CN1286521A - Three-level DC converter of zero-voltage switch with clamping diode - Google Patents

Three-level DC converter of zero-voltage switch with clamping diode Download PDF

Info

Publication number
CN1286521A
CN1286521A CN 00119044 CN00119044A CN1286521A CN 1286521 A CN1286521 A CN 1286521A CN 00119044 CN00119044 CN 00119044 CN 00119044 A CN00119044 A CN 00119044A CN 1286521 A CN1286521 A CN 1286521A
Authority
CN
China
Prior art keywords
voltage
zero
switch
dc converter
ip
Prior art date
Application number
CN 00119044
Other languages
Chinese (zh)
Other versions
CN1109399C (en
Inventor
阮新波
许大宇
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Priority to CN 00119044 priority Critical patent/CN1109399C/en
Publication of CN1286521A publication Critical patent/CN1286521A/en
Application granted granted Critical
Publication of CN1109399C publication Critical patent/CN1109399C/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
    • Y02B70/14Reduction of losses in power supplies
    • Y02B70/1416Converters benefiting from a resonance, e.g. resonant or quasi-resonant converters
    • Y02B70/1433Converters benefiting from a resonance, e.g. resonant or quasi-resonant converters in galvanically isolated DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
    • Y02B70/14Reduction of losses in power supplies
    • Y02B70/1491Other technologies for reduction of losses, e.g. non-dissipative snubbers, diode reverse recovery losses minimisation, zero voltage switching [ZVS], zero current switching [ZCS] or soft switching converters

Abstract

A three-level DC converter is composed of input voltage dividing capacitors, inverting bridge, isolating transfurmer, rectifier and filter, and features that a clamper is introduced at the intersection of primary winding of isolating transformer and resonant inductor. Two clamping diodes are respectively connected between two switch transistor of a pair in inverting bridge. Its advantages are zero-voltage switching of switch transistor, no voltage oscillation caused by backward restoration of rectifying transistor, low voltage stress of output rectifying transistor, and no backward restoring loss of output rectifying transistor.

Description

带钳位二极管的零电压开关三电平直流变换器 Zero-voltage switch with three-level clamp diode DC converter

本发明所涉及是一种电能变换装置,尤其是直流变换器。 The present invention relates to a power conversion device, in particular DC-DC converter.

随着电力电子技术的发展,对电能变换装置的要求越来越高,特别是对输入功率因数的要求越来越高。 With the development of power electronics, the requirements for power conversion means increasing, in particular requirements for increasing input power factor. 经三相功率因数校正(Power FactorCorrection,PFC)后电路的输出一般可达760~800V,有时甚至达到1000V,这就要求提高后级的直流变换器的开关管电压定额,使得很难选择合适的功率开关管,而且,为了减小变换器的体积和重量,必须提高开关频率,这就要求实现开关管的软开关(即零电压或零电流开关),以减小开关损耗。 After the three-phase output circuit PFC (Power FactorCorrection, PFC) was generally up to 760 ~ 800V, and sometimes even up to 1000V, which requires increasing the switching stage after the tube voltage rating DC converter, making it difficult to select an appropriate power switch, and, in order to reduce the volume and weight of the transformer, the switching frequency must be increased, which requires soft switching switch (i.e. a zero voltage or zero current switching), to reduce switching losses. J.Remes Pinheiro and Ivo Barbi,“The three-level zvs pwm converter-A newconcept in high-voltage dc-to-dc conversion,”IEEE IECON,1992,PP.173-178公开了一种零电压开关三电平直流变换器。 J.Remes Pinheiro and Ivo Barbi, "The three-level zvs pwm converter-A newconcept in high-voltage dc-to-dc conversion," IEEE IECON, 1992, PP.173-178 discloses a zero voltage switching Three level converter. 它利用开关管的结电容和变压器的漏感或谐振电感来实现开关管的零电压开关;且开关管的电压应力为输入直流电压的一半,可以找到合适的开关管。 It uses the junction capacitance of the switch and the transformer leakage inductance or resonant inductor to achieve zero voltage switching of the switch; switch voltage stress and half of the input DC voltage, find the right switch. 但这种变换器的副边整流二极管的反向恢复使副边整流电压存在电压尖峰,因而整流二极管的损耗较大,并且要承受很高的电压尖峰。 However, secondary side rectifier diode reverse converter such that the secondary rectified voltage recovery there is a voltage spike, and thus a larger loss of the rectifier diode, and to withstand high voltage spikes.

本发明的目的在于针对上述变换器的缺陷,研制一种带钳位二极管的三电平零电压开关直流变换器,以有效去除副边整流电压尖峰,减小整流二极管上的损耗,提高变换效率。 Object of the present invention is the defects of the inverter, with the development of a three-level clamping diodes zero voltage switching DC converter is used to remove the secondary side rectified voltage spikes, reducing the loss in the rectifier diode, to improve the conversion efficiency .

本发明的带钳位二极管零电压开关三电平直流变换器由输入分压电容、逆变桥、隔离变压器、整流桥及滤波电路、钳位电路组成。 Clamping diode of the present invention with zero voltage switching by the three level converter input dividing capacitor, an inverter bridge, an isolation transformer, bridge rectifier and filter circuit, a clamp circuit. 其特点是在变压器的原边绕组与谐振电感交点之处引出两钳位二极管分别接至逆变桥上、下两对开关管的每对开关管的中间。 Characterized by two clamping diodes lead at the primary winding of the transformer and the resonant inductor are connected to the intersections of the inverter bridge, each pair of intermediate switch switch in two tubes.

附图1-8.本发明的几种实施例电路结构示意图附图9.本发明的主要波形示意图。 Figures 1-8. Some embodiments of the present invention is a circuit configuration of embodiment 9. The main waveform diagram schematic drawings of the present invention.

附图10-19.各开关模态的等效电路结构示意图。 Figures 10-19. Each switching mode equivalent circuit schematic.

根据附图1叙述本发明的电路组成结构,本发明的直流变换器仍由输入分压电容1、逆变桥2、隔离变压器3、整流及滤波电路4所构成,其特点在于在隔离变压器Tr的原边绕组与谐振电感Lr的交点处引出两个钳位二极管5,其中二极管D7的阴极接至超前管Q1的源极(或滞后管Q2的漏极),二极管D8的阳极接至滞后管Q3的源极(或超前管Q4的漏极)。 The circuit configuration described in Figure 1 of the present invention, the DC-DC converter according to the present invention, the input still dividing capacitor 1, the inverter bridge 2, the isolation transformer 3, a rectifier and filter circuit 4 is constituted, characterized in that the isolation transformer Tr the primary winding and the resonant inductor Lr at the intersection of two clamping diodes lead 5, wherein the cathode of diode D7 to the source electrode of transistor Q1 leading (or lagging the drain of Q2), connected to the anode of diode D8 lagging Q3 is a source (or drain of the transistor Q4 is leading). 分压电容1的Cd1和Cd2其容量相等,且很大,它们的电压均为输入电源电压Vin的一半,即:VCd1=VCd2=Vin/2;C1~C4、D1~D4分别是Q1~Q4的结电容(或外部附加电容)和寄生二极管;超前管Q1和Q4通过滤波电感和谐振电感实现零电压开关,滞后管Q2和Q3则通过谐振电感的能量来实现零电压开关,从而在开关管上无开关损耗,提高变换效率。 Equally dividing capacitor Cd1 1 and Cd2 capacity, and large, they are half of the input voltage of the power supply voltage Vin, namely: VCd1 = VCd2 = Vin / 2; C1 ~ C4, D1 ~ D4 are respectively Q1 ~ Q4 junction capacitance (or an externally attached capacitor) and a parasitic diode; ahead of transistors Q1 and Q4 achieve zero voltage switching by the filter inductor and the resonant inductor, the lagging Q2 and Q3 are used to achieve zero voltage switching by the energy resonant inductor, so that the switch on no switching loss, improving the conversion efficiency. 在逆变桥电路中还加有续流管D5、D6,并在D5的阴极和D6的阳极之间跨接联结电容CSS,其作用在于将两对开关管的开关过程连接起来。 In the inverter bridge circuit are also supplied with continuous flow tube D5, D6, and across the coupling capacitor CSS between the cathode and the anode D5 D6, and its role in that two pairs of switches connected to the switch process. 在变换器稳态工作时,电容CSS上的电压恒定为Vin/2。 When the converter steady state operation, the voltage on the capacitor CSS constant at Vin / 2.

附图1加有联结电容CSS,附图2没有联结电容CSS,附图3和4则是分别将附图1和2中的隔离变压器Tr和谐振电感Lr互换了位置,但对电路没有本质影响。 BRIEF coupling capacitance added the CSS 1, Fig. 2 not coupled the CSS capacitor, Figures 3 and 4 are respectively in Figures 1 and 2, the isolation transformer Tr and the resonant inductor Lr are swapped, but not the nature of the circuit influences.

附图5~8将附图1~4中的续流二极管D5和D6去掉,可进一步简化电路结构,对电路没有本质影响。 Figures 5 to 8 the drawings in freewheeling diode D5 D6 1 to 4 and removed, the circuit configuration can be further simplified, no essential effect on the circuit.

下面以附图1为例,结合附图9~19叙述本发明的具体工作原理,由附图9可知整个变换器在一个开关周期中有18种开关模态,分别以[t0时刻]、[t0,t1]、[t1,t2]、[t2,t3]、[t3,t4]、[t4,t5]、[t5,t6]、[t6,t7]、[t7,t8]、[t8,t9]、[t9,t10]、[t10,t11]、[t11,t12]、[t12,t13]、[t13,t14]、[t14,t15]、[t15,t16]、[t16,t17]、[t17,t18](见附图9),其中,[t0,t9]为前半周期,[t9,f18]为后半周期。 1 as an example below to the drawings, works in conjunction with the accompanying drawings. 9 to 19 described in the present invention, the entire reference transducer 9 that 18 kinds of switches in a switching mode period, respectively [t0 time], [ t0, t1], [t1, t2], [t2, t3], [t3, t4], [t4, t5], [t5, t6], [t6, t7], [t7, t8], [t8, t9], [t9, t10], [t10, t11], [t11, t12], [t12, t13], [t13, t14], [t14, t15], [t15, t16], [t16, t17] , [t17, t18] (see FIG. 9), wherein, [t0, t9] for the first half cycle, [t9, f18] for the second half cycle. 下面对各开关模态的工作情况进行具体分析1.开关模态0[t0时刻之前][对应于附图10]在t0寸刻之前,Q1和Q2导通,输出整流管DR1导通,DR2截止。 The following detailed analysis of the operation of the switches modes [Before the time t0] 1. Switching Mode 0 [corresponding to figures 10] inch carved before t0, Q1, and Q2 is turned on, the output rectifier DR1 turned on, DR2 off. 2.开关模态1[t0,t1][对应于附图11]在t0时刻关断Q1,原边电流ip给C1充电,同时通过CSS给C4放电,νAB下降。 2. Switch Mode 1 [t0, t1] [11 correspond to the drawings] is turned off at time t0 Q1, the primary current ip charges C1, while the C4 to discharge through CSS, νAB decreased. 若此时变压器原边电压νCB不变,则谐振电感两端电压νAC<0,二极管D9立即导通,将νAC钳在0,因此νCB必定下降,副边电压相应下降,DR2的结电容CDR2的电压也下降,CDR2被放电。 At this time, if the primary voltage of the transformer νCB constant, the voltage across the resonant inductor νAC <0, diode D9 turned on immediately, the clamp νAC 0, so νCB must drop the corresponding secondary voltage drop, DR2 of the junction capacitance CDR2 voltage drop, CDR2 is discharged. 这样输出滤波电感电流一部分给CDR2放电,其余部分折算到原边给C1充电和给C4放电,因此ip在t0时刻阶跃下降,而iLr保持不变,其高于ip的部分流过D9。 Such output filter inductor current to discharge a portion of the CDR2, the remainder of the portion converted to the primary side and to charge C1 to C4 discharged, ip ramping down at time t0, while iLr remains unchanged, which is higher than ip flows D9. 由于有C1、C4和C′D,Q1是零电压关断。 Because C1, C4 and C'D, Q1 is a zero voltage turn-off. 到t1时刻,C4的电压下降到零,DR2自然导通,A点电位降至Vin/2,D5导通。 Time t1, the voltage drops to zero C4, DR2 of natural conduction, A down to point potential Vin / 2, D5 is turned on. 3.开关模态2[t1,t2][对应于附图12]D5导通后,将Q4两端的电压钳在零位,此时可以零电压开通Q4。 3. Switch Mode 2 [t1, t2] [12 correspond to the drawings] after D5 is turned on, the voltage across the clamp Q4 at zero, this time can ZVS Q4. 这段时间里,νAB=0,ip和iLr均处于自然续流状态,大小保持不变,副边两个整流管同时导通。 During this time, νAB = 0, ip, and are in the natural iLr freewheeling condition remains the same size, two secondary rectifier simultaneously turned on. 4.开关模态3[t2,t3][对应于附图13]t2时刻关断Q2,iLr给C2充电,同时通过CSS给C3放电,由于C2和C3的存在,Q2是零电压关断。 4. Switch Mode 3 [t2, t3] [corresponding to figures 13] t2 time off Q2, iLr charging C2, C3 to discharge via CSS while, due to the presence of C2 and C3, Q2 is a zero voltage turn-off. 此时,νAB=-νC2,由于两个输出整流管DR1和DR2都导通,变压器副边绕组电压为零,原边绕组电压也为零,νAB直接加在谐振电感上。 At this time, νAB = -νC2, since the two output rectifier DR1 and DR2 are conducting, the transformer secondary winding voltage is zero, the primary winding voltage is zero, νAB directly added to the resonant inductor. 因此在这段时间里,实际上Lr和C2、C3在谐振工作。 Therefore, in this time, in fact, Lr and C2, C3 work in resonance.

到t3时刻,νC2升至Vin/2,νC3降至0。5.开关模态4[t3,t4][对应于附图14]t3时刻,D3自然导通,此时可以零电压开通Q3。 Time t3, νC2 raised to Vin / 2, νC3 to 0.5. Switch Mode 4 [t3, t4] [14 correspond to the drawings] at time t3, D3 natural conduction, a time ZVS Q3. 虽然此时Q3已开通,但Q3并不流过电流,ip由D3流通。 Although the case has been opened Q3, Q3 but no current flows, ip flow of D3. 由于ip不足以提供负载电流,副边两个整流管依然同时导通,因此变压器副边绕组的电压为零,二极管D5、D9继续导通,Vin/2全部加在谐振电感两端,iLr线性下降。 Since the load current is insufficient to provide ip, two secondary rectifier remains turned on simultaneously, the voltage of the secondary winding of the transformer is zero, the diode D5, D9 continues to conduct, Vin / 2 is applied across resonant inductor all, to iLr linear decline. 到t4时刻,iLr降至与ip相等,D9自然关断。 To time t4, iLr ip with equal reduced, D9 off naturally. 6.开关模态5[t4,t5][对应于附图15]在这一阶段中,两个整流管继续同时导通,变压器原边和副边电压均为零,Vin/2全部加在谐振电感两端,iLr和ip同时线性下降。 6. Switching Mode 5 [t4, t5] [15 correspond to the drawings] At this stage, two rectifier continues to conduct simultaneously, the transformer primary and secondary voltages are both zero, Vin / 2 is applied to all across the resonant inductor, iLr ip and simultaneously decreases linearly. 到t5时刻,ip降至零,D5自然关断。 To time t5, ip reduced to zero, D5 off naturally. 7.开关模态6[t5,t6][对应于附图16]t5时刻,ip由正值过零,且向负方向增加,Q3和Q4为ip提供通路,由于ip仍不足以提供负载电流,两个输出整流管同时导通,因此,原边绕组电压为零,加在谐振电感两端电压为Vin/2,iLr和ip线性下降。 7. Switch Mode 6 [t5, t6] [16 correspond to the drawings] time T5, ip by a positive value through zero and increases in the negative direction, Q3 and Q4 provide a path for the ip, ip still insufficient since the load current , two output rectifiers simultaneously turned on, the primary winding voltage is zero, the voltage applied across the resonant inductor is Vin / 2, iLr and ip decreases linearly.

到t6时刻,ip达到折算至原边的负载电流-iLr(t6)/K,DR1关断,DR2流过全部负载电流。 To time t6, ip converted to the load current reaches -iLr (t6) of the primary / K, DR1 off, DR2 full load current flowing. 8.开关模态7[t6,t7][对应于附图17]在t6时刻,Lr与CDR1谐振工作,给DR1的结电容CDR1充电,ip和iLr继续增加。 8. Switch Mode 7 [t6, t7] [17 correspond to the drawings] At t6, Lr of resonant operation with CDR1, CDR1 DRl junction capacitance charging, ip iLr and continues to increase.

在t7时刻,CDR1的电压上升到Vin/K,同时变压器原边电压νCB为Vin/2,D10导通,将νCB钳在Vin/2,因此将CDR1的电压钳在Vin/K。 At time t7, the voltage rises to CDR1 Vin / K, while the transformer primary voltage νCB is Vin / 2, D10 is turned on, the clamp in νCB Vin / 2, so the voltage clamp in CDR1 Vin / K. 此时ip和iLr为-I2。9.开关模态8[t7,t8][对应于附图18]当D10导通后,ip阶跃下降到折算到原边的滤波电感电流,而iLr保持不变电路进入稳态,它与ip的差值从D10中流过。 At this time, ip and iLr is -I2.9. Modal switch 8 [t7, t8] [18 correspond to the drawings] When the D10 is turned on, step down to ip converted to the primary side of the filter inductor current, while maintaining iLr constant circuit into the steady state, the difference between it and the D10 is too ip flows. 到t8时刻,ip和iLr相等,该模态结束。 To time t8, ip and iLr equal, the mode ends. 10.开关模态9[t8,t9][对应于附图19]在此模态中,原边给副边提供能量,ip与iLr相等。 10. The mode switch 9 [t8, t9] [19 correspond to the drawings] In this modality, provide the primary energy to the secondary side, ip and iLr equal.

无联结电容或谐振电感与变压器互换位置以及去掉两个续流二极管的工作原理与上述基本相同,最后得到的效果亦基本相同,因此不再多述。 No capacitance or coupling with the resonant inductor and transformer are reversed to remove the diode works with substantially the same as the above-described two freewheeling, the resulting effects are substantially the same, and therefore no more described.

本发明的一个具体实例如下:输入交流电压380V/50Hz交流电,经过整流滤波后得到直流电压为Vin=530VDC;输出直流电压为V0=54VDC;输出电流I0=10A;变压器原副边匝比K=3;谐振电感为Lr=21μH;输出滤波电感为Lt=70μH;输出滤波电容为Cj=6600μF;开关管为MOSFET:IRF840;二极管为DSE112-06A;开关频率为fs=1OOkHz。 A specific example of the present invention are as follows: the input AC voltage 380V / 50Hz AC is rectified filtered DC voltage is Vin = 530VDC; output DC voltage V0 = 54VDC; output current I0 = 10A; transformer primary and secondary turns ratio K = 3; resonant inductance Lr = 21μH; output filter inductance Lt = 70μH; output filter capacitor is Cj = 6600μF; to switch MOSFET: IRF840; diode DSE112-06A; switching frequency fs = 1OOkHz.

由以上描述可知,本发明提出的带钳位二极管的三电平零电压开关直流变换器具有如下优点:①由于加了钳位二极管,副边整流二极管不存在反向恢复造成的电压振荡和电压尖峰。 From the above description, the present invention is made with a three-level clamp diode ZVS DC converter has the following advantages: ① Since the addition of the clamping diodes, the secondary rectifier diode reverse recovery voltage and the voltage oscillation caused by the absence of peak.

②开关管电压应力为输入直流电压的一半,利于选择合适的开关管;③可以实现开关管的零电压开关。 ② switch voltage stress half of the input DC voltage, facilitates the selection of a suitable switch; ③ can achieve zero-voltage switching of the switching tube.

Claims (1)

1. 1. 一种带钳位二极管的零电压开关三电平直流变换器,包括由输入分压电容(1)、逆变桥(2)、隔离变压器(3)、整流及滤波电路(4),其特征在于还包括在隔离变压器Tr的原边绕组与谐振电感Lr交点处引出两个钳位二极管所构成的钳位电路(5),两个钳位二极管分别连于逆变桥(2)上、下两对开关管的每对开关管的中间。 A zero-voltage switch with three-level clamp diode DC converter, including an input dividing capacitor (1), an inverter bridge (2), isolation transformer (3), the rectifier and filter circuit (4), characterized in further comprising a lead clamp circuit composed of two clamping diodes (5) in the primary winding and the resonant inductor Lr at the intersection of the isolation transformer Tr, two clamping diodes are connected to the inverter bridge (2), the lower each intermediate switch of the two pairs of the switch.
CN 00119044 2000-10-19 2000-10-19 Three-level Dc converter of zero-voltage switch with clamping diode CN1109399C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 00119044 CN1109399C (en) 2000-10-19 2000-10-19 Three-level Dc converter of zero-voltage switch with clamping diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 00119044 CN1109399C (en) 2000-10-19 2000-10-19 Three-level Dc converter of zero-voltage switch with clamping diode

Publications (2)

Publication Number Publication Date
CN1286521A true CN1286521A (en) 2001-03-07
CN1109399C CN1109399C (en) 2003-05-21

Family

ID=4587439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00119044 CN1109399C (en) 2000-10-19 2000-10-19 Three-level Dc converter of zero-voltage switch with clamping diode

Country Status (1)

Country Link
CN (1) CN1109399C (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456616C (en) 2004-12-08 2009-01-28 力博特公司 Inverter circuit and inverting method thereof
CN100571006C (en) 2006-05-16 2009-12-16 中国科学院电工研究所 Bidirectional three-level soft switch DC/DC for superconducting energy storage and controlling method thereof
CN1866713B (en) 2006-05-16 2010-05-12 中国科学院电工研究所 Three-level zero-voltage switch DC convertor and control method thereof
CN101599713B (en) 2009-07-07 2011-09-14 华中科技大学 Three-level inverter of single-phase mixed bridge
CN101517877B (en) 2006-09-15 2012-05-23 三菱电机株式会社 Dc/DC power converter
CN101860206B (en) 2010-05-12 2012-08-22 矽力杰半导体技术(杭州)有限公司 Three-level buck convertor
CN101373931B (en) 2007-08-24 2012-08-29 Abb公司 Method and apparatus for stabilizing voltage of intermediate circuit of frequency converter
CN103066846A (en) * 2011-10-18 2013-04-24 株式会社日立制作所 The power conversion apparatus
CN103166466A (en) * 2012-02-15 2013-06-19 西安胜唐电源有限公司 Half-bridge three-level direct current converting circuit
CN101888174B (en) 2007-05-15 2013-07-24 日立空调·家用电器株式会社 Power conversion device
CN103595257A (en) * 2013-11-28 2014-02-19 南京航空航天大学 Isolation type direct-current buck converter with soft switching function and control method of isolation type direct-current buck converter
CN103595259A (en) * 2013-11-28 2014-02-19 南京航空航天大学 Double-transformer serial-parallel isolated-type soft switching direct-current converter and control method thereof
CN103609013A (en) * 2011-03-11 2014-02-26 犹他州立大学 Method and apparatus for controlling LCL converters using asymmetric voltage cancellation techniques
CN105449818A (en) * 2015-12-28 2016-03-30 国电南瑞科技股份有限公司 Charging device and charging method for tramcar super-capacitor
CN107769576A (en) * 2017-11-30 2018-03-06 郑州云海信息技术有限公司 A kind of three-level soft switch DC transfer circuit of primary side clamper

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255548B (en) * 2011-07-29 2015-01-28 深圳麦格米特电气股份有限公司 Three-level half-bridge soft switching DC (direct current) converting circuit and method for suppressing midpoint drifting
EP2975753A1 (en) 2014-07-14 2016-01-20 ABB Technology Oy A three-level converter

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456616C (en) 2004-12-08 2009-01-28 力博特公司 Inverter circuit and inverting method thereof
CN1866713B (en) 2006-05-16 2010-05-12 中国科学院电工研究所 Three-level zero-voltage switch DC convertor and control method thereof
CN100571006C (en) 2006-05-16 2009-12-16 中国科学院电工研究所 Bidirectional three-level soft switch DC/DC for superconducting energy storage and controlling method thereof
CN101517877B (en) 2006-09-15 2012-05-23 三菱电机株式会社 Dc/DC power converter
CN101888174B (en) 2007-05-15 2013-07-24 日立空调·家用电器株式会社 Power conversion device
CN101373931B (en) 2007-08-24 2012-08-29 Abb公司 Method and apparatus for stabilizing voltage of intermediate circuit of frequency converter
CN101599713B (en) 2009-07-07 2011-09-14 华中科技大学 Three-level inverter of single-phase mixed bridge
CN101860206B (en) 2010-05-12 2012-08-22 矽力杰半导体技术(杭州)有限公司 Three-level buck convertor
CN103609013B (en) * 2011-03-11 2016-03-09 犹他州立大学 Using asymmetric voltage converter lcl cancellation control apparatus and method
CN103609013A (en) * 2011-03-11 2014-02-26 犹他州立大学 Method and apparatus for controlling LCL converters using asymmetric voltage cancellation techniques
CN103066846A (en) * 2011-10-18 2013-04-24 株式会社日立制作所 The power conversion apparatus
CN103066846B (en) * 2011-10-18 2016-03-30 株式会社日立制作所 Power conversion means
CN103166466A (en) * 2012-02-15 2013-06-19 西安胜唐电源有限公司 Half-bridge three-level direct current converting circuit
CN103595257A (en) * 2013-11-28 2014-02-19 南京航空航天大学 Isolation type direct-current buck converter with soft switching function and control method of isolation type direct-current buck converter
CN103595259B (en) * 2013-11-28 2016-03-30 南京航空航天大学 Isolating transformer series-parallel double soft switching DC-DC converter and its control method
CN103595257B (en) * 2013-11-28 2016-03-30 南京航空航天大学 An isolating type soft switching buck DC converter and a control method
CN103595259A (en) * 2013-11-28 2014-02-19 南京航空航天大学 Double-transformer serial-parallel isolated-type soft switching direct-current converter and control method thereof
CN105449818A (en) * 2015-12-28 2016-03-30 国电南瑞科技股份有限公司 Charging device and charging method for tramcar super-capacitor
CN105449818B (en) * 2015-12-28 2018-04-20 国电南瑞科技股份有限公司 A kind of charging unit and charging method for tramcar super capacitor
CN107769576A (en) * 2017-11-30 2018-03-06 郑州云海信息技术有限公司 A kind of three-level soft switch DC transfer circuit of primary side clamper

Also Published As

Publication number Publication date
CN1109399C (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US7218081B2 (en) Power system having multiple power converters with reduced switching loss
US5946200A (en) Circulating current free type high frequency soft switching pulsewidth modulated full bridge DC/DC converter
Cheng et al. A novel single-stage high-power-factor AC/DC converter featuring high circuit efficiency
Canales et al. A zero voltage switching three-level DC/DC converter
CN1055804C (en) Topological circuit for soft switch
Barbi et al. DC-DC converter: four switches V/sub pk/= V/sub in//2, capacitive turn-off snubbing, ZV turn-on
US5432695A (en) Zero-voltage-switched, three-phase PWM rectifier inverter circuit
Choi et al. A bridgeless single-stage half-bridge AC/DC converter
CN100420135C (en) Push-pull converter and method for power supply device and uninterrupted power supply system
CN101075784A (en) Zero-voltage DC/DC switch circuit with phase-shift control
CN1801591A (en) Improved inductor voltage clamping full bridge soft switch circuit
KR101015282B1 (en) ??/?? converter
CN201682429U (en) Bridgeless PFC boost rectifier
CN1305210C (en) DC-DC power transfer device with zero voltage soft switch
CN101527520B (en) Single-stage single-phase AC-DC convertor based on LLC series resonance
Deng et al. Single switch, unity power factor, lamp ballasts
Seo et al. Asymmetrical PWM flyback converter
CN100416994C (en) Separation boost push-pull soft switch DC/AC converter
CN100346562C (en) Transformer clamping zero voltage switch three level full bridge converter and its expansion circuit
JP2002238257A (en) Control method for resonance dc-dc converter
CN1750375A (en) Resonant current transformer with secondary element device voltage stress is half of output voltage
Deschamps et al. A comparison among three-level ZVS-PWM isolated DC-to-DC converters
CN1400728A (en) Three-level passive flexible switch D.C. Transformer circuit
US20080316775A1 (en) Soft-switching circuit for power supply
CN100340055C (en) Composite active clamped 3-phase A.C-D.C power factor correction transformer

Legal Events

Date Code Title Description
C10 Request of examination as to substance
C06 Publication
C14 Granted
C19 Lapse of patent right due to non-payment of the annual fee