nitride layer; depositing a two-alloy seed layer; and at least a portion of the crystals in the two-alloy depositing a second metal layer on the seed layer, wherein the growth of crystal grains of the first metal layer extending through said silicon titanium nitride layer into said second metal layer.
  16. 16.一种在衬底上形成金属互连的方法,包括:在至少一部分金属层上沉积厚度小于20埃的双层阻挡层,所述双层阻挡层包括:通过交替地引入一次或多次含钽化合物的脉冲和一次或多次含氮化合物的脉冲而沉积的第一氮化钽层;和第二α相钽层;沉积双合金晶种层;以及在至少一部分所述双合金晶种层上沉积第二金属层,其中所述金属层的晶粒生长延伸穿过所述双层阻挡层进入所述第二金属层内。 16. A method for forming a metal interconnection on a substrate, comprising: at least a portion of the metal layer is deposited to a thickness of less than 20 Angstroms double barrier layer, the bilayer barrier layer comprising: introducing one or more times alternately pulse tantalum-containing compound layer and a first tantalum nitride one or more nitrogen-containing compounds deposited pulse; α phase and a second layer of tantalum; two-alloy seed layer is deposited; and at least a portion of the dual alloy seed in depositing a metal layer on the second layer, wherein the grain growth of the metal layer extending through the bilayer barrier into the second metal layer.
  17. 17.一种在衬底上形成金属互连的方法,包括:在衬底表面上沉积第一金属层;通过交替地引入一次或多次含钽化合物的脉冲和一次或多次含氮化合物的脉冲,在至少一部分所述第一金属层上沉积厚度小于20埃的氮化钽阻挡层;沉积双合金晶种层,其包括铜和选自铝、镁、钛、锆、锡及其组合的金属;以及在至少一部分所述双合金晶种层上沉积第二金属层,其中所述第一金属层的晶粒生长延伸穿过所述氮化钽阻挡层进入所述第二金属层内。 17. A method for forming a metal interconnection on a substrate, comprising: depositing a first metal layer on the substrate surface; containing one or more times by alternately introduced pulse and a tantalum compound or more nitrogen-containing compounds pulse, tantalum nitride barrier layer is less than 20 angstroms is deposited on at least a portion of said first metal layer; depositing a dual alloy seed layer comprises copper and selected from aluminum, magnesium, titanium, zirconium, tin and combinations thereof metal; and depositing a second metal layer on at least a portion of the dual alloy seed layer, wherein the growth of crystal grains of the first metal layer extending through said tantalum nitride layer into said second barrier metal layer.
CN 02821269 2001-10-26 2002-10-25 Integration of ald tantalum nitride and alpha-phase tantalum for copper metallization application CN1319146C (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US34608601 true 2001-10-26 2001-10-26
US10193333 US20030082307A1 (en) 2001-10-26 2002-07-10 Integration of ALD tantalum nitride and alpha-phase tantalum for copper metallization application
US10199415 US20030082301A1 (en) 2001-10-26 2002-07-18 Enhanced copper growth with ultrathin barrier layer for high performance interconnects
PCT/US2002/034277 WO2003038892A3 (en) 2001-10-26 2002-10-25 Atomic-layer-deposited tantalum nitride and alpha-phase tantalum as barrier layers for copper metallization

Publications (2)

Publication Number Publication Date
CN1575517A true CN1575517A (en) 2005-02-02
CN1319146C true CN1319146C (en) 2007-05-30

Family

ID=27393190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02821269 CN1319146C (en) 2001-10-26 2002-10-25 Integration of ald tantalum nitride and alpha-phase tantalum for copper metallization application

Country Status (3)

Country Link
JP (1) JP4711624B2 (en)
CN (1) CN1319146C (en)
WO (1) WO2003038892A3 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049226B2 (en) 2001-09-26 2006-05-23 Applied Materials, Inc. Integration of ALD tantalum nitride for copper metallization
CN100593235C (en) * 2003-06-13 2010-03-03 应用材料公司 Integration of ALD tantalum nitride for copper metallization
US7605469B2 (en) 2004-06-30 2009-10-20 Intel Corporation Atomic layer deposited tantalum containing adhesion layer
JP4783561B2 (en) * 2004-09-27 2011-09-28 株式会社アルバック The method of forming the copper wiring
JP2007073980A (en) * 2006-10-30 2007-03-22 Toshiba Corp Tan film for semiconductor device and semiconductor device using the same
KR100881716B1 (en) 2007-07-02 2009-02-06 주식회사 하이닉스반도체 Method for fabricating tungsten line with reduced sheet resistance tungsten layer and method for fabricating gate of semiconductor device using the same
US8227344B2 (en) * 2010-02-26 2012-07-24 Tokyo Electron Limited Hybrid in-situ dry cleaning of oxidized surface layers
KR101661768B1 (en) 2010-09-03 2016-09-30 엘지전자 주식회사 Solar cell and a method for their preparation
CN103151302A (en) * 2013-02-26 2013-06-12 复旦大学 Method for preparing low-resistance tantalum and tantalum nitride double-layer barrier layer by utilizing nitrogen-containing plasma
KR101708242B1 (en) * 2016-08-11 2017-02-20 엘지전자 주식회사 Solar cell and a method for their preparation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221449A (en) * 1990-10-26 1993-06-22 International Business Machines Corporation Method of making Alpha-Ta thin films
US6387805B2 (en) * 1997-05-08 2002-05-14 Applied Materials, Inc. Copper alloy seed layer for copper metallization
JP4097747B2 (en) * 1997-08-07 2008-06-11 株式会社アルバック Barrier-film forming method
US6140234A (en) * 1998-01-20 2000-10-31 International Business Machines Corporation Method to selectively fill recesses with conductive metal
KR100275738B1 (en) * 1998-08-07 2000-12-15 윤종용 Method for producing thin film using atomatic layer deposition
US6328871B1 (en) * 1999-08-16 2001-12-11 Applied Materials, Inc. Barrier layer for electroplating processes
US6432819B1 (en) * 1999-09-27 2002-08-13 Applied Materials, Inc. Method and apparatus of forming a sputtered doped seed layer
JP5173098B2 (en) * 1999-10-15 2013-03-27 エーエスエム インターナショナル エヌ.ヴェー.Asm International N.V. Conformal lining layer for damascene metallization
JP2001144089A (en) * 1999-11-11 2001-05-25 Sony Corp Method of manufacturing semiconductor device
JP2003531291A (en) * 2000-04-13 2003-10-21 ゲレスト インコーポレイテッド Titanium - silicon - chemical vapor deposition method of nitrogen film

Also Published As

Publication number Publication date Type
WO2003038892A3 (en) 2004-02-26 application
JP2005508092A (en) 2005-03-24 application
JP4711624B2 (en) 2011-06-29 grant
WO2003038892A2 (en) 2003-05-08 application
CN1575517A (en) 2005-02-02 application

Similar Documents

Publication Publication Date Title
US6797340B2 (en) Method for depositing refractory metal layers employing sequential deposition techniques
US7404985B2 (en) Noble metal layer formation for copper film deposition
US7589017B2 (en) Methods for growing low-resistivity tungsten film
US7402210B2 (en) Apparatus and method for hybrid chemical processing
US6809026B2 (en) Selective deposition of a barrier layer on a metal film
US6656831B1 (en) Plasma-enhanced chemical vapor deposition of a metal nitride layer
US6464779B1 (en) Copper atomic layer chemical vapor desposition
US20050085031A1 (en) Heterogeneous activation layers formed by ionic and electroless reactions used for IC interconnect capping layers
US20070197028A1 (en) Formation of boride barrier layers using chemisorption techniques
US20040241321A1 (en) Ruthenium layer formation for copper film deposition
US6358829B2 (en) Semiconductor device fabrication method using an interface control layer to improve a metal interconnection layer
US20050212139A1 (en) Seed layer formation
US6566246B1 (en) Deposition of conformal copper seed layers by control of barrier layer morphology
US20070205510A1 (en) Noble metal barrier layers
US7094680B2 (en) Formation of a tantalum-nitride layer
US8101521B1 (en) Methods for improving uniformity and resistivity of thin tungsten films
US20030049931A1 (en) Formation of refractory metal nitrides using chemisorption techniques
US20060240187A1 (en) Deposition of an intermediate catalytic layer on a barrier layer for copper metallization
US20070082132A1 (en) Method for forming metal wiring structure
US20060153973A1 (en) Ruthenium layer formation for copper film deposition
US7955972B2 (en) Methods for growing low-resistivity tungsten for high aspect ratio and small features
US20130260555A1 (en) Method of enabling seamless cobalt gap-fill
US20090269507A1 (en) Selective cobalt deposition on copper surfaces
US6727169B1 (en) Method of making conformal lining layers for damascene metallization
US20100003406A1 (en) Apparatuses and methods for atomic layer deposition

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted