CN1298107C - 信号电平变换器 - Google Patents

信号电平变换器 Download PDF

Info

Publication number
CN1298107C
CN1298107C CN200410005009.8A CN200410005009A CN1298107C CN 1298107 C CN1298107 C CN 1298107C CN 200410005009 A CN200410005009 A CN 200410005009A CN 1298107 C CN1298107 C CN 1298107C
Authority
CN
China
Prior art keywords
terminal
switching transistor
supply voltage
circuit
level converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200410005009.8A
Other languages
English (en)
Other versions
CN1521949A (zh
Inventor
泷场明
藤井亨
重弘哲世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1521949A publication Critical patent/CN1521949A/zh
Application granted granted Critical
Publication of CN1298107C publication Critical patent/CN1298107C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

本发明提供一种在实现芯片尺寸缩小与控制简化的同时,可准确设定输出到各端子的电压的信号电平变换器。信号电平变换器连接于第1端子与第2端子之间,第1端子连接于在比基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于在比第1电源电压高的第2电源电压动作的第2逻辑电路上。具备开关晶体管,通过提供给栅极的控制信号,在第1端子与第2端子之间形成电流路径;和总线保持电路,在第1和第2的一个端子为输入端子时,将经该晶体管传递来的信号电平变为所述另一端子的信号电平。在双向信号传递的情况下,在开关晶体管与输出侧的端子之间设置第1、第2总线保持电路,在单向的情况下,在与输出端子之间设置一个总线保持电路。

Description

信号电平变换器
本申请根据35USC§119,主张2月12日提交的日本专利申请2003-33757的优先权,其中参考引用其全部内容。
技术领域
本发明涉及一种信号电平变换器,尤其涉及一种设置在具有不同电源电平的逻辑电路间的信号电平变换器。
背景技术
通常,在包含CPU(Central Processing Unit:中央运算处理装置)的系统中,在CPU与外围设备之间存在多个交换数据的总线(信号线),外围设备下垂地连接于这些总线上。
CPU为了提高其处理速度而增大功耗,所以通过实现处理的细微化或实现电源电压的降低,可抑制CPU本身的功率增大。
但是,连接于CPU上的外围设备等,在多数情况下为了维持与其它装置的互换性而不容易进行电源电压的低电压化。这种倾向多见于由电池驱动的设备,作为这种电池驱动设备,例如可举出便携电话或PDA(Personal DigitalAssistant)等应用。
在该应用中为了延长使用时间,要求低功耗,对CPU的低功耗的要求强。但是,因为连接于总线上的外围设备必需维持互换性,所以现状是难以变更电源电压。
若向总线提供电源电平不同的信号,则系统的消耗电流增加,同时元件被破坏,使元件误操作。
因此,需要用于变换信号电源电平的集成电路元件。
图20中,作为PDA等应用的系统1具备以电源电平A动作的VccA系统电路2与由电源电平B动作的VccB系统电路3。
具体而言,系统1在信号沿箭头4的方向从终端A1流向端子B1的情况下,具备第1输入缓冲器电路5、第1(AtoB)逻辑电路6、变换电源电平的电平移动电路7、和第1输出缓冲器电路8。
VccA系统电路2与VccB系统电路3哪个动作由控制电路9来控制。控制电路9通过从方向切换信号的输入端子DIR与动作信号的输入端子*OE输入的各信号,向箭头4的方向与箭头10的方向切换动作方向。
在信号沿箭头10的方向从端子B1流向端子A1的情况下,具备第2输入缓冲器电路11、第2(BtoA)逻辑电路12、第2输出缓冲器电路13。另外,动作信号*OE中的[*]在本说明书中表示反转信号的电平。
图20所示的现有系统表示电源电平为VccA<VccB的情况,例如当作为从端子A1输入后输出到端子B1的信号处理系统的VccA系统电路的电源电平为2.5V时,VccB系统电路3的电源电平为3.3V。说明这种电路结构与基于电源电平的系统1的动作。
当考虑A1端子为输入、B1端子为输出的情况时,从端子A1输入的信号通过第1输入缓冲器电路5、第1(AtoB)逻辑电路6,输入电平移动电路7。电平移动电路7从VccA电平变换到VccB,将VccB电平的信号从第1输出缓冲器电路8输出到端子B1。
电平移动电路7是为了确实使第1输出缓冲器电路的P沟道晶体管截止而插入的电路。但是,在未设备电平移动电路7的情况下,P沟道晶体管的栅极与源极间的电压Vgs不为0V,P沟道晶体管未截止,流过贯通电流。
相反,在B1端子为输入、A1端子为输出的情况时,不必在第2(BtoA)逻辑电路12与第2输出缓冲器电路13之间设置电平移动电路,从B1端子输入的信号经和1输入缓冲器电路11、第2(BtoA)逻辑电路12、第2输出缓冲器电路13,将VccA电平的信号输出到第2输出缓冲器电路13。
用图21来说明现有系统(图20)的动作。
图21中,当端子*OE为如下设定的端子:当为VccB电平时,端子A和端子B的两端子变为高阻抗状态,当为接地(GND)电平时,端子A、端子B变为输入或输出。
并且,端子DIR为如下设定的端子:当为VccB电平时,端子A为输入,端子B为输出,当为接地(GND)电平时,端子B为输入,端子A为输出。
举例端子A为输入、端子B为输出(即*OE=GND、DIR=VccB)的情况,说明其动作。
当向端子A输入VccA电平的信号时,α节点变为VccA电平,电平移动电路7的N沟道晶体管N1、P沟道晶体管P2导通(N2与P1截止),向β节点输出VccB电平。
将该信号输入第1输出缓冲器电路8,将VccB电平的信号输出到端子B,可进行从VccA到VccB的电平变换。
但是,在图21所示第1现有例的双向系统的电平移动电路结构中,因为形成电路的元件数量多,所以存在芯片尺寸变大的缺点。
另外,必需设置用于切换方向的端子DIR并决定输入/输出方向,增加了控制的烦杂。
另外,以不同电源电平动作的总线系统不仅使用图20、图21所示的双向系统,也使用图22-图24所示的单向系统。
用图22-图24来说明作为这些单向系统的第2现有例。
在单向系统的情况下,仅通过不设置输入控制信号处理方向的方向切换信号的端子DIR,基本结构对应于图21的双向系统的结构,向相同的结构要素附加相同符号,省略重复说明。
图22所示的单向系统的动作与双向系统中从终端A到端子B或从端子B到端子A进行逻辑电路系统的信号处理的情况相同。
因为单向系统中没有端子DIR,所以没有双向系统等的控制烦杂,但电路结构相当复杂,芯片尺寸大,这些缺点与双向系统的情况一样。
作为单向系统的现有例,如图23所示,还有仅用N沟道晶体管来进行电平变换的电路。从连接以第1电源电平动作的第1逻辑电路的端子A输入的信号经未图示的输入缓冲器电路与(AtoB)逻辑电路(未图示),由电平移动电路7变换信号的电源电平。之后,变换电平后的信号从终端B输出到以第2电源电平动作的第2逻辑电路。
控制电路9根据从端子*OE输入的*OE信号,将控制信号提供给电平移动电路7的N沟道晶体管N1的栅极。
具体而言,端子*OE是如下设定的端子:当为VccB电平时,使N沟道晶体管N1截止,切离端子A与端子B之间,当为接地电平GND时,在端子A与端子B之间通过信号。
考虑端子*OE为接地电平GND、N沟道晶体管N1导通,端子A为接地GND电平、从端子B为接地GND电平的状态开始,到端子B切换为VccB电平的情况。
当向端子B施加VccB电平的信号电压时,向晶体管N1的栅极施加VccB,晶体管N1导通,所以在端子A呈现[VccB-VthN](VthN为晶体管N1的阈值)电压。
具体举例说明数值,当设VccB=3.3V、VccA=2.5V、VthN=1.0V时,在端子A呈现VccB-VthN=3.3v-1.0V=2.3V的电压。
但是,在该第2现有例的电路中,输出电压左右晶体管N1的阈值电压VthN的差异。当阈值电压VthN的差异被设为±0.2V时,输出电压在2.1-2.5V的范围内变化。若现在考虑输出最低电压2.1V的情况,则因为VccA为2.5V,差0.4V,所以在连接于端子A上的元件的初级中流过贯通电流。
用图24来说明流过贯通电流的情况。
图24表示连接于端子A上的第1逻辑电路的元件的初极电路是反相器的情况的结构。
在从端子B到端子A的单向系统的情况下,因为向端子A输出2.1V,所以构成连接于端子A上的元件初级的反相器的晶体管N2导通。但是,将作为与2.5V(VccA电平)之差的0.4V作为栅极、源极间电压Vgs施加到反相器另一方的晶体管P1,仅晶体管P1导通,所以从构成反相器的晶体管P1经N2流过贯通电流。
相反,当考虑端子A为输入、端子B为输出的从端子A向端子B的单向系统的情况下时,向端子A施加2.5V,在端子B上,与上述从B向A的单向的情况一样,呈现[3.3V-1V=2.3V],作为晶体管N1的栅极电压。
在端子B上连接其它元件的情况下,因为向初级电路的P沟道晶体管施加[3.3V-2.3V=1V]的栅极、源极电压Vgs,所以与上述情况相比,流过更多的贯通电流。
这样,在仅由N沟道晶体管构成的电平变换器中,取代电路结构简单,产生N沟道晶体管的差异影响或连接于次级的元件中流过贯通电流等缺点。
根据适用于上述双向逻辑电路系统的现有信号电平变换器,因为构成信号电平变换器的元件数量多,所以存在电路整体的芯片尺寸变大等问题。另外,由于必需设置切换方向用的端子DIR来决定输入/输出的方向的结构,所以还存在控制烦杂等问题。
另外,因为单向逻辑电路系统中没有各端子DIR,所以控制上的烦杂主要是在双向逻辑电路系统中,但在使用现有信号电平变换器的情况下,因为电路结构复杂,所以存在芯片尺寸很大等问题。
另外,在使用开关晶体管作为单向逻辑电路系统的信号电平变换器的情况下,由于开关晶体管的阈值电压的差异,所以存在构成连接于单向逻辑电路系统输出端子侧上的元件的初级电路的晶体管等中流过贯通电流等问题。
发明内容
本发明的目的在于提供一种在实现芯片尺寸缩小与控制简化的同时,可准确设定输出到各端子的电压的信号电平变换器。
为了实现上述目的,根据本发明的第1结构的信号电平变换器连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,可在两端子间传递双向信号,其特征在于:具备:开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;第1总线保持电路,在所述第1端子为输入端子、所述第2端子为输出端子的情况下,设置在所述开关晶体管与所述第2端子之间,将经该开关晶体管传递来的信号的电压电平设为所述第2端子的电压电平;和第2总线保持电路,在所述第2端子为输入端子、所述第1端子为输出端子的情况下,设置在所述开关晶体管与所述第1端子之间,将经该开关晶体管传递来的信号的电压电平设为所述第1端子的电压电平。
另外,根据本发明的第2结构的信号电平变换器连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,可在两端子间传递双向信号,其特征在于:具备:开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;第1总线保持电路,由并联连接于所述开关晶体管与输入输出所述第2电源电压的所述第2端子之间的第1反相器与第2反相器的串联连接体构成;和第2总线保持电路,由并联连接于所述开关晶体管与输入输出所述第1电源电压的所述第1端子之间的第3反相器与第4反相器的串联连接体构成。
另外,根据本发明的第3结构的信号电平变换器连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,可在两端子间传递双向信号,其特征在于:具备:开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;第1总线保持电路,由并联连接于所述开关晶体管与输入输出所述第2电源电压的所述第2端子之间的第1时钟反相器与第2反相器的串联连接体构成;和第2总线保持电路,由并联连接于所述开关晶体管与输入输出所述第1电源电压的所述第1端子之间的第2时钟反相器与第4反相器的串联连接体构成。
另外,根据本发明的第4结构的信号电平变换器连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,可在两端子间传递双向信号,其特征在于:具备:开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;第1总线保持电路,由并联连接于所述开关晶体管与输入输出所述第2电源电压的所述第2端子之间的第1时钟反相器与第1与非电路的串联连接体构成;和第2总线保持电路,由并联连接于所述开关晶体管与输入输出所述第1电源电压的所述第1端子之间的第2时钟反相器与第2与非电路的串联连接体构成。
另外,根据本发明的第5结构的信号电平变换器连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,变换输入到任一端子的单向信号的电平,其特征在于:具备:开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;和总线保持电路,当所述第1和第2端子中一个端子为输入端子时,设置在作为输出端子的另一个端子与所述开关晶体管之间,将经该开关晶体管传递来的信号的电压电平设为所述另一个端子的电压电平。
另外,根据本发明的第6结构的信号电平变换器连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,变换输入到任一端子的单向信号的电平,其特征在于:具备:开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;和总线保持电路,由当所述第1和第2端子中的一个为输入端子时并联连接于作为输出端子的另一个端子与所述开关晶体管之间的第1反相器与第2反相器的串联连接体构成。
另外,根据本发明的第7结构的信号电平变换器连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,变换输入到任一端子的单向信号的电平,其特征在于:具备:开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;和总线保持电路,由当所述第1和第2端子中的一个为输入端子时并联连接于作为输出端子的另一个端子与所述开关晶体管之间的第1时钟反相器与第2反相器的串联连接体构成。
另外,根据本发明的第8结构的信号电平变换器连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,变换输入到任一端子的单向信号的电平,其特征在于:具备:开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;和总线保持电路,由当所述第1和第2端子中的一个为输入端子时并联连接于作为输出端子的另一个端子与所述开关晶体管之间的第1时钟反相器与第2与非电路的串联连接体构成。
附图说明
图1是表示根据本发明实施形态1的信号电平变换器的逻辑电路的结构电路图。
图2是表示从根据实施形态1的信号电平变换器的端子B侧向端子A侧方向的信号传递动作的特性图。
图3是表示从根据实施形态1的信号电平变换器的端子A侧向端子B侧方向的信号传递动作的特性图。
图4是表示根据本发明实施形态2的信号电平变换器的逻辑电路的结构电路图。
图5是表示根据本发明实施形态3的信号电平变换器的逻辑电路的结构电路图。
图6是表示根据本发明实施形态4的信号电平变换器的逻辑电路的结构电路图。
图7是表示从根据实施形态4的信号电平变换器的端子B侧向端子A侧方向的信号传递动作的特性图。
图8是表示从根据实施形态4的信号电平变换器的端子A侧向端子B侧方向的信号传递动作的特性图。
图9是表示根据本发明实施形态5的信号电平变换器的逻辑电路的结构电路图。
图10是表示根据本发明实施形态6的信号电平变换器的逻辑电路的结构电路图。
图11是表示根据本发明实施形态7的信号电平变换器的逻辑电路的结构电路图。
图12是表示根据本发明实施形态8的信号电平变换器的逻辑电路的结构电路图。
图13是表示根据本发明实施形态9的信号电平变换器的逻辑电路的结构电路图。
图14是表示根据本发明实施形态10的信号电平变换器的逻辑电路的结构电路图。
图15是表示根据本发明实施形态11的信号电平变换器的逻辑电路的结构电路图。
图16是表示根据本发明实施形态12的信号电平变换器的逻辑电路的结构电路图。
图17是表示根据本发明实施形态13的信号电平变换器的逻辑电路的结构电路图。
图18是表示根据本发明实施形态14的信号电平变换器的逻辑电路的结构电路图。
图19是表示根据本发明实施形态15的信号电平变换器的逻辑电路的结构电路图。
图20是表示现有信号电平变换器的结构框图。
图21是表示现有双向信号电平变换器的电路结构的电路图。
图22是表示现有单向信号电平变换器的结构的电路图。
图23是表示作为第2现有例的单向逻辑电路结构的电路图。
图24是表示连接于图23所示第2现有例的端子A上的元件初级中流过贯通电流情况的电路图。
具体实施方式
下面,参照附图来详细说明根据本发明的信号电平变换器的实施形态。
首先,用图1-图3来说明本发明的实施形态1。
图1是示意表示根据本发明实施形态1的信号电平变换器的逻辑电路的结构电路图。图1中,信号电平变换器15连接于端子A与端子B之间,端子A连接于通过比规定的基准电压高的第1电源电压VccA动作的第1逻辑电路上,端子B连接于通过比第1电源电压VccA高的第2电源电压VccB动作的第2逻辑电路上,可在两端子A、B间传递双向信号。
信号电平变换器15具备:开关晶体管16,通过提供给栅极的控制信号,在所述第1端子A与所述第2端子B之间形成电流路径;第1总线保持电路17,在第1端子A为输入端子、第2端子B为输出端子的情况下,设置在开关晶体管16与第2端子B之间,将经该开关晶体管16传递来的信号的电压电平变为第2端子B的电压电平、即第2电源电压(VccB);和第2总线保持电路18,在第2端子B为输入端子、第1端子A为输出端子的情况下,设置在开关晶体管16与第1端子A之间,将经该开关晶体管传递来的信号的电压电平变为第1端子A的电压电平、即第1电源电平(VccA)。
信号电平变换器15除第1端子A和第2端子B外,还具备输入控制信号的控制端子*OE,开关晶体管16由N沟道晶体管N1构成,该晶体管的栅极连接于控制端子*OE上,同时源极和漏极分别于第1端子A与第2端子B上,当栅极由于控制信号而导通时,若向任一端子提供信号,则在两端子间形成电流路径。
输入端子*OE的信号在被由反相器构成的控制电路19反转后,作为控制信号OE提供给开关晶体管16的栅极。
在本实施形态1的情况下,如图1所示,第1电源电压(VccA)系统2仅由第2总线保持电路18构成,开关晶体管16、第1总线保持电路17和控制电路19包含于第2电源电压(VccB)系统3中。
如上所述,根据实施形态1的信号电平变换器15被用于双向逻辑电路系统,具备第1总线保持电路17和第2总线保持电路18。
第1总线保持电路17将串联连接的两个反相器INV1、INV2并联连接于晶体管N1与第2端子B之间,第2总线保持电路18将串联连接的两个反相器INV3、INV4并联连接于晶体管N1与第1端子A之间。
下面,说明信号电平变换器(实施形态1)15的动作,例如以2.5V(第1电源电压VccA)和3.3V(第2电源电压VccB)动作。
信号电平变换器15基本上如下动作。
逻辑电路系统整体被设定为,当端子*OE为第2电源电压VccB时,开关晶体管16截止,断开端子A与端子B之间,当变为基准电压电平、例如GND电平(0V)时,在端子A、B之间通过信号。
考虑当端子*OE为GND电平时,构成开关晶体管16的N沟道晶体管N1导通,第1端子A为GND电平、第2端子B从GND电平的状态切换为VccB电平的情况。
因为向晶体管N1的栅极施加第2电源电压VccB的控制信号,晶体管N1导通,所以当向第2端子B施加第2电源电压VccB的信号时,在第1端子A上呈现从第2电源电压VccB中减去晶体管N1的阈值电压VthN后的关系为[VccB-VthN]的电压。
例如,当设VccB=3.3V、VccA=2.5V、VthN=1.0V时,在第1端子A上呈现VccB-VthN=3.3v-1.0V=2.3V的电压。通过传递来的2.3V,第2总线保持电路18的反相器INV4反转,输出GND电平,反相器INV3输出2.5V,所以如图2中波形所示,第1端子A上升到2.5V。
相反,在向第1端子A施加第1电源电压VccA(2.3V)的情况下,首先向第2端子B输出3.3V-1.0V=2.3V的电压。通过该2.3V电压,构成第1总线保持电路.7的反相器INV2反转,输出GND电平,反相器INV1输出3.3V,所以如图3的波形图所示,从2.3V到3.3V的剩余1.0V可能通过反相器INV1提供电压而上升。因此,向第2端子B输出3.3V,作为第2电源电压VccB。
下面,当考虑第1端子A为第1电源电压VccA、第2端子B从第2电源电压(VccB)变为GND(基准)电平的情况时,晶体管N1因为第2端子B为GND电平,所以完全导通,导通持续到第1端子A变为GND电平为止。相反情况也一样,在GND电平的控制中,仅由晶体管N1就可控制。
当控制端子*OE变为第1电源电压电平、即(*OE=VccB)时,晶体管N1截止,断开第1、第2端子A、B间的信号传递,在第1、第2总线保持电路17、18中可以保持以前的状态。
这样,通过仅设置分别连接于在用作开关的晶体管N1和不同的两个电源电压电平的端子之间的第1、第2总线保持电路17、18,就可进行电平变换,通过电路简化来缩小芯片尺寸。
因为晶体管N1只是开关晶体管,所以只要是决定导通、截止的信号(此时为控制信号*OE)即可,不需要以前决定用于控制双向逻辑电路方向性的方向信号IDR等的信号传递方向的端子,可削减双向逻辑电路中的端子。
就总线保持电路17和18而言,其是为将经晶体管N1传递来的信号电平变为各端子的电源电压电平所必需的,由于即使晶体管的尺寸(能力)小也无妨,所以对芯片的缩小化有效。
因为呈现在第1端子A、第2端子B各自上的信号电平确实变为各电源电压VccA、VccB,所以在连接于端子最近次极上的元件中不产生贯通电流,可降低功耗。
另外,图1中说明了将N沟道晶体管N1适用为开关晶体管16,但本发明不限于此,也可将P沟道晶体管适用于开关晶体管。对于构成第1、第2总线保持电路17、18的反相器INV1、INV2、INV3、INV4而言,也可使用N沟道、P沟道晶体管来适当构成。
另外,在图1中,第1、第2总线保持电路17、18分别将串联连接的两个反相器(invertor)并联连接于开关晶体管16与第2端子B或第1端子A之间。
但是,如图4所示实施形态2的信号电平变换器所示,也可由通过控制信号OE来切换的时钟反相器INV1、INV3来分别构成第1总线保持电路17的反相器INV1与第2总线保持电路18的反相器3。
如实施形态2所示,当通过将反相器INV1、INV3变更为时钟反相器,来使构成开关晶体管16的N沟道晶体管N1截止时,可去除反相器INV1、INV3分别驱动端子A和端子B的电流,可实现功耗的降低。此时,N沟道晶体管N1截止时,端子A和端子B为高阻抗HZ状态。
另外,在图4所示实施形态2中,反相器INV2和INV4即使在晶体管N1截止时也在第2端子B和第1端子A的总线信号变化时流过动作电流,功耗多,所以功耗降低不充分。
因此,如图5所示的实施形态3所示,也可将反相器INV2和INV4分别变更为第1和第2与非电路NAND1和NAND2。这些第1及第2与非电路NAND1和NAND2各自的一侧输入连接于晶体管N1与端子B或A之间,向另一侧输入提供控制信号OE。
在如此构成的实施形态3的信号电平变换器中,当晶体管N1截止时,可完全固定第1和第2总线保持电路17、18,可实现功耗的进一步降低。
即,当晶体管N1由于控制信号OE而被截止时,因为第1和第3时钟反相器INV1、INV3、与第1和第2与非电路NAND1、NAND2通过相同的控制信号OE而被截止,所以即使在向第1端子A和第2端子B的总线信号变化的情况下,也不会流过动作电流,可完全停止提供无用的消耗电流。
另外,上述实施形态1-3中,控制端子*OE都为第2电源电压VccB系统3,但本发明不限于这种结构,也可如图6-图8所示实施形态4的信号电平变换器那样构成。
本实施形态4也适用于与实施形态1一样的双向逻辑电路系统,但连接于第1、第2端子A、B上的第1、第2逻辑电路的详细内部结构省略图示,仅图示关联本发明的信号电平变换器。
根据实施形态4的信号电平变换器是向控制端子*OE提供第1电源电压VccA的情况下的基本实施例。
控制电路19如图6所示,由包含在第1电源电压VccA系统2中的反相器构成。本实施形态4除控制电路19的电源电压电平为VccA系统这点与实施形态1不同外,其它结构与实施形态1的信号电平变换器相同。
就动作而言,除控制端子*OE通过例如作为2.5V的VccA系统的电源电压来控制开关晶体管16外,与实施形态1相同。
即,向构成开关晶体管16的N沟道晶体管N1的栅极直接施加VccA系统的电源电压。此时,呈现在输出端子A或B上的信号电压为[VccA-VthN],比实施形态1时还低,由总线保持电路抬升的量多,所以切换用的期间变长这么多。
例如,若设VccB=3.3V、VccA=2.5V、端子B为输入、端子A为输出时,因为向晶体管N1的栅极施加2.5V,所以仅[2.5-1.0=1.5V]传递到端子A,就剩余的1.0V而言,必需由第2总线保持电路18来使之上升。
当图7中示出此时的端子A的输出信号电平的变迁时,呈现在端子A上的信号电平的两个波形重合。
即,根据对端子B的3.3V电源电压的输入,从施加到作为开关晶体管16的N沟道晶体管N1的栅极上的2.5V中差动晶体管的消耗量1.0V后的1.5V经晶体管N1首先传递到端子A,接着,通过第1总线保持电路17从1.5V上升到2.5V,在端子A上呈现2.5V的电压。
与此相反,在端子A为输入、端子B为输出的情况下,因为作为经晶体管N1传递的到端子B的输出仅为1.5V,所以有必要由第1总线保持电路17使剩余的3.3V-1.5V=1.8V上升,如图8的特性图所示,在使端子B上升到作为VccB系统的电压的3.3V中,必需比向端子A的输出情况更长的期间。
但是,通过设置第1和第2总线保持电路17、18,即使根据本实施形态4的信号电平变换器也可向另一侧端子B或A提供本来的信号电平的输出。
图6中,第1总线保持电路17由与实施形态1一样串联连接的两个反相器INV1和INV2构成,第2总线保持电路18也同样由两个反相器INV3和INV4构成。因为这些反相器的动作也与实施形态1一样,所以省略重复说明。
另外,第1和第2总线保持电路17、18的结构与实施形态2和3对实施形态1的关系一样,也可使用时钟反相器或“与非”电路来代替反相器。下面,将这些实例作为实施形态5和6来说明。图9中示出实施形态5,图10中示出实施形态6。
图9中,根据实施形态5的信号电平变换器与图4中示出的实施形态2的信号电平变换器一样,由时钟反相器INV1与反相器INV2构成第1总线保持电路17,由时钟反相器INV3与反相器INV4构成第2总线保持电路18。
实施形态5在第2总线保持电路18与控制电路19为第1电源电压VccA系统2、开关晶体管16与第1总线保持电路17为第2电源电压VccB系统3这点上与图6所示实施形态4一样。
图10中,根据实施形态6的信号电平变换器与图5中示出的实施形态3的信号电平变换器一样,由时钟反相器INV1和与非电路NAND1构成第1总线保持电路17,由时钟反相器INV3和与非电路NAND2构成第2总线保持电路18。
实施形态6在第2总线保持电路18与控制电路19为第1电源电压(VccA)系统2、开关晶体管16与第1总线保持电路17为第2电源电压(VccB)系统3这点上与图6所示实施形态4一样。
这样,也可通过上述图6-图8所示实施形态4、图9所示实施形态5、图10所示实施形态6来实现本发明的目的。
尽管如此,在这些实施形态中,为了使从控制电路19提供到开关晶体管16的栅极的第1电源电压VccA系统的控制信号上升到第2电源电压VccB,仅第1总线保持电路17中要花费较长时间。
因此,提议设置电平移动电路20来作为包含开关晶体管16和第1总线保持电路17的VccB系统的内部电路的实施形态7的信号电平变换器。图11中示出根据实施形态7的信号电平变换器。
具体而言,在属于第1电源电压VccA系统的控制电路19与属于第2电源电压VccB的开关晶体管16的栅极之间插入VccB系统的电平移动电路20,将控制信号OE的信号电平从第1电源电压(VccA)的电平变为第2电源电压(VccB)的电平。
简单说明根据实施形态7的信号电平变换器的动作。
如实施形态7所示,在将控制电路19的输出从第1电源电压VccA电平变换到第2电源电压VccB后提供给开关晶体管16的栅极的情况下,开关晶体管16以后的动作与用图2和图3说明的实施形态1的动作相同。
即,第2电源电压VccB系统3的信号输入第2端子B的情况下的动作如图2所示,向第1端子A输出第1电源电压VccA系统2的电平信号。
另外,在向第1端子A输入第1电源电压(VccA)系统2的电平信号的情况下,如图3所示,向第2端子B输出第2电源电压VccB系统3的电平信号。
在图11所示实施形态7中,第1和第2总线保持电路17、18的结构不限于串联连接的两个反相器INV1与INV2、INV3与INV4的结构,也可是时钟反相器与反相器的串联连接结构或时钟反相器和与非电路的串联连接结构。
图12所示实施形态8中第1总线保持电路17由时钟反相器INV1与反相器INV2构成,第2总线保持电路18由时钟反相器INV3与反相器INV4构成。其它结构与图11所示实施形态7一样。
图13所示实施形态9中第1总线保持电路17由时钟反相器INV1和与非电路NAND1构成,第2总线保持电路18由时钟反相器INV3和与非电路NAND2构成。其它结构与图11所示实施形态7一样。
如上述说明的实施形态7-9所示,在VccB系统3中设置电平移动电路20的情况下,从控制电路19输出的第1电源电压VccA系统2的控制信号OE通过电平移动电路20移动到第2电源电压VccB系统3的电平。
该电平移动在向作为开关晶体管16的晶体管N1的栅极施加3.3V、向第1端子A输出信号的情况下,第2总线保持电路18使2.3V的电压上升到2.5V。另外,在向端子B输出信号的情况下,第1总线保持电路17使2.3V的电压上升到3.3V。
换言之,由总线保持电路保持的信号电压的电平量在设置电平移动电路20的情况下变少,由与实施形态1相同的电压量上升的期间长度也与实施形态1的情况相同。因此,如上所述,有无电平移动电路20的差别仅在于总线保持电路上升电压的量与上升所需时间的长度不同。
这样,根据实施形态1-9的信号电平变换器特别在具有双向信号输入的情况下,不需要用于切换信号方向的方向控制信号。这意味着减少一个芯片化的集成电路中的输入端子。因此,具有对在端子设置数量上有限制的芯片化集成电路元件实现结构简化的好的效果。
说明以上实施形态1-9的信号电平变换器全部可双向传递信号的情况。本发明不限于此,信号的传递方向也可是从第1端子A向第2端子B的方向或从第2端子B向第1端子A的方向等单向。
下面,用图14-图19所示实施形态10-15来说明单向传递信号的情况下的信号电平变换器。
图14所示实施形态10的信号电平变换器中将端子A设为输入端子,将端子B设为输出端子。
经控制端子*OE提供第2电源电压(VccB)系统3的信号,由控制电路19反转为控制信号OE后,提供给开关晶体管16的栅极,晶体管N1变为导通状态。此时,当向第1端子A输入第1电源电压VccA系统2的信号时,经晶体管N1传递信号,向第2端子B输出第2电源电压VccB系统3的电平信号。
因此,在开关晶体管16与第2电源电压VccB的第2端子B之间设置一个第3总线保持电路25。第3总线保持电路25与(图1)的第1总线保持电路17一样,在开关晶体管16与端子B之间并联连接串联连接反相器INV1与INV2的串联体。
第1电源电压VccA系统的信号向第1端子A的输入在晶体管16的第2端子B侧、即第3总线保持电路25的输入侧变换为3.3V-1.0V=2.3V。
这在晶体管16(N1)响应向端子*OE的GND电平的控制信号而导通时产生。该电压2.3V由构成第3总线保持电路25的反相器INV2反转后,输出GND电平,反相器INV1输出3.3V。
因此,就从2.3V到3.3V的剩余1.0V而言,反相器INV1提供电压使之上升,向端子B输出3.3V的信号。此时的动作与图3一样。
图14所示实施形态10中,第3总线保持电路25由反相器INV1、INV2构成,但与上述实施形态一样,也可由其它元件来构成第3总线保持电路25。
图15所示实施形态11的信号电平变换器与实施形态2、5、8一样,将串联连接时钟反相器INV1与反相器INV2的串联体构成的第3总线保持电路25从端子B侧并联连接到晶体管16侧。
图16所示的实施形态12的信号电平变换器与实施形态3、6、9一样,将串联连接时钟反相器INV1和与非电路NAND1的串联体构成的第3总线保持电路25从端子B侧并联连接到晶体管16侧。
以上实施形态10-12说明了从端子A侧向端子B侧提供单向信号的情况,但本发明不限于此,即使是从端子B侧向端子A侧提供单向信号的情况也可适用。
图17所示实施形态13的信号电平变换器向第2端子B提供第2电源电压VccB系统3的信号,向第1端子A输出第1电源电压VccA系统2的信号。在开关晶体管16与端子A之间插入将串联连接反相器INV3与反相器INV4的串联体并联连接于晶体管16与第1端子A侧之间的第4总线保持电路30。
简单说明动作,设定成当控制端子*OE为第2电源电压VccB电平时,晶体管16截止,当控制端子*OE为GND电平时,晶体管16导通,信号从第2端子B流向第1端子A。
当控制端子*OE为GND电平、晶体管16导通时,若向第2端子B提供第2电源电压VccB系统的信号,则在晶体管16的端子A侧呈现3.3V-1.0V=2.3V的信号,通过该2.3V,第1总线保持电路30的反相器INV4反转,输出GND电平,反相器INV3输出2.5V,由于如此动作,所以在第1端子A呈现上升到2.5V的信号。
根据上述实施形态13的信号电平变换器,说明将串联连接反相器INV3、INV4的串联体作为第4总线保持电路30来并联连接于开关晶体管16与第1端子A之间,但本发明不限于此,与实施形态2、5、8、11一样,也可由将第4总线保持电路30的结构替代为时钟反相器和与非电路的结构来实施。
图18所示实施形态14的信号电平变换器通过串联连接时钟反相器INV3与反相器INV4来构成第4总线保持电路30。通过这种结构,与可与实施形态13的信号电平变换器一样动作,可实现一样的作用效果。
另外,如图19所示实施形态15的信号电平变换器那样,也可由时钟反相器INV3和与非电路NAND2来构成第4总线保持电路30。通过实施形态15也可实现与实施形态13和14的信号电平变换器一样的动作,可实现同样的作用效果。
另外,虽省略图示说明,但即使是单向的信号电平变换器,也可将控制电路19作为第1电源电压VccA系统2,向控制端子*OE提供第1电源电压VccA2的控制信号。此时,如图12所示的实施形态8的信号电平变换器那样,也可在控制电路19与开关晶体管16的基极之间设置电平移动电路20。
如上详细所示,根据本发明的信号电平变换器,在沿任一方向传递不同电源电压电平的信号时,可由简单的结构来实现电源电压的电平变换,可实现组装在集成电路芯片中时的芯片尺寸的缩小与控制的简化,同时,可将输出到各端子的电压变为可靠电平的电压。

Claims (47)

1、一种信号电平变换器,连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,可在两端子间传递双向信号,其特征在于:具备
开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;
第1总线保持电路,在所述第1端子为输入端子、所述第2端子为输出端子的情况下,设置在所述开关晶体管与所述第2端子之间,将经该开关晶体管传递来的信号的电压电平设为所述第2端子的电压电平;
第2总线保持电路,在所述第2端子为输入端子、所述第1端子为输出端子的情况下,设置在所述开关晶体管与所述第1端子之间,将经该开关晶体管传递来的信号的电压电平设为所述第1端子的电压电平;
控制端子;
控制电路,设置在该控制端子与所述开关晶体管的栅极之间,用于输出控制信号;
所述开关晶体管由所述控制信号来控制。
2、根据权利要求1所述的信号电平变换器,其特征在于:
所述控制电路通过所述第2电源电压进行动作。
3、根据权利要求1所述的信号电平变换器,其特征在于:
所述控制电路通过所述第1电源电压进行动作。
4、根据权利要求3所述的信号电平变换器,其特征在于:
在所述控制电路与所述栅极之间设置将所述控制信号的电平从第1电源电压变为第2电源电压的电平移动电路。
5、根据权利要求1所述的信号电平变换器,其特征在于:
所述第1总线保持电路是并联连接于所述开关晶体管与所述第2端子之间的第1反相器与第2反相器的串联连接体,同时,
所述第2总线保持电路是并联连接于所述开关晶体管与所述第1端子之间的第3反相器与第4反相器的串联连接体。
6、根据权利要求1所述的信号电平变换器,其特征在于:
所述第1总线保持电路是并联连接于所述开关晶体管与所述第2端子之间的第1时钟反相器与第2反相器的串联连接体,同时,
所述第2总线保持电路是并联连接于所述开关晶体管与所述第1端子之间的第2时钟反相器与第4反相器的串联连接体。
7、根据权利要求1所述的信号电平变换器,其特征在于:
所述第1总线保持电路是并联连接于所述开关晶体管与所述第2端子之间的第1时钟反相器与第1与非电路的串联连接体,同时,
所述第2总线保持电路是并联连接于所述开关晶体管与所述第1端子之间的第2时钟反相器与第2与非电路的串联连接体。
8、根据权利要求1所述的信号电平变换器,其特征在于:
所述开关晶体管是N沟道晶体管。
9、根据权利要求1所述的信号电平变换器,其特征在于:
所述开关晶体管是P沟道晶体管。
10、一种信号电平变换器,连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,可在两端子间传递双向信号,其特征在于:具备
开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;
第1总线保持电路,由并联连接于所述开关晶体管与所述第2端子之间、由所述第2电源电压驱动的第1反相器与第2反相器的串联连接体构成;
第2总线保持电路,由并联连接于所述开关晶体管与所述第1端子之间、由所述第1电源电压驱动的第3反相器与第4反相器的串联连接体构成;
控制端子;和
控制电路,设置在该控制端子与所述开关晶体管的栅极之间,用于输出所述控制信号。
11、根据权利要求10所述的信号电平变换器,其特征在于:
所述控制电路通过所述第2电源电压进行动作。
12、根据权利要求10所述的信号电平变换器,其特征在于:
所述控制电路通过所述第1电源电压进行动作。
13、根据权利要求12所述的信号电平变换器,其特征在于:
在所述控制电路与所述栅极之间设置将所述控制信号的电平从第1电源电压变为第2电源电压的电平移动电路。
14、根据权利要求10所述的信号电平变换器,其特征在于:
所述开关晶体管是N沟道晶体管。
15、根据权利要求10所述的信号电平变换器,其特征在于:
所述开关晶体管是P沟道晶体管。
16、一种信号电平变换器,连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,可在两端子间传递双向信号,其特征在于:具备
开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;
第1总线保持电路,由并联连接于所述开关晶体管与输入输出所述第2电源电压的所述第2端子之间的第1时钟反相器与第2反相器的串联连接体构成;
第2总线保持电路,由并联连接于所述开关晶体管与输入输出所述第1电源电压的所述第1端子之间的第2时钟反相器与第4反相器的串联连接体构成;
控制端子;和
控制电路,设置在该控制端子与所述开关晶体管的栅极之间,用于输出所述控制信号。
17、根据权利要求16所述的信号电平变换器,其特征在于:
所述控制电路通过所述第2电源电压进行动作。
18、根据权利要求16所述的信号电平变换器,其特征在于:
所述控制电路通过所述第1电源电压进行动作。
19、根据权利要求18所述的信号电平变换器,其特征在于:
在所述控制电路与所述栅极之间设置将所述控制信号的电平从第1电源电压变为第2电源电压的电平移动电路。
20、根据权利要求16所述的信号电平变换器,其特征在于:
所述开关晶体管是N沟道晶体管。
21、根据权利要求16所述的信号电平变换器,其特征在于:
所述开关晶体管是P沟道晶体管。
22、一种信号电平变换器,连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,可在两端子间传递双向信号,其特征在于:具备
开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;
第1总线保持电路,由并联连接于所述开关晶体管与所述第2端子之间、以所述第2电源电压驱动的第1时钟反相器与第1与非电路的串联连接体构成;
第2总线保持电路,由并联连接于所述开关晶体管与所述第1端子之间、以所述第1电源电压驱动的第2时钟反相器与第2与非电路的串联连接体构成;
控制端子;和
控制电路,设置在该控制端子与所述开关晶体管的栅极之间,用于输出所述控制信号。
23、根据权利要求22所述的信号电平变换器,其特征在于:
所述控制电路通过所述第2电源电压进行动作。
24、根据权利要求22所述的信号电平变换器,其特征在于:
所述控制电路通过所述第1电源电压进行动作。
25、根据权利要求24所述的信号电平变换器,其特征在于:
在所述控制电路与所述栅极之间设置将所述控制信号的电平从第1电源电压变为第2电源电压的电平移动电路。
26、根据权利要求22所述的信号电平变换器,其特征在于:
所述开关晶体管是N沟道晶体管。
27、根据权利要求22所述的信号电平变换器,其特征在于:
所述开关晶体管是P沟道晶体管。
28、一种信号电平变换器,连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,变换输入到任一端子的单向信号的电平,其特征在于:具备
开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;
总线保持电路,当所述第1和第2端子中一个为输入端子时,设置在作为输出端子的另一个端子与所述开关晶体管之间,将经该开关晶体管传递来的信号的电压电平设为所述另一个端子的电压电平;
控制端子;
控制电路,设置在所述控制端子与所述开关晶体管的所述栅极之间,通过第1电源电压动作,输出控制所述开关晶体管的栅极的控制信号;和
电平移动电路,设置在所述控制电路与所述开关晶体管之间,将所述控制信号的电平从第1电源电压变换为第2电源电压。
29、根据权利要求28所述的信号电平变换器,其特征在于:
所述总线保持电路在所述第1端子是输入端子、所述第2端子是输出端子时,具备设置在这开关晶体管与所述第2端子之间、将经该开关晶体管传递来的第1电源电压的信号电平变为第2电源电压的总线保持电路。
30、根据权利要求29所述的信号电平变换器,其特征在于:
所述总线保持电路是并联连接于所述开关晶体管与所述第2端子之间的第1反相器与第2反相器的串联连接体。
31、根据权利要求29所述的信号电平变换器,其特征在于:
所述总线保持电路是并联连接于所述开关晶体管与所述第2端子之间的第1时钟反相器与第2反相器的串联连接体。
32、根据权利要求29所述的信号电平变换器,其特征在于:
所述总线保持电路是并联连接于所述开关晶体管与所述第2端子之间的第1时钟反相器与第1与非电路的串联连接体。
33、根据权利要求28所述的信号电平变换器,其特征在于:
所述总线保持电路在所述第2端子是输入端子、所述第1端子是输出端子时,设置在这开关晶体管与所述第1端子之间,将经该开关晶体管传递来的信号电平从第2电源电压变为第1电源电压。
34、根据权利要求33所述的信号电平变换器,其特征在于:
所述总线保持电路是并联连接于所述开关晶体管与所述第1端子之间的第1反相器与第2反相器的串联连接体。
35、根据权利要求33所述的信号电平变换器,其特征在于:
所述总线保持电路是并联连接于所述开关晶体管与所述第1端子之间的第1时钟反相器与第2反相器的串联连接体。
36、根据权利要求33所述的信号电平变换器,其特征在于:
所述总线保持电路是并联连接于所述开关晶体管与所述第1端子之间的第1时钟反相器与第1与非电路的串联连接体。
37、根据权利要求28所述的信号电平变换器,其特征在于:
所述开关晶体管是N沟道晶体管。
38、根据权利要求28所述的信号电平变换器,其特征在于:
所述开关晶体管是P沟道晶体管。
39、一种信号电平变换器,连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,变换输入到任一端子的单向信号的电平,其特征在于:具备
开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;
总线保持电路,由当所述第1和第2端子中的一个为输入端子时,并联连接于作为输出端子的另一个端子与所述开关晶体管之间的第1反相器与第2反相器的串联连接体构成;
控制端子;
控制电路,设置在所述控制端子与所述开关晶体管的所述栅极之间,通过所述第1电源电压动作,输出控制所述开关晶体管的栅极的控制信号;和
电平移动电路,设置在所述控制电路与所述开关晶体管之间,将所述控制信号的电平从第1电源电压变换为第2电源电压。
40、根据权利要求39所述的信号电平变换器,其特征在于:
所述开关晶体管是N沟道晶体管。
41、根据权利要求39所述的信号电平变换器,其特征在于:
所述开关晶体管是P沟道晶体管。
42、一种信号电平变换器,连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,变换输入到任一端子的单向信号的电平,其特征在于:具备
开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;
总线保持电路,由当所述第1和第2端子中的一个为输入端子时,并联连接于作为输出端子的另一个端子与所述开关晶体管之间的第1时钟反相器与第2反相器的串联连接体构成;
控制端子;
控制电路,设置在所述控制端子与所述开关晶体管的所述栅极之间,通过所述第1电源电压动作,输出控制所述开关晶体管的栅极的控制信号;和
电平移动电路,设置在所述控制电路与所述开关晶体管之间,将所述控制信号的电平从第1电源电压变换为第2电源电压。
43、根据权利要求42所述的信号电平变换器,其特征在于:
所述开关晶体管是N沟道晶体管。
44、根据权利要求42所述的信号电平变换器,其特征在于:
所述开关晶体管是P沟道晶体管。
45、一种信号电平变换器,连接于第1端子与第2端子之间,第1端子连接于通过比规定的基准电压高的第1电源电压动作的第1逻辑电路上,第2端子连接于通过比所述第1电源电压高的第2电源电压动作的第2逻辑电路上,变换输入到任一端子的单向信号的电平,其特征在于:具备
开关晶体管,通过提供给栅极的控制信号,在所述第1端子与所述第2端子之间形成电流路径;
总线保持电路,由当所述第1和第2端子中的一个为输入端子时,并联连接于作为输出端子的另一个端子与所述开关晶体管之间的第1时钟反相器与第2与非电路的串联连接体构成;
控制端子;
控制电路,设置在所述控制端子与所述开关晶体管的所述栅极之间,通过所述第1电源电压动作,输出控制所述开关晶体管的栅极的控制信号;和
电平移动电路,设置在所述控制电路与所述开关晶体管之间,将所述控制信号的电平从第1电源电压变换为第2电源电压。
46、根据权利要求45所述的信号电平变换器,其特征在于:
所述开关晶体管是N沟道晶体管。
47、根据权利要求45述的信号电平变换器,其特征在于:
所述开关晶体管是P沟道晶体管。
CN200410005009.8A 2003-02-12 2004-02-12 信号电平变换器 Expired - Fee Related CN1298107C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP033757/2003 2003-02-12
JP2003033757A JP3746273B2 (ja) 2003-02-12 2003-02-12 信号レベル変換回路

Publications (2)

Publication Number Publication Date
CN1521949A CN1521949A (zh) 2004-08-18
CN1298107C true CN1298107C (zh) 2007-01-31

Family

ID=32820996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200410005009.8A Expired - Fee Related CN1298107C (zh) 2003-02-12 2004-02-12 信号电平变换器

Country Status (3)

Country Link
US (2) US6933749B2 (zh)
JP (1) JP3746273B2 (zh)
CN (1) CN1298107C (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746273B2 (ja) * 2003-02-12 2006-02-15 株式会社東芝 信号レベル変換回路
JP3984222B2 (ja) * 2003-12-15 2007-10-03 株式会社東芝 信号レベル変換回路
JP4761435B2 (ja) * 2005-01-13 2011-08-31 ルネサスエレクトロニクス株式会社 レベル変換用半導体集積回路装置
JP2006301840A (ja) * 2005-04-19 2006-11-02 Toshiba Corp 信号レベル変換バススイッチ
US7373533B2 (en) * 2005-09-30 2008-05-13 Silicon Laboratories Programmable I/O cell capable of holding its state in power-down mode
EP2039006A4 (en) * 2006-06-15 2013-10-09 Semiconductor Components Ind DEVICE AND METHOD FOR PROVIDING ACTIVE PULLUP AND LOGIC TRANSLATION FROM ONE SIGNAL MODE TO ANOTHER SIGNAL MODE
US7446565B2 (en) * 2006-06-15 2008-11-04 California Micro Devices Apparatus and method that provides active pull-up and logic translation from one signal mode to another signal mode
JP4810338B2 (ja) * 2006-07-12 2011-11-09 株式会社東芝 レベル変換バススイッチ
JP4894919B2 (ja) * 2007-04-20 2012-03-14 富士通株式会社 中継回路、情報処理装置、中継方法
JP2014239300A (ja) * 2013-06-06 2014-12-18 株式会社東芝 バススイッチ回路
JP7079661B2 (ja) * 2018-05-24 2022-06-02 ラピスセミコンダクタ株式会社 フラグ保持回路及びフラグ保持方法
US11264989B1 (en) 2020-08-07 2022-03-01 Kabushiki Kaisha Toshiba Semiconductor device
CN116582121B (zh) * 2023-05-15 2024-04-02 西安航空学院 一种数字信号双向传输电平转换电路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080539A (en) * 1976-11-10 1978-03-21 Rca Corporation Level shift circuit
JPH01317022A (ja) 1988-06-16 1989-12-21 Toshiba Corp 電源切り換え回路
US4988984A (en) * 1988-10-31 1991-01-29 International Business Machines Corporation Image interpolator for an image display system
US5618544A (en) * 1992-08-12 1997-04-08 Bays-Brown Dermatologics, Inc. Method of decreasing cutaneous senescence
JPH06120801A (ja) 1992-10-02 1994-04-28 Toshiba Corp Ecl−cmosレベル変換回路
JP2888722B2 (ja) 1993-04-12 1999-05-10 株式会社東芝 インターフェース回路
JP3379601B2 (ja) * 1993-05-12 2003-02-24 セイコーインスツルメンツ株式会社 半導体集積回路装置
JPH0779151A (ja) 1993-09-08 1995-03-20 Fujitsu Ltd 半導体装置
JPH07129538A (ja) * 1993-10-29 1995-05-19 Mitsubishi Denki Semiconductor Software Kk 半導体集積回路
JP3329621B2 (ja) 1995-06-06 2002-09-30 東芝マイクロエレクトロニクス株式会社 二電源インタフェイス回路
JP3152867B2 (ja) * 1995-08-25 2001-04-03 株式会社東芝 レベルシフト半導体装置
JP2000269799A (ja) 1999-03-12 2000-09-29 Toshiba Microelectronics Corp 半導体集積回路の出力制御回路
JP3758545B2 (ja) * 2001-10-03 2006-03-22 日本電気株式会社 サンプリングレベル変換回路と2相及び多相展開回路並びに表示装置
US6781415B2 (en) * 2001-11-27 2004-08-24 Fairchild Semiconductor Corporation Active voltage level bus switch (or pass gate) translator
JP3746273B2 (ja) * 2003-02-12 2006-02-15 株式会社東芝 信号レベル変換回路

Also Published As

Publication number Publication date
JP3746273B2 (ja) 2006-02-15
CN1521949A (zh) 2004-08-18
US7161386B2 (en) 2007-01-09
US6933749B2 (en) 2005-08-23
US20040155679A1 (en) 2004-08-12
JP2004247846A (ja) 2004-09-02
US20050219924A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
CN1305219C (zh) 电平转换电路
CN1298107C (zh) 信号电平变换器
CN1112768C (zh) 输出电路
CN1109403C (zh) 逻辑电路
CN1271785C (zh) 电平移位电路和半导体集成电路
CN1114267C (zh) 由时钟信号控制的电平转换电路
CN1260881C (zh) 差动电路和放大电路以及使用该放大电路的显示装置
CN1449112A (zh) 带有漏电流截止电路的半导体集成电路
CN1414705A (zh) 用于可编程逻辑设备中绝缘体外延硅晶体管的设备和方法
CN1166060C (zh) 电压容许接口电路
CN1520037A (zh) 带自动延迟调整功能的电平变换电路
CN1457148A (zh) 驱动装置
CN1216461C (zh) 半导体集成电路
CN1484368A (zh) 电源供给装置及其电源供给方法
CN1780148A (zh) 输入输出电路和半导体输入输出装置
CN1722616A (zh) 电平移动器及其方法
CN1630192A (zh) 信号电平转换电路
CN1123834C (zh) 避免浮动状态、进行双向数据传输的双向总线电路
CN100337403C (zh) 接收电路、接口电路、以及电子设备
CN1574634A (zh) 可有效放大小振幅信号的振幅的电平转换电路
CN1270440C (zh) 包含逻辑电路的总线缓冲电路
CN1234643A (zh) 电源装置
CN1679236A (zh) 半导体装置
CN1591098A (zh) 半导体电路
CN101060317A (zh) 限幅电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070131

Termination date: 20150212

EXPY Termination of patent right or utility model