CN1284250C - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
CN1284250C
CN1284250C CN 02806788 CN02806788A CN1284250C CN 1284250 C CN1284250 C CN 1284250C CN 02806788 CN02806788 CN 02806788 CN 02806788 A CN02806788 A CN 02806788A CN 1284250 C CN1284250 C CN 1284250C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
crystal
layer
gan
light emitting
growth
Prior art date
Application number
CN 02806788
Other languages
Chinese (zh)
Other versions
CN1498427A (en )
Inventor
只友一行
冈川广明
大内洋一郎
常川高志
Original Assignee
三菱电线工业株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Abstract

在第一层(1)的表面上加工凹凸(1a),使具有与第一层不同的折射率的第二层(2)将该凹凸埋入并生长(或者,在成为生长的基础的晶体层(S)上使第一晶体(10)呈凹凸状地生长,使具有与第一层不同的折射率的第二晶体(20)生长)。 On the surface of the first layer (1) processing unevenness (. 1A), so that crystals having first and second layers of different refractive indices (2) embedded in the irregularities and grown (or grown to become the basis of the first crystal layer (S) (10) were grown uneven, so that the first layer having a second refractive index different crystal (20) grown). 形成了这些凹凸状的折射率界面(1a、10a)后,在它上面形成层叠了包括发光层(A)的半导体晶体层的元件结构。 After formation of the concavo-convex refractive index interface (1a, 10a), formed thereon in a stacked structure including a light emitting element layer (A) of the semiconductor crystal layer. 因此,在发光层中产生的横向光由于凹凸状的折射率界面的影响而改变方向,朝向外界。 Thus, the lateral light emitting layer resulting in uneven light due to the influence of the refractive index of the interface to change the direction toward the outside. 另外,其中,在使发光层的材料为InGaN、发生紫外线的情况下,采用量子阱结构,完全用GaN晶体形成该量子阱结构和低温隔离层之间的层,将AlGaN排除。 Further, where, in the light emitting layer material is InGaN, the case where the ultraviolet rays, the quantum well structure, the quantum well layer between the structure and the spacer layer completely formed by low-temperature GaN crystal, the AlGaN excluded. 该量子阱结构最好由InGaN构成的阱层和由GaN构成的阻挡层构成,阻挡层的厚度最好为6nm~30nm。 Well layer and a barrier layer made of GaN is preferably composed of the quantum well structure made of InGaN, the barrier layer preferably has a thickness of 6nm ~ 30nm.

Description

半导体发光元件 The semiconductor light emitting element

技术领域 FIELD

本发明涉及半导体发光元件(以下简称“发光元件”),特别是涉及其发光层由GaN系列半导体晶体(GaN系列晶体)构成的半导体发光元件。 The present invention relates to a semiconductor light emitting element (hereinafter referred to as "light emitting element"), particularly to a semiconductor light emitting element which is a light emitting layer composed of GaN system semiconductor crystal (GaN crystal series).

背景技术 Background technique

发光二极管(LED)的基本的元件结构呈这样的结构:在晶体衬底上依次生长n型半导体层、发光层(包括DH结构、MQW结构、SQW结构)、p型半导体层,在n型层或导电性晶体衬底(SiC衬底、DaN衬底等)及p型层各层上形成外部引出电极。 The basic structure of a light emitting diode element (LED), a structure in the form of: sequentially grown on a crystalline substrate an n-type semiconductor layer, a light emitting layer (including the DH structure, the MQW structure, the SQW structure), p type semiconductor layer, the n-type layer or a conductive crystal substrate (SiC substrate, DaN substrate) layer and p-type layers were formed on the external lead electrodes.

例如,图8是表示将GaN系列半导体作为发光层的材料的元件(GaN系列LED)的一个结构例的图,在晶体衬底101上通过依次进行晶体生长而层叠GaN系列晶体层(n型GsN接触层(也是覆盖层)102、GaN半导体发光层103、p型GaN接触层(也是覆盖层)104),在它上面设置下部电极(通常为n型电极)105、上部电极(通常为p型电极)106。 For example, FIG. 8 is a diagram showing a configuration example of a GaN-based semiconductor device as a light emitting material layer (GaN series LED), on the crystal substrate 101 for crystal growth of GaN series stacked crystal layer (n-type by sequentially GsN a contact layer (also covering layer) 102, GaN semiconductor light-emitting layer 103, a p-type GaN contact layer (and a cover layer) 104), on top of it is provided a lower electrode (typically an n-type electrode) 105, an upper electrode (usually a p-type electrode) 106. 这里,作为将晶体衬底安装在下侧、光向上方射出后传播的结构进行说明。 Here, as the crystalline substrate mounted on the lower side, it will be described the structure of the light is emitted after propagating upward.

在LED中,以怎样的效率充分地将发光层上发生的光取出到外界(所谓光取出效率)是重要的问题。 In the LED, the efficiency of how to sufficiently light occurs on the light emitting layer was removed to the outside (so-called light extraction efficiency) is an important issue. 因此,迄今关于从发光层朝向上方的光,将不致成为其朝向外界的障碍物的图8所示的上部电极106作成透明电极的形态,以及关于从发光层朝向下方的光,设置反射层,使其返回上方的形态等,在种种方面下工夫。 Thus, far from the upward light on the light emitting layer, it will not become the upper electrode 8 toward the outside as shown in FIG obstacle 106 made of a transparent electrode shape, and the light from the light emitting layer on downward, the reflective layer, such as the top of the form to return, to work in all sorts of ways.

关于从发光层向上下方向发射的光,如上所述,通过使电极透明化和设置反射层,能提高向外界取出光的效率,可是,朝向发光层扩展方向(在图8中,在发光层103内用粗箭头表示的方向,以下也称“横向”)发生的光内,虽然在用折射率差规定的全反射角以内到达侧壁的光能发射到外部,但除此以外的很多光例如在侧壁上反复反射等,只在元件内、特别是被发光层本身吸收而衰减、消失。 Respect to the light emitted from the light emitting layer in the vertical direction, as described above, through the transparent electrode and the reflective layer, can improve the efficiency of extracting light to the outside world, however, the light emitting layer toward the expansion direction (in FIG. 8, the light-emitting layer 103. directional arrows thick, hereinafter also referred to as the light "transversely") occurs, while the side walls reach the total reflection angle is within a predetermined refractive index difference between the light emitted to the outside, but in addition a lot of light For example repeatedly reflected on the side wall, etc., only in the element, in particular a light emitting layer itself is absorbed and attenuated, disappear. 这样的横向的光被上下的覆盖层、或衬底(蓝宝石衬底)和上侧的覆盖层、或衬底和上部电极(进而元件外部的被覆物质等)封闭在里面,成为横向传播的光。 Such a lateral side of the light is covered with the upper and lower layer of the covering layer, or the substrate (sapphire substrate) and the upper, and the upper electrode or the substrate (and hence the outer element covering material, etc.) is closed on the inside, is a light propagating transverse . 该横向传播的光在发光层上发生的全部光量中占有大部分,有时达到总体的60%。 The entire amount of light occurring on the luminescent layer in the lateral propagation occupies most, and sometimes up to 60% of the total.

另外,在将衬底作为上侧安装的倒装片型的LED中(光通过衬底射出到外界),已知这样一种形态:为了使这样的横向光能朝向衬底的方向反射,而在作为元件结构的层叠体的侧壁上设有角度,使该侧壁成为朝向衬底一侧的反射面。 Further, in the flip-chip LED mounting substrate as the upper side (light emission through the substrate to the outside), there is known a form: In order to make such a direction transverse the reflected light toward the substrate, and angle is provided on the side wall of the laminated structure element, so that the sidewall reflecting surface toward the substrate side. 可是,使微小的芯片的四面带有角度进行切割的加工是困难的,在成本上也成问题。 However, the minute angle with the four chip cutting machining is difficult, the cost is also problematic.

另外,在朝向上下方向的光中也有问题,即在GaN系列半导体层/蓝宝石衬底的界面和GaN系列半导体层/p型电极(或封装材料)的界面之间,形成反复反射的驻波等,妨碍光取出效率。 Further, in the up-down direction of the light is also a problem, i.e., between the GaN-based semiconductor layer interface and the GaN-based semiconductor layer, p-type electrode (or encapsulating material) interface / sapphire substrate / forming a standing wave is repeatedly reflected like , interfering with the light extraction efficiency.

本发明的第一课题是解决上述问题,提供一种使在发光层上发生的横向光朝向外界,另外能抑制上述驻波的发生的赋予了新的结构的发光元件。 The first object of the present invention is to solve the above problems, there is provided a transverse occur on the light emitting layer toward the outside, it can be suppressed further given a new configuration of the light emitting element of the occurrence of the standing wave.

除了上述这样的朝向外界的光取出效率的问题以外,在发光层的材料采用InGaN、而且发生紫外线的情况下,存在以下这样的输出低的问题。 In addition to the problems facing this external light extraction efficiency than the material in the light emitting layer using InGaN, and in the case of ultraviolet rays, the problem of low output such problems.

在发光层中使用InGaN的发光元件中,一般说来能获得高效率的发光。 Using the light-emitting element in the light-emitting layer of InGaN, generally highly efficient light emission can be obtained. 这是因为由In成分起伏造成的载流子的定域化,使得被注入发光层的载流子内被捕获到非发光中心的载流子的比例变少,所以其结果,说明了能获得高效率的发光。 This is the localization of carriers because of fluctuation of In composition caused, so that the proportion to be captured into the carrier non-radiative centers of the carriers are injected into the light emitting layer becomes smaller, so the result, it was able to be obtained highly efficient light emission.

在GaN系列发光二极管(LED)或GaN系列半导体激光器(LD)中,在发生420nm以下的青紫光~紫外线的情况下,一般说来发光层的材料能使用InGaN(In成分为0.15以下),有关发光的结构,呈单一量子阱结构(由于活性层薄,所以其中包括所谓DH结构)、多重量子阱结构。 In the GaN series light emitting diode (LED) or GaN-based semiconductor laser (LD), in the case of the blue violet ~ 420nm ultraviolet rays, in general, the light emitting layer can be used InGaN (In composition of 0.15 or less), the relevant a light emitting structure, as a single quantum well structure (since the active layer is thin, the structure including a so-called DH), a multiple quantum well structure.

一般说来,紫外线的波长的上限比可见光的短波长端(380nm~400nm)短,下限为1nm左右(0.2nm~2nm),但在本说明书中,包括由上述的In成分为0.15以下的InGaN发生的420nm以下的青紫光,称为紫外线,将发生这样的紫外线的半导体发光元件称为紫外线发光元件。 Generally, the upper limit of the wavelength of the ultraviolet light (380nm ~ 400nm) shorter than the short wavelength end of the visible light, the lower limit is about 1nm (0.2nm ~ 2nm), but in the present specification, including by the In composition of InGaN is 0.15 or less 420nm blue violet occur following, referred to ultraviolet semiconductor light emitting element is referred to as the occurrence of such an ultraviolet ultraviolet ray emitting element.

由GaN所能发生的紫外线的波长为365nm。 UV wavelengths can be generated by GaN is 365nm. 因此,在InGaN必须包含In成分、而且不包含Al成分的三元系列的情况下,能发生的紫外线波长的下限是比上述365nm长的波长。 Thus, InGaN In composition must be included in, but does not include a three-way series Al composition, the lower limit of the ultraviolet wavelength can occur is longer than the wavelength 365nm.

可是,与具有In成分高的发光层的青·绿色发光元件相比,紫外线发光元件所发生的光的波长短,所以有必要降低发光层的In成分。 However, compared with the blue-green light emitting element having a light emitting layer having a high In composition, the wave ultraviolet light emitting element length occurs, it is necessary to reduce the In composition of the light emitting layer. 因此,上述的由In成分起伏造成的定域化的效果低,被被捕获到非发光中心的比例增加,其结果,不能获得高输出。 Thus, the effect of localized low In composition fluctuation caused by the increase are trapped in the center of non-light emission ratio, as a result, a high output can not be obtained. 在这样的情况下,盛行降低成为非发光再结合中心的原因的错位密度。 In this case, the dislocation density becomes decreased the prevalence of non-radiative recombination centers of reasons.

作为降低错位密度的方法,能举出ELO法(横向生长法),通过谋求降低错位密度,来达到高输出化·长寿命化(参照文献(Jpn.j.Appl.Phys.39(2000)pp.L647)等)。 As a method for reducing the dislocation density, ELO method can include (lateral growth method), be reduced by the dislocation density, to achieve high output of the long-life (Ref. (Jpn.j.Appl.Phys.39 (2000) pp .L647), etc.).

在GaN系列发光元件中,作成用禁带比其大的材料构成的覆盖层(阻挡层)夹持发光层(阱层)的结构。 GaN light-emitting element in the series, made with a band gap larger than the cladding layer which is sandwiched structure of the light emitting material layer (well layer) (barrier layer). 根据文献(米津宏雄著,工学图书株式会社刊,“光通信元件工学”第72页),一般情况下得出使禁带差为“0.3eV”以上的指导方针。 According to the literature (Jin-Wang the meters, Journal of Engineering Books, Ltd., "Engineering an optical communication element" on page 72), obtained in general is that the band gap difference "0.3 eV" of the above guidelines.

根据上述背景,在发光层(阱层)中使用能发生紫外线的成分的InGaN的情况下,如果考虑到载流子被封闭,则在夹持发光层的覆盖层(在单一量子阱结构中不仅覆盖层,还包括阻挡层)中能使用禁带大的AlGaN。 A case where the background described above, an InGaN ultraviolet component can occur in the light emitting layer (well layer) in consideration of the carrier is closed, then (only in a single quantum well structure light emitting layer sandwiched in the cover layer capping layer, further comprising a barrier layer) can be used in a large bandgap AlGaN.

另外,在构成量子阱结构的情况下,阻挡层有必要达到产生隧道效应的程度的厚度,一般说来为3~6nm左右。 Further, in a case where the quantum well structure, the barrier layer to the extent necessary to produce a tunneling thickness, generally about 3 ~ 6nm.

例如图9是表示将In0.05Ga0.95N作为发光层的材料的现有的发光二极管之一例的图,在晶体衬底S10上,通过隔离层201,采用晶体生长法依次层叠n型GaN接触层202、n型Al0.1Ga0.9N覆盖层203、In0.05Ga0.95N阱层(发光层)204、p型Al0.2Ga0.8N覆盖层205、p型GaN接触层206,在它上面设置下部电极(通常为n型电极)P10、上部电极(通常为p型电极)P20,成为上述这样一种元件结构。 E.g. In0.05Ga0.95N FIG. 9 is a diagram illustrating an example of a conventional light emitting diode of the light emitting material layer, on a crystal substrate SlO, through the isolation layer 201 are sequentially stacked using a crystal growth process an n-type GaN contact layer 202, n-type Al0.1Ga0.9N clad layer 203, In0.05Ga0.95N well layer (light emitting layer) 204, p-type Al0.2Ga0.8N clad layer 205, p-type GaN contact layer 206, a lower electrode provided on it (typically n-type electrode) P10, an upper electrode (p-type electrode typically) P20, such a device becomes the above-described structure.

可是,用ELO法使成为基底的GaN层生长,需要掩蔽层的形成、再生长这样的方法,需要多次生长,有工序非常多的问题。 However, the ELO method using a GaN layer is grown as the underlying base, masking is required to form a layer, and then growing a method requires multiple growth, there are many problems step. 另外,由于存在再生长界面,所以有降低错位密度所派生的怎么也提高不了输出的问题。 Further, since the regrowth interface is present, it is how to reduce the dislocation density of the problem can not be derived also increases output.

另外,为了使发光层的材料为InGaN而且使紫外线输出得更多,本发明者等研究了现有的元件结构时,明白了AlGaN层成为使InGaN发光层受到由晶格常数差引起的变形的根源。 Further, in order to make the light emitting layer is InGaN and the ultraviolet output more, studied the conventional element structure when the present inventors understand the deformation becomes an InGaN light emitting layer caused by a difference from the lattice constant of AlGaN layer source.

另外,明白了在量子阱结构中,如果将阻挡层的厚度减薄,则Mg就会从设置在它上面的p型层扩散到发光层中,形成非发光中心,所以有不能获得输出大的紫外发光元件的问题。 Further, to understand the quantum well structure, if the thickness of the barrier layer is thinned, the Mg diffuses from the above it is provided a p-type layer into the luminescent layer, is formed non-radiative centers, so there is a large output can not be obtained problems ultraviolet light emitting element.

本发明的第二课题是在本发明的发光元件的发光层的材料中使用InGaN、而且发生紫外线的情况下,通过使元件的结构最佳化,达到高输出化,且达到长寿命化。 The second object of the present invention is used in a light emitting layer of the light emitting element of the present invention, InGaN, and in the case of ultraviolet rays, by optimizing the structural element, to achieve higher output, and to achieve a long life.

发明内容 SUMMARY

本发明有以下特征。 The present invention has the following characteristics.

(1)一种半导体发光元件,其特征在于:具有如下的元件结构,即在第一晶体层表面上加工有凹凸,由具有与上述晶体层不同的折射率的半导体材料构成的第二晶体层或通过隔离层或直接地在该凹凸上通过填埋该凹凸而进行生长,在第二晶体层上层叠包括发光层的半导体晶体层;从发光层产生的光的波长在第一晶体层中的折射率和在第二晶体层中的折射率的差为0.05以上。 (1) A semiconductor light emitting device, comprising: an element having the following structure, i.e., processing unevenness crystal layer on a first surface, a second crystal layer made of a semiconductor material having the above crystal layers having different refractive indices or or directly carried out by the isolation layer by filling in the irregularities on the irregular growth, the stacked semiconductor crystal layer comprising a light emitting layer on the second crystal layer; wavelength of light generated from the light emitting layer in the first crystal layer and a refractive index difference in refractive index in the second crystal layer is 0.05 or more.

(2)是上述(1)记载的半导体发光元件,第二晶体层及它上面的半导体晶体层是由GaN系列半导体晶体构成的层。 (2) is (1) a semiconductor light emitting element described above, the second crystal layer and the semiconductor crystal layer thereon is a layer composed of a GaN system semiconductor crystal.

(3)是上述(2)记载的半导体发光元件,第一晶体层是晶体衬底,第二晶体层从在晶体衬底的表面上加工的凹凸面的凹面与凸面两面开始、在作为呈凸状的结晶进行生长后,一直生长到生长面成为平坦为止。 (3) (2) of the semiconductor light emitting element described above, the first crystal layer is a crystal substrate, from the second crystal layer on the surface of crystal substrate of the concave and convex surface irregularities on both sides of the start, as a convex after the grown crystal shape, it has grown up to become flat growing surfaces.

(4)是上述(3)记载的半导体发光元件,在晶体衬底的表面上加工的凹凸是呈条纹图形的凹凸,该条纹的纵向沿将它埋入并生长的GaN系列半导体的(11-20)方向、或(1-100)方向。 (4) (3) of the semiconductor light emitting element described above, the upper surface of the crystal substrate is in the form of a stripe pattern of uneven irregularities in the longitudinal direction of the stripe and it is embedded in the growth of GaN-based semiconductor (11- 20) direction, or (1-100) direction.

(5)是上述(1)或(4)记载的半导体发光元件,凹凸的断面形状呈矩形波状、或三角波状、或正弦曲线状。 (5) is a semiconductor light emitting element described, as a concavo-convex cross-sectional shape (1) or (4) the above-described rectangular wave or triangular wave or sinusoidal.

(6)是上述(1)记载的半导体发光元件,发光层由能产生紫外线的成分即InGaN晶体构成。 (6) is a semiconductor light emitting element described in (1) above, i.e., light-emitting layer formed of InGaN crystal composition capable of generating ultraviolet rays.

(7)是上述(1)记载的半导体发光元件,发光层是一种由InGaN构成的阱层和由GaN构成的阻挡层所构成的量子阱结构。 (7) is a quantum well structure of the above (1) a semiconductor light emitting element, a light-emitting layer described well layer made of InGaN and a barrier layer made of GaN is formed.

(8)是上述(1)记载的半导体发光元件,第一晶体层是晶体衬底,在该晶体衬底的表面上加工的凹凸上,第二晶体层通过低温隔离层将该凹凸埋入并生长,发光层是一种由InGaN构成的阱层和由GaN构成的阻挡层所构成的量子阱结构,量子阱结构和低温隔离层之间的层全部由GaN晶体构成。 (8) (1) described in the above-described semiconductor light emitting element, the first crystal layer is a crystalline substrate, on the surface of the processed substrate crystal irregularities, the irregularities embedded in the second crystal layer by cryogenic separation layer and growth, light-emitting layer is a quantum well structure of well layers and barrier layers made of GaN is formed of an InGaN constituted, a quantum well structure layer between the spacer layer and composed entirely of the low-temperature GaN crystal.

(9)是上述(7)或(8)记载的半导体发光元件,阻挡层的厚度为6nm~30nm。 (9) is a semiconductor light emitting element according to (7) or (8) above, the barrier layer has a thickness of 6nm ~ 30nm.

(10)一种半导体发光元件,其特征在于:有如下所述的元件结构,即第一GaN系列半导体晶体在成为晶体生长的基础的晶体层表面上呈凹凸状地生长,具有与第一GaN系列半导体晶体不同的折射率的第二GaN系列半导体晶体覆盖着该凹凸的至少一部分生长,另外,第三GaN系列半导体晶体一直生长到使上述凹凸平坦为止,在它上面层叠包括发光层的半导体晶体层。 (10) A semiconductor light emitting device, comprising: an element structure as described below, i.e., a first GaN-based semiconductor crystal is grown on the concavo-convex shape becomes a basis of crystal growth surface of the crystal layer, and having a first GaN the second GaN-based semiconductor crystal of a different series of semiconductor crystal is covered with a refractive index of at least a portion of the growth irregularities, in addition, the third GaN-based semiconductor crystal is grown to have unevenness so that the flat until the semiconductor crystal is laminated thereon comprising a light-emitting layer Floor.

(11)是上述(10)记载的半导体发光元件,在成为晶体生长的基础的晶体层表面上,加工对晶体生长区域进行尺寸上限制的凹凸结构,通过该尺寸上的限制,第一GaN系列半导体晶体生长成为凹凸状。 (11) (10) of the semiconductor light emitting element described above, on the basis of crystal growth becomes a surface layer of the crystal, the crystal growth area processed concave-convex structure on the size of the restriction, by limiting the size of the first GaN series The semiconductor crystal growth becomes uneven.

(12)是上述(10)记载的半导体发光元件,在成为晶体生长的基础的晶体层表面上,实施对晶体生长区域进行尺寸上限制的表面处理,通过该尺寸上的限制,第一GaN系列半导体晶体生长成为凹凸状。 (12) is (10) of the semiconductor light emitting element described above, on the basis of crystal growth becomes a surface layer of the crystal, the crystal growth area for the implementation of the process of limiting the size of the surface, by limiting the size of the first GaN series The semiconductor crystal growth becomes uneven.

(13)是上述(10)记载的半导体发光元件,在成为晶体生长的基础的晶体层表面上,形成能横向生长的掩蔽图形,通过由该掩蔽图形对晶体生长区域进行尺寸上限制,第一GaN系列半导体晶体生长成为凹凸状。 (13) (10) of the semiconductor light emitting element described above, on the basis for the crystal growth surface of the crystal layer, the masking pattern is formed transversely growth by the crystal growth from the region of the mask pattern size constraints, the first GaN series semiconductor crystal growth becomes uneven.

(14)是上述(10)记载的半导体发光元件,具有如下的元件结构,即第二GaN系列半导体晶体呈膜状地至少覆盖着由第一GaN系列半导体晶体形成的凹凸中的凸部而生长,另外,第三GaN系列半导体晶体覆盖着第二GaN系列半导体晶体一直生长到使上述凹凸平坦为止,在第三GaN系列半导体晶体上面层叠了包括发光层的半导体晶体层。 (14) is (10) of the semiconductor light emitting element described above, having the following structural elements, i.e., a second GaN-based semiconductor crystal is at least a film covering the concavo-convex portion formed by projecting a first GaN-based semiconductor crystal grown in addition, the third GaN-based semiconductor crystal is covered with a second GaN-based semiconductor crystal has been grown up to the flat so that the unevenness in the third GaN-based semiconductor crystal a semiconductor crystal layer above the multilayer including the light emitting layer. 第二GaN系列半导体晶体有多层膜结构。 The second GaN series semiconductor crystal with a multilayer film structure.

(15)是上述(10)记载的半导体发光元件,发光层由能发生紫外线的成分即InGaN晶体构成。 (15) is (10) of the semiconductor light emitting element described above, i.e., light emitting layer formed of InGaN crystal composition capable of ultraviolet rays.

(16)是上述(10)记载的半导体发光元件,发光层是一种由InGaN构成的阱层和由GaN构成的阻挡层所构成的量子阱结构。 (16) is (10) of the semiconductor light emitting element described above, the light emitting layer is a quantum well structure, the well layers and barrier layers made of GaN is formed of an InGaN constituted.

(17)是上述(16)记载的半导体发光元件,阻挡层的厚度为6nm~30nm。 (17) is (16) of the semiconductor light emitting element described above, the barrier layer has a thickness of 6nm ~ 30nm.

(18)是上述(10)记载的半导体发光元件,上述凹凸是呈条纹图形的凹凸,该条纹的纵向沿第一GaN系列半导体晶体的(11-20)方向、或(1-100)方向。 (18) is (10) of the semiconductor light emitting element described above, the uneven pattern is a stripe unevenness, (11-20) along the longitudinal direction of the stripe of the first GaN-based semiconductor crystal, or a (1-100) direction.

以下,将上述(1)的形态称为“形态(I)”,将上述(11)的形态称为“形态(II)”进行说明。 Hereinafter, the above-described aspect (1) referred to as "form (the I)", the above-described form (11) referred to as "Form (II)" will be described.

附图说明 BRIEF DESCRIPTION

图1是表示本发明的发光元件的结构例的模式图。 FIG 1 is a schematic diagram showing the structure of a light emitting element of the embodiment of the present invention. 以表示区域的边界为目的在一部分上划有影线(以下的图也同样)。 Represents the boundary region for the purpose on a portion marked with hatching (FIG similarly hereinafter).

图2是表示在本发明的形态(I)中形成凹凸状的折射率界面用的晶体生长法的一例的模式图。 FIG 2 is a schematic view showing an example of the crystal growth method of the refractive index of the interface with the uneven shape is formed in the form (I) of the present invention.

图3是表示在本发明的形态(I)中将晶体衬底加工成有斜面的凹凸的方法的模式图。 FIG 3 is a diagram of the present invention (I) in the crystal substrate processing method to a beveled convex pattern in FIG.

图4是表示在本发明的形态(II)中形成凹凸状的折射率界面用的晶体生长法的一例的模式图。 FIG 4 is a schematic view showing an example of the crystal growth method of the refractive index of the interface with the uneven shape is formed in the form (II) of the present invention.

图5是表示在本发明的形态(II)中形成凹凸状的折射率界面用的晶体生长法的另一例的模式图。 FIG 5 is a schematic view showing another example of the crystal growth method of the concavo-convex shape for forming the refractive index of the interface in the form of (II) of the present invention.

图6是表示图4、5所示的晶体生长法的变化的模式图。 FIG 6 is a schematic view showing changes in the crystal growth method shown in FIG. 4 and 5.

图7是表示在本发明的形态(II)中形成凹凸状的折射率界面用的晶体生长法的另一例的模式图。 FIG 7 is a schematic view showing another example of the crystal growth method of the concavo-convex shape for forming the refractive index of the interface in the form of (II) of the present invention.

图8是表示现有的GaN系列发光元件的结构的模式图。 FIG 8 is a diagram showing the configuration of a conventional GaN-series light-emitting element.

图9是表示将In0.05Ga0.95N作为发光层的材料的现有的发光二极管的一例的模式图。 FIG 9 is a schematic diagram showing an example of a conventional light-emitting diode as a light emitting layer of In0.05Ga0.95N material.

具体实施方式 detailed description

就发光元件来说,本发明的课题具有最重要的意义,根据这一点,本发明的发光元件的最好的形态是LED。 To the light emitting element, the object of the present invention has the most important, the best according to this aspect, the light emitting element of the present invention is an LED. 另外,虽然不限定材料系列,但如后面所述,举出使用本发明的有用性特别显著的GaN系列材料的LED(GaN系列LED)为例,说明该发光元件。 Further, although the material is not limited series, but as described later, include the use of the present invention is useful particularly remarkable GaN-based material is the LED (GaN series LED), for example, indicating that the light emitting element.

该发光元件的任意一种形态,都在发光层的下方设置凹凸状的折射率界面,根据其作用及效果,提高光取出效率。 Form of any one of the light emitting element, the refractive index of the concave-convex shape are disposed below the light-emitting interface layer, depending on its function and effect to improve light extraction efficiency. 从如何形成该凹凸状的折射率界面这一点出发,该发光元件能再分成上述形态(I)、形态(II)。 From how to form the concavo-convex refractive index interface that departure, the light emitting element can be subdivided into the above-described aspect (the I), Form (II).

在上述形态(I)中,在晶体衬底上加工凹凸,通过用半导体晶体(特别是GaN系列晶体)将该凹凸埋入,构成凹凸状的折射率界面。 In the above aspect (I), the crystal substrate on the concavo-convex processing, by using the semiconductor crystal (GaN series particular crystalline) embedding the irregularities constituting a concavo-convex refractive index interface.

在上述形态(II)中,在凹凸上使GaN系列晶体生长,通过用另一GaN系列晶体将它埋入,构成凹凸状的折射率界面。 In the above aspect (II) of the GaN series of irregularities in the crystal growth, by treatment with a further series of GaN crystal embedded in it, constituting the concavo-convex refractive index interface.

首先,说明上述形态(I)。 First, the above-described aspect (I). 图1(a)是作为形态(I)的发光元件的结构例,示出了GaN系列LED的图,在第一晶体层(以下也称“第一层”)1的表面上加工凹凸1a,由具有与上述晶体层不同折射率的材料构成的第二晶体层(以下也称“第二层”)2在该凹凸1a上通过隔离层或直接地将该凹凸埋入并生长。 FIG 1 (a) is a configuration example of a form (I) of the light emitting element is shown in FIG GaN series LED, the first crystal layer (hereinafter also referred to as "first layer") on the surface of a machining irregularities 1a, constituting the second crystal layer has a refractive index different from the above crystal material layer (hereinafter, also referred to as "second layer") by an isolation layer 2 or directly embedded in the irregularities on the irregular 1a and grown. 因此,不同的折射率界面呈凹凸状。 Thus, a different refractive index interface was uneven. 再在它上面通过晶体生长,层叠半导体晶体层(n型接触层3、发光层A、p型接触层4),形成电极P1、P2后呈元件结构。 Then by crystal growth on it, the stacked semiconductor crystal layer (n-type contact layer 3, a light emitting layer A, p-type contact layer 4), forming an electrode P1, P2 form the element structure. 该图中的元件结构是简单的DH结构,但设有专用的接触层、专用的覆盖层等,另外,也可以将发光层作成SQW结构、MQW结构,有一切作为发光元件的结构。 The element structure of FIG DH structure is simple, but has a dedicated contact layer, special coating layer, etc. In addition, the light emitting layer may be made SQW structure, the MQW structure, the structure of all the light-emitting element.

利用上述结构,在发光层A中产生的沿横向传播的光受凹凸状的折射率界面1a的影响,产生一种模式变换(由于漫反射,使光的传播方向变成面发光方向),变成朝向横向以外的方向。 With the above structure, the light generated by the light-emitting layer along the lateral propagation effects A concavo-convex refractive index interface 1a to produce a mode change (due to diffused reflection, so that the propagation direction of the light emitting surface becomes direction), becomes toward a direction other than transverse. 其结果,朝向取出面的光量增加,元件内部的光吸收层减少,其结果,光取出效率提高。 As a result, the amount of light extraction surface increases toward reducing light absorption layer inside the element, as a result, light extraction efficiency is improved.

如在现有技术的说明中所述,迄今,与沿着光的取出口以外的方向(例如,向下或横向)传播的光不同,单纯地通过只在端面上反射,使光朝向取出口。 As described in the prior art, to date, along with outside light outlet direction (e.g., downward or lateral) propagating light of a different, simply by only the end face reflecting the light toward the outlet .

与此不同,在本发明中,将在衬底上通过外延生长形成的GaN系列半导体层区域看作[使光沿横向传播的波导],通过在沿着该波导能对沿横向传播的光产生影响的位置上形成凹凸状的折射率界面,发生一种模式变换(或发生漫反射),使光朝向其他方向。 In contrast to this, in the present invention, GaN-based semiconductor layer region formed by the epitaxial growth on the substrate treated as [the light propagating in the lateral waveguide] can be generated along the waveguide by light propagating in the transverse direction forming concavo-convex on the impact position of the interface refractive index, mode conversion occurs (or diffuse reflection occurs), light toward other directions.

在本发明中,着眼于沿横向传播的光以发光层为中心,使电场作为扩大到其上下层的电磁波,沿横向传播的情况。 In the present invention, it is focusing on the lateral propagation of light along the light emitting layer as the center, the electric field as expanded to its upper and lower electromagnetic waves propagating case where lateral direction. 在通常的DH结构的活性层中,发光层的厚度为10nm~100nm左右。 In the conventional DH structure of the active layer, the thickness of the luminescent layer is about 10nm ~ 100nm. 横向光不只在这样薄的活性层内传播,而且作为到达晶体衬底的分布幅度大的波动沿横向传播。 Lateral optical only in such a thin active layer spread, and a distribution range of crystal substrate reaches large fluctuations in the lateral propagation. 因此,如图1(a)所示,如果在横向光的分布范围内形成凹凸状的折射率界面1a,则横向光的波动受影响,利用一种模式变换(或发生漫反射),能使若干光量朝向其他方向,进而射出到外界的光量也增大。 Thus, in FIG. 1 (a), if the refractive index of the concavo-convex shape is formed in the interface of the light distribution lateral 1a, the lateral fluctuation of light affected by a model transformation (or diffusely reflected), can Some amount of the light toward other directions, and thus the amount of light emitted to the outside increases. 另外,该凹凸也具有作为将从发光层朝向该凹凸本身发射的光漫反射到上方的反射面的功能。 Further, this also has a concavo-convex toward the light from the light emitting layer itself diffusely reflected emission to the uneven surface of the upper reflecting function.

另外该凹凸还具有使GaN系列半导体层/蓝宝石衬底的界面的垂直方向的反射率下降的功能,抑制上下方向的驻波的发生,使很多光进入蓝宝石衬底,来自蓝宝石衬底的光的取出量增大,特别是从衬底一侧取出光时还能提高光取出效率。 The further addition irregularities having a GaN-based semiconductor layer / sapphire substrate interface reflectivity in the vertical direction drop function, suppress the occurrence of standing waves in the vertical direction, so that a lot of light enters the sapphire substrate, the light from the sapphire substrate extracted increases, in particular also improve the light extraction efficiency of light extracted from the substrate side.

在形态(I)中,所谓在第一层的表面上加工的凹凸,是第一层的表面本身构成的凹凸。 In the form (I), the term of the first layer on the surface of the processing unevenness, the uneven surface of the first layer is itself composed. 这与采用迄今众所周知的横向生长法的由SiO2等构成的掩蔽层被加在覆盖的表面上形成的凹凸不同。 This is by the masking layer made of SiO2 or the like is applied to the uneven surface of the cover is formed using a heretofore known method different lateral growth.

另外,利用上述的结构,能使在晶体衬底上生长的GaN系列晶体有效地降低错位密度。 Further, with the above configuration, enables the GaN crystal substrate on a series of crystal growth is effectively reduced dislocation density. 在该结构中,不用ELO用的掩蔽层。 In this configuration, the masking layer without using ELO. 一次生长就能完成错位密度的降低。 Once growth can be done to reduce the dislocation density.

即,在使用掩模的ELO法中,使GaN膜在基底上生长后,暂时从生长装置中取出到外部,形成掩模,再返回生长装置中,再进行生长。 That is, the ELO method using a mask, a GaN film was grown on the substrate, is temporarily removed from the growth apparatus to the outside, a mask, and then return to growth apparatus, and then grown. 与此不同,在晶体衬底上形成凹凸进行的生长法中,将加工了凹凸的晶体衬底置于生长装置内之后,不需要阻止生长,因此不存在再生长界面,能制作结晶性良好的结构。 After contrast, irregularities are formed for the growth method on a crystalline substrate, the irregularities of the machined substrate is placed within a crystal growth apparatus, does not need to stop the growth, so there is no regrown interface, can make good crystallinity structure.

另外,在本发明的上述的结构中,由于不使用掩模而使GaN系列晶体层生长,所以没有由掩模的分解产生的不纯物污染、晶体品质下降的问题。 Further, in the above-described structure of the present invention, since without using a mask layer, crystal growth of the GaN series, so that no impurities produced by the decomposition of the mask contaminated, the crystal quality decreases.

利用这些作用和效果,能制作错位少结晶好的结构,结果,光输出特别高。 With these actions and effects, less misalignment can produce good crystal structure, the result, a particularly high light output. 另外,成为劣化的原因的错位密度降低的结果,能谋求长寿命化。 Further, the results of dislocation density becomes cause degradation of reducing, possible to achieve a long life.

作为凹凸的总体的配置图形,能不使横向光的波动受影响即可,可以是在第一层的表面(基准平面)上配置了点状的凹部(或凸部)的图形,也可以是以一定的间隔排列了直线状的或曲线状的凹槽(或凸山脊)条纹状的凹凸图形。 As an overall arrangement pattern of irregularities, the ripple can not affected laterally to light, may be on the surface of the first layer (reference plane) of the dot pattern arranged concave portion (or convex portion), and may be They are arranged linearly at predetermined intervals or curved groove (or a convex ridge) uneven striped pattern. 凸山脊呈栅格状的图形也可以说是排列了角形凹部的图形。 Projecting a grid-like pattern as a ridge may be arranged in a pattern, said angled recess. 它们中能对横向光产生强大影响的是条纹状的凹凸图形。 Among them can have a strong influence on the light is uneven laterally striped pattern.

凹凸的断面形状能举出:如图2(a)所示,呈矩形(包括梯形)波状;如图3(c)所示,呈三角波状或正弦曲线状;以及呈它们合成的波状等。 It can include irregular cross-sectional shape: 2 (a), a rectangular shape (including a trapezoid) as shown in FIG wavy; FIG. 3 (c), a triangular wave-shaped or sinusoidal shape; and a synthetic wavy shape thereof and the like.

凹凸的细部的规格可以参照后面所述的为了降低GaN系列晶体的错位密度而形成的晶体生长用的凹凸结构。 In order to reduce the dislocation density of the crystal GaN crystal formed by the series of irregularities detailed specification can be described later with reference to growth of the concavo-convex structures.

另外,由于凹凸对横向光有影响,所以该凹凸最好位于从发光层算起的特定距离以内。 Further, since the influence of the lateral optical unevenness, the unevenness is preferably so located within a certain distance measured from the light emitting layer. 该距离在图1(a)中如k所示,为5.5微米至20微米左右,特别是最好为1微米至10微米的值,该范围内包含通常的LED的衬底上表面和发光层下表面的距离。 The distance shown as about 5.5 to 20 microns, especially preferably 1 to 10 microns values ​​in FIG. 1 (a) as the k, and a light emitting layer comprising a surface of an LED substrate is generally within the range from the surface below. 因此,如果将元件的晶体衬底作为第一层,在它上表面上形成凹凸,将它埋入并使第二层生长,构成元件结构,则该凹凸对横向光充分地产生影响。 Thus, if the crystal substrate as a first layer element, unevenness is formed on its upper surface, and the second buried layer is grown it, constituting the element structure, the unevenness sufficiently on the lateral optical influence.

该发光元件的材料系列可以是GaAs系列、InP系列、GaN系列等迄今众所周知的材料,但在晶体的错位密度的降低成为大问题的GaN发光元件(至少发光层的材料是GaN系列半导体的发光元件)中,本发明的有用性最显著。 Materials Series of the light emitting element may be a GaAs series, InP series, GaN series hitherto known materials but in reducing the dislocation density of the crystal becomes a GaN light emitting element major problems (at least the light emitting layer is a light emitting element GaN series semiconductor ), the usefulness of the present invention is most significant. 在GaN系列发光元件中,谋求降低GaN系列晶体的错位密度是元件形成时所必要的大前提。 GaN light emitting element in series, the dislocation density of the GaN series be reduced crystal formation is a necessary element of the premise. 在本发明中,如下所述提供一种采用了对于谋求降低GaN系列晶体的错位密度有用的凹凸结构的生长法,由于能将该凹凸结构兼作上述折射率界面上的凹凸用,所以与只以折射率界面为目的形成凹凸的情况相比,凹凸的有用性提高了。 In the present invention, there is provided a use as described below for the dislocation density of the GaN series be reduced crystal growth method useful uneven structure, since the concavo-convex structure can serve as a refractive index of irregularities on the interface, and therefore only to the irregularities formed at the interface where the refractive index for the purpose of comparison, the usefulness of increased unevenness. 以下,说明使用该凹凸结构的GaN系列晶体生长法。 Hereinafter, using the method of crystal growth of the GaN series uneven structure.

使用凹凸结构的GaN系列晶体生长法是这样一种方法:如图2(a)所示,在晶体衬底(第一层)1的表面上加工凹凸1a,如图2(b)所示,从其凹部及凸部开始,实际上使GaN系列晶体21、22一边形成晶面结构一边生长,如图2(c)所示,使凹部不致成为空洞,实际上用GaN系列晶体填充,将该凹凸埋入并生长。 Uneven structure using a GaN series of crystal growth method is a method: in FIG. 2 (a), in the crystal substrate (first layer) on the surface of a machining irregularities 1a, as shown in FIG. 2 (b), and the convex portion from the concave portion starts, the series of the GaN crystal 21 is actually formed while the side of the growth crystal plane structure, FIG. 2 (c), the cavity of the recessed portion do not become actually filled with GaN crystal series, the bump embedded and grow. 所谓实际上一边形成晶面结构的生长,意味着包括类似于后面所述的晶面结构生长的生长(例如,沿厚度方向一边生成凹凸一边生长等)。 Indeed while forming a so-called crystal plane grown structure, said means comprising growing behind similar structures grown crystal plane (e.g., in the thickness direction while generating relief side growth, etc.). 以下,将填充使用该凹凸的凹部的生长法称为“该晶面生长法”。 Hereinafter, the method will be populated with the recessed portion of the growth irregularities referred to as "the crystal surface growth method."

在本发明中利用的该晶面生长法中,有这样的特征:通过在连隔离层都不形成的状态的晶体衬底的表面上加工凹凸,预先提供从晶体生长当初就能形成晶面的毛面。 The crystal surface growth method utilized in the present invention, there is such a feature: the upper surface irregularities by machining the crystalline state of the spacer layer is not formed even in a substrate, it can be provided in advance is formed from the original crystal plane of crystal growth Matte.

通过将凹凸设在晶体衬底上,在该面上进行GaN系列晶体的气相生长时,将用相互之间的台阶区分的凹面和凸面作为晶面结构生长生成的单位基准面。 When provided by irregularities on a crystal substrate, a GaN crystal on the surface of the series of vapor-grown, with the step of distinguishing between the mutual concave and convex structure is grown as a crystal plane plane generating unit. 通过将凹面和凸面两者作为晶面结构生长可能的面,如图2(b)所示,生长初期从凹面·凸面两者开始发生呈凸面的晶体生长。 By both concave and convex structure is grown as a crystal plane may be a plane, as shown in FIG 2 (b), the concave-convex surface both of the initial growth begins to occur from the convex surface shape of the crystal growth.

其结果,从晶体衬底沿C轴方向延伸的错位线在晶面(图2(b)所示的晶体21、22的斜面)上沿横向弯曲,不向上方传播。 As a result, lateral bending direction on a face (in FIG. 2 (b inclined surface) 21, 22 shown in crystals) from the crystal substrate in the C axis direction of the dislocation line extending upward does not propagate. 然后如图2(c)所示,继续生长,使生长面平坦后,该表面附近成为来自衬底的错位的传播降低了的低错位密度区域。 And FIG. 2 (c) as shown, continues to grow, so that the flat growth surface, near the surface of the substrate from propagating to become misaligned reduced low dislocation density region.

在使GaN系列晶体生长的一般方法中,采用MOVPE法等在蓝宝石C面衬底上,通过AIN等低温隔离层,使高温GaN膜生长。 Series in the general procedure of GaN crystal growth using MOVPE method or the like on a sapphire C-plane substrate, by other low-temperature AIN spacer layer, the high-temperature grown GaN film. 如果在低温隔离层上使高温GaN生长,则将形成了结晶的一部分隔离层作为生长核,高温GaN晶体开始呈岛状生长,但生长速度快的晶体将生长速度慢的晶体覆盖而成一体,促进横向生长,不久便形成平坦的GaN晶体。 If the high temperature on the low temperature grown GaN spacer layer, a portion of the crystals will be formed the isolation layer as a growth nucleus, crystals begin to form island-like high-temperature GaN growing, but fast crystal growth rate will slow crystal growth and covered by one, promote lateral growth, and soon form a flat GaN crystal. 这时,在蓝宝石衬底上不加工凹凸时,进行生长,以便出现生长速度慢而稳定的C面,从而被平坦化。 In this case, on the sapphire substrate without processing unevenness, grown, appear to slow the growth and stable C-plane, so as to be planarized. 这是因为横向的生长速度比稳定的C面的生长速度快。 This is because the growth rate faster than the lateral growth rate steady C plane.

另一方面,为了在衬底面上加工凹凸来对横向生长施加晶体生长区域的尺寸限制,例如如果凹凸的纵向呈平行于(11-20)方向的条纹形状,则由于对(1-100)方向的生长加以限制,所以C轴方向的生长速度上升,能形成晶体生长速度慢而稳定的{1-101}等斜晶面。 On the other hand, in order to limit the growth of the size applied to the lateral crystal growth regions in the substrate processing surface irregularities, for example, if irregularities are parallel to the longitudinal direction (11-20) in the direction of stripe shape, due to the (1-100) direction the growth restrictions, so the growth rate of the C-axis direction increases, the crystal growth can form a slow but steady {1-101} plane and the like monoclinic. 本发明中通过在衬底的生长面上进行凹凸加工,施加上述横向生长的生长区域的尺寸限制。 The present invention is carried out by processing unevenness growth surface of the substrate, the above-mentioned size limitations applied to the growth of the lateral growth region.

在本说明书中,所标记的晶面、晶体方位全部是在晶体衬底上生长的GaN晶体的晶面、方位。 In the present specification, the crystal plane marked, the crystal orientation of the crystal plane of the GaN crystal on the crystal substrate are all growth orientation.

所谓第二层实际上填充凹部,不仅呈全部填充状态,而且填充得构成能达到本发明的目的的有效的凹凸状的折射率界面即可。 The so-called second layer actually fills the recess, not only was completely filled state, and filled to the configuration can achieve effective refractive index of the concavo-convex interface to the object of the present invention. 例如,虽然有时在从凹部开始的生长晶体和从凸部开始的生长晶体成为一体的部分产生空隙,但能获得折射率的变化这一点是好的。 For example, although sometimes become integral part of the voids in the recesses starting from the grown crystal and the crystal growth starting from the convex part, but the change in refractive index can be obtained and this is good. 另外,在凹部上即使产生空隙,但在凹部上生长的第二层的下部面以能达到本发明的目的的程度进入凹部内,构成有效的凹凸状的折射率界面即可。 Further, even if the concave portion voids, but the lower face of the second layer is grown on the concave portion to the extent to achieve the object of the present invention into the concave portions constituting the effective refractive index of the concavo-convex interface can.

与该晶面生长法不同,例如,在特开2000-106455号公报中,公开了将凹凸设在晶体衬底上,将凹部作为空洞留下来,使氮化镓系列半导体生长的方法。 Unlike the crystal surface growth method, for example, in Laid-Open Patent Publication No. 2000-106455 discloses the unevenness provided on a crystal substrate, the recess portion as a hollow stay, a method of growing a gallium nitride-based semiconductor. 可是,在这样的生长法中,由于不填充凹部而作为空洞部留下来,所以从第二层看时折射率界面(即,第二层的下表面)未构成充分的凹凸,对横向光进行的模式调制的作用和效果不大。 However, in such a growing process, because it does not fill the recess as a hollow stay portion, so that when viewed from the refractive index interface (i.e., the lower surface of the second layer) The second layer does not constitute a sufficient unevenness, lateral light small modulation modes and effects. 可是,空洞部的存在不利于使发光层上产生的热向衬底一侧逃逸。 However, the presence of the hollow portion is not conducive to the heat generated in the light emitting layer to escape to the substrate side. 另外,由于不能积极地控制错位的传播,所以错位会传播到凸部的上方,错位密度的降低效果也不充分。 Further, because it is not actively control the spread of misalignment, the misalignment will be propagated to the upper convex portion, the effect of reducing the dislocation density is not sufficient.

该晶面生长法中使用的晶体衬底是使各种半导体晶体层生长用的构成基底的衬底,也可以说是晶格调整用的隔离层等还未形成的状态的衬底。 The crystal plane grown crystal substrate used in the method is to grow various semiconductor crystal layers with a substrate composed of a substrate, the substrate may be said to be a state lattice-adjusting spacer layer or the like has not been formed. 作为优选的晶体衬底,能使用蓝宝石(C面、A面、R面)、SiC(6H、4H、3H)、GaN、AlN、Si、尖晶石、ZnO、GaAs、NGO等,但如果适应于本发明的目的,也可以使用除此以外的材料。 As a preferred crystal substrate can be sapphire (C plane, A plane, R plane), SiC (6H, 4H, 3H), GaN, AlN, Si, Spinel, ZnO, GaAs, NGO and the like, but if the adaptation for the purposes of the present invention, except that the material may also be used. 另外,衬底的面方位不特别限定,也可以是更恰当的衬底,还可以是带有偏角的衬底。 Further, the plane orientation of the substrate is not particularly limited, and may be more appropriate substrate, with the substrate may be off-angle.

所谓GaN系列半导体,是用InXGaYAlZN(0≤X≤1,0≤Y≤1,0≤Z≤1,X+Y+Z=1)表示的化合物半导体,晶体混合比是任意的,例如,能举出AlN、GaN、AlGaN、InGaN等作为重要的化合物。 The so-called GaN series semiconductor, a compound semiconductor represented by InXGaYAlZN (0≤X≤1,0≤Y≤1,0≤Z≤1, X + Y + Z = 1), the crystal mixing ratio is arbitrary, for example, can include AlN, GaN, AlGaN, InGaN, etc. as an important compound.

如上所述,该晶面生长法中用的凹凸是从凹面、凸面两者进行晶面结构生长所能生成的凹凸形状,而且,最好是能对发光层中产生的横向光起作用的凹凸形状。 As described above, the irregularities by growth method is a crystal plane crystallographic plane uneven structure can be generated from both the growth of concave, convex, and, preferably transversely to produce the light emitting layer functioning irregularities shape. 以下说明该凹凸描绘的优选图形、该凹凸的优选规格。 The following description of the preferred pattern depicted irregularities, preferably the size of irregularities.

概略地说,该晶面生长法中用的凹凸的配置图形可以参照能对上述的横向光的波动产生影响的凹凸,能举出排列了点状的凹部(或凸部)的图形、以一定的间隔排列了直线状或曲线状的凹槽(或山脊)的条纹状的凹凸图形。 Roughly speaking, the uneven irregularities arrangement pattern used in the method of the crystal faces can have an impact on the reference lateral fluctuations of the light, the arrangement can include a concave pattern portion (or convex portion) of the dot-shaped, constant uneven pattern of spaced straight or curved grooves (or ridges) of the stripe. 另外,凹凸的断面形状能举出矩形(包括梯形)波状、三角波状、正弦曲线状等,间距也如上所述,没有必要是一定的。 Further, the concavo-convex cross-sectional shape can include rectangular (including trapezoidal) wavy, triangular wave, sinusoidal and the like, as also described above the spacing is not necessarily constant.

在这些各种形态中,直线状或曲线状的凹槽(或山脊)以一定间隔排列的条纹状的凹凸图形,能简化其制作工序,同时图形的制作也容易,如上所述,对横向光的影响大,这一点是好的。 In these various forms, the linear or curved grooves (or ridges) are arranged at regular intervals uneven pattern striped, which can simplify the manufacturing process, while the pattern can be easily produced, as described above, lateral light big impact, and this is good.

在使凹凸图形呈条纹状的情况下,该条纹的纵向可以是任意的,但拿将其埋入并生长的GaN系列晶体来说,在<11-20>方向的情况下,对横向生长施加了尺寸限制时容易形成{1-101}面等倾斜晶面。 In the case where the uneven pattern of stripe shape, the longitudinal stripes may be arbitrary, but take a series of GaN crystal growth of burying it and, in & lt; 11-20 & gt; the case where the direction of lateral growth easy to form a crystal plane inclined {1-101} plane and the like is applied to the size limit. 其结果,从衬底一侧沿C轴方向传播的错位在该晶面上沿横向弯曲,难以向上传播,能形成低错位密度区,这一点特别好。 As a result, the dislocation from the substrate side in the propagating direction of the C axis of the crystal face in lateral bending, it is difficult to propagate upward, the low dislocation density region can be formed, which is particularly good.

另一方面,即使在使条纹的纵向为<1-100>方向的情况下,通过选择容易形成模拟的晶面的生长条件,能获得与上述同样的效果。 On the other hand, even when the longitudinal direction of the stripe is & lt; gt 1-100 &; the case where the direction of growth conditions simulated easily formed by selecting a crystal plane, the same effects can be obtained as described above.

其次以图2(a)所示的断面呈矩形波状的凹凸为例,举出该晶面生长法、以及能有效地影响横向光的方向的凹凸的优选尺寸。 Next in FIG. 2 (a) rectangular cross section shown in wavy irregularity, for example, include the crystal surface growth method, and can effectively influence the direction of the lateral optical unevenness is preferred dimensions.

凹槽的宽度W1为0.5微米~20微米,特别是最好为1微米~10微米。 The groove width W1 of 0.5 microns to 20 microns, especially preferably 1 to 10 microns.

凸部的宽度W2为0.5微米~20微米,特别是最好为1微米~10微米。 The width W2 of the convex portion is from 0.5 microns to 20 microns, especially preferably 1 to 10 microns.

凹凸的振幅(凹槽的深度)d为0.05微米~5微米,特别是最好为0.2微米~3微米。 Amplitude irregularities (groove depth given) d of 0.05 microns to 5 microns, especially preferably 0.2 micrometers to 3 micrometers.

这些尺寸和根据它计算的间距等在其他断面形状的凹凸中也一样。 These dimensions and the like based on its calculation of the pitch is the same in other irregular cross-sectional shape.

利用凹部的宽度和凸部的宽度的组合,虽然在所生长的GaN系列晶体上怎样形成晶面能进行各种变化,但该晶面呈能使错位的传播弯曲的程度的面即可,优选形态如图2(b)所示,从各个单位基准面生长的晶体单位21、22在各自的顶部上完全没有平坦部,两晶面在顶部上呈交叉的山形(三角锥或长长地连接成山脉状的山脊形)的形态。 Using a combination of the width and the width of the convex portion of the concave portion, although what is formed on the crystal plane grown GaN crystal series can make various changes, but the degree of bending of the spread-section enables the crystal surface can be displaced, preferably FIG form 2 (b), the reference surface growth from each unit of the crystal unit 21 on top of each other there is no flat portion, two crystal planes in a cross on top of the mountain-shaped (triangular pyramid or long connect into a mountain-like ridge-shaped) form. 如果是这样的晶面,则能使从上述基底面承接的错位线大致完全弯曲,能进一步降低其正上方的错位密度。 If this is the crystal plane, dislocation lines can then receiving from said base surface substantially completely bent, the dislocation density can be further reduced immediately above.

另外,不仅凹凸宽度的组合,而且改变凹部的深度(凸部的高度)d,也能进行晶面形成区的控制。 Further, not only a combination of the uneven width, and changing the depth (height of the convex portion given) d of the recessed portion, the crystal plane can be formed in the control region.

作为凹凸的加工方法,例如,举例示出采用通常的光刻技术,对应于作为目的的凹凸的形态形成图形,采用RIE技术等进行刻蚀加工,获得作为目的的凹凸的方法等。 As a method of processing unevenness, for example, exemplified by a conventional photolithography technique, a shape corresponding to the concave-convex pattern is formed purpose, like etching using RIE processing techniques, a method to obtain the object of irregularities and the like.

在衬底上进行半导体晶体层的生长的方法可以是HVPE、MOVPE、MBE法等。 The method of the semiconductor crystal layer is grown on the substrate may be HVPE, MOVPE, MBE method or the like. 在制作厚膜的情况下,HVPE法好,但在形成薄膜的情况下,MOVPE法或MBE法好。 In the case of producing a thick film, the HVPE method is good, but in the case of forming a thin film, good MOVPE method or MBE method.

进行晶体生长时根据生长条件(气体种类、生长压力、生长温度等),能控制晶面的形成。 When the crystal growth according to growth conditions (kind of gas, growth pressure, growth temperature, etc.) can be controlled crystal plane formed. 减压生长时在NH3分压低的情况下容易出现{1-101}面的晶面,常压生长时与减压相比容易出现晶面。 In the case where the partial pressure of NH3 prone {1-101} growth plane decompression crystal plane crystallographic plane prone compared to normal pressure reduced growth.

另外如果提高生长温度,则虽然能促进横向生长,但如果低温生长,则C轴方向的生长比横向生长快,容易形成晶面。 Also, if the growth temperature increase, although it can promote the lateral growth, but if the low temperature growth, the growth is faster than the C-axis direction of lateral growth, the crystal surface is easily formed.

虽然示出了根据以上生长条件能进行晶面形成的控制,但如果在能产生本发明的效果的范围内,也可以根据目的灵活使用。 Although a crystal plane forming the control can be performed according to the above growth conditions, but if the range of the present invention can produce the effect can also be used flexibly depending on the purpose.

在该晶面生长法中,在从晶体衬底上形成的凹凸使GaN系列晶体生长时,也可以在晶体衬底上直接生长,还可以通过GaN、AlN等众所周知的低温隔离层、其他众所周知的隔离层。 In this method, the crystal growth plane, the unevenness is formed on a crystal substrate from a GaN crystal is grown series, may be directly grown on a crystal substrate, can also GaN, AlN and the like well known in the low-temperature isolation layer, other well-known Isolation layer.

以上,示出了用该晶面生长法进行的凹凸的埋入方法,但通过选择凹凸的尺寸和晶体生长条件,也可以不以晶面结构生长为主,利用一般的生长(例如,横向生长大的生长)将凹凸埋入。 Above, shows a method of embedding the irregularities of the crystal plane with a growth method, but by selecting the size of the irregularities and the crystal growth conditions, may not be the main structure is grown in a crystal plane, grown using a general (e.g., lateral growth large growth) will bump buried.

其次,举例示出将凹凸的断面作成三角波状的形态。 Secondly, the cross-sectional shape exemplified made of triangular-shaped unevenness. 在将GaN晶体衬底作为第一层用的情况下,该形态特别有用。 In the case where a GaN crystal substrate as a first layer, which is particularly useful form.

作为将晶体衬底的表面加工成有这样的斜面的凹凸的方法,例如,如图3(a)所示,利用条纹状、栅格状等作为目的的图形,在GaN衬底1的表面上形成其断面形状呈两边缘薄的凸拱状的抗蚀剂R,对此能举出实施有关气体刻蚀的方法。 As a crystal substrate surface processing slope such as a method of irregularities, e.g., 3 (a), the use of striped, lattice-shaped pattern as shown in FIG other object, on the surface of GaN substrate 1 cross-sectional shape is formed in which both edges convex arched thin resist R, this method could include the etching of the gases embodiment. 作为抗蚀剂的材料,最好使用能承受该气体刻蚀的材料。 As the resist material, preferably a material which can withstand the etching gas. 通过对带有这样的抗蚀剂R的GaN衬底进行该气体刻蚀,露出了GaN衬底的区域从最初被刻蚀,另一方面,抗蚀剂薄的肩部与进行刻蚀的同时进行消耗,GaN晶体的刻蚀开始变慢。 By such a GaN substrate with a resist R is the etching gas, the exposed area of ​​the GaN substrate is etched from the beginning, on the other hand, the thin resist etching simultaneously with the shoulder portion for consumption, etched GaN crystal begins to slow. 这样由于刻蚀开始的时间被错开进行刻蚀,所以最后如图3(b)所示,作为总体其断面呈近似于三角波的凹凸。 Since the etching time so that the start offset is etched, the final FIG 3 (b), the cross-sectional shape as a whole which is approximately triangular irregularities. 抗蚀剂最薄的部分虽然能通过该气体刻蚀而被除去,但也可以留下来,在此情况下,也可以使用不会损伤GaN晶体的抗蚀剂专用的除去剂将其除去。 Although the thinnest portion of the resist can be removed by the etching gas, but may be left, in this case, the resist may also be used without damaging the GaN crystal dedicated removing agent removed. 另外,如果最后进行凸部的刻蚀处理,则效果更好。 Further, if the last etching process protrusions, the better.

其次举出图3(b)所示的有斜面的凹凸的优选尺寸。 Next mentioned FIG 3 (b) is preferably beveled irregularities dimensions shown.

凹凸的间距为2微米~40微米,特别是最好为2微米~20微米。 Uneven spacing of 2 microns to 40 microns, particularly preferably 2 micrometers to 20 micrometers.

凹凸的振幅为0.05微米~5微米,特别是最好为0.2微米~3微米。 Amplitude unevenness of 0.05 m to 5 m, particularly preferably from 0.2 microns to 3 microns.

有斜面的凹凸的配置图形与上面说明的该晶面生长法相同,能举出排列了点状的凹部(或凸部)的图形、以一定的间隔排列了直线状或曲线状的凹槽(或山脊)的条纹状的凹凸图形,特别是条纹状的凹凸图形最好。 Beveled same uneven pattern is disposed above the crystal plane described growth method, the pattern arrangement can include recesses (or protrusions) of the dot-shaped, are arranged at constant intervals straight or curved recess ( or a ridge) of the striped pattern of irregularities, especially preferably striped uneven pattern.

其次,如图3(c)所示,使第二层2的生长从凹凸的全部表面开始,一直生长到凹凸完全被埋入为止。 Next, FIG. 3 (c), the second layer 2 is grown starting from the entire surface irregularities, the irregularities have been grown up completely embedded. 这时凹槽的侧壁变成了模拟的晶面,所以使GaN系列晶体生长时,将该晶面作为界面错位线弯曲,能获得在上层上形成低错位密度部分的作用和效果。 In this case the side walls into the recess of the simulated crystal plane, so that the series of GaN crystal is grown, the crystal face as an interface dislocation lines curved, and effects can be obtained a low dislocation density part is formed on the upper layer. 可是,这样的凹凸不仅对横向光起作用,而且作为反射面也有很强的作用,是一种好的形态。 However, such irregularities not only act on lateral light, the reflecting surface and also has a strong effect, it is a good form.

刻蚀法虽然没有限定,但如果是由使用了包含氯的刻蚀气体的RIE(Reactive Ion Etching)等进行的气体刻蚀,则在第一层是GaN晶体衬底的情况下,在晶体表面上不会留下损伤,所以好。 Although the etching method is not limited, but if the etching gas is performed by RIE using an etching gas containing a chlorine (Reactive Ion Etching) or the like, in the case where the first layer is a GaN crystal substrate, the crystal surface the damage will not leave, so good.

在以上的说明中,在GaN系列发光元件中,虽然示出了将该晶面生长法的凹凸结构作为横向光用的凹凸兼用的例,但不一定必须兼用,也可以是另外设置只供横向光用的凹凸的形态。 In the above description, in the GaN series LED element, although the concavo-convex structure is shown crystal faces method irregularities examples use either the lateral light, but not necessarily used along with, or may be additionally provided only for transverse light form the irregularities.

其次,说明上述形态(II)。 Next, the above-described aspect (II). 图1(b)是作为上述形态(II)的发光元件的结构例表示GaN系列LED的图,在成为晶体生长的基础的晶体层(该图中为晶体衬底)S的表面上,使第一GaN系列晶体(以下也称“第一晶体”)10生长,且一边形成晶面结构,一边作成凹凸,将该凹凸中的至少凸部(在图4的例中,就是第一晶体10本身)覆盖起来使具有与第一GaN系列晶体不同的折射率的第二GaN系列晶体(以下也称“第二晶体”)20生长,因此,构成凹凸状的折射率界面,能获得与上述形态(I)同样的作用和效果。 FIG 1 (b) are examples of the structure of Form (II) represents a light-emitting element of FIG GaN series LED, the crystal layer becomes the basis of the crystal growth (this figure is a crystal substrate) on the surface S, the first a series of GaN crystal (hereinafter, also referred to as "first crystal") 10 growth, and the crystal plane forming the side structure, while creating irregularities, the irregularities of the convex portion at least (in the embodiment of FIG. 4, the first crystal 10 is se ) to cover up the second GaN crystal series having a first series of GaN crystal a different refractive index (hereinafter also referred to as growth 20 "second crystal"), thus constituting a concavo-convex refractive interface can be obtained with the above-described aspect ( I) the same action and effect.

在该形态(II)中,在第一晶体生长而作成凹凸的时刻,在其他GaN系列晶体中使成分变化,改变折射率,即,只要第一晶体达到了平坦化就不再生长是重要的。 In this aspect (II), in the first crystal growth time creating irregularities, change in other components of GaN crystal series manipulation, the refractive index change, i.e., as long as the first crystal no longer reach the flattening is important for the growth of . 折射率的变化(成分的变化)可以是台阶状的变化,也可以是在折射率分布波导中看到的连续的变化。 Refractive index change (variation component) may be changed stepwise, or may be a continuous variation in the refractive index profile seen waveguide.

使第一晶体生长成凹凸的方法不限定,但通过一边实际上形成晶面结构、或者一边形成模拟的晶面结构的生长,能使适合达到本发明的目的的凹凸生长。 The first crystal growth method is not limited to the unevenness, but actually form a crystalline structure by the side surface or the side surface of crystal growth simulation formed structure, it can achieve the object of the present invention suitable for the growth of the irregularities.

这里所说的凹凸,不仅是凸部连续相邻的波状的凹凸,而且也可以如图5(a)~(c)所示,凸状的第一晶体10离散地配置,另一物质作为凹部存在于它们之间。 Irregularities here, not only the convex portion continuously adjacent wavy unevenness, but also in FIG. 5 (a) ~ (c), the convex shape of the first crystal 10 are discretely arranged, the concave portion of another substance It exists between them.

由第一晶体的晶面生长形成的凹凸的形状不限定,例如,可以是凸部的顶部有平坦部的梯形形状,但为了充分地获得凹凸状的折射率界面的作用和效果,与上述形态(I)中说明的相同,最好从各个单位基准面生长的晶体单位在各自的顶部上完全没有平坦部,两晶面在顶部上呈交叉的山形(三角锥或长长地连接成山脉状的山脊形)的形态。 A concavo-convex shape of a first crystal plane formed by crystal growth is not limited, for example, a top of the convex portion has the flat portion of the trapezoidal shape, but in order to sufficiently obtain the operation and effect of the refractive index of the concavo-convex interface, the above-described morphology same as (I) described, each unit is preferably from the crystal plane grown at the top of each unit is no flat portion, two crystal planes in a cross on top of the mountain (or long triangular pyramid shape are connected into a mountain the ridge-shaped) form.

在形态(II)中,如果是能使第一晶体呈凹凸状的方法,则什么样的方法都可以采用,在第一晶体呈凹凸的时刻,使第二晶体覆盖着它生长,构成凹凸状的折射率界面即可。 In the Form (II), if a crystalline form of the first method enables uneven, then what kind of method may be employed, in a first moment irregularity crystal, which covers the second crystal growth, uneven shape composed of the refractive index of the interface can be.

作为使GaN系列晶体生长成凹凸的方法,特别是最好使晶面生长(或者类似于它的方法)。 As a GaN crystal grown unevenness series method, particularly preferable that the crystal faces (or its analogous method). 为此,能举出在成为晶体生长的基础的晶体层表面上对晶体生长区域进行尺寸限制的方法。 For this purpose, a method of growing crystals size limit area on the basis of crystal growth becomes crystal layer can include a surface.

例如,能举出:①如上面详细说明的该晶面生长法所示,在成为晶体生长的基础的晶体层表面上加工凹凸的方法(图1(b)、图4、图5(a)、图6、图7);②在成为晶体生长的基础的晶体层表面的特定区域上设置GaN系列晶体不能生长的掩蔽图形的方法(图5(b));③对成为晶体生长的基础的晶体层表面的特定区域进行能抑制GaN系列晶体生长的表面处理的方法(图5(c))等。 For example, can include: ① As the crystal surface growth method detailed above, the method for processing irregularities (FIG. 1 (b) on the basis for the crystal growth surface of the crystal layer, FIG. 4, FIG. 5 (a) , FIG. 6, FIG. 7); ② setting a masking pattern process (FIG. 5 (b)) GaN series crystal can not be grown on a specific region form the basis of the crystal growth surface of the crystal layer; ③ to become crystal growth based specific region of the surface of the crystal layer method (FIG. 5 (c)) of the surface treatment such as GaN series of crystal growth can be suppressed.

利用这些方法,第一晶体生长并作成凹凸。 With these methods, the first crystal growth and made uneven.

作为上述方法①,也可以不仅是根据图4所示的该晶面生长法,用GaN系列晶体10、20实际上填充凹凸的凹部的形态,而且如图5(a)所示,只从全部凸部的上面使第一晶体10进行晶面生长后,切换成第二晶体20,在凹部上进行晶面生长,将凹部作为空洞保留的形态。 As the method ①, it may not only be based on the crystal surface growth method shown in FIG. 4, a series of GaN crystal form actually recessed portions 10, 20 of the filling irregularities, and FIG. 5 (a), the only from all the first upper projecting portion 10 for the crystal growth of the crystal plane, is switched to the second crystal 20, crystal faces performed on the concave portion, the concave portion form a cavity reserved. 另外,在上述形态(I)中,也可以利用具有以图3为例说明的斜面的凹凸。 Further, in the above aspect (I), it is also possible to use irregular beveled an example of FIG. 3. 如图7所示,这是在晶体衬底S上的有斜面的凹凸上,使第一晶体10生长,使模拟的晶面生长后,切换成第二晶体20的形态。 As shown in FIG 7, which is on a crystalline substrate S has unevenness on the slope, the growth of the first crystal 10, so that the planes of the growth simulation switched to form the second crystal 20.

作为上述方法②,如图5(b)所示,使用迄今众所周知的掩模的各种横向生长法全部都能适用。 As the method ②, in FIG. 5 (b), the use of hitherto known various masks all lateral growth method can be applied.

作为掩模m的材料,可以使用Si、Ti、Ta、Zr等的氮化物或氧化物,即SiO2、SiNX、TiO2、ZrO2等,也可以众所周知的掩模材料。 As the material of the mask m can be used Si, Ti, Ta, Zr nitride or oxide and the like, i.e., SiO2, SiNX, TiO2, ZrO2, etc., may be a well-known masking material. 作为掩模的图形,可以参照众所周知的图形,但重要的是以条纹状的图形、栅格状的图形等为主,掩蔽区和非掩蔽区的边界线的方向特别重要。 As the mask pattern, can refer to the well-known pattern, it is important striped pattern, a grid-like pattern, etc, the direction of the boundary line and a region masked and unmasked areas is particularly important. 在作成沿着使掩蔽区和非掩蔽区的边界线生长的GaN系列晶体的<1-100>方向延伸的直线的情况下,横向生长速度快。 In the series made GaN crystal growth direction that the masked and non-masked region boundary line & lt; gt 1-100 &; a case where a straight line extending in the direction of faster lateral growth rate. 反之,如果使掩蔽区和非掩蔽区的边界线为<11-20>方向的直线,则容易形成{1-101}面等的斜晶面,就本发明来说,能获得好的晶面生长。 Conversely, when the boundary region and the masked and unmasked areas is & lt; 11-20 & gt; direction of a straight line, it is easy to form a monoclinic crystal plane {1-101} plane and the like, it is for the present invention, a good crystal can be obtained plane growth.

关于实施使用掩模的横向生长法时的掩模的详细尺寸、气氛气体(H2、N2、Ar、He等)、以及晶体生长法(HVPE、MOVPE)等,可以参照众所周知的技术,例如,在文献(A.Sakai等,Appl.Phys.Lett.71(1997)2259.)中有详细的记载。 Detailed dimensions on mask for the lateral growth method using the embodiment of the mask, the atmospheric gas (H2, N2, Ar, He, etc.), and crystal growth method (HVPE, MOVPE) and the like can be referred to well known techniques, for example, in Document (A.Sakai like, Appl.Phys.Lett.71 (1997) 2259.) is described in detail.

作为上述方法③,例如,能举出特开2000-277435公报中记载的在掩模中使用SiO2的残渣的方法。 As the method ③, for example, the method can include using Laid-Open Publication 2000-277435 SiO2 residue described in the mask. 因此,能呈现与上述掩模同样的作用和效果,从不进行处理的区域使GaN系列晶体呈凸状地进行晶面生长是可能的。 Thus, the mask can be presented with the same action and effects, never processed region of the GaN crystal is convexly series for crystal faces are possible.

在上述形态(II)中,作为呈凸状生长的第一晶体及覆盖它的第二晶体的组合(第一晶体/第二晶体),举例给出了(AlGaN/GaN)、(AlInGaN/GaN)等。 In the above aspect (II), as the first crystal was grown convex combination of its cover and a second crystal (first crystal / second crystal), for example given (AlGaN / GaN), (AlInGaN / GaN )Wait. 由于AlGaN作为第一晶体存在于GaN的下侧,所以作为第二晶体的GaN相当于称为光波导的折射率高的心子,作为第一晶体的AlGaN相当于折射率比它低的覆盖层,本发明的作用和效果更高,另外,即使作为反射层也有效。 Since the lower first AlGaN as the GaN crystal exist, so the second GaN crystal is known as a high refractive index corresponds to the optical waveguide of the borders of the bases, corresponding to the first crystal AlGaN its lower refractive index than the clad layer, higher action and effect of the present invention, further, even as the reflection layer is also effective. 将凹凸埋入的GaN系列晶体(例如,GaN)既可以不掺杂,也可以是n型的。 The irregularities embedded GaN crystal series (e.g., GaN) may be undoped, or may be n-type.

以上①~③虽然是使GaN系列晶体进行晶面生长用的各种方法,但在任何一种方法中,使凹凸平坦化用的第三GaN系列晶体既可以是第二晶体(呈第二晶体照样继续生长直至平坦化为止的形态),也可以是与第二晶体不同的晶体(包括第一晶体)。 Although the above ① ~ ③ a GaN crystal series Various methods for growth of the crystal plane, but in any method, of the third GaN crystal irregularities series may be planarized using a second crystal (second crystal still continue to grow until the morphology until flattening), the second crystal may be a different crystal (including a first crystal). 另外,第三GaN系列晶体还可以是呈多层变化的晶体。 Further, a third GaN crystal series may also be a multilayer crystal is changed.

通过选择第三GaN系列晶体的形态,在晶面结构的生长过程中或生长后,存在使GaN系列晶体的成分呈多层状变化的共同变化。 By selecting the series of the third GaN crystal form, the crystal growth plane after the structure or growth, so that the component is present as a co-crystal GaN series variation multilayered change. 以下,以上述①中的用该晶面生长法进行的凹凸形成为例,说明该变化。 Hereinafter, an example is formed to be uneven by the above method ① crystal faces, illustrating the change.

在图4(a)的例中,覆盖第一晶体10的第二晶体20虽然照样生长,直至使凹凸平坦为止,但在该变化中,如图4(b)所示,使覆盖第一晶体(例如GaN)10的第二晶体(例如AlGaN)20呈膜状,另外折射率不同的另一GaN系列晶体(例如GaN)20a一直生长到平坦化为止。 In the embodiment of FIG. 4 (a), the cover 10 of the second crystals of the first crystal 20 while still grow until the uneven flat so far, but in this variation, FIG. 4 (b) as shown, the covering of the first crystal (e.g., GaN) a second crystal (e.g. AlGaN) 10 in the form of a film 20, the refractive index of another different additional GaN crystal series (e.g. GaN) is grown to 20a has been planarized so far. 在图4(c)的例中,第二晶体20呈膜状地覆盖着第一晶体10而生长,另外第一晶体20a、第二晶体20b依次覆盖着第二晶体20,折射率互不相同的GaN系列晶体膜形成多层膜结构。 In the embodiment of FIG. 4 (c), the second crystal 20 was covered with a film of the first crystal 10 is grown, further a first crystal 20a, 20b of the second crystal 20 are sequentially covered with a second crystal, having different refractive indices the multilayer film structure is formed of GaN crystal film series.

如果采用由这样的折射率互不相同的GaN系列晶体膜构成的多层膜结构的形态,则更能提高反射性。 If the structure takes the form of a multilayer film having different refractive indices such series GaN crystal film, the more improved reflectivity. 例如,对应于发光波长,最适当地设计膜的厚度,也可以形成布雷格反射层作为由AlGaN/GaN等双层构成的超晶格结构。 For example, corresponding to the emission wavelength, the optimum thickness of the film is locally designed, Bragg reflection layer may be formed as a superlattice structure composed of a double layer AlGaN / GaN and the like.

在作成多层膜结构的情况下,不限定膜的层数,可以是从图4(b)所示的夹着一层膜的结构,变化到图4(c)所示的多层(5对至100对)。 In the case of creating a multilayer film structure, the number of layers is not limited to film, from FIG. 4 (b), with a layer structure of the film, the variation shown in FIG. 4 (c) is a multilayer (5 for to 100 against).

不限定在哪一时刻将在凹凸上生长(最好是晶面生长)的第一晶体切换成第二晶体,例如,图6中模式地示出了由GaN系列晶体构成的多层凹凸的生长状态,在衬底S上形成的凹凸面上生长时也可以从初期的生长阶段改变成分。 The first crystal is not grown on the concavo-convex is defined at which time (preferably a crystal growth plane) is switched to the second crystal, e.g., FIG. 6 schematically illustrates a multilayer irregularities composed of GaN grown crystal series state, the surface irregularities formed on the substrate S may be changed component from the early stage of growth when grown. 在该图中,为了区别折射率不同的GaN系列晶体呈多层状生长而构成凹凸状,划了影线。 In this figure, the refractive index of GaN in order to distinguish the different series of multi-layered growth crystal is composed of concave and convex shape, the draw hatching.

在形态(II)中,在能理想地达到本发明的目的方面,凹凸状的折射率界面的凸部高度最好为0.05微米~10微米,特别是0.1微米~5微米就更好。 In the Form (II), the object can be achieved over the aspect of the present invention, the height of the convex portion of the concavo-convex refractive index interface is preferably 0.05 to 10 microns, especially 0.1 microns to 5 microns better. 另外,在迄今众所周知的横向生长法中,凹凸状的折射率界面的间距大约为1微米~10微米,特别是1微米~5微米左右是好的值。 Further, in the lateral growth method so far known, the refractive index of the pitch of concave-convex interface is about 1 to 10 microns, particularly about 1 micron to 5 microns is a good value. 关于利用该晶面生长法获得的凹凸的间距,与上述形态(I)相同。 Pitch of irregularities on the use of the obtained crystal plane growth method, the above-mentioned embodiment (I) the same.

以上,不管是上述形态(I)还是形态(II),第一层(第一晶体)的折射率和第二层(第二晶体)的折射率的差异,在从发光层发射的光的波长中,最好为0.01以上,特别是在0.05以上就更好。 Above, whether the above-described form (I) or Form (II), difference in refractive index of the first layer (first crystal) and a second refractive index layer (second crystal) as the wavelength of light emitted from the light-emitting layer , preferably 0.01 or more, in particular better than 0.05.

另外,两者的折射率的大小关系,最好为第一层(第一晶体)<第二层(第二晶体),因此,第二层(第二晶体)相当于光波导中的折射率高的心子,第一层(第一晶体)相当于折射率比它低的覆盖层,本发明的作用和效果更大。 Further, the refractive index of both the magnitude relation, preferably a first layer (first crystal) <the second layer (second crystal), and therefore, the second layer (second crystals) is equivalent to the refractive index of the optical waveguide high bases, and a first layer (first crystal) which corresponds to a refractive index lower than the cladding layer, a bigger role and effects of the present invention.

其次,给出将InGaN用作发光层的材料、输出紫外线(波长为420nm以下)的情况的优选形态。 Secondly, the preferred embodiment given situation InGaN material as the light emitting layer, an output ultraviolet rays (having a wavelength of 420nm or less). 这时的InGaN,其In成分为0.15以下。 At this time InGaN, whose In composition is 0.15 or less.

不管是上述形态(I)还是形态(II),都能利用凹凸获得错位少的良好的晶体,结果,光输出特别高。 Whether the above-described form (I) or Form (II), can be obtained by using less unevenness good crystal dislocation result, a particularly high light output. 另外,降低成为劣化的原因的错位密度的结果,能谋求长寿命化。 Further, the results of reducing the dislocation density becomes the cause of deterioration, lifetime can be prolonged.

作为输出紫外线情况下的优选形态,在上述形态(I)中,将在衬底的凹凸上形成的GaN系列晶体层的材料限定为GaN晶体。 As a preferred embodiment in the case where the ultraviolet output, in the above aspect (I), a series of GaN crystal material layer formed on a substrate, unevenness is defined as GaN crystal. 在该GaN晶体层上,构成将能发生紫外线的成分的InGaN晶体层作为阱层的MQW结构,作为发光层。 In the GaN crystal layer, the InGaN crystal layer constituting the ultraviolet component can occur as a well layer of the MQW structure, the light emitting layer. 附带说一下,n型覆盖层由GaN构成,成为在发光层和低温隔离层之间不存在AlGaN层的结构。 Incidentally, n-type clad layer formed of GaN, AlGaN layer has a structure does not exist between the light emitting layer and the low-temperature isolation layer.

在该形态中,虽然将能发生紫外线的成分InGaN用作发光层,可是作为n型覆盖层材料,不使用以往所必须的AlGaN,而使用GaN。 In this aspect, although the UV components will occur as the InGaN light emitting layer, but the n-type cladding layer material is not necessary to use the conventional AlGaN, the use of GaN. 在本发明中,对紫外线发光层来说,即使n型覆盖层是GaN,也看得出能充分地达到空穴的封闭。 In the present invention, the ultraviolet light-emitting layer, even if the n-type cladding layer is GaN, see also achieve sufficiently closed holes. 这可以认为由于从p型层注入的空穴的有效质量重,所以扩散长度短,不能充分地到达n型覆盖层。 This is considered due to the effective mass of heavy injected holes from the p-type layer, the diffusion length is short, can not sufficiently reach the n-type cladding layer. 因此,在本发明的结构中,作为InGaN发光层的下层存在的n型GaN层,严格地说,不相当于以往的覆盖层。 Thus, in the structure of the present invention, the presence of an n-type GaN layer underlying InGaN light emitting layer, strictly speaking, does not correspond to the conventional coating layer. 排除了在晶体衬底和发光层之间作为覆盖层存在的AlGaN,由于是GaN层,所以能降低InGaN发光层的变形。 Excluded between the substrate and the light emitting layer as a crystal AlGaN cladding layer exists, since a GaN layer, it is possible to reduce the deformation of the InGaN light emitting layer.

在发光层(阱层)发生变形的情况下,由变形产生的压电电场的发生,致使井结构倾斜,电子和空穴的波动函数的重叠减少。 In the case where the light-emitting layer (well layer) is deformed, the piezoelectric field generated by the deformation, so that the inclination well structure, reduce overlap of wave functions of electrons and holes. 其结果,电子和空穴的再结合概率减少,光输出减弱。 As a result, recombination probability of electrons and holes is reduced, the light output decreased. 为了避免该情况的发生,通过将Si掺入MQW结构中,进行了消除压电电场的尝试,但由于引起由掺杂造成的结晶性的下降,所以没有好方法。 To avoid this situation, by incorporating Si MQW structure, an attempt to eliminate the piezoelectric field, but cause a decline in crystallinity caused by doping, so there is no good way. 如上所述,通过排除n型AlGaN层也就没有这样的危险了,能获得高输出。 As described above, by excluding the n-type AlGaN layer, there is no such danger, high output can be obtained.

以上说明的使用衬底上的凹凸来降低错位密度、以及排除了AlGaN的上述作用和效果相辅相成,InGaN发光层能降低错位密度,同时降低形变,充分地提高了光输出和元件寿命。 Using the above-described irregularities on the substrate to reduce the dislocation density, and excluding the aforementioned action and effect of AlGaN complementarity, InGaN light-emitting layer can reduce the dislocation density, while reducing the strain, to sufficiently increase the light output and the device life.

另外,在输出紫外线的情况下的另一优选形态中,将发光层的量子阱结构的阻挡层的材料限定于GaN。 Further, in another preferred embodiment in the case where the output of ultraviolet rays, the material of the barrier layer is a quantum well structure light emitting layer is limited to GaN. 因此,从阱层和低温隔离层之间排除了AlGaN层,能抑制阱层的形变,能达到高输出化、长寿命化。 Thus, excluded from the AlGaN layer between the well layer and the low-temperature separation layer, deformation of the well layer can be suppressed, can achieve high output, longer life. 在现有的量子阱结构中,考虑到载流子被封闭在阱层内,AlGaN能用于阻挡层和覆盖层。 In the conventional quantum well structure, taking into account the carriers are confined within the well layer, AlGaN can be used for the barrier layer and the cover layer.

可是如果是它们的组合,则由于晶体生长条件的最佳值在AlGaN和InGaN的情况下有很大的不同,存在以下问题。 However, if a combination of them, since the optimum value of the crystal growth conditions are very different in the case of InGaN and AlGaN, the following problems. AlN比GaN熔点高,GaN比AlN熔点低。 Higher than the melting point of the AlN GaN, AlN lower melting point than GaN. 因此,最佳生长温度应这样确定:假设GaN为1000℃,则InGaN为1000℃以下,最好为600~800℃左右,AlGaN在GaN以上。 Thus, optimum temperature should be determined such that: assuming GaN of 1000 ℃, the InGaN higher than 1000 ℃, preferably about 600 ~ 800 ℃, AlGaN than in GaN. 在将AlGaN用于阻挡层的情况下,如果不改变AlGaN阻挡层和InGaN阱层的生长温度,则达不到各自的最佳晶体生长条件,有晶体品质下降的问题。 In a case where the AlGaN barrier layer, without changing the AlGaN barrier layer and the InGaN well layer growth temperature, the crystals reach their optimal growth conditions, there is a problem of decline in crystal quality. 另一方面,改变生长温度,变成设定生长中断,在作为3nm左右的薄膜的阱层的情况下,在该生长中断的过程中,由于刻蚀作用致使厚度变化,发生表面上出现晶体缺陷等问题。 On the other hand, changing the growth temperature, the growth interruption is set to become, in the case of a well layer of about 3nm of the film, during the growth interruption, since the etching effect so that the thickness variation, the crystal defects occur on the surface And other issues. 由于有这些折中关系,所以用AlGaN阻挡层、InGaN阱层的组合来获得高品质的产品是困难的。 Because these trade-off relationship, so that a combination of AlGaN barrier layer, InGaN well layer of high-quality products are difficult to obtain. 另外,由于将阻挡层作成AlGaN,所以还有使阱层变形的问题,妨碍高输出化。 Further, since the barrier layer made AlGaN, so there is the problem that the deformation of the well layer, impede higher output. 因此,在本发明中,用GaN作为阻挡层的材料,进行了减少上述折中的问题的尝试,改善了晶体品质。 Accordingly, in the present invention, as a material for a GaN barrier layer, an attempt to reduce the above-mentioned trade-off problem and improve the crystal quality. 另外,为了减少变形,用GaN作为n型覆盖层时,由于变形的减少,高输出化成为可能。 Further, in order to reduce deformation, when used as the n-type GaN clad layer, due to reduced distortion, higher output becomes possible. 如果将GaN作成覆盖层,则载流子被封闭,担心对能发生紫外线的成分InGaN来说变得不充分,判明了载流子(特别是空穴)会被封闭。 If the cover layer made of GaN, the carrier is closed, the ultraviolet component can occur for fear of InGaN is insufficient, it was found that the carriers (especially holes) will be sealed.

另外,在输出紫外线的情况下的该另一优选形态中,将MQW结构中的阻挡层的厚度限定为6nm~30nm,以8nm~30nm为好,最好为9nm~15nm。 Further, another preferred embodiment in the case where the output of ultraviolet rays, the thickness of the barrier layer in the MQW structure is defined as 6nm ~ 30nm, as well to 8nm ~ 30nm, preferably 9nm ~ 15nm. 以往的MQW结构中的阻挡层的厚度3nm~7nm。 The thickness of the barrier layer in the conventional MQW structure 3nm 7nm ~.

如果将阻挡层作成这样的厚度,则不会有波动函数的重叠,与其呈MQW结构,不如成为将SQW结构重叠多层的状态,能充分地达到高输出化。 If the barrier layer is made of such a thickness, there will be no overlap fluctuation function, its form the MQW structure, as will become more layers overlapped state SQW structure can achieve sufficiently high output power. 阻挡层如果超过30nm,则从p型层注入的空穴到达阱层之前,被陷在阻挡层中存在的成为非发光中心的错位缺陷等中,发光效率下降,所以不好。 Before the barrier layer exceeds 30 nm, the p-type layer from the hole injection layer reaches the well, the presence of trapped in dislocation defects in the barrier layer becomes non-light emitting centers and the like, light emission efficiency is lowered, so good.

另外,通过将阻挡层加厚,阱层不容易受到使其上面的层生长时由热或气体引起的损伤,所以能减少损伤,另外,能降低来自p型层的掺杂材料(Mg等)向阱层扩散,另外还能获得降低加在阱层上的形变的作用和效果。 Further, thicker barrier layer, the well layer is not so susceptible to damage during the growth of the top layer is caused by heat or gas, it is possible to reduce the damage, in addition, the dopant material can be reduced from the p-type layer (Mg, etc.) diffused into the well layer can be obtained additionally applied to the well layer to reduce strain and effects.

实施例以下,给出实际制作有按照上述形态(I)、(II)形成的凹凸状的折射率界面的GaN系列LED的例。 EXAMPLES Hereinafter, actual production has given in the above aspect (the I), the refractive index of the concavo-convex shape of the interface (II) is formed of a GaN series LED embodiment.

实施例1在本实施例中,如图1(a)所示,按照上述形态(I),采用该晶面生长法将蓝宝石衬底上的凹凸埋入,作成凹凸状的折射率界面,实际制作了GaN系列LED。 Example 1 In the present embodiment, FIG. 1 (a), the according to the above aspect (the I), the crystal faces using the method on a sapphire substrate irregularities buried, the refractive index of the concavo-convex interface made the actual He produced a series of GaN LED.

在C面蓝宝石衬底上进行由光敏抗蚀剂形成的条纹状的构图(宽2微米,周期4微米,条纹方位:条纹的纵向由在衬底上生长的GaN系列晶体决定,为方向&lt;11-20&gt;),用RIE装置进行深度达2微米、断面呈方形的刻蚀,如图2(a)所示,获得了表面呈条纹状图形的凹凸的衬底。 Performed on a C-plane sapphire substrate striped patterning (width of 2 microns formed of photoresist, cycle 4 m, stripe direction: stripe is determined by the longitudinal series of GaN crystal grown on the substrate, a direction & lt; 11-20 & gt;), carried out with a depth of 2 microns RIE device, etching square cross section, as shown in FIG. 2 (a), the uneven surface of the substrate is obtained in a stripe-like pattern. 这时的条纹槽断面的纵横比为1。 At this aspect ratio stripe groove cross section is 1.

将光敏抗蚀剂除去后,将衬底安装在MOVPE装置中,在以氮气为主要成分的气氛中,使温度上升到1100℃,进行了热清理。 After the photoresist is removed, the substrate is installed in the MOVPE apparatus, in an atmosphere of nitrogen as a main component, and the temperature rises to 1100 ℃, it was subjected to thermal cleaning. 使温度下降到500℃,作为III族原料使三甲基镓(以下称TMG)流过,作为N原料使氨流过,使厚度为30nm的GaN低温隔离层生长。 The temperature was lowered to 500 ℃, as a group III raw material, trimethyl gallium (hereinafter TMG) ​​flows, as N ammonia feed flow through the low-temperature GaN with a thickness of 30nm barrier layer growth.

接着使温度上升到1000℃,作为原料使TMG、氨流过,作为掺杂剂使硅烷流过,使n型GaN层(接触层)生长。 Then the temperature was increased to 1000 ℃, TMG as a raw material, ammonia flows, silane as a dopant flows grown n-type GaN layer (contact layer). 如图2(b)所示,这时的GaN层的生长从凸部的上表面、凹部的底面开始,作为断面呈山形包含晶面的山脊状的晶体发生后,在凹部内不会形成空洞,是将总体埋入的生长。 After shown in FIG 2 (b), the time of growth of the GaN layer from the upper surface of the projecting portion, the bottom of the recess starts, a mountain-shaped cross section comprising a ridge-shaped crystals from a crystal plane, a recess portion is not formed in the cavity , is buried in the overall growth.

在晶面结构生长过程中,在GaN晶体的C面完全消失、顶部呈尖锐的凸状的时刻,将生长条件切换成横向生长占优势的条件(使生长温度上升等),使GaN晶体从蓝宝石衬底的上表面生长到厚度为5微米为止。 During the growth crystal plane structure, complete disappearance of C-plane GaN crystal, top form a sharp convex time, the growth conditions are switched to the lateral growth conditions prevailing (growth temperature rise, etc.), a GaN crystal from the sapphire on the surface of the substrate to a thickness of 5 micrometers grown up. 为了获得上表面呈平坦的埋入层,厚度有必要生长到5微米。 In order to obtain a flat upper surface as a buried layer, is grown to a thickness of 5 microns is necessary.

接着,依次形成n型AlGaN覆盖层、InGaN发光层(MQW结构)、p型AlGaN覆盖层、p型GaN接触层,作为发光波长为370nm的紫外线LED用外延衬底,另外,进行使n型接触层露出用的刻蚀加工、电极形成、元件分离,作成了LED元件。 Then, sequentially forming an n-type AlGaN cladding layer, InGaN light-emitting layer (MQW structure), p-type AlGaN cladding layer, P-type GaN contact layer, an ultraviolet LED as a light emitting wavelength of 370nm using the epitaxial substrate, in addition, for the n-type contact layer is exposed with the etching process, an electrode is formed, the separation elements, become as LED elements.

测定了在晶片总体上采取的LED芯片(裸芯片状态、波长370nm、通电20mA时)的各输出。 Determination of the wafer taken generally on the LED chip (bare chip state, the wavelength of 370 nm, 20mA energization time) of each output.

另外,作为比较例1,除了在蓝宝石衬底上不形成条纹状的凹凸以外,在与上述相同的条件下,形成紫外线LED芯片(即,在平的蓝宝石衬底上通过低温隔离层形成元件结构),测定了其输出。 Further, as Comparative Example 1, except striped unevenness is not formed on the sapphire substrate under the same conditions as above, forming an ultraviolet LED chip (i.e., on a flat sapphire substrate structure is formed by cryogenic element isolation layer ), its output was measured. 这些测定结果如后面所述。 The measurement results as described below.

比较例2在本比较例中,采用迄今众所周知的使用掩模的横向生长法,谋求降低上述比较例1中的GaN系列晶体层的错位密度。 Comparative Example 2 In this comparative example, the use of hitherto known lateral growth method using a mask, be reduced dislocation density of the GaN crystal layer in the series in Comparative Example 1. 该比较例2是一种在晶面结构生长时不改变成分,用同一成分自始至终地将掩模埋入的众所周知的结构,不具有由晶面结构生长形成的凹凸状的折射率界面,这一点与本发明的形态(II)(特别是图5(b))有很大不同。 Comparative Example 2 This is a component does not change in the crystalline structure growth plane, with the same components throughout the mask buried well-known structures, without having an uneven shape by the refractive index of the interface structure formed by growing a crystal plane, which is and form (II) (in particular in FIG. 5 (b)) of the present invention, are very different.

将与实施例1规格相同的C面蓝宝石衬底安装在MOVPE装置中,在以氮气为主要成分的气氛中,使温度上升到1100℃,进行了热清理。 The same as in Example 1 of Specification C-plane sapphire substrate is mounted in the MOVPE apparatus, in an atmosphere of nitrogen as a main component, and the temperature rises to 1100 ℃, it was subjected to thermal cleaning. 使温度下降到500℃,作为III族原料使TMG流过,作为N原料使氨流过,使厚度为30nm的GaN低温隔离层生长。 The temperature was lowered to 500 ℃, TMG as a group III material flows so as to flow through the ammonia feed N, a thickness of the low-temperature GaN barrier layer is grown 30nm.

接着使温度上升到1000℃,作为原料使TMG、氨流过,作为掺杂剂使硅烷流过,使n型GaN层生长了约2微米。 Then the temperature was increased to 1000 ℃, TMG as a raw material, ammonia flows, silane as a dopant flows grown about 2 microns n-type GaN layer.

从MOVPE装置中取出衬底,进行由光敏抗蚀剂形成的条纹状的构图(宽2微米,周期4微米,条纹方位:条纹的纵向由GaN系列晶体决定,为方向&lt;11-20&gt;),在电子束蒸镀装置中蒸镀了厚度为100nm的SiO2。 The substrate was removed from the MOVPE apparatus, for striped patterning is formed by a photoresist (width 2 micrometers, 4 micrometers cycle, stripe direction: stripe is determined by the longitudinal series of GaN crystal, the direction & lt; 11-20 & gt;) vapor deposition of SiO2 having a thickness of 100nm in an electron beam evaporation apparatus. 用称为剥离的方法,将光敏抗蚀剂除去,获得了条纹状的SiO2掩模。 SiO2 using a method called peeling, the photoresist is removed to give a streak-like mask.

再装填到MOVPE装置中,使n型GaN晶体接触层生长。 Recharging the MOVPE apparatus, the contact layer is grown n-type GaN crystal. 生长条件与实施例1大致相同,从GaN晶体的露出部分(非掩模区域)的生长,作为断面呈山形包含晶面的山脊状的晶体发生后,使生长一直进行到直接将总体埋入而达到平坦为止。 Growth conditions as in Example 1 is substantially the same, the growth from the exposed portion (non-masked region) of the GaN crystal, the crystal cross section as a ridge-shaped ridge comprises a crystal plane was occurring, so that growth continued until the overall directly embedded and reached the flat. 埋入时有必要沿C轴方向生长厚度约5微米的GaN晶体。 When necessary buried growth GaN crystal thickness of about 5 microns along the C-axis direction.

接着,依次形成n型AlGaN覆盖层、InGaN发光层(MQW结构)、p型AlGaN覆盖层、p型GaN接触层,作为发光波长为370nm的紫外线LED用外延衬底,另外,进行使n型接触层露出用的刻蚀加工、电极形成、元件分离,作成了LED元件。 Then, sequentially forming an n-type AlGaN cladding layer, InGaN light-emitting layer (MQW structure), p-type AlGaN cladding layer, P-type GaN contact layer, an ultraviolet LED as a light emitting wavelength of 370nm using the epitaxial substrate, in addition, for the n-type contact layer is exposed with the etching process, an electrode is formed, the separation elements, become as LED elements.

测定了在晶片总体上采取的LED芯片(裸芯片状态、波长370nm、通电20mA时)的各输出。 Determination of the wafer taken generally on the LED chip (bare chip state, the wavelength of 370 nm, 20mA energization time) of each output. 测定结果如后面所述。 The measurement results as described below.

实施例2在本实施例中,如图1(b)所示,按照上述形态(II),采用该晶面生长法形成由AlGaN构成的凹凸状的晶面结构,用GaN将其埋入,作成凹凸状的折射率界面,实际制作了GaN系列LED。 Example 2 In the present embodiment, FIG. 1 (b), the according to the above aspect (II), growth method using this crystal plane crystallographic plane forming a concavo-convex structure formed of AlGaN, GaN by burying it, made uneven refractive index interface, the actual production of the GaN series LED.

与实施例1完全相同,在C面蓝宝石衬底上形成呈条纹状图形的凹凸,将它安装在MOVPE装置中,在以氮气为主要成分的气氛中,使温度上升到1100℃,进行了热清理。 Example 1 is identical with the embodiment, is formed on the C-plane sapphire substrate in a stripe-like pattern of irregularities, it will be installed in the MOVPE apparatus, in an atmosphere of nitrogen as a main component, and the temperature rises to 1100 ℃, were heat clean-up. 使温度下降到500℃,作为III族原料使TMG流过,作为N原料使氨流过,使厚度为30nm的GaN低温隔离层生长。 The temperature was lowered to 500 ℃, TMG as a group III material flows so as to flow through the ammonia feed N, a thickness of the low-temperature GaN barrier layer is grown 30nm.

接着使温度上升到1000℃,作为原料使TMG、氨流过,使GaN层生长约100nm后,将三甲基铝(TMA)加入III族原料中,使AlGaN生长。 Then the temperature was increased to 1000 ℃, TMG as a raw material, ammonia flows, so that the GaN layer is grown to about 100 nm or, trimethyl aluminum (TMA) added to the group III raw material, AlGaN is grown. 如图2(b)所示,AlGaN/GaN层的生长从凸部的上表面、凹部的底面开始,作为断面呈山形包含晶面的山脊状的晶体发生后,在凹部内不形成空洞地进行生长。 After in FIG. 2 (b), the growth of AlGaN / GaN layer from the upper surface of the convex portion, the bottom of the recess starts, a cross-sectional mountain shape ridge-shaped comprising a crystal plane of the crystal occurs, without forming a cavity in the recess growth.

在晶面结构生长过程中,在AlGaN晶体的C面完全消失、顶部呈尖锐的凸状的时刻,将生长条件切换成n型GaN生长、而且横向生长占优势的条件,使n-GaN晶体(接触层)从蓝宝石衬底的上表面生长到厚度为5微米为止。 During the growth crystal plane structure, complete disappearance of C-plane AlGaN crystal on top as a sharp convex timing, switching the growth conditions to the n-type GaN is grown, and the lateral growth prevailing conditions, so that n-GaN crystal ( contact layer) grown from the upper surface of the sapphire substrate to a thickness of up to 5 microns.

与上述实施例1完全相同,在上述n型GaN接触层上依次形成n型AlGaN覆盖层、InGaN发光层(MQW结构)、p型AlGaN覆盖层、p型GaN接触层,作为发光波长为370nm的紫外线LED用外延衬底,另外,进行使n型接触层露出用的刻蚀加工、电极形成、元件分离,作成了LED元件。 Identical to Example 1 above, an n-type AlGaN cladding layer in this order on the n-type GaN contact layer, InGaN light-emitting layer (MQW structure), p-type AlGaN cladding layer, P-type GaN contact layer, the light emitting wavelength of 370nm UV LED epitaxial substrate, Further, for the n-type contact layer is exposed by the etching process, an electrode is formed, the separation elements, become as LED elements.

测定了在晶片总体上采取的LED芯片(裸芯片状态、波长370nm、通电20mA时)的各输出的结果,如后面所述。 Determination of the wafer taken generally on the LED chip (bare chip state, the wavelength of 370 nm, 20mA when energized) the status of the output, as described later.

实施例3在本实施例中,如图4(c)所示,按照上述形态(III),采用该晶面生长法形成由AlGaN构成的凹凸状的晶面结构,用由AlGaN/GaN超栅格结构构成的50对的布雷格反射层将其覆盖,作成凹凸状的多层折射率界面,实际制作了GaN系列LED。 Example 3 In the present embodiment, FIG. 4 (c), the according to the above aspect (III), using the formed concavo-convex structure made of AlGaN crystal plane of the crystal surface growth method, using the AlGaN / GaN super gate Bragg reflection layer 50 constituting the pair of lattice structures which cover, made of many layers of uneven interfaces, the actual production of the GaN series LED.

与实施例1完全相同,在C面蓝宝石衬底上形成呈条纹状图形的凹凸,将它安装在MOVPE装置中,在以氮气为主要成分的气氛中,使温度上升到1100℃,进行了热清理。 Example 1 is identical with the embodiment, is formed on the C-plane sapphire substrate in a stripe-like pattern of irregularities, it will be installed in the MOVPE apparatus, in an atmosphere of nitrogen as a main component, and the temperature rises to 1100 ℃, were heat clean-up. 使温度下降到500℃,作为III族原料使TMG流过,作为N原料使氨流过,使厚度为30nm的GaN低温隔离层生长。 The temperature was lowered to 500 ℃, TMG as a group III material flows so as to flow through the ammonia feed N, a thickness of the low-temperature GaN barrier layer is grown 30nm.

接着使温度上升到1000℃,作为原料使TMG、氨流过,如图4(c)所示,使GaN层从凸部的上表面、凹部的底面开始,作为断面呈山形包含晶面的山脊状的晶体生长。 Then the temperature was increased to 1000 ℃, TMG as a raw material, ammonia flows, in FIG. 4 (c) as shown in the GaN layer from the surface of the convex portion, the bottom of the recess starts, a mountain-shaped cross section comprising a crystal plane ridge shaped crystal growth.

在晶面结构生长过程中,在GaN晶体的C面完全消失、顶部呈尖锐的凸状的时刻,使Al0.2Ga0.8N(沿C轴方向37nm)/GaN(沿C轴方向34nm)生长50对,此后将生长条件切换成n型GaN生长、而且横向生长占优势的条件,使n-GaN晶体(接触层)从蓝宝石衬底的上表面生长到厚度为5微米为止。 During the growth of the crystal surface structure, complete disappearance of C-plane GaN crystal, the top convex form a sharp point, so Al0.2Ga0.8N (C-axis direction 37nm) / GaN (34nm in the C-axis direction) Growth 50 Yes, after switching to the n-type GaN growth conditions, the growth and lateral growth prevailing conditions, so that n-GaN crystal (a contact layer) from the surface of the sapphire substrate grown to a thickness of up to 5 microns.

与上述实施例1完全相同,在上述n型GaN接触层上依次形成n型AlGaN覆盖层、InGaN发光层(MQW结构)、p型AlGaN覆盖层、p型GaN接触层,作为发光波长为370nm的紫外LED用外延衬底,另外,进行使n型接触层露出用的刻蚀加工、电极形成、元件分离,作成了LED元件。 Identical to Example 1 above, an n-type AlGaN cladding layer in this order on the n-type GaN contact layer, InGaN light-emitting layer (MQW structure), p-type AlGaN cladding layer, P-type GaN contact layer, the light emitting wavelength of 370nm ultraviolet LED epitaxial with the substrate, further, for the n-type contact layer is exposed by the etching process, an electrode is formed, the separation elements, become as LED elements.

测定了在晶片总体上采取的LED芯片(裸芯片状态、波长370nm、通电20mA时)的各输出。 Determination of the wafer taken generally on the LED chip (bare chip state, the wavelength of 370 nm, 20mA energization time) of each output.

上述实施例1~3、比较例1、2各自的测定结果(平均值)如下。 Examples 1 to 3, each measurement result (average value) Comparative Examples 1 and 2 below.

实施例1:14mW。 Example 1: 14mW.

实施例2:14.5mW。 Example 2: 14.5mW.

实施例3:15mW。 Example 3: 15mW.

比较例1:6mW。 Comparative Example 1: 6mW.

比较例2:7mW。 Comparative Example 2: 7mW.

从上述的比较可知,通过将凹凸状的折射率界面附加在发光层的下方,能将在元件内部消灭了横向光的一部分取出到外界,提高发光元件的输出。 From the above comparison, the concave-convex shape by the refractive index of the interface under the additional light-emitting layer, the inner member can eliminate a portion of the lateral light extraction to the outside, to increase the output of the light emitting element.

实施例4在本实施例中,制作有量子阱结构的GaN系列LED,将发光层和晶体衬底之间的层作成只由GaN构成的形态。 Example 4 In the present embodiment, the quantum well structure fabricated with GaN series of the LED, the light emitting layer between the substrate layer and the crystalline morphology consisting only made GaN.

在C面蓝宝石衬底上进行由光敏抗蚀剂形成的条纹状的构图(宽2微米,周期4微米,条纹方位:条纹的纵向由在衬底上生长的GaN系列晶体决定,为方向&lt;11-20&gt;),用RIE装置进行深度达2微米、断面呈方形的刻蚀,获得了由表面呈条纹状图形的凹凸构成的衬底。 Performed on a C-plane sapphire substrate striped patterning (width of 2 microns formed of photoresist, cycle 4 m, stripe direction: stripe is determined by the longitudinal series of GaN crystal grown on the substrate, a direction & lt; 11-20 & gt;), with a depth of 2 microns RIE apparatus, etching square cross-section, a substrate obtained by the surface irregularities of the stripe-like pattern configuration. 这时的条纹槽断面的纵横比为1。 At this aspect ratio stripe groove cross section is 1.

将光敏抗蚀剂除去后,将衬底安装在MOVPE装置中,在以氢气气氛中,使温度上升到1100℃,进行了热刻蚀。 After the photoresist is removed, the substrate is installed in the MOVPE apparatus, in a hydrogen gas atmosphere, the temperature was raised to 1100 ℃, subjected to thermal etching. 使温度下降到500℃,作为III族原料使三甲基镓(以下称TMG)流过,作为N原料使氨流过,使厚度为30nm的GaN低温隔离层生长。 The temperature was lowered to 500 ℃, as a group III raw material, trimethyl gallium (hereinafter TMG) ​​flows, as N ammonia feed flow through the low-temperature GaN with a thickness of 30nm barrier layer growth. 只在凸部的上表面、凹部的底面上形成了该GaN低温隔离层。 Only on the surface of the convex portion, the concave portion formed in the bottom surface of the low-temperature GaN spacer layer.

接着使温度上升到1000℃,作为原料使TMG、氨流过,使不掺杂的GaN层在平坦的衬底上生长相当于2微米的时间后,使生长温度上升到1050℃,在平坦的衬底上生长了相当于4微米的时间。 Then the temperature was increased to 1000 ℃, TMG as a raw material, ammonia flows, an undoped GaN layer grown on a flat substrate 2 corresponds to the time m, the growth temperature raised to 1050 deg.] C, in a flat growth time equivalent to 4 microns on the substrate. 在该条件下进行了生长的情况下,如图2(b)所示,这时的GaN层的生长从凸部的上表面、凹部的底面开始,生长成断面呈山形包含晶面的山脊状。 The case where the grown under this condition, as shown in FIG 2 (b), the GaN layer is grown from the upper surface of the case of the convex portion, the concave portion of the bottom surface of beginning to grow into a mountain shape cross section comprising a ridge-shaped crystal plane . 此后通过变更生长温度,促进二维生长,进行平坦化。 After the growth by changing the temperature, to promote two-dimensional growth, planarization.

接着,依次形成n型GaN接触层(覆盖层)、厚度为3nm的InGaN阱层(发光波长380nm、In成分接近于零,难以测定)、厚度为6nm的由GaN阻挡层构成的3周期的多层量子阱层、厚度为30nm的p型AlGaN覆盖层、厚度为50nm的p型GaN接触层,作为发光波长为380nm的紫外线LED晶片,另外,进行电极形成、元件分离,作成了LED元件。 Then, sequentially forming the n-type GaN contact layer (cover layer), an InGaN well layer having a thickness of 3nm (emission wavelength 380nm, In composition close to zero, difficult to measure), a thickness of 6nm multiple cycles of 3 composed of GaN barrier layer layer quantum well layer having a thickness of 30nm p-type AlGaN cladding layer with a thickness of 50nm p-type GaN contact layer, and an emission wavelength of 380nm as an ultraviolet LED chip. Further, an electrode is formed, the separation elements, become as LED elements.

测定了在晶片总体上采取的LED元件(裸芯片状态、波长380nm、通电20mA时)的各输出。 Determination of the LED elements taken generally on the wafer (a bare chip state, a wavelength of 380 nm, 20mA energization time) of each output.

为了进行比较,在未进行凹凸加工的蓝宝石衬底上,在与上述相同的条件下,形成紫外线LED芯片(比较例1),测定了其输出。 For comparison, on a sapphire substrate is uneven working is not performed, under the same conditions as above, an ultraviolet LED chip is formed (Comparative Example 1), the measured output.

另外,在通常的ELO用基体材料(在平坦的蓝宝石衬底上暂时形成了GaN层后,形成了掩蔽层的基体材料)上,在与上述相同的条件下,形成紫外线LED芯片(比较例2),测定了其输出。 Further, in the conventional ELO with a matrix material (after the flat sapphire substrate once formed the GaN layer, forming a base material of the masking layer) on, under the same conditions as above, forming an ultraviolet LED chip (Comparative Example 2 ), its output was measured.

利用阴极发光测定了LED晶片中的错位密度的平均值,将测定的结果、输出的平均值、以及用80℃、20mA进行的加速试验的寿命(下降到初始输出的80%的时间)示于表1中。 Using cathodoluminescence measured average dislocation density of the LED chip, the result of the measurement, the average of the output, and with 80 ℃, accelerated life testing conducted 20mA (down to 80% of the initial output of the time) are shown in in FIG. 1.

表1 Table 1

从表1可知,在本实施例中能谋求降低错位密度、长寿命化、高输出化。 Seen from Table 1, the embodiment can be reduced dislocation density, long life, high output in the present embodiment. 从比较例2的结果可知,采用作为错位密度降低法之一的ELO法,虽然同样能谋求错位密度的降低,但输出比本实施例低。 From the results of Comparative Example 2, the use of one method to reduce the dislocation density as ELO method, although the same can be reduced dislocation density, but the output lower than the present embodiment. 这可以认为再生长界面的存在引起的结晶性的不同。 This is considered different crystalline regrowth interface due to the presence. 另外,由于在通常衬底上错位密度也大,所以与本实施例相比,输出寿命都不好。 Further, since the dislocation density in the substrate is generally large, as compared with the present embodiment, the output is not good life.

实施例5在本实施例中,将n型Al0.1Ga0.9N覆盖层设置在实施例4的n型GaN接触层和InGaN阱层之间,除此以外,在与实施例4相同的条件下,形成紫外线LED芯片,测定了其输出。 Example 5 In the present embodiment, the n-type Al0.1Ga0.9N clad layer disposed between the n-type GaN contact layer and the InGaN well layer in Example 4, except that, under the same conditions as Example 4 forming an ultraviolet LED chip, the measured output.

如上面的表1所示,实施例4的元件的输出为10mW,与此不同,本实施例的元件的输出为7mW。 As shown in Table 1 above, the output of the element of Example 4 is 10mW, different from this, the output element of the present embodiment is 7mW. 根据该结果可知,本实施例的元件与比较例1、2相比,虽然输出提高了,但如实施例4所示,由于从InGaN阱层和晶体衬底之间将AlGaN层排除,所以输出进一步提高。 According to the results, the element of Comparative Example 1 as compared to Example of the present embodiment, although the output improves, but the embodiment shown, since the InGaN well layer between the substrate and the AlGaN crystal layer 4 negative, the output Further improve.

实施例6在本实施例中,进行了调查关于MQW结构的阻挡层厚度的限定的作用和效果的实验。 Example 6 In the present Example, experiments conducted to investigate the role on the barrier layer defining a thickness of the MQW structure and effects.

使实施例4中的MQW结构的各阻挡层的厚度分别为:式样1:3nm,式样2:6nm,式样3:10nm,式样4:15nm,式样5:30nm,此外与上述实施例4同样地制作了GaN系列LED。 So that the MQW structure in Example 4 of the thickness of each barrier layer were as follows: Shape 1: 3nm, Shape 2: 6nm, Shape 3: 10nm, Shape 4: 15nm, Shape 5: 30nm, furthermore the same manner as the above Example 4 He produced a series of GaN LED. 这些全部属于本发明的发光元件。 All of these belong to the light emitting element of the present invention.

在与上述相同的条件下,测定了紫外LED芯片的输出。 Under the same conditions as above, the measured output of the ultraviolet LED chip.

这些测定结果的平均值如下。 The average value of measurement results are as follows.

式样1:2mW式样2:7mW式样3:10mW式样4:8mW式样5:5mW另外,在低温4K下对这些式样进行了光致发光测定的结果,在表1中在3.2eV附近观测到了从Mg发射的光。 Shape 1: 2mW Shape 2: 7mW Shape 3: 10mW Shape 4: 8mW Shape 5: 5mW Further, at low temperatures 4K These patterns were the results of measurement of photoluminescence in Table 1 observed from the Mg in the vicinity of 3.2eV light emission. 这可以认为由于阻挡层薄,所以Mg能从p型层扩散的结果。 This is considered to result because the barrier layer is thin, the Mg p-type layer from diffusing.

从上述的结果可知,阻挡层的厚度为6nm~30nm时,更能改善高输出化。 Seen from the above results, the barrier layer has a thickness of 30 nm when 6nm ~, more improved high output.

工业上利用的可能性如上所述,通过将凹凸状的折射率界面附加在发光层的下方,能对发光层中产生的横向光的至少一部分改变其传播方向,进而能增加取出到外界光的量。 INDUSTRIAL POSSIBILITY As described above, by the refractive index of the concavo-convex interface is attached below the light emitting layer, which can be changed at least a portion of the lateral direction of propagation of the light generated in the light emitting layer, and thus can increase the light extracted to the outside the amount.

另外,能提供一种抑制上下方向的驻波的发生,使光进入蓝宝石衬底,特别是从衬底一侧取出光时,提高光取出效率的赋予了新的结构的发光元件。 Further, to provide a method of inhibiting the occurrence of standing waves in the vertical direction, so that light enters the sapphire substrate, especially when the light is taken out from the substrate side, improving the light extraction efficiency of the light emitting element to give a new structure.

另外,通过在进行了凹凸加工的衬底上制作晶体结构,谋求降低错位,而且,通过使n型覆盖层(在量子阱结构中也是阻挡层)的材料为GaN,谋求减少形变,另外,作为MQW结构中的优选形态,限定阻挡层的厚度,能提高元件的光输出,实现长寿命化。 Further, by performing the processing of the material on the substrate crystal structure irregularities, dislocation be reduced, and, by making the n-type cladding layer (quantum well structure is a barrier layer) of GaN, seek to reduce the deformation Further, as the preferred embodiment of the MQW structure, the barrier layer defining a thickness, the light output element can be improved, longer life.

本申请以在日本申请的特愿2001-081447、以及特愿2001-080806为基础,在本说明书中完全包括了这些内容。 This application is based on Japanese Patent Application No. 2001-081447, and No. 2001-080806 are based in the present specification completely includes the content.

Claims (18)

  1. 1.一种半导体发光元件,其特征在于:具有如下的元件结构,即在第一晶体层表面上加工有凹凸,由具有与上述晶体层不同的折射率的半导体材料构成的第二晶体层或通过隔离层或直接地在该凹凸上通过填埋该凹凸而进行生长,在第二晶体层上层叠包括发光层的半导体晶体层;从发光层产生的光的波长在第一晶体层中的折射率和在第二晶体层中的折射率的差为0.05以上。 1. A semiconductor light emitting device, comprising: an element having the following structure, i.e., processing unevenness crystal layer on a first surface, a second semiconductor crystal layer formed of a material having a refractive index different from the above-described crystal layer, or or directly carried out by the isolation layer by filling in the irregularities on the irregular growth, the stacked semiconductor crystal layer including a light emitting layer on the second crystal layer; wavelength of light generated from the light emitting layer in a first refractive crystal layer and the refractive index difference between the second crystal layer is from 0.05 or more.
  2. 2.根据权利要求1所述的半导体发光元件,其特征在于:第二晶体层及它上面的半导体晶体层是由GaN系列半导体晶体构成的层。 2. The semiconductor light emitting element according to claim 1, wherein: the second crystal layer and the semiconductor crystal layer thereon is a layer composed of a GaN system semiconductor crystal.
  3. 3.根据权利要求2所述的半导体发光元件,其特征在于:第一晶体层是晶体衬底,第二晶体层从在晶体衬底的表面上加工的凹凸面的凹面与凸面两面开始、在作为呈凸状的结晶进行生长后,一直生长到生长面成为平坦为止。 3. The semiconductor light emitting element according to claim 2, wherein: the first crystal layer is a crystalline substrate, the second crystal layer from the surface of concave and convex on a crystal substrate on both sides of the uneven surface starts, the after growth of the crystal as a convex, it has grown up to become flat growing surfaces.
  4. 4.根据权利要求3所述的半导体发光元件,其特征在于:在晶体衬底的表面上加工的凹凸是呈条纹图形的凹凸,该条纹的纵向沿将它埋入并生长的GaN系列半导体的&lt;11-20&gt;方向、或&lt;1-100&gt;方向。 4. The semiconductor light emitting element according to claim 3, wherein: the upper surface of the crystal substrate is in the form of a stripe pattern of uneven irregularities, it will be embedded in the longitudinal direction of the stripe and grown GaN series semiconductor & lt; 11-20 & gt; direction, or & lt; 1-100 & gt; direction.
  5. 5.根据权利要求1或4所述的半导体发光元件,其特征在于:凹凸的断面形状呈矩形波状、或三角波状、或正弦曲线状。 The semiconductor light emitting element of claim 1 or claim 4, wherein: a rectangular cross-sectional shape of the uneven wavy, corrugated or triangular, or sinusoidal shape.
  6. 6.根据权利要求1所述的半导体发光元件,其特征在于:发光层由能产生紫外线的成分即InGaN晶体构成。 The semiconductor light emitting element according to claim 1, wherein: the light emitting layer that is composed of InGaN crystal composition capable of generating ultraviolet rays.
  7. 7.根据权利要求1所述的半导体发光元件,其特征在于:发光层是一种由InGaN构成的阱层和由GaN构成的阻挡层所构成的量子阱结构。 The semiconductor light emitting element according to claim 1, wherein: the light emitting layer is a quantum well structure, the well layers and barrier layers made of GaN is formed of an InGaN constituted.
  8. 8.根据权利要求1所述的半导体发光元件,其特征在于:第一晶体层是晶体衬底,在该晶体衬底的表面上加工的凹凸上,第二晶体层通过低温隔离层将该凹凸埋入并生长,发光层是一种由InGaN构成的阱层和由GaN构成的阻挡层所构成的量子阱结构,量子阱结构和低温隔离层之间的层全部由GaN晶体构成。 8. The semiconductor light emitting element according to claim 1, wherein: the first crystal layer is a crystalline substrate, on the surface of the processed substrate crystal irregularities, the second crystal layer by the low-temperature isolation layer irregularities embedded and grown, light emitting layer is a quantum well structure of well layers and barrier layers made of GaN is formed of an InGaN constituted, a quantum well structure layer between the spacer layer and composed entirely of the low-temperature GaN crystal.
  9. 9.根据权利要求7或8所述的半导体发光元件,其特征在于:阻挡层的厚度为6nm~30nm。 The semiconductor light emitting element according to claim 7 or claim 8, wherein: the barrier layer has a thickness of 6nm ~ 30nm.
  10. 10.一种半导体发光元件,其特征在于:有如下所述的元件结构,即第一GaN系列半导体晶体在成为晶体生长的基础的晶体层表面上呈凹凸状地生长,具有与第一GaN系列半导体晶体不同的折射率的第二GaN系列半导体晶体覆盖着该凹凸的至少一部分生长,另外,第三GaN系列半导体晶体一直生长到使上述凹凸平坦为止,在它上面层叠包括发光层的半导体晶体层。 A semiconductor light emitting device, comprising: an element structure as described below, i.e., a first GaN-based semiconductor crystal is grown on the concavo-convex shape becomes a basis of crystal growth surface of the crystal layer, and having a first GaN series a second semiconductor crystal GaN series semiconductor crystal different refractive covers at least a portion of the growth irregularities, in addition, the third GaN-based semiconductor crystal has been grown up to the flat so that the irregularities in its top laminate layer comprises a light emitting semiconductor crystal layer .
  11. 11.根据权利要求10所述的半导体发光元件,其特征在于:在成为晶体生长的基础的晶体层表面上,加工对晶体生长区域进行尺寸上限制的凹凸结构,通过该尺寸上的限制,第一GaN系列半导体晶体生长成为凹凸状。 11. The semiconductor light emitting element according to claim 10, wherein: on the basis of crystal growth becomes a surface layer of the crystal, the crystal growth area for the processing of the concavo-convex structure on the size of the restriction, by limiting the size of the first a GaN series semiconductor crystal growth becomes uneven.
  12. 12.根据权利要求10所述的半导体发光元件,其特征在于:在成为晶体生长的基础的晶体层表面上,实施对晶体生长区域进行尺寸上限制的表面处理,通过该尺寸上的限制,第一GaN系列半导体晶体生长成为凹凸状。 The semiconductor light emitting device according to claim 10, wherein: on the basis for the crystal growth surface of the crystal layer, a surface region of the crystal growth process to be limiting on the size, by limiting the size of the first a GaN series semiconductor crystal growth becomes uneven.
  13. 13.根据权利要求10所述的半导体发光元件,其特征在于:在成为晶体生长的基础的晶体层表面上,形成能横向生长的掩蔽图形,通过由该掩蔽图形对晶体生长区域进行尺寸上限制,第一GaN系列半导体晶体生长成为凹凸状。 The semiconductor light emitting device according to claim 10, wherein: on the basis for the crystal growth surface of the crystal layer, the mask pattern can be formed in the lateral growth, carried by the size limitations on the region of the crystal growth mask pattern The first GaN-based semiconductor crystal growth becomes uneven.
  14. 14.根据权利要求10所述的半导体发光元件,其特征在于:具有如下的元件结构,即第二GaN系列半导体晶体呈膜状地至少覆盖着由第一GaN系列半导体晶体形成的凹凸中的凸部而生长,另外,第三GaN系列半导体晶体覆盖着第二GaN系列半导体晶体一直生长到使上述凹凸平坦为止,在第三GaN系列半导体晶体上面层叠了包括发光层的半导体晶体层,第二GaN系列半导体晶体有多层膜结构。 The semiconductor light emitting device according to claim 10, wherein: an element having the following structure, i.e., a second GaN-based semiconductor crystal is a film covering at least the convex irregularities formed by the first GaN-based semiconductor crystal growth portion, Further, the third GaN-based semiconductor crystal is covered with a second GaN-based semiconductor crystal has been grown up to the flat so that the unevenness in the third GaN-based semiconductor crystal a semiconductor crystal layer laminated above a light emitting layer, the second GaN series semiconductor crystal with a multilayer film structure.
  15. 15.根据权利要求10所述的半导体发光元件,其特征在于:发光层由能发生紫外线的成分即InGaN晶体构成。 The semiconductor light emitting device according to claim 10, wherein: the light emitting layer, i.e., InGaN crystal is made of an ultraviolet component that could occur.
  16. 16.根据权利要求10所述的半导体发光元件,其特征在于:发光层是一种由InGaN构成的阱层和由GaN构成的阻挡层所构成的量子阱结构。 The semiconductor light emitting device according to claim 10, wherein: the light emitting layer is a quantum well structure, the well layers and barrier layers made of GaN is formed of an InGaN constituted.
  17. 17.根据权利要求16所述的半导体发光元件,其特征在于:阻挡层的厚度为6nm~30nm。 17. The semiconductor light emitting element according to claim 16, wherein: the barrier layer has a thickness of 6nm ~ 30nm.
  18. 18.根据权利要求10所述的半导体发光元件,其特征在于:上述凹凸是呈条纹图形的凹凸,该条纹的纵向沿第一GaN系列半导体晶体的&lt;11-20&gt;方向、或&lt;1-100&gt;方向。 18. The semiconductor light emitting device according to claim 10, wherein: the uneven pattern is a stripe unevenness, the longitudinal stripe along the first GaN-based semiconductor crystal & lt; 11-20 & gt; direction, or & lt; 1 -100 & gt; direction.
CN 02806788 2001-03-21 2002-03-20 Semiconductor light-emitting device CN1284250C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001080806A JP3595276B2 (en) 2001-03-21 2001-03-21 Ultraviolet light emitting devices
JP2001081447A JP3595277B2 (en) 2001-03-21 2001-03-21 GaN-based semiconductor light-emitting diode

Publications (2)

Publication Number Publication Date
CN1498427A true CN1498427A (en) 2004-05-19
CN1284250C true CN1284250C (en) 2006-11-08

Family

ID=26611679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02806788 CN1284250C (en) 2001-03-21 2002-03-20 Semiconductor light-emitting device

Country Status (5)

Country Link
US (1) US7053420B2 (en)
EP (1) EP1378949A4 (en)
KR (1) KR100632760B1 (en)
CN (1) CN1284250C (en)
WO (1) WO2002075821A1 (en)

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60030279D1 (en) * 1999-03-17 2006-10-05 Mitsubishi Cable Ind Ltd Semiconductor-based, its production method and semiconductor crystal manufacturing method
JP3556916B2 (en) * 2000-09-18 2004-08-25 三菱電線工業株式会社 The method of manufacturing a semiconductor substrate
JP3797151B2 (en) * 2001-07-05 2006-07-12 ソニー株式会社 A laser diode, an optical pickup device, an optical disk apparatus and optical communication system
JP4055503B2 (en) 2001-07-24 2008-03-05 日亜化学工業株式会社 Semiconductor light-emitting element
JP4150527B2 (en) * 2002-02-27 2008-09-17 日鉱金属株式会社 Method for producing a crystalline
US7154121B2 (en) * 2002-12-23 2006-12-26 Epistar Corporation Light emitting device with a micro-reflection structure carrier
KR100504180B1 (en) * 2003-01-29 2005-07-28 엘지전자 주식회사 crystal growth method of nitride compound semiconductor
EP3166152A1 (en) 2003-08-19 2017-05-10 Nichia Corporation Semiconductor light emitting diode and method of manufacturing the same
US7554109B2 (en) * 2003-09-05 2009-06-30 Dot Metrics Technology, Inc. Quantum dot optoelectronic devices with nanoscale epitaxial lateral overgrowth and methods of manufacture
KR100714639B1 (en) * 2003-10-21 2007-05-07 삼성전기주식회사 light emitting device
JP4557542B2 (en) * 2003-12-24 2010-10-06 ▲さん▼圓光電股▲ふん▼有限公司 Nitride light-emitting device and a high luminous efficiency nitride light-emitting device
US7183583B2 (en) * 2003-12-25 2007-02-27 Super Nova Optoelectronics Corporation Gallium-nitride based light emitting diode structure and fabrication thereof
KR20050077902A (en) 2004-01-29 2005-08-04 엘지전자 주식회사 Method of growing nitride semiconductor thin film
KR100581831B1 (en) * 2004-02-05 2006-05-23 엘지전자 주식회사 Light emitting diode
EP1801892A4 (en) * 2004-08-31 2008-12-17 Univ Meijo Production method for semiconductor light emittingt element and semiconductor light emitting element
WO2005122290A1 (en) * 2004-06-14 2005-12-22 Mitsubishi Cable Industries, Ltd. Nitride semiconductor light-emitting device
US20070241352A1 (en) * 2004-06-18 2007-10-18 Showa Denko K. K. Group III Nitride Semiconductor Light Emitting Device
US7161188B2 (en) * 2004-06-28 2007-01-09 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, semiconductor light emitting device, and method for fabricating semiconductor light emitting element
DE102005013894B4 (en) * 2004-06-30 2010-06-17 Osram Opto Semiconductors Gmbh Electromagnetic radiation-generating semiconductor chip and process for its preparation
KR100649494B1 (en) * 2004-08-17 2006-11-24 삼성전기주식회사 Fabrication method of light emitting diode incorporating laser surface treatment of substrate and light emitting diode fabricated thereby
US7633097B2 (en) * 2004-09-23 2009-12-15 Philips Lumileds Lighting Company, Llc Growth of III-nitride light emitting devices on textured substrates
KR100601138B1 (en) * 2004-10-06 2006-07-19 에피밸리 주식회사 ?-nitride semiconductor light emitting device and method for manufacturign the same
DE102004050891A1 (en) * 2004-10-19 2006-04-20 LumiLeds Lighting, U.S., LLC, San Jose Group III-nitride light-emitting device, e.g. light-emitting diode, comprises active region between first layers of first and second conductivity types, tunnel junction between first and second layers of first conductive type, and contacts
KR100664988B1 (en) 2004-11-04 2007-01-09 삼성전기주식회사 Light extraction efficiency-improved semiconductor light emitting device
KR100644052B1 (en) * 2004-11-08 2006-11-10 엘지전자 주식회사 Light emitting diode of high efficiency for light extraction and method for fabricating the same
CN100483754C (en) 2004-11-11 2009-04-29 晶元光电股份有限公司 Crystal coating light-emitting diode and producing method thereof
US8605769B2 (en) * 2004-12-08 2013-12-10 Sumitomo Electric Industries, Ltd. Semiconductor laser device and manufacturing method thereof
KR100580751B1 (en) 2004-12-23 2006-05-09 엘지이노텍 주식회사 Nitride semiconductor led and fabrication method thereof
US20080128734A1 (en) * 2006-01-06 2008-06-05 Epistar Corporation Light-emitting device
US20100084679A1 (en) * 2006-01-06 2010-04-08 Epistar Corporation Light-emitting device
CN100431182C (en) 2005-01-28 2008-11-05 晶元光电股份有限公司 Luminescent package
KR100712753B1 (en) * 2005-03-09 2007-04-30 주식회사 실트론 Compound semiconductor device and method for manufacturing the same
KR100669142B1 (en) * 2005-04-20 2007-01-15 (주)더리즈 Light emitting element and method for manufacturing thereof
JP5082278B2 (en) * 2005-05-16 2012-11-28 ソニー株式会社 A method of manufacturing a light emitting diode, an integrated light emitting diode manufacturing method and a nitride iii-v compound semiconductor method of growing
JP2006324324A (en) * 2005-05-17 2006-11-30 Sumitomo Electric Ind Ltd Light emitting device, method of manufacturing same, and semiconductor substrate
JP2006339605A (en) * 2005-06-06 2006-12-14 Sumitomo Electric Ind Ltd Method of evaluating damage of compound semiconductor member, method of manufacturing compound semiconductor member, gallium nitride based compound semiconductor member and gallium nitride based compound semiconductor film
JP4670489B2 (en) * 2005-06-06 2011-04-13 日立電線株式会社 Light emitting diode and a manufacturing method thereof
FI118196B (en) 2005-07-01 2007-08-15 Optogan Oy A semiconductor structure and method of manufacturing a semiconductor structure
JP2007019318A (en) * 2005-07-08 2007-01-25 Sumitomo Chemical Co Ltd Semiconductor light emitting element, method for manufacturing substrate therefor, and method for manufacturing the same
KR100683446B1 (en) * 2005-07-16 2007-02-20 서울옵토디바이스주식회사 Light emitting element with buffer layer having rugged upper surface and method for fabricating thereof
KR101154744B1 (en) * 2005-08-01 2012-06-08 엘지이노텍 주식회사 Nitride light emitting device and fabrication method thereof
KR100690322B1 (en) * 2005-08-19 2007-03-09 서울옵토디바이스주식회사 Light emitting diode employing a high refractive index material layer with a roughened surface
US7977703B2 (en) * 2005-11-22 2011-07-12 Rohm Co., Ltd. Nitride semiconductor device having a zinc-based substrate
KR101158076B1 (en) * 2006-01-13 2012-06-22 서울옵토디바이스주식회사 method for fabricating light emitting diode having grooved semi-conductor layer and light emitting diode thereof
KR100659373B1 (en) * 2006-02-09 2006-12-12 서울옵토디바이스주식회사 Patterned substrate for light emitting diode and light emitting diode employing the same
US7511307B2 (en) * 2006-03-02 2009-03-31 Dong-Sing Wuu Light emitting device
JP4888857B2 (en) * 2006-03-20 2012-02-29 サムソン エレクトロ−メカニックス カンパニーリミテッド. Iii nitride semiconductor thin film and iii-nitride semiconductor light emitting device
JP4637781B2 (en) * 2006-03-31 2011-02-23 昭和電工株式会社 Method of manufacturing a GaN-based semiconductor light-emitting element
KR101229830B1 (en) * 2006-04-14 2013-02-04 서울옵토디바이스주식회사 Light emitting diode for an alternating current and method for fabricating the same
KR100828873B1 (en) * 2006-04-25 2008-05-09 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method thereof
KR100780233B1 (en) * 2006-05-15 2007-11-27 삼성전기주식회사 Light emitting device with multi-pattern
KR100735470B1 (en) * 2006-05-19 2007-07-03 삼성전기주식회사 Method of manufacturing nitride-based semiconductor light emitting device
CN100555689C (en) 2006-06-15 2009-10-28 夏普株式会社 Method of manufacturing nitride semiconductor light-emitting element and nitride semiconductor light-emitting element
US7427772B2 (en) * 2006-06-16 2008-09-23 Industrial Technology Research Institute Semiconductor light emitting device substrate and method of fabricating the same
US7825577B2 (en) * 2006-07-28 2010-11-02 Epistar Corporation Light emitting device having a patterned substrate and the method thereof
US20080025037A1 (en) * 2006-07-28 2008-01-31 Visteon Global Technologies, Inc. LED headlamp
US20080048176A1 (en) * 2006-08-28 2008-02-28 Kenji Orita Semiconductor device and method for fabricating the same
CN102751402B (en) 2006-09-08 2016-04-06 晶元光电股份有限公司 A method of manufacturing a semiconductor light emitting element and the light emitting element
US8716728B2 (en) * 2006-10-20 2014-05-06 Mitsubishi Chemical Corporation Nitride semiconductor light-emitting diode device
KR100856267B1 (en) * 2006-12-04 2008-09-03 삼성전기주식회사 Vertical nitride semiconductor light emitting device and manufacturing method of the same
JP5082752B2 (en) 2006-12-21 2012-11-28 日亜化学工業株式会社 Method of manufacturing a substrate for a semiconductor light-emitting device and a semiconductor light-emitting device using the same
US7663148B2 (en) * 2006-12-22 2010-02-16 Philips Lumileds Lighting Company, Llc III-nitride light emitting device with reduced strain light emitting layer
JP4908381B2 (en) * 2006-12-22 2012-04-04 昭和電工株式会社 METHOD FOR PRODUCING Iii nitride semiconductor layer, and iii-nitride semiconductor light emitting device, and a lamp
KR100878979B1 (en) * 2007-01-18 2009-01-14 광주과학기술원 Light Emitting Diode of having Photonic Crystal Structure
JP5032171B2 (en) * 2007-03-26 2012-09-26 株式会社東芝 The semiconductor light emitting device and its manufacturing method and light-emitting device
US20080277682A1 (en) * 2007-03-29 2008-11-13 The Regents Of The University Of California Dual surface-roughened n-face high-brightness led
KR101283261B1 (en) * 2007-05-21 2013-07-11 엘지이노텍 주식회사 Light emitting device and mehtod for manufacturing the same
US9306118B2 (en) * 2007-06-01 2016-04-05 Huga Optotech Inc. Method of treating substrate
US7956370B2 (en) * 2007-06-12 2011-06-07 Siphoton, Inc. Silicon based solid state lighting
US20090032799A1 (en) * 2007-06-12 2009-02-05 Siphoton, Inc Light emitting device
WO2009002129A3 (en) * 2007-06-27 2009-03-12 Epivalley Co Ltd Semiconductor light emitting device and method of manufacturing the same
JP2009038377A (en) * 2007-07-31 2009-02-19 Epivalley Co Ltd Iii-nitride semiconductor light emitting device
JP2009049044A (en) 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Method of manufacturing semiconductor laser
US20090050909A1 (en) * 2007-08-20 2009-02-26 Delta Electronics, Inc. Light-emitting diode apparatus and manufacturing method thereof
KR101449000B1 (en) * 2007-09-06 2014-10-13 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
KR101405790B1 (en) * 2007-09-21 2014-06-12 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
US7985979B2 (en) 2007-12-19 2011-07-26 Koninklijke Philips Electronics, N.V. Semiconductor light emitting device with light extraction structures
US20090159916A1 (en) * 2007-12-20 2009-06-25 Chien-Ghung Fu Light source with reflective pattern structure
WO2009102033A1 (en) * 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation Substrate for epitaxial growth, process for producing gan-base semiconductor film, gan-base semiconductor film, process for producing gan-base semiconductor luminescent element, and gan-base semiconductor luminescent element
KR100947507B1 (en) * 2008-03-25 2010-03-12 우리엘에스티 주식회사 Method of Manufacturing a Light Emitting Device with Required Wavelength
US8030666B2 (en) * 2008-04-16 2011-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Group-III nitride epitaxial layer on silicon substrate
KR101020961B1 (en) 2008-05-02 2011-03-09 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
KR100953658B1 (en) 2008-06-05 2010-04-20 삼성모바일디스플레이주식회사 Organic light emitting diode display device
US8395168B2 (en) * 2008-06-06 2013-03-12 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Semiconductor wafers and semiconductor devices with polishing stops and method of making the same
US20100200880A1 (en) * 2008-06-06 2010-08-12 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Semiconductor wafers and semiconductor devices and methods of making semiconductor wafers and devices
US20110108800A1 (en) * 2008-06-24 2011-05-12 Pan Shaoher X Silicon based solid state lighting
WO2010011201A1 (en) * 2008-07-21 2010-01-28 Pan Shaoher X Light emitting device
US8058082B2 (en) * 2008-08-11 2011-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitting diode with textured substrate
US7741134B2 (en) * 2008-09-15 2010-06-22 Bridgelux, Inc. Inverted LED structure with improved light extraction
KR101009651B1 (en) * 2008-10-15 2011-01-19 박은현 Iii-nitride semiconductor light emitting device
EP2356701A2 (en) * 2008-11-13 2011-08-17 3M Innovative Properties Company Electrically pixelated luminescent device incorporating optical elements
KR101005301B1 (en) 2008-11-20 2011-01-04 전북대학교산학협력단 Light emitting device and method of manufacturing the same
JP5180050B2 (en) * 2008-12-17 2013-04-10 スタンレー電気株式会社 The method of manufacturing a semiconductor device
JP5311408B2 (en) * 2008-12-26 2013-10-09 シャープ株式会社 The nitride semiconductor light emitting device
GB2467911B (en) * 2009-02-16 2013-06-05 Rfmd Uk Ltd A semiconductor structure and a method of manufacture thereof
KR101055090B1 (en) * 2009-03-02 2011-08-08 엘지이노텍 주식회사 The semiconductor light emitting device and a method of manufacturing the same
JP5196403B2 (en) 2009-03-23 2013-05-15 国立大学法人山口大学 A method of manufacturing a sapphire substrate, and a semiconductor device
US20100308300A1 (en) * 2009-06-08 2010-12-09 Siphoton, Inc. Integrated circuit light emission device, module and fabrication process
US8574939B2 (en) * 2009-07-15 2013-11-05 Advanced Optoelectronic Technology, Inc. Semiconductor optoelectronics structure with increased light extraction efficiency and fabrication method thereof
US20110017972A1 (en) * 2009-07-22 2011-01-27 Rfmd (Uk) Limited Light emitting structure with integral reverse voltage protection
JP5489117B2 (en) * 2009-09-01 2014-05-14 シャープ株式会社 Nitride semiconductor device, a method of manufacturing a nitride semiconductor device, the nitride semiconductor layer manufacturing method and a nitride semiconductor light emitting device
US8476658B2 (en) * 2009-11-25 2013-07-02 Jing Jie Dai Semiconductor light-emitting devices
US8586963B2 (en) * 2009-12-08 2013-11-19 Lehigh University Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same
CN101777615B (en) 2010-01-13 2013-07-31 南京大学 Method for preparing GaN substrate with porous surface and GaN substrate prepared by using the method
US8674383B2 (en) * 2010-01-21 2014-03-18 Siphoton Inc. Solid state lighting device on a conductive substrate
US8283676B2 (en) * 2010-01-21 2012-10-09 Siphoton Inc. Manufacturing process for solid state lighting device on a conductive substrate
US8722441B2 (en) 2010-01-21 2014-05-13 Siphoton Inc. Manufacturing process for solid state lighting device on a conductive substrate
KR100999779B1 (en) * 2010-02-01 2010-12-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
KR101658838B1 (en) 2010-02-04 2016-10-04 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
JP5570838B2 (en) * 2010-02-10 2014-08-13 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Semiconductor substrate, a method of manufacturing a semiconductor device and a manufacturing method thereof
US8716049B2 (en) * 2010-02-23 2014-05-06 Applied Materials, Inc. Growth of group III-V material layers by spatially confined epitaxy
KR101047721B1 (en) 2010-03-09 2011-07-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
US8378367B2 (en) * 2010-04-16 2013-02-19 Invenlux Limited Light-emitting devices with vertical light-extraction mechanism and method for fabricating the same
JP5789782B2 (en) * 2010-05-20 2015-10-07 パナソニックIpマネジメント株式会社 Fabrication of a nitride semiconductor light emitting device and a nitride semiconductor light emitting device
JP2012033708A (en) * 2010-07-30 2012-02-16 Sumitomo Electric Ind Ltd Manufacturing method of semiconductor device
US9142719B2 (en) 2010-09-27 2015-09-22 National Chung-Hsing University Patterned substrate and light-emitting diode having the same
CN102044608A (en) * 2010-11-17 2011-05-04 重庆大学 Flip-chip LED chip structure and manufacturing method thereof
US8963165B2 (en) * 2010-12-29 2015-02-24 Sharp Kabushiki Kaisha Nitride semiconductor structure, nitride semiconductor light emitting element, nitride semiconductor transistor element, method of manufacturing nitride semiconductor structure, and method of manufacturing nitride semiconductor element
US8624292B2 (en) 2011-02-14 2014-01-07 Siphoton Inc. Non-polar semiconductor light emission devices
US8217418B1 (en) 2011-02-14 2012-07-10 Siphoton Inc. Semi-polar semiconductor light emission devices
CN102651438B (en) * 2011-02-28 2015-05-13 比亚迪股份有限公司 Substrate, preparation method thereof and chip with substrate
KR20120100193A (en) * 2011-03-03 2012-09-12 서울옵토디바이스주식회사 Light emitting diode chip
CN104465923A (en) 2011-05-31 2015-03-25 兆鑫光电科技股份有限公司 Epitaxial substrate with light-transmissive members, light-emitting diode, and methods for making the epitaxial substrate and the light-emitting diode
CN102810608B (en) * 2011-05-31 2014-12-24 兆鑫光电科技股份有限公司 Light-emitting diode of high light-extraction efficiency and its preparation method
KR101436077B1 (en) * 2011-07-12 2014-09-17 마루분 가부시키가이샤 Light emitting element and method for manufacturing same
JP5879225B2 (en) 2011-08-22 2016-03-08 住友化学株式会社 Nitride semiconductor template and the light emitting diode
CN103748699B (en) * 2011-08-31 2017-03-15 旭化成株式会社 The optical substrate and a semiconductor light emitting element with
JP5832210B2 (en) 2011-09-16 2015-12-16 キヤノン株式会社 Organic el element
KR101262953B1 (en) 2011-12-13 2013-05-09 고려대학교 산학협력단 Nitride semiconductor light emitting deveice and manufacturing method of the same
JP2013145867A (en) * 2011-12-15 2013-07-25 Hitachi Cable Ltd Nitride semiconductor template, and light-emitting diode
CN103219433A (en) * 2012-01-20 2013-07-24 泰谷光电科技股份有限公司 A light emitting diode and its manufacturing method
CN103227258A (en) * 2012-01-30 2013-07-31 隆达电子股份有限公司 Patterned substrate and stacked light emitting diode
US9660140B2 (en) * 2012-11-02 2017-05-23 Riken Ultraviolet light emitting diode and method for producing same
KR20140099803A (en) 2013-02-05 2014-08-13 삼성전자주식회사 Semiconductor light emitting device
JP2014183285A (en) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd Light-emitting element
KR20140119266A (en) * 2013-03-28 2014-10-10 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method thereof
KR101580619B1 (en) 2013-07-17 2015-12-28 마루분 가부시키가이샤 Semiconductor light-emitting element and production method
KR20150039926A (en) * 2013-10-04 2015-04-14 엘지이노텍 주식회사 Light emitting device
CN104752577A (en) * 2013-12-30 2015-07-01 比亚迪股份有限公司 Light emitting diode chip and manufacturing method thereof
WO2015118920A1 (en) * 2014-02-07 2015-08-13 日本碍子株式会社 Composite substrate, light emitting element, and methods for manufacturing composite substrate and light emitting element
KR101648079B1 (en) 2014-03-06 2016-08-12 마루분 가부시키가이샤 Deep ultraviolet LED and method for manufacturing the same
US9548419B2 (en) 2014-05-20 2017-01-17 Southern Taiwan University Of Science And Technology Light emitting diode chip having multi microstructure substrate surface
US20170104130A1 (en) * 2014-05-30 2017-04-13 Koninklijke Philips N.V. Light-emitting device with patterned substrate
KR20170018802A (en) * 2014-06-17 2017-02-20 엘시드 가부시끼가이샤 Method for manufacturing light emitting element and light emitting element
KR20160024170A (en) 2014-08-25 2016-03-04 삼성전자주식회사 Semiconductor light emitting device
JP2016063022A (en) 2014-09-17 2016-04-25 住友化学株式会社 Method for manufacturing nitride semiconductor template
JP2016060659A (en) 2014-09-17 2016-04-25 住友化学株式会社 Production method of nitride semiconductor template
KR101651342B1 (en) * 2014-12-03 2016-08-26 주식회사 올릭스 Art Lightening LDE device and module satisfying art lightening spectrum based on white LED device
EP3246956A4 (en) 2015-01-16 2018-05-23 Marubun Corporation Deep ultraviolet led and method for manufacturing same
US10056526B2 (en) 2016-03-30 2018-08-21 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
CN106098883B (en) * 2016-06-27 2018-04-13 山东浪潮华光光电子股份有限公司 A quantum well structure, and the structure An epitaxial growth method led

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714984B2 (en) 1995-03-06 2005-11-09 シャープ株式会社 Distributed feedback semiconductor laser device
US5779924A (en) 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
JP3439063B2 (en) 1997-03-24 2003-08-25 三洋電機株式会社 The semiconductor light emitting device and a light emitting lamp
US6091083A (en) * 1997-06-02 2000-07-18 Sharp Kabushiki Kaisha Gallium nitride type compound semiconductor light-emitting device having buffer layer with non-flat surface
JP3189877B2 (en) * 1997-07-11 2001-07-16 日本電気株式会社 Crystal growth method of low dislocation gallium nitride
JP3930161B2 (en) 1997-08-29 2007-06-13 株式会社東芝 Nitride-based semiconductor device, light emitting device and a manufacturing method thereof
JP3491538B2 (en) 1997-10-09 2004-01-26 日亜化学工業株式会社 Nitride semiconductor growth method and a nitride semiconductor device
US6091085A (en) 1998-02-19 2000-07-18 Agilent Technologies, Inc. GaN LEDs with improved output coupling efficiency
JP3201475B2 (en) 1998-09-14 2001-08-20 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
JP3592553B2 (en) * 1998-10-15 2004-11-24 株式会社東芝 The gallium nitride-based semiconductor device
JP4032538B2 (en) * 1998-11-26 2008-01-16 ソニー株式会社 The method of manufacturing a semiconductor thin film and a semiconductor element
JP3471685B2 (en) * 1999-03-17 2003-12-02 三菱電線工業株式会社 The semiconductor substrate and manufacturing method thereof
DE60030279D1 (en) * 1999-03-17 2006-10-05 Mitsubishi Cable Ind Ltd Semiconductor-based, its production method and semiconductor crystal manufacturing method
JP3587081B2 (en) * 1999-05-10 2004-11-10 豊田合成株式会社 Iii Nitride semiconductor fabrication methods and iii-nitride semiconductor light emitting device
JP3633447B2 (en) 1999-09-29 2005-03-30 豊田合成株式会社 Iii nitride compound semiconductor element
US6531719B2 (en) 1999-09-29 2003-03-11 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device
EP1104031B1 (en) * 1999-11-15 2012-04-11 Panasonic Corporation Nitride semiconductor laser diode and method of fabricating the same
JP3556916B2 (en) * 2000-09-18 2004-08-25 三菱電線工業株式会社 The method of manufacturing a semiconductor substrate

Also Published As

Publication number Publication date Type
EP1378949A1 (en) 2004-01-07 application
KR20030093265A (en) 2003-12-06 application
CN1498427A (en) 2004-05-19 application
WO2002075821A1 (en) 2002-09-26 application
US20040113166A1 (en) 2004-06-17 application
US7053420B2 (en) 2006-05-30 grant
KR100632760B1 (en) 2006-10-11 grant
EP1378949A4 (en) 2006-03-22 application

Similar Documents

Publication Publication Date Title
US6984841B2 (en) Nitride semiconductor light emitting element and production thereof
US6677619B1 (en) Nitride semiconductor device
US20070057337A1 (en) Semiconductor device
US20090095973A1 (en) Semiconductor light emitting device
US6172382B1 (en) Nitride semiconductor light-emitting and light-receiving devices
US6266355B1 (en) Group III-V nitride laser devices with cladding layers to suppress defects such as cracking
US20060258027A1 (en) Light-emitting diode, method for making light-emitting diode, integrated light-emitting diode and method for making integrated light-emitting diode, method for growing a nitride-based iii-v group compound semiconductor, light source cell unit, light-emitting diode backlight, and light-emitting diode display and electronic device
US5742628A (en) Short wavelength laser emitting diode with an improved GaN system double heterostructure
US20020001864A1 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
US7053420B2 (en) GaN group semiconductor light-emitting element with concave and convex structures on the substrate and a production method thereof
US20040264533A1 (en) Nitride semiconductor laser device having current blocking layer and method of manufacturing the same
Lee et al. Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate
US6362515B2 (en) GaN substrate including wide low-defect region for use in semiconductor element
EP1263058A2 (en) Light-emitting element
US20040233950A1 (en) Semicondutor laser device and its manufacturing method
US6456638B1 (en) High-power short-wavelength semiconductor light emitting device having active layer with increased indium content
US7015511B2 (en) Gallium nitride-based light emitting device and method for manufacturing the same
US20080112448A1 (en) Nitride semiconductor laser diode
US20130126902A1 (en) Semiconductor light emitting element
US8455894B1 (en) Photonic-crystal light emitting diode and method of manufacture
US20060094244A1 (en) Nitride semiconductor device and fabrication method thereof
US20050280022A1 (en) Semiconductor laser device and manufacturing method thereof
JP2007116097A (en) Light-emitting diode and method for manufacturing the same, integrated light-emitting diode and nethod for making the same, method for growing nitride-based group iii-v compound semiconductor, substrate for growing nitride-based group iii-v compound semiconductor, light source cell unit, light-emitting diode backlight, light-emitting diode illuminating device, light-emitting diode display, electric instrument, and electric device and method for manufacturing the same
JP2004111766A (en) Gallium nitride-based semiconductor device and its manufacturing method
US20030047744A1 (en) Multilayered reflective membrane and gallium nitride-based light emitting element

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model
ASS Succession or assignment of patent right

Owner name: MITSUBISHI CHEMICAL CO., LTD.

Free format text: FORMER OWNER: MITSUBISHI CABLE IND LTD.

Effective date: 20080905

C41 Transfer of patent application or patent right or utility model