CN1262786A - 太阳能电池组件 - Google Patents

太阳能电池组件 Download PDF

Info

Publication number
CN1262786A
CN1262786A CN99800384A CN99800384A CN1262786A CN 1262786 A CN1262786 A CN 1262786A CN 99800384 A CN99800384 A CN 99800384A CN 99800384 A CN99800384 A CN 99800384A CN 1262786 A CN1262786 A CN 1262786A
Authority
CN
China
Prior art keywords
solar module
film
photoelectric conversion
resin
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99800384A
Other languages
English (en)
Other versions
CN1142597C (zh
Inventor
久保田悠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of CN1262786A publication Critical patent/CN1262786A/zh
Application granted granted Critical
Publication of CN1142597C publication Critical patent/CN1142597C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S136/00Batteries: thermoelectric and photoelectric
    • Y10S136/291Applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明的目的是提供具有高效产能能力、设计协调而没有奇特感觉和设计灵活的太阳能电池组件。通过在其光接收面上包括将光转为电的光电转换部分和分散在光电转换部分以外的区域的用以降低来自光电转换部分的色差的绝缘颜色膜,光电转换部分包括硅。

Description

太阳能电池组件
本发明涉及便携式或其它有内置太阳能电池的电子设备所用类型的太阳能电池组件。更具体地说,涉及用作光生伏特装置的太阳能电池组件,当将此装置集成在电子设备内时,能使颜色协调尤其是设计协调,并且尽管安装太阳能电池而颜色不会引起奇特的感觉。
太阳能电池用于各种电池设备作为干电池电源的取代品。尤其是,低电耗的电子设备如台式电子计算机、手表和便携式电子设备(例如照相机、蜂窝电话和商用雷达检测器),这些设备可以完全由太阳能电池的电动势驱动,从而设备可以半永久性操作而不需要更换电池。由于半永久性操作再加上不污染环境,所以太阳能电池受到人们的关注。
当太阳能电池置于电子设备内时,必须考虑到设计方面问题。尤其是,现代电子设备在性能相同时难于相互在性能上区分以及消费者选择产品常取决于设计的优越。由于太阳能电池的结构,光接收面的机理可以从外面看到。因此,设计主要受到光接收面上有光电转换功能的光电转换部分和其它区域如电极、隔离壁和其它结构之间的亮度和色差的影响。一般说来,如果这些结构从外面看到,它们的大多数对设计有不利的影响。
JP-A 60-148174公开了一种太阳能电池,在其前面包括一选择性反射层(多层干涉滤光片如分光镜)和在选择性反射层前表面配置有散光层。选择性反射层选择地反射一部分具有特殊波长带的可见光,透射其余的和透射至少一部分能提供太阳能电池发电的波长带的光。在选择性反射层前面还有散光层。这种结构使显示暗色的太阳能电池成为最低层,“选择性反射层”作为光接收面侧的上层将颜色改变为优选颜色,“散射透光层”作为其上的上层使反射光增亮以减少太阳能电池的暗色,使颜色在一定程度可以控制。这给于内置系统的颜色和其它因子的设计以灵活性,从而,减缓了由于加入太阳能电池引起的产品设计中奇特感觉。
用于实际应用中的的太阳能电池组件有能够产生光电电动势的光电转换膜、透明电极、在透明电极上形成的导电银膜形式的梳形收集器电极,以及用作周围的接线电极的Ag、Cu、Ni、Mo或它们的合金的导电膜、碳黑或石墨化的碳黑的导电膜。在该技术领域熟知的透明导电膜包括SiO2-掺杂的ITO膜、SnO2膜(包括Sb或F掺杂型)和ZnO膜(包括In、Al或Si掺杂型)。其中最常用的是ITO。此外,通过能够在单一基体上生成所希望的高电压的多步电池结构,通过形成一印刷绝缘膜以供串联连接所必须的图案,通过由干法随后在其上印刷绝缘树脂进行激光划线/图案形成障碍,或通过印刷导电油墨形成激光键合结构,建成集成结构(在薄膜太阳能电池情况是更突出的,这时,容易形成集成结构)。就由其光接收面看到的太阳能电池的颜色来说,由与α-Si光电转换膜的颜色重叠透明电极薄膜的干涉色给出的一致颜色表面(支配太阳能电池的大部分颜色),同具有光学特性包括由生成上述的集成结构引起的高光反射、高光吸收、高透光和特种波长吸收的各种线宽的图案混合,从设计观点干扰了颜色的协调。
一种制成图案的方法是经过金属面罩溅射能够集成在基体表面形成透明电极、由等离子体CVD制成的光电转换膜以及通过一起溅射制成的金属电极上,而不用丝网印刷或激光划线。在这些部件中,重叠面罩屏蔽区的金属电极显示出高反射率并在非面罩屏蔽区提供光电转换部分的高反差,得到奇特感觉。除去这种奇特感觉非常困难,即使在提供屏蔽的电池顶部形成散射透光层也如此。
因此,即使当在上述专利中讨论的选择性反射层和散射透光层在太阳能电池的受光表侧形成上层,由于各自的光学性能在亮度、颜色、反射和清晰度的各种的图案线被看作混合成一致的颜色表面并象浮雕。在产品设计中由于内置太阳能电池引起的产品中的奇特感觉的消除,关键因素是这些图案线不被察觉,当然传统的太阳能电池设计中缺乏仔细考虑产品设计的灵活性。尤其是,对于太阳能电池在户内低照度下产生的电动势可以带动钟表运行的“太阳能手表”来说,提出了严格的设计要求。而且,当在选择广泛不同颜色的表盘,尽管常用白色,在太阳能电池的光接收面侧上用作选择性反射层和散射透光层作为上层,由于要求厚度要薄,所以它们之间的间隙应减小到几乎接触的程度。上述要求即使在这些使用环境下也应满足。
另外,要求太阳能电池组件提高在给定的光源和照度下的产能效率,或形成多步集成结构以提高电压以符合所用的特种装置的要求,从而,改进电池的性能,而给内置太阳能电池的产品本身以同周围环境协调一致的设计灵活性也是太阳能电池作为清洁能源找到广泛市场要解决的一项任务。
本发明的一个目的是提供具有高效产能能力、保持设计协调、没有奇特感觉、具有设计灵活性、对环境变化如户外或户内温度和湿度变化稳定以及具有高尺寸稳定性的太阳能电池组件。
在本发明的太阳能电池组件中,制备了具有遮盖力和颜色最接近太阳能电池表面的颜色(几乎受到ITO透明电极薄膜的干涉色的支配)的绝缘油墨,通过用丝网印刷方法使这种颜色的油墨形成图案掩盖太阳能电池表面露出的绝缘图案和电极。关于具有不同于太阳能电池表面颜色的并具有高反光性、高吸光性、高透光性和特殊的波长带吸收和暴露于太阳能电池表面的绝缘图案和导电图案,将相同的油墨通过相似的印刷方法涂布到保持掩盖所需的最低厚度。这使太阳能电池的表面成为一致的颜色。尽管具有不同于由干法生成的高反射膜的高含量的漫反射零件的颜料分散油墨膜可察觉到反差,但反差缓和,设计中保持颜色协调。
为了得到其太阳能电池表面呈一致的颜色,成为最低层,其中“散射透光层”作为其光接收面侧上的上层,或为了得到任何所希望的颜色的太阳能电池,其中散射透光层本身有颜色或“选择性反射层”作为“散射透光层”的上层或作为其与太阳能电池之间的中间层的电池是有效的。
通过下面的结构可以达到以上和其它目的。
(1)一种太阳能电池组件在其光接收面上包括
光电转换部分用以将入射光转化为电,所说的光电转换部分包括硅,以及
设置在不为所说的光电转换区内的各区的绝缘彩色薄膜,用于降低所说光电转换部分的色差。
(2).上款(1)中的太阳能电池组件,其中所说的绝缘彩色薄膜包括分散在基料中的颜料粒子。
(3).上款(1)中的太阳能电池组件,其中所说的绝缘彩色薄膜包括分散于其中的微粒白色颜料用作颜料粒子。
(4).上款(1)中的太阳能电池组件,其中所说的光电转换部分包括非单晶硅膜。
(5).上款(1)中的太阳能电池组件,在太阳能电池组件的光接收面上还包括散射透光层。
(6).上款(5)的太阳能电池组件,其中在绝缘颜色膜和光电转换部分之间经散射透光层察觉到的色差ΔE至多5.0。
(7).上款(5)的太阳能电池组件,在所说的散射透光层之上和/或之下还包括选择性反射层。
(8).上款(5)的太阳能电池组件,其中所说的散射透光层在可见光谱的总光透射度至少为20%,浊度至少为8%。
(9).上款(1)的太阳能电池组件,其中所说的光电转换部分有透明导电膜。
(10).上款(1)的太阳能电池组件,包括由透光、耐热的树脂、玻璃和不锈钢的任一种材料制成的基体。
(11).上款(1)的太阳能电池组件,其中具有含热固性树脂的缓冲粘合层的热熔织物层压在由透光、耐热的树脂、玻璃和不锈钢中任一种材料制成的基体的至少一个表面上。
(12).上款(11)的太阳能电池组件,其中所说的基体和/或所说的缓冲粘合层含UV吸收剂或具有集中在其表面上的UV吸收剂。
(13).上款(11)的太阳能电池组件,其中所说的缓冲粘合层含有机过氧化物。
(14).上款(11)的太阳能电池组件,其中热熔织物(web)有载体膜,载体体在热压粘合前的玻璃化温度至少为65℃或耐热温度至少为80℃。
(15).上款(11)的太阳能电池组件,其中热熔织物有载体膜,载体体在热压粘合前的分子取向比(MOR)为1.0-3.0。
(16).上款(11)的太阳能电池组件,其中在热压粘合前有机过氧化物的分解温度至少为70℃,半衰期为10小时。
(17).上款(1)的太阳能电池组件,在所说的光电转换部分还包括透光和耐热的保护涂层。
(18)太阳能电池组件在所说的保护涂膜上还包括一层(11)的热熔织物。
(19)包括(1)的太阳能电池组件的手表。
在现有技术的太阳能电池中,未考虑包括除发电层即光电转换部分的颜色外的电池形成不可少的构成各种功能图案的着色的细线部分的颜色一致。因此,在光接收面的上层生成具有散射和透射入射光的两种功能的选择性反射层和散射透光层,同时确保产能能力不会受到包括除了光电转换部分颜色外的各个功能图案的着色部分的一致颜色的掩盖。按照本发明制备了颜色最接近光电转换部分颜色的绝缘油墨,并用于在太阳能电池的表面露出的部分上形成绝缘图案薄膜。或者,关于具有高反光性、高吸光性、高透光性和特殊的波长带吸收的绝缘图案和导电图案,用和上层相同的油墨覆盖的油墨掩盖法是有效的。
为得到苍白色或浅色表面颜色和高质量的太阳能电池,一种太阳能电池表面已由上述的油墨掩盖法使成为一致颜色作为最低层,在其光接收面侧以散射透光层作为上层,并且有选择性反射层的方法是非常有效的。
如由L*a*b*颜色空间(各自表示亮度、红色和蓝色)所表示的,光电转换层和涂以绝缘颜色油墨的不为光电转换部分的各区之间的色差ΔE为3.0或更低。另外,经散射透光层(基于白色滤光片)察觉的太阳能电池表面颜色和接近太阳能电池表面颜色经散射透光层(基于白色滤光片)察觉的绝缘颜色油墨的颜色之间的色差ΔE优选达3.0,更优选达2.0。在此情况下,作为参考的太阳能电池表面颜色的颜色空间L*a*b*各为(44.51、6.47、2.24),而所用的白色滤光片(散射透光层)表面颜色的L*a*b*颜色空间是(69.12、0.93、3.88)。白色滤光片的总透光度Tt为47.9%、散射透光度Td为33.8%,浊度值为70.6%。
对于使用普通苍白色表盘的太阳能手表,接近太阳能电池的表面颜色最有效的绝缘颜色油墨是最普通的绝缘油墨,其颜料成分是具有高遮盖力的金红石型二氧化钛和具有耐光性的褐色颜料(例如,氧化铁红)的混合物。
另外,至于户外用的手表,如运动潜水手表,设计为黑色表盘的太阳能电池手表是最普通的。在此情况下,具有低亮度的滤光片,如黑色滤光片在可见光谱中总透光度为40-20%,浊度值为10-15%,表示散射透光度实际上是零,亮度L*低至约10常用作散射透光层。当将这种滤光片用在光接收面侧时滤光片本身的色调肉眼看比太阳能电池表面颜色的色调经滤光片看更带黑色。结果,不需要使用高总透光度和散射透光的上述的苍白色的滤光片所需要的使电池表面颜色一致的措施。这在肉眼观察中构成最少的奇特的感觉:作为太阳能电池非产能区的上层要覆盖的掩盖油墨的色调,接近于由电池的光电转换膜经黑色的低亮度的滤光片和肉眼看基本上黑色的反射光的色调。在这种情况下,即使产能膜和油墨之间的色差ΔE超过3.0,依赖黑色调和黑表盘(用在典型实施例的表盘的Tt为2.6%,Td为2.7%,浊度为10.7%)非常低的透光率以及基本上消除了散射效应,仅当黑色滤光片使用时,由电池表面反射和基本上由经滤光片(黑表盘)由肉眼可看到的返回光的色调主要依赖于滤光片(黑表盘)的光学性能。此手表肉眼看具有基本上不依赖电池内不同区域间色差的大小的一致的黑色调,只要高反射金属光泽区域部分不存在。
图1是不完全的截面图,说明用于制备本发明的太阳能电池组件的太阳能电池的方法的一个步骤。
图2是不完全的截面图,说明用于制备本发明的太阳能电池组件的太阳能电池的方法的一个步骤。
图3是不完全的截面图,说明用于制备本发明的太阳能电池组件的太阳能电池的方法的一个步骤。
图4是不完全的截面图,说明用于制备本发明的太阳能电池组件的太阳能电池。
图5是平面图,说明环形太阳能电池的典型排列。
图6是不完全的截面图,说明本发明的太阳能电池的另一种结构。
本发明的太阳能电池组件在其光接收面上包括光电转换部分,用以将入射光转换为电,此光电转换部分包括硅,在不为光电转换部分的区域内还包括绝缘彩色薄膜,绝缘彩色薄膜用于降低来自光电转换部分由含至少光的可见光谱的反射生成的色差ΔE。
光电转换部分相当于所谓的发电层,在太阳能电池中,一般有单晶硅、多晶硅、无定形硅(α-Si)等,在其中加入预定的杂质形成pn结或pin结。
太阳能电池的光接收面是一种表面,在其上光-电转换需要的光是入射光,一般指定具有光电转换部分和其它结构的表面,但不包括在太阳能电池的面侧的保护层。
不为光电转换部分的区域指的是用于太阳能电池产能功能所需的各种结构或结构薄膜,不包括光电转换部分。其它区域是,例如,绝缘图案和导电图案,以及更能说明的是,收集器电极如Ag导电薄膜,Ag的外围接线电极(由Cu、Cu化合物、Ni、Mo、Al的金属薄膜和在其中分散有金属为粒子的导电膜)、干法的碳黑的薄膜或微粒子分散的薄膜、石墨化的碳黑等、金属微粒子同碳微粒子混合的导电薄膜、ITO透明电极、ZnO、SnO2等以及印刷绝缘薄膜。
绝缘彩色薄膜用于降低来自光电转换部分的色差ΔE。尤其是,尽管最低限是不严格的,但是,色差ΔE优选最高为3.0,更优选为最高2.5,最优选为最高为2.0。即,通过涂施接近太阳能电池表面颜色的绝缘颜色油墨形成绝缘颜色膜并调节使来自光电转换部分色差ΔE,包括基础部分的颜色和反射率,优选达3.0,这时,成膜表面从外面观察到。当散射透光层(基于苍白色的滤光片)如在后面所讨论的,用于配合时,光电转换部分和在其它区域涂施和形成的绝缘彩色薄膜之间的色差ΔE如经散射透光层肉眼察觉的优选达3.0,更优选为达2.0,尤其达1.5。
或者,作为不为光电转换部分的区域的导电图案,更能说明的是,梳形收集器电极如Ag导电薄膜、Ag的周围接线电极(由Cu、Cu化合物、Ni、Mo和Al为特征的金属薄膜和具有金属微粒分散于其中的导电薄膜)由干法得到的碳黑、石墨化的碳黑的薄膜或微粒分散的薄膜、金属微粒同碳微粒混合的导电薄膜的颜色可以调节,使导电图案和光电转换部分之间的色差落在上述的规定范围内。
色差ΔE一般由国家标准局(NBS)单位表示,可以按照下面方程式由已涂绝缘彩色薄膜的区域和光电转换部分之间的ΔL、Δa和Δb(可以由在JIS-Z8722和JIS-Z8727中讨论的三激发值X、Y、Z计算的指数)测定L*、a*、b*颜色空间中每一亮度L*、红色a*和蓝色b*的色差。
ΔE=[(ΔL)2+(Δa)2+(Δb)2]1/2
较小的ΔE值说明涂有绝缘彩色薄膜的区域颜色接近光电转换部分的颜色。一般来说,ΔE大于3.0,可以察觉一定的色差。ΔE为12.0或更大的值可以区别两种完全不同种类的颜色。
绝缘彩色薄膜优选由分散在基料中的颜料粒子组成。特别优选的为分散的颜料粒子薄膜,此薄膜具有低反射率,如果反射诱导光的漫反射。
这里用的基料要求不严格,只要求中等程度的耐气候和耐光,能够坚固粘合在除了光电转换部分外的用于产能功能必须的各种结构和结构薄膜,并使颜料有效地分散于其中。当不为光电转换部分的区域由丝网印刷方法用图案覆盖时,油溶性树脂优于含水乳胶,因为,薄膜对基础的干层可以很好地润湿。油溶性树脂的实例包括环氧树脂、特别是苯氧基树脂、烯烃树脂、希望是聚乙烯树脂、聚丙烯树脂或聚异丁烯树脂;乙烯基树脂,希望是乙烯-醋酸乙烯酯共聚物树脂、氯乙烯-醋酸乙烯酯共聚物树脂或醋酸乙烯酯树脂或乙烯-氯乙烯-醋酸乙烯酯树脂;丙烯酸树脂、希望是甲基丙烯酸酯树脂、聚丙烯酸酯树脂、乙烯-丙烯酸乙酯共聚物树脂或乙烯-甲基丙烯酸共聚物树脂;酚醛树脂;聚氨酯树脂;聚酰胺树脂;聚酯树脂;酮树脂;醇酸树脂;松香树脂;氢化松香树脂;石油树脂;氢化石油树脂;马来酸树脂;丁醛树脂;萜品树脂;氢化萜品树脂;以及苯并二氢吡喃-茚树脂;苯氧基树脂、环氧树脂、聚氨酯树脂和饱和的聚酯树脂是优选的。这些树脂的特点是由交联建立的耐气候性,作为有材料分散于其中的复合材料层的机械强度、对基础的有机材料膜如油墨膜或基体膜或无机材料如ITO和α-Si的粘合力以及在长期使用中对环境变化的稳定性。由于分子结构设计的高度灵活性,这些树脂是具有优势的。这些树脂可以单独使用也可以两种或更多种混合使用。
粒子颜料不是关键,只要求能提供接近制造光电转换部分材料的颜色。由这些具有高遮盖力和染色能力的颜料选择一种或多种。特别是,具有高遮盖力的白色或接近无色粒子的颜料如二氧化钛、氧化锌、高岭土、黏土、碳酸钙、碳酸钡、硫酸钙、硫酸钡、碳酸镁、氧化硅、氧化铝和硅藻土是优选的用在同具有高染色能力的颜料,如氧化铁红、碳黑、微粒石墨、普鲁士蓝、钴蓝和酞菁颜料混合。特别是,具有高遮盖力和高白度的金红石型二氧化钛(TiO2)的加入能够产生菘兰色调的中间体颜色,这种颜色可以有效地遮盖下面的光接收面,并接近下面颜色的射散色调。特别是当在顶部总透光率至少30%的苍白色或浅颜色的散射滤光片在顶部时,在完成色调的一致上是有效的。
具有染色力的细粒氧化铁是优选的,因为它能提供各种颜色的选择,如紫色、褐色、红色和黑色以配合具有堆积在无定形硅膜上ITO透明电极结构的太阳能电池的色调,并且象二氧化钛一样耐光和耐气候。
在达到入射光的适当漫反射和整个电池的色调一致性,使用具有颜料或染料分散于其中的涂层控制色调是有利的。例如,为防止在光电转换部分和贡献于用干法以面罩图案覆盖的非光电转换部分的金属彩色薄膜高反射率之处之间的明显反差,可以通过丝网印刷方法在受光侧上的电池的顶端提供颜料分散的色调可控涂层,从而覆盖非光电转换部分。当散射透光滤光片置于其上,可有效缓解光电转换部分的色调差。从而,整个电池的色调一致性可经滤光片用肉眼察觉。
同样,如果希望,还可以用上述颜料连同现有技术已知的颜料进行调节,这些已知颜料是,例如,碳黑、镉红、钼红、铬黄、镉黄、钛黄、氧化铬、铬绿、钛钴绿、青色、普鲁士蓝、钴蓝、偶氮颜料、酞菁颜料、二氢吖啶二酮颜料、异二氢氮杂茚酮颜料、二噁嗪颜料、杜烯颜料、苝颜料、苝酮颜料、硫靛颜料、醌邻羧基苯乙酮颜料和金属配合物颜料。
当单晶硅或多晶硅用作太阳能电池而在顶部无光散射层时,为均衡色调,使用普鲁士蓝、钴蓝、或酞菁颜料作为单一或主要颜料是有效的。
同样,优选使用染料代替或同上述颜料混合使用。这些染料的典型是油溶性染料、偶氮染料、金属配合物盐染料、萘酚染料、蒽醌染料、靛蓝染料、阳碳染料、醌亚胺染料、呫吨染料、花青染料、喹啉染料、硝基染料、亚硝基染料、苯醌染料、萘醌染料、酞菁染料和金属酞菁染料。
颜料的主要粒子的平均粒径约为0.01-0.8微米。颜料的混合用量优选为基料的30-500%,更优选为50-380%(重量)。
至于形成绝缘彩色薄膜的方法,具有基料和颜料粒子分散于和溶解于分散介质中的绝缘颜料油墨可以用丝网印刷方法涂于或施于太阳能电池受光表面的预选区域。当基础不是具有高反射率的银糊电极时,涂层厚度约15-30微米,当基础不是金属时,涂层厚度约10-25微米。
分散介质优选是在其中的基料和颜料是可溶的和可分散的,对太阳能电池表面的结构不溶解或不起反应。实例包括环己酮、异佛尔酮、γ-丁内酯、N-甲基吡咯烷酮、萜品醇、辛烷、异辛烷、癸烷、异癸烷、萘烷、壬烷、十二烷、异十二烷、环辛烷、环癸烷、苯、甲苯、二甲苯、1,3,5-三甲基苯、Isoper E、Isoper G、Isoper H和Isoper L(Isoper是Exxon的商标名称)Shelsol 70和Shelsol 71(Shelsol是Shell Oil的商标名称)、Amsco OMS和Amsco 460溶剂(Amsco是Spirits的商标名称)和醋酸酯如醋酸丁基卡必醇酯和醋酸丁基纤维素。这些可以单独使用或多种混合使用。所加的基料和颜料量约为分散介质的40-180%。
除了上述成分外,如果需要,还可加入添加剂,如分散剂、防沫剂和均化剂。这些添加剂的总量可达约20%重量。
作为太阳能电池组件的光接收面上的上层可以有散射透光层,以改进显示质量或增加设计效果。散射透光层一般基于白色树脂板,如果需要,从设计观点出发调节成适当的色调,在某些情况下,是蓝或绿色,或在暴露于UV光下有发荧光的能力。制造散射透光层的材料不是关键,可选自透明树脂,如丙烯酸树脂、甲基丙烯酸树脂、聚碳酸酯树脂、聚苯乙烯树脂、聚酯树脂和聚丙烯酸酯树脂。用在这里的其它优选材料通过在上述的树脂中均匀分散白色填料、上述树脂的任何细粉、折射率大不相同的透明无机或有机填料或细泡。材料可以是浅色到不干扰发电的程度的颜色。
尤其是在设计因素是很重要的手表应用中,有时表盘使用黑色或接近黑色的散射透光层。在此情况下,加入可提供颜色至少20%透光度的必要量的碳黑或石墨细粒子,20%是发电所需的最低透光度。
关于这些黑色的低透光度的表盘用作散射透光层,尽管基础的电池的光电转换区和非光电转换区之间的色差至少为3或至少为6,但是,基础电池对颜色一致性的影响由于插入表盘而缓和。更为有利的是,非光电转换区避免了具有高反射率的金属光泽颜色,并由相似于表盘的黑色和低反射率的黑色的颜色涂层所覆盖。此散射透光层优选在可见光谱中的总透光度至少20%,更优选为至少50%,更优选为至少70%,浊度至少50%,更优选为70%。百分“浊度”是散射光的透光度除以总的透光度乘以100。散射透光层的厚度约为25-800微米。
除了散射透光层外,还可以有一选择性反射层。在接受可见光后,例如,选择性反射层是选择性地反射或透射波长带450-480纳米(蓝)、550-580毫微米(黄绿)或590-620毫微米(橙)的光。和上述的散射透光层一样,选择性反射层可以改进显示质量和增加设计效果。例如,选择性反射层是在玻璃基体上的介电多层膜,或半透明银薄膜作为最上层以及交错有分光镜、透热镜(冷镜)的干涉滤光片和具有少量颜色颜料分散作为填料的散光层。选择性反射层的厚度一般为约100-1,000微米。
接着,讨论包括在本发明的太阳能电池组件的太阳能电池。
本发明的太阳能电池见图4,例如,在基体1上包括下面电极2、具有pn结或pin结的α-Si等的含硅层3、隔离层4、ITO的透明电极5等。可以理解,此电池还包括第一隔离层6、第二隔离层7、接线电极8和反侧引出电板9。图4是说明太阳能电池典型结构的不完全的截面。
在此太阳能电池中,光电转换部分是指光能经过透明电极5并进入含硅层3,在其内部产生电动势的一个区域,电动势经下面电极2和透明电极5取出。光电转换部分以外的区域包括隔离层4、第一隔离层6、第二隔离层7以及接线电极8。这些部分不参与发电,是由不同于光电转换部分的材料制成。结果,如果它们位于从外部能用肉眼看见的区域并有一定的差别,这些结构元件干扰设计。因此,在这些区域提供了绝缘颜色膜,使得色差降低到或低于规定值,确保设计的一致和协调。
另外,例如,如图5所示,环形太阳能电池21包括光电转换部分22、隔离部分23用以隔离光电转换部分22形成串联连接结构连接27、28和29,电池电压逐步增加、每个有串联连接的接线结构以及引出电极25、26。隔离部分23一般比光电转换部分22颜色浅,而由此结构伸至底部的连接27、28、29和引出电极25、26当使用导电银糊高反射率时对于接线电极是金属色。如果这些结构位于可从外部察觉的地方,就会干扰设计的一致。特别是,当太阳能电池加在手表的表盘中时,从设计方面就有更严格的要求,即,一致和协调的要求就更加重要。因此,通过在这些区域也提供绝缘彩色薄膜,将色差降低到或低于规定值,确保设计的一致和协调。如果基础部分如在金属部分一样有高反射率,可以形成高遮盖油墨薄膜的绝缘颜色膜,例如,任选地通过涂2或更多次,形成厚度为约30微米的膜。
在形成绝缘颜色膜后,优选为太阳能电池提供以表面涂层构件或包囊密封构件以保护电池结构部分免受机械损伤、氧化和腐蚀。在这些保护构件中,层压板优选用于密封。作为特别优选的层压膜,下面的热熔织物用于密封。
为降低太阳能电池组件的成本,如果可以与电池的耐环境因素相平衡,可以使用透明树脂的保护涂层。即,通过如在日本专利申请9-320476中讨论的使苯氧基树脂与三聚氰胺热固化得到的透明绝缘膜可以用作专用的保护膜。
当采取层压时,即在太阳能电池的表面上形成层压膜层,可以达到和电池体受光部分的最外表面和表盘的后表面之间提供的间隙相同的效果,正好相当于透明层压膜载体体的厚度(例如,约50-100微米)。经表盘肉眼观察,太阳能电池色调透过的程度受到表盘光散射效应有利地降低。因此,绝缘颜色层的提供特别重要,尤其是对于具有这种层压密封的太阳能电池。
这里所用的热熔织物在具有透光性和耐热的树脂载体体的至少一个表面上含热固性树脂的缓冲粘合层。
因为树脂载体体上的缓冲粘合层是由具有橡胶弹性的热固性树脂生成,此热固性树脂是在其分子链间具有高交联密度的柔性树脂,所以缓冲粘合层随温度和湿度的变化动态物理性质变化最小。动态物理性质的很慢变化使缓冲粘合层可以在长时间保持其功能。另外,由于玻璃化转变温度Tg至少65℃和/或耐热或连续使用温度至少80℃的透光树脂薄膜用作树脂保护膜,所以,热熔织物即使在直接暴露在阳光或其它光源下也不变质。
Tg为至少65℃和/或耐热温度(Tw)为至少80℃的透光、耐热树脂的载体体包括含氟树脂膜,例如,均聚物,如聚对苯二甲酸乙二醇酯膜(Tg 69℃)、耐热的聚萘二甲酸乙二醇酯膜(Tg 113℃)、聚氯三氟乙烯(PCTFE,Tw 150℃),如由Daikin Industry K.K.购得的NeoflonCTFE、聚偏氟乙烯(PVDF Tw,150℃,Tg,50℃)如由Denki Kagaku KogyoK.K.购得的Denda DX膜和聚氟乙烯(PVF,Tw,100℃)如由E.I.duPont购得的Tedlar PVF膜以及共聚物如四氟乙烯-全氟乙烯基醚共聚物(PFA,Tw,260℃)如由Daikin Industry K.K.购得的Neoflon PFA膜、四氟乙烯-六氟丙烯共聚物(FEP,Tw 200℃)如由Toray K.K.购得的FEP型Toyoflon膜和四氟乙烯-乙烯共聚物(ETFE)如由E.I.duPont购得的Tefzel ETFE膜(Tw 150℃)和由Asahi Glass K.K.购得的AFLEX膜(Tg83℃);芳族二羧酸-双酚共聚的芳族聚酯聚芳基化物膜(PAR铸件,Tw 290℃ Tg 215℃)如由Kanegafuchi Chemical K.K.购得的Elmeck以及聚甲基丙烯酸甲酯膜(PMMA,Tg 101℃)如由Sumitomo Chemical K.K.购得的Technoloy R526;含硫聚合物膜,如聚砜(PSF,Tg 190℃)如由Sumitomo Bakelite K.K.购得的Sumilite FS-1200和聚醚砜(PES,Tg 223℃)如由Sumitomo Bakelite K.K.购得的Sumilite FS-1300;聚碳酸酯膜(PC,Tg 150℃)如由Teijin Chemical K.K.购得的Panlite;功能降冰片烯树脂(Tw 164℃ Tg 171℃)如由Nippon Synthetic RubberK.K.购得的ARTON;聚甲基丙烯酸酯树脂(PMMA Tg93℃);烯烃-马来酰亚胺共聚物(Tg≥150℃)如由Toso K.K.购得的TI-160;对芳酰胺(Tw200℃)如由Asahi Chemicals K.K.购得的Aramica R;含氟聚酰亚胺(Tw≥200℃);聚苯乙烯(Tg 90℃);聚氯乙烯(Tg 70-80℃)和纤维素三醋酸酯(Tg 107℃)。其中,耐热的耐热的聚萘二甲酸乙二醇酯(Tg113℃)是优选于PET膜,因为从Tg看耐热性和长期使用的耐热性、杨氏摸量(或硬度)、破裂强度、热收缩因子、低聚物低含量、气体屏障、抗水解、湿气透过性、膨胀的温度系数、和物理性质的光降解等方面是优越的。与其它聚合物比较,聚萘二甲酸乙二醇酯膜具有破裂强度、耐热、尺寸稳定性、湿气透过性和成本低全面的优点。
树脂载体体的玻璃化转变温度Tg应至少为65℃,优选至少为70℃,更优选至少为80℃,最优选至少为110℃。Tg的上限不是关键,尽管一般为约130℃。耐热和连续使用温度至少为80℃,优选至少100℃,更优选为至少110℃。耐热温度的上限不是关键,但是越高越好,一般为约250℃。树脂载体体的厚度按照其中要层压的构件的参数和用于载体体的所要求的强度和抗弯刚度适当地决定,尽管一般为约5-100微米,优选为约20-90微米。厚度低于5微米的树脂载体体表面保护效果不好,将粘合层涂于其上得到的热熔织物易于形变。厚度大于100微米的树脂载体体在装有微粒Al2O3或SiO2情况下的透光性低,不易层压成筒形,因此妨碍连续制造。树脂载体体在热压粘合后的温度0℃和/或120℃的优选动态模量变化率在30%内,更优选为20%内。动态模量的大小优选为1×109-1×1012达因/厘米2,如果在0℃-120℃热压粘合后的动态模量超过30%,产生的内应力超过缓冲粘合层的缓冲作用,引起粘合力的降低、热熔织物的剥离以及层压层的变形。
载体体的“透光度”是指至少70%,优选至少80%的可见光谱的光可由载体体透过。
树脂载体体的分子取向比(MOR)值(表示分子取向程度)优选为1.0-3.0,更优选为1.0-2.0,尤其是1.0-1.8。MOR位于这一范围的值确保层压层很少变形。在Shigeyoshi Osaki在1998年3月在Convertech发表的“使用微波分子取向计对薄膜片的质量控制”(Quality Controlof Film Sheets Using Microwave Molecular Orientation Meter)中和Y.Zushi,T.Niwa,S.Hibi,S.Nagata和T.Tani在Seikei-Kakou1995年17卷11期发表的“在双轴拉伸中分子取向行为”(MolecularOrientation Behavior on Biaxial Stretching)中讨论了表示分子取向程度的MOR值。MOR值越大,表示各向异性越大,MOR值为1,表示各向异性最高。
至于分子取向程度,单一的树脂膜在不同位置可以有不同的MOR值。特别在双轴拉伸膜的情况下,膜常常在其边缘显示较高度的分子取向,边缘在拉伸中已经固定。考虑到这一趋势,建议即使当用高度满意的分子取向的树脂制造的薄膜,在用于本发明前也应在几处检测薄膜的分子取向度并证实分子取向度在所要求的范围内。
MOR的测量,例如将微波指向转动的样品,并测定透过的微波的强度。更具体地说,将聚合物的偶极距和具有某频率的微波电场之间的相互作用与它们的矢量的内积相关。当样品在微波极化电场转动时,透过的微波强度由于介电常数的各向异性而变,由此,可以测定分子取向度。在测量中所用的微波不是关键,尽管一般使用频率40亿赫兹或12亿赫兹。用此原理测量分子取向度的仪器是市购的如Shin-Oji Paper K.K.的分子取向计MOA-5001A、5012A、3001A和3012A。另外,可以用X-射线衍射、红外二色性的、偏光荧光显微镜、超声、光学和NMR分析测定。
优选,在上述范围内的MOR值还应适用于热熔织物要涂的构件的成分,例如,柔性基体。
缓冲粘合层含热固性树脂和有机过氧化物。典型的热固性树脂是醋酸乙烯酯含量约15-50%重量的乙烯-醋酸乙烯酯共聚物(EVA)。
有机过氧化物选自在温度80℃以上,特别是90℃以上分解产生自由基的化合物。考虑到混合后有机过氧化物稳定性,分解温度优选应至少为70℃,半衰期约10小时。用于热固性树脂的有机过氧化物的实例包括2,5-二甲基己烷-2,5-二氢过氧化物、2,5-二甲基-2,5-二(叔丁基过氧)己烷-3、二-叔丁基过氧化物、2,5-二甲基-2,5-二(叔丁基过氧)己烷、二枯基过氧化物、α,α’-双(叔丁基过氧异丙基)-苯、正-丁基-4,4-双(叔丁基过氧)戊酸酯、2,2-双(叔丁基过氧)丁烷、1,1-双(叔丁基)-3,3,5-三甲基环己烷、叔丁基过氧苯甲酸酯和过氧化苯甲酰。这些过氧化物可以单独使用或两种或多种以所要求的混合比使用。有机过氧化物混合物的用量优选为每100份热固性树脂为低于10重量份,更优选为0.5-6重量份。
如果要求,可以加入UV吸收剂。UV吸收剂的加入可以改进薄膜本身的耐UV光性,并防止构成光电转换部分的α-Si等的薄膜的因光恶化。特别是当聚合物薄膜位于受光表面一侧时,具有UV屏蔽功能的二苯酮或苯并唑优选加在受光侧表面或聚合物内,还可通过表面处理或混合加在以可交联的EVA为主的缓冲粘合层中。
作为UV吸收剂,可以使用各种芳族有机化合物。特别是下面的化学通式1的化合物是有利的,因为在长期使用时可使在膜表面变黄最少和渗出最少,其中苯并三唑化合物是特别优选的。另外,氧化锌(ZnO)微粒同样可以用作化学稳定的无机UV吸收剂。
通过将ZnO微粒分散在全氢聚硅氮烷(Mn=600-2,000)(Tonen K.K.的N-V120)的二甲苯溶液中,然后将分散液涂在聚醚砜树脂上成厚度约0.5微米,在90℃(80%RM)下进行蒸汽氧化一小时(在催化剂三甲胺5%水溶液存在下)形成透明的氧化硅薄膜,此薄膜在低温下是浓密的。其中加入ZnO使得SiO2/ZnO比为45/55重量。当这一薄膜在太阳能电池的受光表面侧的顶部形成透明载体体时,作为无机UV-切割、透明保护膜用以有效改进电池的户外耐气候性。
Figure A9980038400201
如果希望,可以加入诸如固化促进剂等的添加剂。在一典型的具体实施方案中,其中,热熔织物放在一构件上形成层压层,将用RSi(OR)3表示的有机硅烷化合物(式中R表示C2H5)混入缓冲粘合层,混入量为按缓冲粘合层中防沫剂或泡沫抑制相同的基础计为最多6重量份。在加热/压缩步骤中,有机硅氧烷化合物同有机过氧化物反应生成自由基,自由基成为乙烯-醋酸共聚物的交联剂,因此最终加入缓冲粘合层中。有机硅氧烷化合物的其它功能是在热熔织物以卷形储存时或作为部分堆积时防止缓冲粘合层和载体体背面之间的粘结和促进分离。
可以按照有机过氧化物的类型、使用环境以及热熔织物层压到的元构件来适当地调节缓冲粘合层的厚度。缓冲粘合层的优选厚度约为3-500微米,更优选为约3-50微米,最优选为约10-40微米。缓冲粘合层低于3微米,则缓冲效果差,而当厚度高于500微米时,将会使透光率降低,穿孔后常留下毛刺。应指出的是,因为缓冲粘合层远比载体体透光多,所以对于户外使用或在高照度下使用最多达10,000微米的厚度是可以接受的。缓冲粘合层在热压粘合后的优选动态模量在20℃为5×109达因/厘米2,在100℃至少为1×106达因/厘米2,更优选在20℃为1×109达因/厘米2-1×106达因/厘米2,在100℃为2×106达因/厘米2-1×109达因/厘米2。另外,缓冲粘合层在热压粘合后在最高达20℃的温度范围内优选有tanδ最高峰值,更优选在-100℃-+15℃。
特别当热熔织物用作层压层保护膜时,缓冲粘合层仅提供在树脂载体体的一个表面。当太阳能电池基体和层压膜载体体在加热后的热收缩因子因材料不同而有很大差异时,如在后面将讨论的,缓冲粘合层在树脂载体体的两个表面提供,这样,电池的层压层成为平直的。双侧网在严酷的户外环境下使用是有利的。当热熔织物用作制造光学记录介质和平面显示的结合工具时,如后面所讨论的,缓冲粘合层提供给树脂载体体的任何表面。在双侧网中,树脂载体体和缓冲粘合层优选应在上述厚度范围内,缓冲粘合层还可以用作4-6毫米厚的隔离板。
缓冲粘合层可以用任何已知的方法提供给树脂载体体,例如,涂布或挤压涂布,树脂载体体和缓冲粘合层的总厚度优选为10-600微米,更优选为10-120微米,进一步优选为30-90微米,最优选为60-80微米。
在本发明的热熔织物中,缓冲粘合层优选压花在其表面。特别是当热熔织物进行加压层压时,优选形成压花图案,特别是在层压时和进料方向相同方向伸长的条纹图案。当热熔织物用作层压构件时,压花图案的方向是任意的。按照层压方向或要层压的构件的类型选择压花图案的最适宜的方向。压花或条纹形成为气泡的逸出通道,使夹带气泡减至最少。特别是当通过滚筒层压机将薄膜沿层压机滚筒卷绕并借助螺纹滚筒将构件提供与其时,气泡将在层压方向找到逸出道路。由压花要形成的条纹的大小、间隔和密度是不严格的。例如,缓冲粘合层优选压花到约0.4-10微米的表面粗糙度,更优选为0.6-0.8微米,平均峰-峰间隔50-180微米,更优选为60-140微米。压花方式不是关键,可以使用传统的压花方法。或者,隔离膜一旦经压花,则压花图案转移到缓冲粘合层。
接着,讨论制造太阳能电池组件的方法。在透光、耐热Tg至少65℃的树脂载体体和要层压的构件,一般具有上层或要保护的光接收面的太阳能电池板的至少一个表面的上的缓冲粘合层提供热熔织物。热熔织物优选置于构件上,使得网的缓冲粘合层同构件的光接收面紧密接触。将此装配件经过滚筒层压机,在此优选在100-120℃和20-70克/厘米的线形压力下进行热压粘合。尽管参考件主要是在构件上仅有一个热熔织物的一侧层压层,但是,根据要层压的构件类型和使用环境也可以使用在构件的相反侧具有热熔织物的双侧层压层。在双侧层压层的情况下,在热熔织物之间的构件的夹心同面向构件的缓冲粘合层可以经过滚筒层压机以达到热压粘合。
然后,将这样得到的复合材料板切成预定尺寸的部分。将板部分堆积起来并接受在装有加热和压缩工具的容器中,优选在一高压釜中。优选在干空气中或氮气中,特别在氮气中,将基本上均匀的机械压力0.01-5.0公斤,特别是0.1-5.0公斤施于板部分的堆积上,施加方向垂直于板部分的主要表面,一般呈垂直方向,同时将堆积在温度至少70℃,特别在140℃-180℃加热。(加热时的压力是3-15公斤/厘米2)。这种热加压继续进行约30-120分钟以达到热交联、脱气和牢固粘合,得到本发明的层压层。加热和压缩工具所施加的加热温度和静压力可以根据具体的构件和使用的热熔织物加以调节。机械压力可以在任何要求的时限施加。优选压力甚至保持到加热后和直到冷到室温。一种优选的方法涉及在粘合层的固化温度以上加热,更优选在温度70-100℃,施加压力5-10公斤/厘米2,并保持此温度和压力15-60分钟,以除去气泡的步骤。接着是通过在高温,更优选地是温度100-170℃,特别是在120-170℃和压力3-15公斤/厘米2,特别是5-10公斤/厘米2下再保持5-60分钟,特别是15-60分钟以热固化。
因为层压是通过滚筒层压机进行,所以不规则性对要层压的构件的影响减至最小,例如在太阳能电池上梳形电极的精细图案或电池隔离用的绝缘体的精细图案。更具体地说,构件/热熔织物装配体送到滚筒层压机,同时,构件的结构表面同缓冲粘合层接触,缓冲粘合层加热到更流态化。装配体夹在层压机的弹性滚筒之间,同时向前移动。可能留在图案线隐蔽处的气泡通过在弹性滚筒之间产生的滑动应力由加在其上的液压力有效地排除。
在滚筒层压机中未能完全排除的剩余的气泡在随后的热交联步骤通过加热和压缩除去。在热压粘合阶段,优选将耐热弹性体板放在每一复合材料板的上(受光)面上,金属面板放在其上。许多金属面板/弹性体板/复合材料板部分单元放在其它的上面。将机械压力经过SUS等的高刚度平滑板由压缩工具如气动钢筒垂直施加在堆积上。用此法,在塑料基体上具有功能薄膜的组件板同热熔织物层压成已校正成平滑的装置中,功能薄膜的热收缩和内应力已使塑料基体随机形变。
可以理解,要层压的构件由许多不同的部件组成,这些部件具有不同的刚度和厚度,例如在太阳能电池的情况下的α-Si、ITO、铝合金、层内绝缘膜和密封绝缘保护膜。在加热交联步骤中通过加热加和压缩将机械压力施加在位于上述层结构的层压层的结构上,部件同热熔织物层压和集成,从而在形成结束时各层具有不同热收缩因子和内应力的复合材料板所含的随机形变可以很容易校正。另外,许多复合材料板部分的堆积受到热压,在许多板部分上可以同时进行平直校正,这对大规模生产是有利的。与涂布比较,在给予表面以卓越的平坦和光滑方面热熔织物层压是有利的,得到的产品具有良好的外观。这就增加了产品的商业价值。
尽管在集成的层压结构中,载体体和层压构件构成构件的大部分,决定了装置的厚度,但是,平度和滑度达到至少等于使用厚度约100微米的金属例如(SUS)和玻璃硬载体体的程度。与使用这些金属或玻璃载体体比较,层压板可以用气动压力装置加工穿孔和用YAG激光工具通孔成形。因此,同用金属载体体或玻璃载体体的板结构比较,薄膜装置可以用简单的工具高生产率地精细加工,从而有利于降低成本和大规模生产。与丝网印刷方法的图案比较,层压方法可以很快适应装置设计的变化,达到进一步降低成本。
要堆积的耐热弹性体板不是关键,只要求能耐上述温度。可以从已知的耐热弹性体中适当选择,例如,耐热硅橡胶、氟橡胶、(例如Viton)和氟硅橡胶。耐热弹性体板的厚度不是关键,尽管一般为约0.5-10毫米。
金属面板可以由铝、不锈钢、黄铜或钢板制造。因为质轻和传热,铝是优选的。金属板的厚度不是关键,尽管一般为0.2-3毫米。金属板可以用已知方法进行表面处理,例如铝阳极极化,电镀,如镀铬、镍或镍-铬,或涂漆。
在本发明的太阳能电池组件中,为了降低成本,不用上述的热熔织物,而是用耐光和耐气候的涂层提供给太阳能电池表面。与上述的热层压装配体比较,这种树脂涂层在平整和耐气候方法较差,但是,因为可以省去层压和压平步骤,所以生产成本低,适合于大规模生产。特别当组件内置于设备中或主要用于户内使用的情况,是很适用的。
对于用于这一目的的树脂涂层,具有透明、韧性、对透明电极等的粘合性、表面硬度、耐热性、耐冷冻、低的湿气吸收和低的气体屏蔽的全面平衡是优选的。特别是,为了树脂能溶于有机溶剂,选用分子量(Mn)约2,000-3,000或更低,并保持作为涂层的上述机械强度。能够实现上述性能的基础树脂优选是用三聚氰胺或不变黄的异氰酸酯在低于200℃交联的热固性树脂。不变黄的异氰酸酯是低温固化的封端的异氰酸酯,(在其中,不变黄的异氰酸酯化合物的异氰酸酯基团用乙酰基丙酮(Asahi Chemicals K.K.的Duranate“MF-K60X”)的活性亚甲基封端,和低温固化的封端的异氰酸酯,在其中,不变黄的异氰酸酯化合物异氰酸酯基团用MEK、肟等封端)。200℃是塑料载体体的耐热温度,交联形成高分子量树脂。这些热固性树脂改进了透明性,由于老化和光降解引起的颜色变化最少。
列举的优选氟化学树脂包括Lumiflon树脂(Asahi Glass K.K.)这是三氟乙烯或四氟乙烯同乙烯基单体的共聚物,其中,乙烯链的H部分为-OR、-OH、或-ORCOOH取代;脂族或脂环族聚酯或聚醚预聚物同不变黄的异氰酸酯化合物缩合得到的聚氨酯树脂(例如,NipponPolyurethane K.K.的PTMG/Colone HX固化产品);饱和的聚酯树脂(这些乙二醇或新戊醇同邻苯二甲酸或己二酸的酯的共聚物,例如ToyobaK.K.的Viron)用上述的不变黄的异氰酸酯或三聚氰胺化合物的固化产品;环氧树脂(例如Yuka Shell K.K.的Epikoat 1009)或苯氧基树脂(UCC的PKHH)用上述固化剂的固化产品;以及具有能聚合功能的官能团和用部分皂化的丙烯酸多醇或上述的不变黄的异氰酸酯化合物固化的磷嗪单体(Idemitsu K.K.的PPZ单体)。
可以通过涂布、丝网印刷或旋涂等方法形成涂层。
实施例
实施例1
制备方法
如图1所示,将包括有下面电极2、具有pn结或pin结的无定形硅层3、绝缘层4和在柔性基体上形成的ITO透明电极5的太阳能电池形成结构用激光加工装上通孔10和开槽10a。
接着,如图2所示,在形成开槽10a的ITO透明电极层5上形成第一隔离层6和第二隔离层7。又如图3所示,在第一隔离层6和通孔10上形成接线电极层8。
接着,如图4所示,如果需要,在形成反侧引出电极9后,将按照下面的绝缘颜色树脂组成1制备的绝缘颜色油墨涂在接线电极8上形成绝缘颜色膜11。
使用其颜色接近太阳能电池的光电转换部分的表面颜色的绝缘颜色树脂组成1。在示于图4中的太阳能电池的情况下,通过将其涂在绝缘膜4(主要印刷树脂)上,隔离层6、7暴露在太阳能电池表面上(第二印刷树脂),银糊电极用作接线电极8(用于抑制该电极的高反射率)。
                                   绝缘颜色树脂组成1
                                              重量份
苯氧基树脂(UCC的PKHH Mn=15400)                 14
环己酮                                          15
异佛尔酮                                        15
金红石二氧化钛(Ishihara Industry K.K.
    平均粒径270纳米)                            32
氧化铁红(Toda Industry K.K.
    平均粒径300纳米)                            15
分散剂(油酸)                                    3
防沫剂(Toshiba Silicone K.K.的
    TSA-720)                                    1
均化剂(Shin-Etsu Silicone K.K.的
    KS-66)                                      1
将苯氧基树脂完全溶解在环己酮和异佛尔酮的溶剂混合物中,将二氧化钛和氧化铁红分散在其中,与分散剂一起在氧化锆球磨中分散48小时。然后将防沫剂和均化剂加到分散液中,再混合2小时。
接着,将下面的热交联反应成分加到分散液中,再进行混合和分散20分钟,得到绝缘颜色膜的树脂组成。
                                           重量份
正丁基化的三聚氰胺树脂(Mitsui-Toatsu
  Chemical K.K.的Uban 21R)                    5
固化加速剂(Mitsui-Toatsu
  Chemical K.K.的Catalyst 6000)               0.03
这样得到的绝缘树脂组合物油墨经150筛目的不锈钢筛主要印刷在图1所示的绝缘层4并在160℃的炉中热固化10分钟。然后通过氩气溅射将ITO透明电极层5形成在这一绝缘膜上。在这一溅射步骤中对绝缘膜无损害,并沉积出均匀的ITO透明电极层5。
接着,在图2所示的第一和第二隔离层6和7和图4所示的接线电极8上经150筛目的不锈钢筛再次印刷绝缘颜色油墨,并在160℃的炉中热固化10分钟。绝缘颜色油墨涂在绝缘膜4和隔离层6、7上,或重叠以抑制银糊的接线电极的高光反射率,这样,除了用于光电转换部分外,覆盖了太阳能电池的总表面层。得到无定形的硅的太阳能电池,其颜色基本上等于光电转换层的表面颜色。
接着,将具有优秀物理强度包括环境可靠性的包括PEN膜的层压膜作为载体体和涂于其上的缓冲粘合层置于太阳能电池的光接收面上并密封于其上。
尤其是,所用的层压膜通过提供50微米厚(Tg:113℃)的PEN膜作为具有透光和耐热的柔性膜载体体而制造。通过在乙烯-醋酸乙烯酯共聚物树脂(EVA,醋酸乙烯酯含量约15-50%重量)中混入二枯基过氧化物作为有机过氧化物制造缓冲粘合剂,每100重量份EVA需7重量份固化剂,并混入少量添加剂如固化加速剂。将缓冲粘合剂涂于树脂膜载体体一个表面20微米厚形成缓冲粘合层。
在层压后,进行压平处理直到满足手表零件的规格要求,得到符合手表表盘的薄膜太阳能电池。
或者,通过省去层压密封同时确保电池一定程度的可靠性以简化上述方法是可以接受的。即,用具有耐光性的透明保护涂层膜覆盖受光表面侧的太阳能电池表面。通过只用涂层膜保护表面,太阳能电池的成本可以降低,以低价在市场出售。
接着,在具有一致色调和柔韧性的太阳能电池上,将具有散射透光层和选择性反射层(材料:有氧化铝超细粒子分散于其中的丙烯酸树脂的塑料板。厚度:500微米,总透光度52%)光学功能的苍白色的手表表盘基本上不留间隙地结合,得到太阳能电池手表。
对比实施例
象实施例1一样制备太阳能电池,但是,使用下面配方的绝缘颜色树脂组成2,然后,相似地装配太阳能手表:
                     绝缘颜色树脂组成2:
                                            重量份
苯氧基树脂(UCC的PKHH Mn=15400)               20
环己酮                                        40
异佛尔酮                                      30
高电阻碳黑(Degussa,平均粒径25纳米)           4
气溶胶(Degussa,平均粒径15纳米)               10
分散剂(油酸)                                  3
防沫剂(Toshiba Silicone K.K.的
    TSA-720)                                  1
均化剂(Shin-Etsu Silicone K.K.的
KS-66)                                        1
试验方法
对于具有色调和光电转换部分一致的柔性太阳能电池和在实施例中具有同白色表盘集成的电池的太阳能手表以及在对比实施例中的太阳能电池和苍白色手表表盘的太阳能手表,用Murakami Color Institute K.K.制造的比色分光光度计CMS-35sp进行了“三激发值”和“L*a*b*颜色空间(各自表示亮度、红色、蓝色)”测定。
对于手表表盘,按照JIS K-7361的方法还测定了总透光率。并通过在自然光和荧光灯下肉眼评价并进行比较。
结果
1)在实施例中制备的太阳能电池,在对比实施例中制造的太阳能
电池,和在实施例和对比实施例中的太阳能手表通过上述的试验
方法进行了比色分析。
根据L*a*b*值计算了在实施例中制备的绝缘树脂层和光电转换部分表面颜色之间的入射光的反射光颜色的色差ΔE,结果值是2.39。此值表示限制值的颜色,低于此值电池可以使用,不用进一步改进,可作为在产能膜和表面之间具有一致颜色的电池,和作为手表表盘或可携带式的太阳能电池。
2)对于在实施例中制备的太阳能手表,为了同经一般使用量的苍白色的表盘的入射自然光的颜色进行比较,测定了反射颜色的色差值ΔE。结果是0.16,其排列最高为0.2NBS单位。用肉眼观测,不能感觉在苍白色表盘下太阳能电池的存在,即使在特别突出的色差区域,例如隔离部分23(十字形图案),连接27、28、29和引出电极25、26(圆周图案)也如此。
3)在对比实施例中制备的太阳能电池的ΔE是34.86,在其上具有苍白色表盘的太阳能电池的ΔE是至少12NBS单位。用肉眼观测,十字形和圆周形图案能明显看到,说明设计方面存在严重问题。
4)对于在实施例中制备的太阳能手表,为同经特殊的户外用的潜水手表的黑色手表表盘的入射的自然光的颜色进行比较,测定了反射颜色的色差ΔE值,结果是3.35,此值范围超过0.3NBS单位。
用肉眼观测,将在对比实施例中所用的绝缘颜色树脂组成2的颜色油墨通过丝网印刷方法涂在隔离部分23(十字图案)、连接27、28、29和引出电极25、26(圆周图案),使得这些区域以及甚至面层用黑色油墨膜覆盖。
这一颜色油墨膜来自光电转换部分的色差值ΔE至少是12,如在表1的对比实施例中报道的。
但是,在这里使用的特殊的黑色手表表盘如按照JIS K-7361方法测定的,总透光度低至26.0%,散射透光度为2.78%,说明基本上不存在滤光片的光散射引起的反射光的屏蔽效应。浊度值低至10.4%。
使用这种黑色表盘引起确保太阳能手表操作得到的光量的大量损失,这对于电池的产能效率是不利的。然而,对于黑表盘用于运动用品的设计是有利的。尽管使用黑色油墨膜的ΔE值是3.35,即超过3.0,非产能区肉眼观测是不太突出的。顺便说,当非产能区用在实施例中白色表盘绝缘颜色树脂组成1的油墨膜同样覆盖,以及具有低透光度和低浊度的白色表盘置于其上时,来自标准电池的的色差是2.50,说明比在绝缘颜色树脂组成2有更大的色差。这建议,在由设计方面强调黑度时使用这种具有特殊光学性质的表盘是有利的。
除了具有图5所示的外部构型以及上述结构的电池外,通过用蒸汽氧化上述的全羟基聚硅氮烷在75微米厚的透明PEN膜1下形成氧化硅层14(含ZnO UV-切割剂),在氧化硅层14沉积透明导电层ITO 15、ZnO层17、α-Si层13、ZnO透明导电层18光抑制以及铝层12金属下面电极以形成太阳能电池在透明膜载体体后表面上制成相同构形和具有集成结构的电池。横截面结构见图6。为保护铝基础电极12,如在日本专利申请9-320476中的用三聚氰胺热固化苯氧基树脂得到的透明保护层或层压薄膜可以在其下面沉积。
在制造这种电池的方法中,通过用金属面罩覆盖下面和通过溅射或等离子体CVD进行图案层的沉积形成各个薄层。用激光划线和丝网印刷避免了制作图案。
然而,当如在图5所示由光接收面侧观测电池时,由于最低层的或铝电极的金属光泽的高反射性使十字形线特别突出,并进一步增加对产能区的反差,即使在将各种表盘置于其上也不能遮盖。
因此,沿相当于高反光率铝电极的十字形线,用在实施例3中使用的绝缘颜色树脂组成1的油墨层覆盖PEN膜的顶侧(受光侧)的方法(通过印刷/制作图案)当表盘置于其上时改进设计特征是有效的。
5)按照JIS K-7361方法测定用在这里使用的苍白色的手表表盘的总透光度为52.3%,散射透光度为32.5%,浊度值是62.2%。得到足够的光量可确保太阳能手表在户内运转。
6)得到证实,从设计方面是满意的太阳能手表或可携带的太阳能电池可以通过在太阳能电池中加入滤光片(表盘)制造,产能膜表面颜色和电池着色油墨之间由L*a*b*值计算的色差值ΔE在2.0内,除产能膜以外的区域用油墨覆盖以达到表面颜色的一致。
上述讨论的结果总结于表1。
                                                   表  1
样品     X     Y     Z     X     Y     L亮度
    实施例电池油墨1色差实施例电池+表盘油墨1+表盘+表盘色差对比实施例电池对比油墨2色差+表盘色差实施例电池+黑表盘黑表盘+油墨2+黑表盘色差     14.5213.6746.3746.3946.371.160.770.49     14.1913.0948.7548.7248.7511.240.730.49   14.4913.6256.7656.7156.761.651.120.78   0.350.340.310.310.310.290.290.28     0.330.320.320.320.320.310.280.28     44.5142.9175.3175.2875.3110.826.554.46
接表1
    a红→绿     b黄→蓝     c颜色饱和     H色彩     色差
    6.478.110.070.230.07-0.613.130.76     2.241.55-3.52-3.52-3.52-3.28-4.59-3.48     8.258.25-3.523.53-3.523.335.563.57     10.8410.84271.1273.7271.1259.7304.4282.4 2.390.1634.86>123.35
从上面可以看出,在设计要求严格的“太阳能手表”的实施例中,其中主要白色、浅色“手表表盘”作为太阳能电池顶层,通过构筑一致的颜色电池结构,其中太阳能电池露出的表面部分尽可能接近电池表面颜色以及使用“油墨”、“电池”和“滤光片(表盘)”使得在电池和如经苍白色手表表盘感的电池着色油墨之间的入射阳光的反射的颜色的色差ΔE可以落在最高为2.0NBS单位内,可以制造从设计方面满意的“太阳能手表”。
实施例2
如实施例1制造的太阳能电池组件,不同的是在电池表面上不用层压膜,而是在电池表面上形成下面的组合物树脂涂层。如在实施例1中对太阳能电池组件进行试验,发现,具有使色调一致的效应并可以作为太阳能电池操作而无问题。
树脂涂层的组成                           重量份
带OH的氟树脂
(Asahi Glass K.K.的Lumiflon
LF200F,羟基值26毫克KOH/克)                20
γ-丁内酯                                  40
异佛尔酮                                30
防沫剂(Toshiba Silicone K.K.的
    TSA-720)                            3
均化剂(Shin-Etsu Silicone K.K.的
    KS-66)                              1
将Lumiflon树脂完全溶于γ-丁内酯和异佛尔酮溶剂混合物中,并在氧化锆球磨中分散48小时。然后,在分散液中加入防沫剂和均化剂,再混合2小时。加入热交联反应成分。
                                         重量份
甲基化三聚氰胺树脂(Sumitomo
  Chemical K.K.的Sumimal M-40ST)           4
催化剂(十二烷基苯磺酸)                     0.13
将混合物混合,并再分散20分钟,得到具有透明、绝缘的树脂涂布组合物,有效地用于保护和密封电池的光接收面。
将这样得到的组合物通过丝网印刷方法涂于太阳能电池表面,并在150℃热固化90分钟,形成厚度约20微米厚的树脂涂层。
本发明提供了具有高效产能能力、设计协调而无奇特感觉和设计灵活的太阳能电池组件。

Claims (19)

1.一种太阳能电池组件,在其光接收面上包括:
用于将入射光转换为电的光电转换部分,所说的光电转换部分包括硅,以及
配置在不为所说的光电转换部分区域内的绝缘颜色膜,用于降低所说的光电转换部分的色差。
2.权利要求1的太阳能电池组件,其中所说的绝缘颜色膜包括分散在基料中的颜料粒子。
3.权利要求1的太阳能电池组件,其中所说的绝缘颜色膜包括分散在其中的微粒白色颜料作为颜料粒子。
4.权利要求1的太阳能电池组件,其中所说的光电转换部分包括非单晶硅膜。
5.权利要求1的太阳能电池组件,在太阳能电池组件的光接收面上还包括散射透光膜。
6.权利要求5的太阳能电池组件,其中绝缘颜色膜和光电转换部分之间的可以经散射透光层察觉的色差至多5.0。
7.权利要求5的太阳能电池组件,在所说的分散透光层之上和/或之下还包括选择性反射层。
8.权利要求5的太阳能电池组件,其中所说的分散透光层在可见光谱的总透光度度为至少20%,浊度至少为8%。
9.权利要求1的太阳能电池组件,其中所说的光电转换部分具有透光导电膜。
10.权利要求1的太阳能电池组件,包括由透光、耐热的树脂、玻璃和不锈钢中任意一种材料制造的基体。
11.权利要求1的太阳能电池组件,其中具有含热固性树脂的缓冲粘合层的热熔织物层压在至少由透光、耐热的树脂、玻璃和不锈钢中任意一种材料制造的基体的至少一个表面上。
12.权利要求11的太阳能电池组件,其所说的基体和/或所说的缓冲粘合层含UV吸收剂或具有集中在其表面上的UV吸收剂。
13.权利要求11的太阳能电池组件,其中所说的缓冲粘合层含有机过氧化物。
14.权利要求11的太阳能电池组件,其中热熔织物有载体体膜,载体体在热压粘合前的玻璃化转变温度至少为65℃,或耐热温度至少80℃。
15.权利要求11的太阳能电池组件,其中热熔织物有载体体膜,载体体在热压粘合前的分子取向比(MOR)为1.0-3.0。
16.权利要求11的太阳能电池组件,其中有机过氧化物在热压粘合前的分解温度至少为70℃,半衰期为10小时。
17.权利要求1的太阳能电池组件,在所说的光电转换部分上还包括具有透光性和耐热的保护涂层膜。
18.一种太阳能电池组件,在所说的保护涂层膜上还包括一层权利要求11的热熔织物。
19.包括权利要求1的太阳能电池组件的手表。
CNB998003840A 1998-03-25 1999-03-24 太阳能电池组件 Expired - Lifetime CN1142597C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9660298 1998-03-25
JP96602/1998 1998-03-25

Publications (2)

Publication Number Publication Date
CN1262786A true CN1262786A (zh) 2000-08-09
CN1142597C CN1142597C (zh) 2004-03-17

Family

ID=14169433

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998003840A Expired - Lifetime CN1142597C (zh) 1998-03-25 1999-03-24 太阳能电池组件

Country Status (5)

Country Link
US (2) US6268558B1 (zh)
EP (1) EP0986109A4 (zh)
CN (1) CN1142597C (zh)
TW (1) TW466778B (zh)
WO (1) WO1999049522A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527335B (zh) * 2009-01-14 2011-11-02 普乐新能源(蚌埠)有限公司 应用绿激光制备薄膜太阳能电池的方法
CN102414831A (zh) * 2009-03-11 2012-04-11 信越化学工业株式会社 太阳能电池电极的连接片材、太阳能电池组件的制造方法和太阳能电池组件
CN102782865A (zh) * 2010-01-22 2012-11-14 夏普株式会社 光透射型太阳能电池模块及其制造方法以及安装光透射型太阳能电池模块的移动体
CN101849290B (zh) * 2007-11-07 2012-11-21 高通Mems科技公司 具有干涉掩模的光伏装置
CN112567534A (zh) * 2018-05-18 2021-03-26 太阳视窗技术公司 视觉上未失真的薄膜电子装置

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674562B1 (en) * 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US7907319B2 (en) 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
JP4137187B2 (ja) * 1997-05-22 2008-08-20 シチズンホールディングス株式会社 時計用表示板及びその製造方法
EP0986109A4 (en) * 1998-03-25 2005-01-12 Tdk Corp Solar battery module
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
DE69926912T2 (de) * 1998-12-22 2006-02-09 Citizen Watch Co., Ltd., Nishitokyo Zeitmessgerät
NL1012961C2 (nl) * 1999-09-02 2001-03-05 Stichting Energie Werkwijze voor het vervaardigen van een halfgeleiderinrichting.
WO2003007049A1 (en) * 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
JP4341124B2 (ja) * 1999-11-25 2009-10-07 ソニー株式会社 半導体装置の製造方法
JP4776748B2 (ja) * 1999-12-22 2011-09-21 株式会社半導体エネルギー研究所 太陽電池
JP4467692B2 (ja) 1999-12-22 2010-05-26 株式会社半導体エネルギー研究所 太陽電池及びその作製方法
US6459035B2 (en) * 1999-12-27 2002-10-01 Asulab S.A. Photovoltaic cell having a colored appearance, particularly for a watch dial
CA2421257A1 (en) * 2000-09-08 2002-03-14 Akzo Nobel N.V. Colored solar cell unit
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
US20110114148A1 (en) * 2003-04-11 2011-05-19 Marina Temchenko Bright white protective laminates
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7855824B2 (en) * 2004-03-06 2010-12-21 Qualcomm Mems Technologies, Inc. Method and system for color optimization in a display
DE102004057663B4 (de) * 2004-09-15 2015-08-20 Sunways Ag Solarmodul mit durch regulär angeordnete Löcher semitransparenten kristallinen Solarzellen und Verfahren zur Herstellung
US7807488B2 (en) * 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. Display element having filter material diffused in a substrate of the display element
US8362987B2 (en) 2004-09-27 2013-01-29 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7710632B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Display device having an array of spatial light modulators with integrated color filters
US8455753B2 (en) 2005-01-14 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Solar cell and semiconductor device, and manufacturing method thereof
JP4324970B2 (ja) 2005-03-28 2009-09-02 セイコーエプソン株式会社 光電変換装置、画像表示装置、光電変換装置の製造方法、および画像表示装置の製造方法
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
JP5059027B2 (ja) * 2006-01-27 2012-10-24 コーロン インダストリーズ インク 熱収縮性ポリエステル系フィルム
US7603001B2 (en) * 2006-02-17 2009-10-13 Qualcomm Mems Technologies, Inc. Method and apparatus for providing back-lighting in an interferometric modulator display device
US8004743B2 (en) 2006-04-21 2011-08-23 Qualcomm Mems Technologies, Inc. Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display
US8168880B2 (en) 2006-04-26 2012-05-01 Certainteed Corporation Shingle with photovoltaic element(s) and array of same laid up on a roof
US8319093B2 (en) 2006-07-08 2012-11-27 Certainteed Corporation Photovoltaic module
ATE518255T1 (de) * 2006-08-30 2011-08-15 Keiwa Inc Benutzung einer rückplatte für photovoltaikmodule und photovoltaikmodule damit
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
CN101600901A (zh) 2006-10-06 2009-12-09 高通Mems科技公司 集成于显示器的照明设备中的光学损失结构
US20080149164A1 (en) * 2006-12-22 2008-06-26 General Electric Company Luminescent thermoplastic compositions and articles with enhanced edge emission
US20080149165A1 (en) * 2006-12-22 2008-06-26 General Electric Company Luminescent solar collector
US20090205701A1 (en) * 2006-12-22 2009-08-20 General Electric Company Luminescent solar collector having customizable viewing color
US20080264484A1 (en) * 2007-02-16 2008-10-30 Marina Temchenko Backing sheet for photovoltaic modules and method for repairing same
US8507029B2 (en) * 2007-02-16 2013-08-13 Madico, Inc. Backing sheet for photovoltaic modules
US9735298B2 (en) * 2007-02-16 2017-08-15 Madico, Inc. Backing sheet for photovoltaic modules
US20080271773A1 (en) * 2007-05-01 2008-11-06 Jacobs Gregory F Photovoltaic Devices and Photovoltaic Roofing Elements Including Granules, and Roofs Using Them
US7762597B2 (en) * 2007-06-01 2010-07-27 Carl Marlin Snow removal tool
EP2174354A2 (en) * 2007-06-28 2010-04-14 Gregory F. Jacobs Photovoltaic devices including cover elements, and photovoltaic systems, arrays, roofs and methods using them
US7728220B2 (en) * 2007-07-09 2010-06-01 Pacific Speed Limited Solar power generating device
DE102007032283A1 (de) * 2007-07-11 2009-01-15 Stein, Wilhelm, Dr. Dünnschichtsolarzellen-Modul und Verfahren zu dessen Herstellung
JP5302322B2 (ja) * 2007-10-19 2013-10-02 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 一体型光起電力を有するディスプレイ
US8333040B2 (en) * 2007-11-07 2012-12-18 Certainteed Corporation Photovoltaic roofing elements and roofs using them
US20090126792A1 (en) * 2007-11-16 2009-05-21 Qualcomm Incorporated Thin film solar concentrator/collector
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
EP2232569A2 (en) * 2007-12-17 2010-09-29 QUALCOMM MEMS Technologies, Inc. Photovoltaics with interferometric back side masks
US20090211631A1 (en) * 2008-01-03 2009-08-27 Marina Temchenko Photoluminescent backing sheet for photovoltaic modules
US8404967B2 (en) * 2008-01-08 2013-03-26 Certainteed Corporation Photovoltaic module
US8487179B2 (en) * 2008-02-07 2013-07-16 Rebecca Grace Willmott System and method for the improvement of photovoltaic cell efficiency
CN101946333A (zh) * 2008-02-12 2011-01-12 高通Mems科技公司 双层薄膜全息太阳能集中器/收集器
WO2009126745A2 (en) * 2008-04-11 2009-10-15 Qualcomm Mems Technologies, Inc. Method for improving pv aesthetics and efficiency
US8338218B2 (en) 2008-06-26 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device module and manufacturing method of the photoelectric conversion device module
EP2340567A2 (en) * 2008-09-18 2011-07-06 QUALCOMM MEMS Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators
TWI382551B (zh) * 2008-11-06 2013-01-11 Ind Tech Res Inst 太陽能集光模組
US20100186806A1 (en) * 2009-01-26 2010-07-29 Mitsubishi Electric Corporation Photovoltaic module
TWI387120B (zh) * 2009-02-17 2013-02-21 Nexpower Technology Corp 薄膜疊層太陽能電池及其製作方法
DK2261996T3 (da) * 2009-06-10 2011-08-29 Suinno Solar Oy Solcelle med høj ydelse
KR101112487B1 (ko) * 2009-08-06 2012-03-09 한국과학기술원 광기전력 장치 및 그 제조 방법
JP2013509001A (ja) * 2009-10-26 2013-03-07 スリーエム イノベイティブ プロパティズ カンパニー 構造化フィルム及び該フィルムから作製された物品
US20120211061A1 (en) * 2009-10-30 2012-08-23 Takehito Kato Organic photovoltaic cell and organic photovoltaic module
KR101125322B1 (ko) * 2009-11-03 2012-03-27 엘지이노텍 주식회사 태양전지 및 이의 제조방법
WO2011079292A1 (en) * 2009-12-23 2011-06-30 Madico,Inc. High performance backsheet for photovoltaic applications and method for manufacturing the same
DE102010000749A1 (de) * 2010-01-05 2011-07-07 Lange Uhren GmbH, 01768 Uhr
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
JP5534981B2 (ja) * 2010-06-30 2014-07-02 株式会社東芝 固体撮像装置
JP2012015269A (ja) * 2010-06-30 2012-01-19 Sanyo Electric Co Ltd 太陽電池モジュール
JP2012064767A (ja) * 2010-09-16 2012-03-29 Fuji Electric Co Ltd 太陽電池モジュール
US20120067391A1 (en) 2010-09-20 2012-03-22 Ming Liang Shiao Solar thermoelectric power generation system, and process for making same
CN101963912A (zh) * 2010-10-12 2011-02-02 浪潮电子信息产业股份有限公司 一种实现保存和校验系统硬件配置信息的方法
US9893223B2 (en) 2010-11-16 2018-02-13 Suncore Photovoltaics, Inc. Solar electricity generation system
TW201248879A (en) * 2011-05-18 2012-12-01 Auria Solar Co Ltd Solar cell module and method of fabricating the same
JP5864926B2 (ja) * 2011-07-14 2016-02-17 東京応化工業株式会社 積層体、分離方法、及び製造方法
DE202011105139U1 (de) * 2011-08-29 2011-11-30 Robert Bosch Gmbh Entfernungsmesser
TWI431790B (zh) * 2011-09-01 2014-03-21 Gintech Energy Corp 太陽能電池
CN103703567B (zh) * 2012-04-25 2015-04-01 株式会社钟化 太阳能电池及其制造方法以及太阳能电池模块
WO2015098914A1 (ja) * 2013-12-24 2015-07-02 株式会社フジクラ 光電変換素子
US9823625B2 (en) 2014-03-18 2017-11-21 Casio Computer Co., Ltd. Electronic device
JP6003937B2 (ja) * 2014-03-26 2016-10-05 カシオ計算機株式会社 電子機器
JP2016039200A (ja) * 2014-08-06 2016-03-22 セイコーエプソン株式会社 太陽電池、電子機器および太陽電池の製造方法
US20160049904A1 (en) * 2014-08-13 2016-02-18 Dai Nippon Printing Co., Ltd. Solar cell module and solar cell panel
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP2019102576A (ja) * 2017-11-30 2019-06-24 セイコーエプソン株式会社 電子機器および光電変換素子の製造方法
JP6962234B2 (ja) * 2018-02-23 2021-11-05 セイコーエプソン株式会社 光電変換素子、光電変換モジュールおよび電子機器
US20210296518A1 (en) * 2020-03-20 2021-09-23 Garmin Switzerland Gmbh Photovoltaic with improved insulation visibility

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038104A (en) * 1976-06-07 1977-07-26 Kabushiki Kaisha Suwa Seikosha Solar battery
JPS561580A (en) * 1979-06-19 1981-01-09 Seiko Instr & Electronics Ltd Amorphous silicon solar battery for wrist watch
JPS60148174A (ja) * 1984-01-12 1985-08-05 Seikosha Co Ltd 色つき太陽電池
JPS6315072A (ja) 1986-07-07 1988-01-22 松下冷機株式会社 断熱扉体
JPS6315070A (ja) 1986-07-07 1988-01-22 松下冷機株式会社 冷蔵庫
JPS6315072U (zh) * 1986-07-15 1988-02-01
JPS6315070U (zh) * 1986-07-15 1988-02-01
JPH0294575A (ja) * 1988-09-30 1990-04-05 Taiyo Yuden Co Ltd 光起電力装置
JPH0529641A (ja) * 1991-10-04 1993-02-05 Seikosha Co Ltd 太陽電池装置
JP3072402B2 (ja) 1993-08-02 2000-07-31 株式会社竹中土木 ソイル柱列杭のラップ長の施工管理方法
JPH0742147U (ja) * 1993-12-22 1995-07-21 シチズン時計株式会社 太陽電池装置
JPH07283427A (ja) * 1994-04-04 1995-10-27 Fuji Electric Corp Res & Dev Ltd 薄膜太陽電池
JP4063896B2 (ja) * 1995-06-20 2008-03-19 株式会社半導体エネルギー研究所 有色シースルー光起電力装置
DE69714701T2 (de) * 1997-04-14 2003-05-28 Asulab S.A., Marin Zifferblatt im Form einer Solarzelle, insbesondere für eine Uhr
CH691635A5 (fr) * 1997-09-09 2001-08-31 Asulab Sa Cadran formé d'une cellule solaire, notamment pour pièce d'horlogerie.
EP0986109A4 (en) * 1998-03-25 2005-01-12 Tdk Corp Solar battery module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849290B (zh) * 2007-11-07 2012-11-21 高通Mems科技公司 具有干涉掩模的光伏装置
CN101527335B (zh) * 2009-01-14 2011-11-02 普乐新能源(蚌埠)有限公司 应用绿激光制备薄膜太阳能电池的方法
CN102414831A (zh) * 2009-03-11 2012-04-11 信越化学工业株式会社 太阳能电池电极的连接片材、太阳能电池组件的制造方法和太阳能电池组件
CN102782865A (zh) * 2010-01-22 2012-11-14 夏普株式会社 光透射型太阳能电池模块及其制造方法以及安装光透射型太阳能电池模块的移动体
CN102782865B (zh) * 2010-01-22 2016-04-20 夏普株式会社 光透射型太阳能电池模块及其制造方法以及安装光透射型太阳能电池模块的移动体
CN112567534A (zh) * 2018-05-18 2021-03-26 太阳视窗技术公司 视觉上未失真的薄膜电子装置
US12075639B2 (en) 2018-05-18 2024-08-27 Solarwindow Technologies, Inc. Visually undistorted thin film electronic devices

Also Published As

Publication number Publication date
TW466778B (en) 2001-12-01
US6268558B1 (en) 2001-07-31
EP0986109A1 (en) 2000-03-15
WO1999049522A1 (en) 1999-09-30
EP0986109A4 (en) 2005-01-12
CN1142597C (zh) 2004-03-17
US20020050286A1 (en) 2002-05-02
US6452089B1 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
CN1142597C (zh) 太阳能电池组件
CN1066542C (zh) 透射屏及其制造方法
CN100338154C (zh) 一种带有透明导电层的显示装置
CN1095082C (zh) 具有逆向反射性的制品
CN1258790C (zh) 键顶件、按钮开关件及其制造方法
TW297955B (zh)
CN1077728C (zh) 太阳电池装置
CN1313534C (zh) 树脂组合物、光学过滤器以及电浆显示器
CN1119673C (zh) 树脂黑底、黑色膏及含它们的滤色器和液晶显示元件
CN1193242C (zh) 等离子体显示板用的滤光片
CN102064226A (zh) 太阳电池模块背面用散热片及使用其的太阳电池模块
CN1462237A (zh) 层合体及使用该层合体的显示装置
CN108410340B (zh) 一种黑色耐候涂料及制备方法与应用
CN101061399A (zh) 滤光片
TW201340339A (zh) 太陽能電池組件、及其組件用背板與組件用背板的製造方法
JP2001044474A (ja) 太陽電池モジュール
CN109266097A (zh) 一种高反射率的白色油墨及其制备方法及应用
CN113192441A (zh) 一种太阳能自发光画面显示装置及其制作方法
JP3467424B2 (ja) 太陽電池モジュール
CN1668709A (zh) 可聚合二酮基吡咯并吡咯、这些化合物在滤色器中的应用以及用这些化合物制备的聚合物
JP2018082031A (ja) 太陽電池モジュール用裏面保護シート
TWI816281B (zh) 一種複合量子點膜及其製備方法
JP2018010955A (ja) 太陽電池モジュール用の裏面保護シート及びそれを用いてなる太陽電池モジュール
JP5949189B2 (ja) 易接着フィルムおよびその製造方法
CN209843721U (zh) 镀膜前板及光伏组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20040317

CX01 Expiry of patent term