CN1245894A - Space three-dimensional flow field real-time measurement system - Google Patents

Space three-dimensional flow field real-time measurement system Download PDF

Info

Publication number
CN1245894A
CN1245894A CN 98112211 CN98112211A CN1245894A CN 1245894 A CN1245894 A CN 1245894A CN 98112211 CN98112211 CN 98112211 CN 98112211 A CN98112211 A CN 98112211A CN 1245894 A CN1245894 A CN 1245894A
Authority
CN
China
Prior art keywords
flow field
dimensional
distribution
measurement
real
Prior art date
Application number
CN 98112211
Other languages
Chinese (zh)
Other versions
CN1187588C (en
Inventor
张雨东
姜凌涛
姜文汉
Original Assignee
中国科学院光电技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电技术研究所 filed Critical 中国科学院光电技术研究所
Priority to CNB981122116A priority Critical patent/CN1187588C/en
Publication of CN1245894A publication Critical patent/CN1245894A/en
Application granted granted Critical
Publication of CN1187588C publication Critical patent/CN1187588C/en

Links

Abstract

The present invention relates to a spacial three-dimensional flow field real-time measurement system, belongting to the field of flow field dynamic measurment technology, and is characterized by thatthe lasers of measurement sub-systems of different projecting angles (theta is greater than or equal to zero deg.) are passed through the flow field to be measured, and the signal delivered by every two-dimensional Hartmann wavefront sensor is digitized, and inputted into the processing machine to obtain every subaperture wavefront inclination distribution information,then these informations are transferred into main computer to calculate the three-dimensional wavefront chromatographic phase distribution so as to measure the three-dimensional distribution of said flow field. Said system can implement the real-time measurement of three-dimensional flow field transient distribution, and can use ultrashort pulse laser as light source for illumination,and can measure dynamic process of ultrahigh speed flow field.

Description

空间三维流场实时测量系统 Three-dimensional flow field of space-time measurement system

本发明是一种空间三维流场实时测量系统,属于流场测量技术领域。 The present invention is a three-dimensional space-time measurement system of the flow field, the flow field belongs to the technical field measurement.

流场分布测量技术,是研究发动机燃烧过程、飞行器气动布局、舰船外形、推进器效率等的重要技术;而实时流场测量,则是流场动态过程测量的关键技术。 Flow field distribution measurement technology, research combustion engine, aerodynamic configuration of the aircraft, ship shape, other important propeller efficiency technologies; flow field measurements in real time, the measurement process is the key technology of dynamic flow field. 传统的测量方法一直是采用马赫一泽德干涉仪、全息干涉仪、莫尔条纹干涉仪来获取流场信息的,干涉仪的共同缺点是干涉条纹分析判读困难,无法实现实时测量。 Traditional methods of measurement have been using a Mach-Zehnder interferometer, holographic interferometer moire interferometer to obtain information on the flow field, a common drawback of the interferometer is difficult interference fringe analysis interpretation, we can not achieve real-time measurement. 美国Philips实验室首先将一维哈特曼(Hartmann)波前传感器用于流场测量,但这种传感器只能用于流场的二维测量,限制了其应用范围。 First, a laboratory U.S. Philips Kazak Terman (Hartmann) wavefront sensor for measuring the flow field, but such a sensor can only be used for two-dimensional measurement of the flow field, limiting its scope of application. 文献:“Hartmann Sensor and Dynamic Tomographical Analysis oforganized structure in Flow Field”(美国AIAA94-2548报告,作者:Philips实验室的L.Mcmackin等)介绍了这种测量系统。 Literature: "Hartmann Sensor and Dynamic Tomographical Analysis oforganized structure in Flow Field" (US AIAA94-2548 report, author: Philips Laboratories L.Mcmackin etc.) introduced this measurement system.

本发明的目的在于避免上述现有技术的不足,而提供一种三维波前误差获取方便、速度快、实时、对测量光源相干长度要求低、结构紧凑的空间三维流场实时测量系统。 Object of the present invention is to avoid the above-described deficiencies of the prior art, and to provide a three-dimensional wavefront error acquisition easy, fast, real-time, low coherence length light source for measurement requirements, compact spatial dimensional flow field real-time measurement system.

本发明的目的可以通过以下措施达到:空间三维流场实时测量系统,由测量子系统和主计算机组成。 The object of the present invention can be achieved by the following measures: a three-dimensional flow field of space time measurement system, a measurement subsystem and a main computer. 在不同投射角(θ≥0°)的测量子系统的激光器输出的光束,经扩束物镜后以不同的投射角(θ)穿过被测流场,经口径匹配物镜入射到二维哈特曼波前传感器后,二维哈特曼波前传感器输出的信号经A/D数字化,输入处理机得到二维哈特曼波前传感器的子孔径波前倾斜分布信息,再送主计算机解算出三维波前层析位相分布,从而测出流场的三维分布。 Different measuring beam projection angles (θ≥0 °) of the laser output subsystem, the objective lens after the beam expander at different projection angles ([theta]) measured through the flow field, the diameter of the objective lens is incident to two matched Wei Hate Mambo front sensors, the front sensor 维哈特曼波 two output signals by a / D digitized input processor to obtain two front sensor 维哈特曼波 subaperture wavefront inclination distribution information, the host computer sending the calculated three-dimensional solution wavefront phase distribution chromatography to measure the three-dimensional distribution of the flow field.

本发明的目的还可以通过以下措施来达到:测量子系统中的二维哈特曼波前传感器,其采样过程均在主计算机控制下同步进行;二维哈特曼波前传感器由二维微透镜阵列和二维CCD相机组成,二维微透镜阵列的焦面在二维CCD相机的靶面上,附图说明:图1为发明测量原理图(θ=0°)图2为二维面阵哈特曼波前传感器结构图图3为二维面阵哈特曼波前传感器A视图图4为本发明测量原理图(θ>0°)本发明将结合附图作进一步详述:如图1所示:空间三维流场实时测量系统,由包括激光器(1),扩束物镜(2),口径匹配物镜(3),二维哈特曼波前传感器(4),处理机(5)的测量子系统和主计算机(6)组成。 Object of the present invention can also be achieved by the following measures: measuring two 维哈特曼波 front sensor subsystems, which are synchronized sampling process performed under control of a host computer; second two-dimensional micro 维哈特曼波 front sensor two-dimensional CCD camera and the lens array composed of a two-dimensional focal plane of the microlens array surface of the target two-dimensional CCD camera, illustrate: FIG. 1 is a measurement diagram invention (θ = 0 °) is a two-dimensional surface of FIG. 2 Hartmann sensor configuration before the array of FIG. 3 is described in further detail before the two-dimensional plane array of the present invention Hartmann measurement sensor 4 A schematic view (θ> 0 °) of the present invention in conjunction with the accompanying drawings: the Figure 1: a three-dimensional flow field of space time measurement system, comprising a laser (1), a beam expander lens (2), matching the caliber of the objective lens (3), two 维哈特曼波 front sensor (4), the processor (5 ) the measurement subsystem and a host computer (6) composition. 其测量子系统工作方法为:激光器(1)输出的激光光束,经扩束物镜(2)扩束成大口径的平行激光,穿过被测流场(7)后,经口径匹配物镜(3),入射二维哈特曼波前传感器(4),二维哈特曼波前传感器(4)输出的信号经A/D数字化,输入处理机(5)求出二维哈特曼波前传感器(4)的子孔径波前倾斜分布,再送主计算机(6)解算波前位相分布和流场三维层析分布。 Measurement subsystem working method: laser beam from the laser (1) is output via the objective lens beam expander (2) extended parallel to the laser beam of a large diameter, measured through the flow field (7), the diameter of the matching by the objective lens (3 ) incident two 维哈特曼波 front sensor (4), two 维哈特曼波 front sensor (4) signal output by the a / D digitizes the input processor (5) before obtaining two 维哈特曼波subaperture wave sensors (4) prior to the angular distribution, sending a host computer (6) before the solution phase distribution calculated wave field and flow chromatographic profile.

如图2和图3所示:二维面阵哈特曼传感器(4)由一个二维微透镜阵列(8)和一个二维CCD相机(9)组成。 2 and FIG. 3: a two-dimensional area array Hartmann sensor (4) consists of a two-dimensional microlens array (8) and a two-dimensional CCD camera (9) the composition. 测量时,哈特曼波前传感器(4)的y0轴,与被测流场(7)的在z轴(流场速度方向)平行,这样在同一时刻采样时,哈特曼传感器(4)的y0j的微透镜单元行,可以获得被测流场(7)过zj点并垂直于z轴剖面的层析位相信息,同样道理哈特曼波前传感器(4)上,y01,y02,…y0i…yon的微透镜单元行,可以分别获得被测流场(7)垂直于z轴,并过z1,z2…zi…zn点各层析面的位相分布信息,从而获得被测流场(7)的空间 When measured, Hartmann wavefront sensor (4) is y0 axis, and the measured flow field (7) in the (flow velocity field direction) z parallel to the axis, so that at the same sampling time, Hartmann sensor (4) y0j microlens cell rows can be obtained measured flow field (7) and through the point zj phase chromatography perpendicular to the z axis information section, the same token Hartmann wavefront sensor (4), y01, y02, ... y0i ... yon microlens cell rows, may be obtained respectively the measured flow field (7) perpendicular to the z axis, and through z1, z2 ... zi ... zn phase distribution information of each point of the surface chromatography, to thereby obtain measured flow field ( 7) of space

体积内三维位相分布信息,(S为被测流场(7)垂直于z轴的剖面面积)。 Phase distribution information in three-dimensional volume, (S is the measured flow field (7) cross-sectional area perpendicular to the z-axis). 如图4所示:从二维哈特曼传感器(4)测得的信息,重构被测流场(7)垂直于z轴剖面内位相分布,需要不同激光投射角(θ)的测量数据,考虑到实时测量的要求,则需要在不同的激光投射角(θ)方向上,都有一个包括激光器(1),扩束物镜(2),口径匹配物镜(3),二维哈特曼波前传感器(4),处理机(5)的测量子系统。 4: the measured information Kazak Terman two sensors (4) from the measured flow field reconstruction (7) perpendicular to the z-axis cross-sectional distribution phase, different laser projection angle ([theta]) of the measurement data , taking into account the requirements of real-time measurement, it is necessary at different laser projection angle ([theta]) direction, there comprises a laser (1), a beam expander lens (2), matching the caliber of the objective lens (3), two Kazak Terman a wavefront sensor (4), the processor (5) of the measurement subsystem. 图4中,三个测量子系统的采样过程,均在主计算机(6)控制下同步进行。 In FIG. 4, three sampling process measurement subsystem are synchronized in the host computer (6) control. 被测流场(7)的分布对称性越高,则所需的测量子系统个数越少。 The higher the measured flow field (7) of symmetry of the distribution, the fewer the number of required measurement subsystem. 如图1所示,若被测流场(7)以z轴对称时,只要用一个测量子系统(θ=0°),就能测得所需的全部信息。 1, if the measured flow field (7) of symmetry in the z-axis, as long as a measurement subsystem (θ = 0 °), can be measured to obtain all the information needed. 对不同的投射角(θ),在极坐标系内获得的位相分布为Radon变换值,如下所示:φ(p,θ)=∫n(γ,)δ[p-rsin(-θ]dγdφ(p,θ)为过p,与x轴夹角为θ光线路径积分位相;n(γ,)为折射率分布;在直角坐标系中为:φ(p,θ)=∫n(x,y)δ(p-xcosφ-ysinφ)dxdy不同角度的数据,再经Radon逆变换 Different projection angles ([theta]), the phase obtained in a polar coordinate system for the distribution of value Radon transform, as follows: φ (p, θ) = ∫n (γ, ) δ [p-rsin (-θ ] dγdφ (p, θ) is a through p, [theta] is the angle between the x-axis ray path integral phase; n (γ, ) is a refractive index profile; cartesian coordinate system as: φ (p, θ) = ∫n (x, y) δ (p-xcosφ-ysinφ) dxdy data for different angles, and then by an inverse Radon transform

即可重构流场内的波前折射率分布,由折射率n与密度ρ的关系p(n2-1n2+1)=C]]>C为常数,可以算出流场内密度分布,由密度ρ与压力P的关系PP0=(ρρ0)r]]>P被测流场压力;P0参数点压力或总压力;ρ0参数点密度或总密度;r=1.4可以算出流场内压力P分布。 Refractive index distribution can be reconstructed stream before the wave field, a refractive index n and the relationship between the density ρ p (n2-1n2 + 1) = C]]> C is a constant, the flow field can be calculated density distribution, the density relationship PP0 ρ and the pressure P = (& rho; & rho; 0) r]]> P measured flow field pressure; P0 parameter point pressure or total pressure; p0 parameter dot density or the total density; r = 1.4 can be calculated from the flow field P pressure distribution. 由密度ρ与速度V关系式VCf={2r-1[1-(ρρ0)r-1]}1/2]]>Cf临界条件下声速可以算出流场内速度分布。 A density ρ relation with the velocity V VCf = {2r-1 [1 - (& rho; & rho; 0) r-1]} 1/2]]> flow field can be calculated the speed of sound velocity profile Cf under critical conditions. 由密度ρ与温度T的关系ρ=MPRT]]>P压力,M气体分子量,T温度,R气体常数。 & Rho density ρ and the relationship between the temperature T; = MPRT]]> P pressure, M the molecular weight of the gas, T the temperature, R the gas constant. 可以算出流场内温度分布。 Flow field can be calculated temperature distribution.

实施例:如图1所示,一个横模为TEM00、输出功率~1mw的He-Ne激光器(1),其输出用以显微物镜、滤波针孔和望远镜组成的扩束物镜(2)扩束的平行光,穿过轴对称流场(7),方向与该流场中心轴z方向垂直。 Example: As shown, a transverse mode is TEMOO 1, the output power of ~ 1mw He-Ne laser (1), the output beam expander lens for microscope objective and a pinhole filter telescopes (2) extended the parallel light beam, passing through the flow field (7), a direction perpendicular to the field direction of the central axis z of the flow. 穿过流场的光束经口径匹配物镜(3)后,入射由30×30单元的微透镜阵列和TN-9701CCD相机组成的二维哈特曼波前传感器(4)的CCD靶面,CCD相机的输出信号输入处理机(5),求出二维哈特曼传感器(4)的子孔径波前倾斜分布,倾斜分布信息再送主计算机(6)解算波前层析位相分布,用前面所给出的公式,重构30个层析面上的位相分布。 After passing through the beam passing through the objective lens diameter to match flow field (3), two 维哈特曼波 front sensor (4) is incident from the microlens array 30 × 30 cells and TN-9701CCD composition CCD plane camera, CCD camera the input processor output signal (5) to obtain two Kazak Hartman sensor (4) sub-aperture wave front skewed distribution, the angular distribution information sending host computer (6) solving wavefront phase distribution chromatography, using previously formulas given, the reconstructed phase distribution surface 30 chromatography. 再根据要求,换算成密度分布、温度分布、速度分布等。 Then according to the requirements, in terms of density distribution, temperature distribution, velocity distribution.

本发明相比已有技术具有如下优点:1.采用由微透镜阵列和二维面阵CCD构成的哈特曼波前传感器,可以实时测量三维空间内流场的瞬态分布。 The present invention has the following advantages compared to prior art: 1. Hartmann wavefront sensor using a micro lens array consisting of two-dimensional area array CCD, the transient can be measured three-dimensional flow field distribution in real time.

2.当二维哈特曼波前传感器所用二维面阵CCD为逐行扫描方式,并且测量光源为超短脉冲激光时,本发明可以用于超高速流场(如爆炸过程)三维分布动力学过程研究。 2. When the two front sensors 维哈特曼波 twodimensional area array CCD progressive scan mode, and the measurement of ultrashort pulse laser light source, the present invention may be used (e.g., explosion) ultra high-speed three-dimensional flow field of power distribution studies process.

3.与已有的空间三维流场测量系统相比,本发明具有波前误差获取方便、快捷,可以实现实时测量和超快过程的测量,对光源相干度要求低等诸多优点。 3. Compared with the existing three-dimensional space field measurement system according to the present invention with wavefront error acquisition easy, fast, real-time measurement and ultrafast process may be implemented, requires low degree of coherence of the light source advantages.

Claims (3)

1.空间三维流场实时测量系统,由测量子系统和主计算机组成,测量子系统的激光器(1)输出的光束,经扩束物镜(2)形成的大口径平行光穿过被测流场(7),口径匹配物镜(3)入射到二维哈特曼波前传感器(4)后,输出的信号经A/D数字化,输入处理机(5)处理,再送主计算机(6)解算出流场分布,其特征在于:在不同投射角的测量子系统的激光均穿过被测流场(7),投射角θ≥0°;各二维哈特曼波前传感器(4)的信号经A/D数字化,输入处理机(5)得出各二维哈特曼波前传感器(4)的子孔径波前倾斜分布信息,再送主计算机(6)解算出三维波前层析位相分布,从而测量流场的三维分布。 1. Space dimensional flow field measurement system in real time, a measurement subsystem and a main computer components, the beam (1) the laser output measurement subsystem, parallel large diameter by a beam expander lens (2) is formed passes through the measured flow field (7), matching the caliber of the objective lens (3) is incident to two 维哈特曼波 front sensor (4), the signal a / D digital input output processor (5) processing, sending a host computer (6) calculates Solutions flow field, wherein: the measurement of different projection angles of the laser subsystem are measured through the flow field (7), the projection angle θ≥0 °; 维哈特曼波 signal before each of two sensors (4) obtained before each of the two 维哈特曼波 sensor is a / D digitized input processor (5) (4) tilted wavefront subaperture distribution information, sending a host computer (6) calculates the three-dimensional wavefront solution phase distribution chromatography thereby measuring the three-dimensional flow field distribution.
2.如权利要求1所述的空间三维流场实时测量系统,其特征在于二维哈特曼传感器(4)由二维微透镜阵列(8)和二维CCD相机(9)组成,二维微透镜阵列(8)的焦面在二维CCD相机(9)的靶面上。 2. The real-time three-dimensional spatial flow field measurement system according to claim 1, characterized in that the two Kazak Hartman sensor (4) by a two-dimensional microlens array (8) and the two-dimensional CCD camera (9), with a two-dimensional a microlens array on the target surface (8) in the focal plane of the two-dimensional CCD camera (9).
3.如权列要求1或2所述的空间三维流场实时测量系统,其特征在于测量子系统中的二维哈特曼波前传感器(4),其采样过程均在主计算机(6)控制下同步进行。 3. The weight of a column or the space requirements of the three-dimensional flow field of real-time measurement system 12, wherein two 维哈特曼波 front sensor (4) measurement subsystem, which are sampling process in a host computer (6) under the control of synchronization.
CNB981122116A 1998-08-26 1998-08-26 Space three-dimensional flow field real-time measurement system CN1187588C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB981122116A CN1187588C (en) 1998-08-26 1998-08-26 Space three-dimensional flow field real-time measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB981122116A CN1187588C (en) 1998-08-26 1998-08-26 Space three-dimensional flow field real-time measurement system

Publications (2)

Publication Number Publication Date
CN1245894A true CN1245894A (en) 2000-03-01
CN1187588C CN1187588C (en) 2005-02-02

Family

ID=5222086

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB981122116A CN1187588C (en) 1998-08-26 1998-08-26 Space three-dimensional flow field real-time measurement system

Country Status (1)

Country Link
CN (1) CN1187588C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100498266C (en) 2005-06-01 2009-06-10 中国科学院光电技术研究所 Transient three-dimesisional flow field optical chromatography measuring system
CN100573064C (en) 2006-01-16 2009-12-23 中国科学院光电技术研究所 Hartmann wave front sensor based on visual field offset of spectroscope
CN1844873B (en) 2006-05-22 2010-09-22 中国科学院光电技术研究所 Supersonic speed flow field detection system based on H-S wave front sensor and detection method thereof
CN101413789B (en) 2007-10-18 2010-09-29 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Method and apparatus for detecting surface profile
CN101975869A (en) * 2010-09-16 2011-02-16 中国海洋大学 Long-term flow field three-dimensional monitoring device and manufacturing method thereof
CN102980739A (en) * 2012-10-30 2013-03-20 华中科技大学 Pulse gas laser intracavity flow field measurement device based on four-quadrant detector
CN104819774A (en) * 2015-04-22 2015-08-05 哈尔滨工业大学 Flame light field probe pan-scale analysis method based on micro-lens array
CN105606842A (en) * 2016-03-25 2016-05-25 西北核技术研究所 Multi-line interference Rayleigh scattering speed measuring device for flow field
CN109115459A (en) * 2018-08-22 2019-01-01 扬州大学 A kind of water tunnel experiment aerofoil profile angular adjustment device for measuring force and force measuring method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100498266C (en) 2005-06-01 2009-06-10 中国科学院光电技术研究所 Transient three-dimesisional flow field optical chromatography measuring system
CN100573064C (en) 2006-01-16 2009-12-23 中国科学院光电技术研究所 Hartmann wave front sensor based on visual field offset of spectroscope
CN1844873B (en) 2006-05-22 2010-09-22 中国科学院光电技术研究所 Supersonic speed flow field detection system based on H-S wave front sensor and detection method thereof
CN101413789B (en) 2007-10-18 2010-09-29 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Method and apparatus for detecting surface profile
CN101975869A (en) * 2010-09-16 2011-02-16 中国海洋大学 Long-term flow field three-dimensional monitoring device and manufacturing method thereof
CN101975869B (en) 2010-09-16 2013-11-20 中国海洋大学 Long-term flow field three-dimensional monitoring device and manufacturing method thereof
CN102980739A (en) * 2012-10-30 2013-03-20 华中科技大学 Pulse gas laser intracavity flow field measurement device based on four-quadrant detector
CN102980739B (en) * 2012-10-30 2015-05-20 华中科技大学 Pulse gas laser intracavity flow field measurement device based on four-quadrant detector
CN104819774A (en) * 2015-04-22 2015-08-05 哈尔滨工业大学 Flame light field probe pan-scale analysis method based on micro-lens array
CN105606842A (en) * 2016-03-25 2016-05-25 西北核技术研究所 Multi-line interference Rayleigh scattering speed measuring device for flow field
CN109115459A (en) * 2018-08-22 2019-01-01 扬州大学 A kind of water tunnel experiment aerofoil profile angular adjustment device for measuring force and force measuring method

Also Published As

Publication number Publication date
CN1187588C (en) 2005-02-02

Similar Documents

Publication Publication Date Title
Heflinger et al. Holographic interferometry
Koliopoulos Simultaneous phase-shift interferometer
Guizar-Sicairos et al. Phase tomography from x-ray coherent diffractive imaging projections
DE69738493T2 (en) Device and method for surface contour measurement
Farmer Measurement of particle size, number density, and velocity using a laser interferometer
Colomb et al. Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements
CN1250942C (en) Construction optical visual sense transducer calibration method based on plane targets
Primot Three-wave lateral shearing interferometer
US4311383A (en) Method for determination of velocity and direction of motion of moving object by speckle patterns and apparatus therefor
Meyers Doppler global velocimetry-The next generation?
CN102003946B (en) High-temperature three-dimensional digital image related measurement system and measurement method
Davies et al. An integrator for measuring the “dry mass” of cells and isolated components
WO2001084124A2 (en) Methods and systems using field-based light scattering spectroscopy
Saunders Measurement of wave fronts without a reference standard: part 1. The wave-front-shearing interferometer
CN1449490A (en) Phase dispersive tomography
US6097477A (en) Laser speckle strain and deformation sensor using linear array image cross-correlation method for specifically arranged triple-beam triple-camera configuration
Angelsky et al. Use of optical correlation techniques for characterizing scattering objects and media
US4329054A (en) Apparatus for sizing particles, droplets or the like with laser scattering
Damaschke et al. Multi-dimensional particle sizing techniques
Kervella et al. VINCI, the VLTI commissioning instrument: status after one year of operations at Paranal
CN101782435B (en) Laser parameter integrated test system
Harland et al. Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer
CN103926197A (en) High spatial resolution biaxial differential confocal spectrum microscopic imaging method and apparatus
CN1168951C (en) Apex cuvature radius measuring method and device foir aspherics
CN101832817B (en) Parallel complex frequency domain optical coherence tomography imaging method and system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right