CN1236232A - Efficient high latitude serive area satellite mobile broadcasting systems - Google Patents

Efficient high latitude serive area satellite mobile broadcasting systems Download PDF


Publication number
CN1236232A CN 99101013 CN99101013A CN1236232A CN 1236232 A CN1236232 A CN 1236232A CN 99101013 CN99101013 CN 99101013 CN 99101013 A CN99101013 A CN 99101013A CN 1236232 A CN1236232 A CN 1236232A
Prior art keywords
Prior art date
Application number
CN 99101013
Other languages
Chinese (zh)
Other versions
CN1174563C (en
Original Assignee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/082,489 priority Critical patent/US6223019B1/en
Application filed by Cd无线电公司 filed Critical Cd无线电公司
Publication of CN1236232A publication Critical patent/CN1236232A/en
Application granted granted Critical
Publication of CN1174563C publication Critical patent/CN1174563C/en



    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18523Satellite systems for providing broadcast service to terrestrial stations, i.e. broadcast satellite service


诸卫星声频广播系统包括诸轨道星座,这些星座用于为从星座的诸卫星到在位于远离赤道的诸地理纬度上的诸服务区中的诸固定的和移动的接收机的诸声频广播信号,提供高仰角的覆盖区域。 Satellites audio broadcasting system includes various orbit constellation, the constellation used for the various acoustic receiver from the satellites of the constellation to all service area located away from the equator of the various geographical latitude in various stationary and mobile broadcasting signal, providing high elevation angle coverage area.


诸有效的高纬度服务区的卫星移动广播系统 Satellite mobile broadcasting system such efficient high latitude service area

已经对无线电(“卫星DAB”,International Journal ofCommunication;Robert D.Briskman;Vol.13,1995年2月,259-266页)和其它的诸广播服务,如来自位于或接近赤道平面的在35,786km高度上的诸卫星的电视或数据,提出了用于诸移动接收机的诸卫星广播系统。 Has radio ( "Satellite DAB", International Journal ofCommunication; Robert D.Briskman; Vol.13, February 1995, pages 259-266), and various other broadcast services, such as from at or near the equatorial plane of 35,786km the height of the satellites or television data, various proposed for satellite broadcasting systems to mobile receivers. 这些卫星能很好地为在低和中等纬度的诸地理区域服务,但是,当纬度增高时,对诸卫星的诸仰角减小如图1所示。 These satellites well serve geographical area in various low and medium latitudes, however, when higher latitude, elevation angles to the satellites decrease as shown in FIG. 在用诸移动接收机的诸卫星广播系统中,为了减少由于物理障碍,多路径衰落和叶衰减引起的诸服务中断,最希望有诸高的仰角。 In such satellite broadcasting systems to mobile receivers, in order to reduce the physical obstruction, multipath fading and leaf various service interruption caused by attenuation, most desirable to have such a high elevation. 对这个问题的认识已经导致用诸12小时倾斜椭圆轨道的诸卫星系统,如诸Molniya通信卫星和建议的Archimedes无线电广播系统的出现。 Awareness of the problem has led to various elliptical orbit satellite system, such as Molniya communications satellites and the proposed Archimedes radio broadcast system using various inclination 12 hours. 由于为了连续地复盖诸实际的服务区需要许多卫星,以及诸卫星的电子设备和诸太阳能供电子系统因每天四次通过围绕地球的VanAllen辐射带而性能退化,所以这些系统不是有效的。 For continuous coverage since all actual service area needs many satellites, satellites and an electronic device and a power supply subsystem because the solar radiation VanAllen four belt around the earth through degradation per day, so these systems are not effective. 本发明的诸系统和诸方法克服了这些问题。 Zhu and system of the invention overcomes all these problems.

本发明的诸系统和诸方法用在诸24-恒星时轨道(地球同步的)中的诸卫星,这些卫星有为了使在高纬度的一个特定的服务区、地域或国家的复盖最佳化而选择的诸倾斜度,诸轨道平面,诸赤径和诸偏心率。 Various systems of the invention and various methods used in the satellites orbit (GEO) of the star when the various 24-, these satellites have a cover in order to make high latitudes particular service area, region or country Optimizer the inclination is selected such, various orbital planes, right ascensions of various diameter and eccentricity. 和图1的诸仰角相反,一个有二颗,三颗或更多颗卫星的卫星星座能够在位于诸高纬度的整个大服务区中当每天的全部或大部分时间中提供50°-60°的诸仰角。 And elevation angles of FIG. 1 in contrast to a two, three or more satellites can provide a satellite constellation 50 ° -60 ° when all or most of the day time all located in high latitudes entire service area of ​​the large the elevation angles. 我们也能够对诸卫星的诸轨道进行配置,以便避免来自诸Van Allen带的大部分辐射。 We are also able to configure all the satellites orbit in order to avoid the most from all Van Allen radiation belt.

本发明的诸卫星系统,在诸优先的实施例中,通过向在这些区域中的诸移动接收机提供诸高的仰角,以便在一天的全部或大部分时间中都能接收广播的诸发射,能为位于比近似30°N或30°S大的诸地理纬度服务区服务。 Satellites system of the invention, in various preferred embodiments, by providing such a high elevation angles to mobile receivers in these regions, so that can receive various broadcast transmitting all or most of the time of day, located to serve more than approximately 30 ° N or 30 ° S latitude service such a large area. 诸优先的系统用在一个星座中的诸地球同步卫星(即,有一个24恒星时轨道周期-86,164秒)。 All geosynchronous satellites in such systems a priority constellation (i.e., when there is a sidereal orbital period -86,164 24 seconds). 我们配置星座的设计,以便使一个特定的地理高纬度的服务区的仰角复盖最佳化,从而实现最小的物理障碍,低的树叶衰减和诸小概率的多路径衰落。 We constellation configuration design, so that the elevation of a particular geographic service area coverage at high latitudes optimized to achieve the minimum of physical barriers, low attenuation and leaves all the small probability of multipath fading. 例如,图13表示当使接收的仰角增加一倍时,在一个1.5GHz发射频率的叶衰减中的一个有许多分贝的改善,以便达到诸高的服务可靠性。 For example, FIG. 13 shows when the reception elevation increases doubled, a 1.5GHz attenuating leaves in a transmission frequency of many decibels improvement in order to achieve such a high reliability of service. 这种引人注目的改善也对其它的诸类似的改善,对其它的诸微波频率和对其它的诸服务可靠性发生。 Such dramatic improvement also various other similar improvements, various other microwave frequencies and reliability of the occurrence of all other services.

通过选择星座的诸卫星的诸轨道参数和在星座中的诸卫星的数目,能实现配置设计的最佳化。 By selecting the number of orbital parameters of the satellites and constellation of satellites in the constellation, can be optimized design configuration. 用于诸移动接收机的诸卫星声频广播系统一般地提供多频道无线电服务,并且诸卫星发射额定地是在1-4GHz之间。 Satellites for mobile receivers acoustic frequency radio broadcasting systems providing multi-channel services in general, and is nominally the satellites transmit between 1-4GHz.

倾斜度一般地将诸卫星的倾斜度选择在约40°和约80°之间,使得当诸卫星在头上飞过时,它们能复盖所希望的诸高纬度服务区。 The inclination of the satellites is generally selected inclination is between about 40 ° and about 80 °, such that when the satellites flying in the head, they can cover all the desired high latitude service area.

偏心率选择偏心率,使它在服务区域上空有一个高的远地点,从而使诸卫星在头上化费最大量的时间。 Select eccentricity eccentricity, it has a high apogee over the service area, so that the maximum amount of time the satellites at the head of the fee. 实践中,通过增加距离来限制偏心率,因为离服务区较高,但是必须或者通过较高的卫星发射功率,通过当在轨道的这个部分时卫星天线有更高的定向性,或者通过它们二者的诸种组合来克服这个附加的距离。 In practice, by increasing the eccentricity distance limit, from the service area because the higher, but must be high or by satellite transmission power, when the satellite antenna through orientation higher during this portion of the track, by which two or unite to overcome this by a combination of additional distance. 在诸优先的实施例中,偏心率的范围从约0.15到约0.30。 In various preferred embodiments, the eccentricity range from about 0.15 to about 0.30. 最好选择诸偏心率在约0.15和约0.28之间,因为这些偏心率能够避开大多数的Van Allen带。 The best choice for such eccentricity is between about 0.15 and about 0.28, the eccentricity can be avoided because the majority of the Van Allen belt.

诸卫星的诸平面/数目诸轨道平面的数目等于诸卫星的数目,它们在赤道上的间距等于360°除以诸卫星的数目。 The number of such plane / the number of satellites in the orbital plane such Yuzhu number of satellites and the like, which spacing at the equator is equal to 360 ° divided the number of such satellites. 在诸优先实施例中,诸卫星星座的卫星在2到4颗之间。 In the preferred embodiment all the satellite, the satellites in the constellation of between 2-4. 为了说明起见,对于一个有3颗卫星的星座,诸卫星将在近似分开120°的诸轨道平面中。 To illustrate, for a three satellite constellation, the satellites would be approximately 120 ° apart in the plane of the orbits.

近地点的幅角为了对高于30°N的诸纬度区域进行服务,近地点的幅角在270°附近,使得远地点在北半球和近地点在南半球。 Argument of perigee for various latitudes above 30 ° N is service, the web near perigee of 270 °, so that the apogee and perigee in the northern hemisphere, in the Southern Hemisphere. 为了对低于30°S的诸纬度区域进行服务,近地点的幅角在90°附近,使得远地点在南半球和近地点在北半球。 To all areas below 30 ° S latitude performs the service, the web of perigee in the vicinity of 90 °, so that the apogee and perigee in the southern hemisphere in the northern hemisphere.

上升节点的经度。 Rise longitude nodes. 选择有这样一个上升(ascending)节点的经度的诸轨道平面,使得诸卫星对整个服务区有一个良好的俯视(即,在由诸移动接收机观察到的诸高仰角上)。 Choose such a rising plane orbits longitude (Ascending) node, such that the satellites have a good to the entire service area of ​​a top (i.e., on all observed by a high elevation angle to mobile receivers). 一般地,这可通过选择上升节点的赤经和平均的近点角,使得地面轨迹的中心将服务区域进行二等分,来实现这一点。 Generally, this can be increased by selecting the node and the ascension of the average anomaly such that the center of the ground trace bisects the service area, to achieve this.

地面轨迹在优先的实施例中,诸卫星跟随相同的地面轨迹并以诸近似相等的时间间隔通过在地球上的一个给定点的上空。 Ground track in the preferred embodiment, the satellites follow the same ground track and at various time intervals approximately equal to the earth through a given point of the above. 每个卫星的轨道占据其自己的轨道平面。 Each satellite orbits to occupy its own orbital plane. 对于在一个有n颗卫星的星座中的诸相邻平面内的诸卫星,诸上升节点的诸赤经中的差等于360°/n,诸平均的近点角中的差等于360°/n和在地面轨迹上的诸卫星之间的平均时间定相等于24恒星时/n。 For all satellites in adjacent planes in a constellation of n satellites, and all of the various nodes increase ascension difference is equal to 360 ° / n, the difference between such average anomaly equal 360 ° / n and when the average time between the satellites on the ground track 24 is equal to a given star / n.

轨道控制本发明的诸卫星星座经受着由于地球的扁球状,太阳和月亮的诸重力,太阳的辐射压力引起的上述诸轨道参数随时间的变化。 The control track of the present invention described above suffers from various satellite constellation orbital parameters since such flat spherical Earth's gravity, sun and moon, the solar radiation pressure caused by change with time. 诸卫星的星载推进系统能对这些效应进行补偿。 Satellites' onboard propulsion system to compensate for these effects. 可以通过分析在诸卫星的诸寿命期间由上述的诸效应引起的每一个个别的轨道参数的诸扰动,以及选择诸轨道的诸初始条件,使得诸轨道上的变化有最小值,能够将这种推进剂的量减至最小。 By analyzing the various satellites during the lifetime due to the above-described various effects of such perturbations of each individual orbit parameters, and selecting various tracks various initial conditions, such that a change in the orbits have a minimum value, which can be minimize the amount of propellant. 一般地,这种选择得到一些扰动源部分地抵消了其它的一些扰动源这样一个事实的帮助。 In general, this choice to get some disturbance source partially offset by some other source of disturbance of the fact that such a help.

卫星的空间和时间分集图3表示从华盛顿州的西雅图市到通过这里描述的方法对为美国服务的广播进行了最佳化的一个有三颗卫星的星座的仰角复盖区域。 Space and time diversity satellite Figure 3 shows from Seattle, Washington to by the method described herein for the US broadcast services were optimized elevation of a constellation of three satellites coverage area. 其中的二颗卫星在所有时间都是可见的。 One of the two satellites are visible at all times. 在美国专利#5319672,1994年7月6日,#5278863,1994年11月1日和#5592471,1997年7月1日中描述的用于卫星的空间和时间分集的诸技术是完全可以应用的,在这里我们将这些专利作为参考文献和本发明结合起来。 In the US patent # 5,319,672, July 6, 1994, # 5,278,863, 1994 November 1 and # 5592471, space and time for the satellite of Japan, 1997 July 1 The techniques described diversity is fully applied , where we refer to these patents are incorporated by reference and the present invention is combined.

为了减轻多路径衰落和降低树与叶子的衰减,通过用本发明节省的卫星发射功率余量能够使优点突出地被利用。 To mitigate multipath fading and foliage attenuation and reduced tree, by using the present invention, the satellite transmit power margin saved can be utilized to advantage protrude. 一种应用是通过采用一个较小的,较不昂贵的卫星来实现的。 One application is achieved by using a smaller, less expensive satellites. 一个第二种应用是通过发射较多的节目频道来实现的。 A second application is achieved by transmitting more program channels.

通过参照所附诸图能够较好地理解本发明的诸系统和诸方法,其中:图1表示对于一个通信卫星的最佳位置(它近似为在赤道上西经101°),在美国48个相邻的州中诸移动接收机所在位置的诸仰角。 By referring to the figures appended various systems can be better understood and the various methods of the present invention, wherein: Figure 1 shows the best place for a communications satellite (which is approximately at the equator longitude 101 °), in U.S. 48 neighboring states all elevation angles where the location of the mobile receiver. 美国北部的大部分地方有在30°-35°范围内的诸仰角,实际上由于移动平台的倾斜它们能够取较低的值。 Most of the northern United States where there is elevation angles in the range 30 ° -35 °, in fact, the inclination of the mobile platform they can take a low value. 加拿大,日本和欧洲的大部分,由于它们处在诸较高的纬度,来自诸最佳位置的通信卫星的诸仰角有较低的值。 Canada, Japan and most of Europe because they are in such high latitude, elevation angles from the optimum position of the various communications satellite has a lower value.

图2表示对于一个有三颗卫星的星座,用本发明的诸方法和诸技术使这些卫星的诸轨道对于美国48个相邻的州是最佳的,对于美国缅因州班戈市的诸仰角;图3是对于华盛顿州的西雅图市的;图4是对于加利福尼亚州的圣迭戈市的;图5是对于佛罗里达州的奥克兰市的;和图6是对于密苏里州的堪萨斯市的。 Figure 2 shows the elevation angles for a constellation of three satellites, using various methods of the present invention and the various technical orbits of these satellites for the 48 contiguous US states is the best for the city of Bangor, Maine USA ; 3 for Seattle, Washington; Figure 4 for San Diego, California; Figure 5 is for Auckland City in Florida; and Figure 6 for Kansas City, Missouri. 该星座提供了一颗在所有时间中在整个美国北部都有60°以上仰角的卫星,和一个在大部分时间中都有30°以上仰角的第二颗卫星。 The constellation provides one at all times throughout the northern United States has more than 60 ° satellite elevation angle, and most of the time in both a 30 ° elevation than the second satellite.

图7画出了诸卫星的地面轨迹。 Figure 7 depicts the ground track of the satellites. 用单颗不能提供减轻多路径衰落功能的卫星,但是一个有二颗卫星的星座却是可行的,如图8对于纽约市所示。 Providing a single multi-path fading does not reduce the function of the satellite, but a constellation of two satellites is feasible as shown in Figure 8 for New York City. 相反地,一个有四颗卫星的星座将在比图2-6高的诸仰角上提供多个卫星复盖区域。 Conversely, a four satellite constellation would provide multiple satellite coverage area on the higher elevation angles than Figure 2-6.

图9表示对于一个为欧洲服务的有三颗卫星的星座的地面轨迹,图10-12表示它们的在诸不同城市中达到的诸高仰角。 Figure 9 shows the ground track to have a constellation of three satellites for the European service, 10-12 indicating that they reached in various different cities in various high elevation.

图13表示为了克服来自诸树木和诸叶子的路边阴影所需的衰落界限作为服务的不可利用性和仰角的一个函数关系,该衰落界限是在美国的相邻的48个州中在L-波段的诸频率(1-2GHz)上测量的。 13 shows To overcome such a desired function from the fading shadow boundaries and roadside trees such as leaf service unavailability and elevation, which is in fading L- limit in the United States in the contiguous 48 states Zhu frequency band (1-2 GHz) measurement. 在需要适度的可利用性(例如,90%或10%的不可利用性)的诸情形中,在仰角复盖区域中有适当改善的任何地方,衰落边缘的改善将达到若干个分贝。 In such situations require modest availability (e.g., 90% or 10% unavailability) is in any place suitable for improvement in elevation angle coverage area, to improve the fading edge will reach several decibels. 在需要高的可利用性(例如,99%或1%的不可利用性)的诸情形中,并在仰角复盖区域中有大的改善的地方,衰落边缘的改善将在12-14dB的范围内(即,20倍)。 In such situations require high availability (e.g., 99% or 1% unavailability) in, and large improvement in elevation angle coverage of the local area, to improve the fading edge of the range 12-14dB inner (i.e., 20 times). 卫星系统的设计者能够利用诸降低需要的诸衰落边缘的效果,以便达到应用诸较小的较不昂贵的卫星或较多的声频节目频道或它们二者的诸种组合的目的。 Satellite system designer to take advantage of such an effect to reduce such fading the edge needed in order to achieve the object of the application of a composition unite smaller less expensive satellites or more audio program channels or both of them.

图14是一个简化的图,它表示本发明为减少因诸物理障碍(例如,诸建筑物,诸小山等)引起的来自移动接收机的卫星信号的诸服务中断提供的改善。 FIG 14 is a simplified view showing the present invention is to reduce such servicing satellite signal from the mobile receiver due to various physical disorders (e.g., various buildings, hills, etc. all) interrupts caused improvement provided. 该图表示在最坏的情形,为了总能避免由于障碍物引起的中断,一辆汽车必须离开一座有某个高度的建筑物的距离作为一个到单颗卫星的仰角的函数。 The figure represents the worst case, in order to always be able to avoid obstacles due to the interruption caused by a car must leave the city with a certain distance as a function of the height of the building to a single satellite elevation. 要避免的障碍的数量对于一个设定的建筑物高度来说随着卫星仰角的改善发生很大的变化。 The number of obstacles to be avoided big change for a building height is set to take place with the improvement of satellite elevation angle. 依赖于卫星仰角复盖区域中的改善,一台移动接收机离开建筑物的距离典型地能够从近至数英尺到远至许多码,而不会受到障碍的影响。 Satellite elevation angle coverage improvement depends on the area, a distance from the mobile receiver is typically capable of building far from the proximal to the plurality of code to several feet, without being affected by the disorder.

图15表示当星座的诸卫星中的一颗卫星的地面轨迹如图7所示时,如果诸轨道参数没有选择得使诸轨道的扰动最小并且如果在一个15年的时期内没有利用卫星的推进力对余下的诸扰动进行校正,则对该颗卫星的轨道将发生什么。 15 shows a satellite ground track of the satellites in the constellation as shown in Figure 7, if the orbital parameters chosen so that no disturbance is minimal and orbits if not utilized within a 15 year period of the satellite propulsion the remaining force to various disturbances corrected, the satellites orbit what happens. 由太阳的诸重力月亮和太阳的辐射压力引起的上述诸轨道参数随时间的变化。 Change of the orbital parameters of the solar radiation pressure such gravity causes the moon and sun over time. 由太阳和月亮的诸重力效应和地球的扁率,以及由太阳的辐射压力引起的诸扰动是一个诸轨道和它们的诸历元(即,轨道增长的实际时间)的函数。 The sun and moon, and gravitational effects of various of the earth is flat, and the various disturbances caused by solar radiation pressure is caused by a various orbits and their epochs (i.e., the actual growth track time) function.

最好通过用于设计一个到诸移动接收机的声频卫星广播系统,以便对一个在地理上离开赤道很远的服务区提供遍及整个区域的服务时采用的列举的诸步骤来描述本发明的诸系统和诸方法。 Preferably by designing for such a step to the acoustic frequency of mobile receivers satellite broadcasting system, so far away from the equator of the service area geographically to provide a service over the time of use include the entire region of the present invention will be described Zhu various systems and methods. 诸移动接收机有诸天线,将这些天线配置得能观察到能够看见诸卫星的天空。 Mobile receivers have the antennas, these antennas can be arranged so the observed satellites visible sky. 也可将本发明用于诸固定位置接收机的无线电广播系统。 The present invention may also be used in all radio systems in a fixed position of the receiver. 事实上,当一个移动接收机停止不动时,它基本上就是一个固定的接收机。 In fact, when a mobile receiver stops moving, it is essentially a fixed receiver. 因为没有什么多路径衰落和遇到的障碍是时间上静止的,所以固定位置接收机的情形在技术上是比较简单的。 Because there is no multi-path fading and obstacles encountered is still on time, so the case of the fixed position of the receiver is technically relatively simple.

诸重要的分析输入参数是地理服务区的定义和提供的服务质量。 All important input parameter analysis is to define the quality of service provided and the geographical service area. 将服务质量定义为由于物理障碍,多路径衰落和树木/叶子衰减引起的中断产生的服务的不可利用的时间百分比。 The percentage unavailable time is defined as the quality of service interruption due to physical barriers, multipath fading and trees / leaves decay caused by service generated. 能从与图14所示的那些计算类似的诸计算推导出为使由单条路径的物理障碍引起的中断减至最小的诸希望的卫星仰角。 Similar to those calculated from the deduced calculated such that the interruption is desired to minimize the various satellite elevation angle by a physical disorder caused by a single path shown in FIG. 14. 类似地,能从在投射的服务区中在系统的工作无线电频率上的诸发射测量,如图13所示的对于美国在L-波段的诸频率那样,和对于在移动接收机上的诸卫星的发射信号界限的知识推导出为使由树木/叶子衰减引起的中断减至最小的诸希望的卫星仰角。 Similarly, emission measurements from all the projected service area at the operating frequency of the radio system, shown in Figure 13 as in the U.S. for all L- frequency band, and for the satellites in the mobile receiver the boundaries of knowledge transmitted signal is derived to minimize the interruption of all hope of satellite elevation trees / leaves attenuation caused by the. 通过用卫星的空间和时间分集处理多路径和总的障碍(即,所有的路径障碍,如当一台移动接收机在一个大的高架桥下通过时发生的那样)。 Diversity processing by multipath obstacles and total time and space satellites (i.e., all path blockage, such as occurs when a mobile receiver at a large through viaduct). 作为对由诸移动接收机可以同时观察到的诸卫星的数目和诸卫星的诸仰角的要求,对分集进行分析。 As the requirements for the number of satellites elevation angles by mobile receivers can be observed simultaneously and the satellites, to analyze the diversity.

于是,我们将上述诸分析的诸结果用于设计卫星星座,该卫星星座是一个诸轨道参数和星座中的卫星数目的函数。 Therefore, we analyzed all the above results of various designs for the satellite constellation, the constellation is a number of satellites in the constellation orbit parameters and various functions. 用诸已知的计算机分析程序,在一个整天中(即,因为卫星是地球同步的,所以如果忽略诸扰动,则诸仰角将每天重复)对在整个服务区内的诸移动接收机对星座的诸卫星的诸仰角进行最佳化。 With various known computer analysis programs, in a day (i.e., since the satellites are geosynchronous, if so ignore all disturbances, the elevation angles will repeat every day) for the mobile receivers throughout the service area constellation elevation angles of the satellites will be optimized. 最佳化特别改变了对于给定的诸赤经的倾斜度和偏心率,从而使诸卫星在服务区上空(即,在诸高的仰角上)停留的时间达到最长。 Especially optimized for a given change in the inclination and eccentricity of all ascension, so that the satellites over the service area (i.e., all high in elevation) the residence time of the longest. 又,选择轨道的远地点和近地点要考虑避免通过诸Van Allen带,以便使对诸卫星的辐射损害减至最小,并且要考虑避免诸太高的远地点,以便使过分的空间损耗或天线束的形成减至最小,如我们接着要讨论的。 And selecting the track apogee and perigee to be considered avoided by Zhu Van Allen belt, in order to minimize radiation damage to the satellites and to consider avoiding such high apogee, so that excessive space loss or antenna beam forming minimize, as we then be discussed.

不能用单个卫星实现一个远离赤道的有合理大小的服务区的连续复盖,所以一般地对有2,3和4颗卫星的诸星座进行分析。 Can not be achieved with a single satellite away from the equator of the continuous coverage of a reasonably sized service area, it has generally constellations of satellites 3 and 4 were analyzed. 诸分析是用诸已知的计算机程序来实施的。 Analysis of all known with various computer programs to be implemented. 仰角复盖改善的量对于有多于3颗卫星的诸星座减少了。 An amount of elevation angle coverage improvement for constellations with more than three satellites is reduced. 有多于4颗卫星的诸星座在技术上是可行的,并且仅仅在一定程度上改善了仰角复盖和冗余度二者。 More than four satellite constellations is technically feasible, and only improve both elevation angle coverage and redundancy in a certain extent. 图8表示当从纽约市观看时一个2颗卫星的星座的仰角复盖。 Figure 8 shows in New York City when viewed from the angle of elevation of a constellation of two satellites covering. 没有明显的卫星空间分集能够从这种不能利用的技术实现多路径减轻。 No significant satellite spatial diversity to achieve multipath mitigation from this technique can not be utilized. 从诸分析的数据选择星座中的诸卫星的数目是根据这样一个判据,即在整个服务区中在选出的最小的诸仰角,诸移动接收机可以看到的所需的卫星数目最少。 The number of data selected from the satellites in the constellation of all this analysis is based on a criterion, i.e. the entire service area in the selected minimum elevation angles, the required number of satellites visible to mobile receivers minimum. 系统的诸价格也会对这种选择产生影响。 Various price system will have an impact on this choice.

下面的诸分析取选出的卫星轨道星座并进一步从诸轨道扰动的观点对它进行最佳化。 The following analysis taking various selected satellite orbit constellation and further optimize it from the viewpoint orbits perturbed. 这个最后的最佳化的目的是为了使诸卫星的质量,特别是为了使对诸长时期的扰动对诸轨道进行校正所需的星载推进剂的量减至最少。 The final purpose is to optimize the quality of the satellites, in particular, in order to make such a long period of perturbations required amount of correction of the orbits onboard propellant minimized. 因为这样做会使卫星和它的运载火箭二者较不昂贵,所以这是很重要的。 Because doing so would both satellite and its launch vehicle less expensive, so this is very important.

用已知的诸计算机程序进行这些分析。 These analyzes were performed using various computer programs known. 诸程序计算由地球的扁率,太阳和月亮的诸重力效应以及太阳辐射压力引起的诸卫星的诸轨道的诸扰动。 The program calculates all the various satellites orbits the disturbance caused by the effect of gravity, and the various flat solar radiation pressure of the earth, the sun and moon. 尽管在一个短期的基础上那些效应各个都是很小的,但是这种类型的诸卫星一般地有一个15年的寿命。 Although all are very small, but this type of satellites in a short-term basis to those effects generally have a life expectancy of 15 years. 诸扰动中的一些的大小是一个最初将诸卫星放入轨道中的时间(即,历元)的函数。 Some of such magnitude is a disturbance in the first time satellites placed in orbit (i.e., epoch) function. 诸分析考虑了哪些扰动是相加的和哪些扰动是相减的,并通过小量地改变诸初始轨道参数,特别是倾斜度和偏心率,以及它们以后的轨道中的校正策略,使诸扰乱减至最小。 Analysis considers various disturbances which are additive and which are subtractive disturbance, and various changes in small quantities by the initial orbital parameters, particularly inclination and eccentricity, and their subsequent correction strategy track the various disturbing reduced to a minimum. 最佳化的结果体现在卫星需要的星载燃料量的减少并反映在卫星质量最小上。 Best of the results is reflected in the amount of fuel onboard satellites needed to reduce and minimize the quality is reflected in the satellite.

最后的诸分析涉及指向服务区的卫星天线的最佳化。 The final analysis of all the best involves pointing the service area of ​​the satellite antenna. 诸分析导致需要卫星天线瞄准线的瞄准角在时间过程中(即,在一个恒星日中),保持它对服务区的精确的指向。 Analysis led to the need of various satellite antenna boresight pointing angle in the course of time (i.e., a star in Japan), to maintain its precise point service area. 依赖于在远地点和近地点的纬度之间的不同,如果远地点非常高,则诸分析提供在时间过程中卫星天线的束形,这对补偿测距中的变化(即,空间传播损耗的变化)是需要的,并且对于不是圆形的诸天线束形提供在时间过程中所需的诸天线图案的转动。 Dependent on differences between the apogee and latitude perigee, if the apogee is very high, such analysis provides beam shaped satellite antenna in the course of time, this (i.e., changes in loss spatial propagation) is a variation compensation Ranging It needs, and provides the time required to turn in the course of the pattern for the antennas of the heavens is not circular shaped harness.

我们设计了应用本发明的二个用于声频卫星广播的系统。 We designed a system for two applications of the present invention the acoustic frequency satellite broadcasting. 设计了一个系统,使它为美国的相邻的48个州服务。 Designed a system, it is adjacent to US 48 states service. 诸输入需要将有一个在服务区北部的卫星,它总是对该区域中的诸移动接收机以至少60°的仰角进行观察,而一个第二颗卫星总是在至少25°仰角是可见的。 All need to enter a service area in the north of the satellite, it is always observed in the region of the mobile receivers elevation angle of at least 60 °, and a second satellite always visible in an elevation angle of at least 25 ° . 用一个来自宾夕法尼亚州Malvern的Analytical Graphics公司的称为“卫星工具箱”的轨道计算程序进行诸分析。 Orbital calculation program called "satellite toolbox" with a Pennsylvania company Malvern's Analytical Graphics were all analyzed. 诸分析的诸结果导致一个有三颗卫星的星座。 Zhu Zhu analysis of the results leads to a constellation of three satellites. 图2到图7表示对于该系统由程序计算得到的特殊的最后的仰角复盖的诸输出。 FIG 2 to FIG 7 showing the final elevation angle for a particular system is obtained from the overlay of the various program calculates output.

设计了一个第二个系统,使它用类似的对第一个系统的诸输入要求和用相同的计算程序为欧洲服务。 A second system designed to make it similar to the input requirements of such a system and the first computer program for the same service in Europe. 图9到图12反映出关于仰角复盖的诸最后的结果。 FIGS. 9 to FIG. 12 reflect the final results for all of the elevation angle coverage.

Claims (12)

  1. 权利要求1:一个对于在一个纬度高于约30°N或低于30°S的地理服务区中的诸移动和固定的接收机的卫星声频广播系统包括一个有2颗或更多颗卫星的卫星星座,每一颗卫星在它自己的地球同步轨道中,每一条轨道都有在整个所说的服务区内提供诸高仰角的诸轨道参数。 Claim 1: For a latitude above 30 ° N or below about mobiles 30 ° geographic service area and the satellite S in the fixed acoustic frequency receiver comprising a broadcast system 2 or more satellites satellite constellation, each satellite in geosynchronous orbit of its own, each track has provided such a high elevation angle of said orbital parameters throughout the service area.
  2. 权利要求2:权利要求1的卫星声频广播系统,其中从所说的星座到所说的诸移动和固定的接收机的诸声频广播是在约1到约4GHz的无线电频率范围内。 Claim 2: as claimed in claim 1 audio satellite broadcast system, wherein from said constellation to said mobile and fixed all such audio broadcasting receiver in the radio frequency range of from about 1 to about 4GHz.
  3. 权利要求3:权利要求1的卫星声频广播系统,它有在位于诸轨道平面内的所说的星座中的诸卫星,这些轨道平面相互分开许多角度,这些角度等于360°除以星座中的诸卫星数目。 Claim 3: satellite claimed in claim 1 audio broadcasting system, which has satellites in orbits located in the plane of said constellation, and many of these orbital planes separated from one another angle, such angle is equal to 360 ° divided by the various constellations The number of satellites.
  4. 权利要求4:权利要求1或权利要求2的卫星广播系统,其中对于在所说的星座中的每一颗卫星的所说的诸轨道参数使所说的诸卫星通过围绕地球的诸Van Allen辐射带的次数减至最小。 As claimed in claim 1 or a satellite broadcast system according to claim 2, wherein said orbital parameters for each satellite in said constellation such that said satellites through the Van Allen radiation all around the Earth: as claimed in claim 4 minimize the number of bands.
  5. 权利要求5:权利要求1或权利要求2的卫星声频广播系统,其中所说的诸轨道参数使为将所说的星座中的每一颗卫星保持的它希望的轨道上所需的星载卫星推进剂的量减至最小。 Claim 5: It is required on the desired track of claim 1 or claim 2, the satellite audio broadcasting system, wherein said orbital parameters so as to each of said satellite constellation maintained onboard satellite minimize the amount of propellant.
  6. 权利要求6:权利要求1或权利要求2的卫星声频广播系统,其中所说的诸轨道参数是从一个由诸卫星天线指向角,诸卫星图案转动角和诸卫星天线束形组成的参数组中选出的。 Parameter Group 1 or Claims satellite audio 2 broadcasting system, wherein said orbital parameters from one of various satellite antenna pointing angles, satellites pattern rotation angles and various satellite antenna beam-shaped composition: as claimed in claim 6 elected.
  7. 权利要求7:权利要求1或权利要求2的卫星声频广播系统,其中所说的诸轨道参数是从一个由每一颗卫星的倾斜度,每一颗卫星的轨道的偏心率,对于在所说的星座中的每一颗卫星的近地点的幅角,对于在所说的星座中的每一颗卫星的每条轨道的上升节点的经度,和对于在所说的星座中的每一颗卫星的地面轨迹组成的参数组中选出的。 Claim 7: in claim 1 or claim 2, the satellite audio broadcasting system, wherein said orbital parameters of inclination a is from each satellite, the eccentricity of the orbit of each satellite, for the said the argument of perigee each satellite in the constellation, rising node for each track of each satellite in said constellation of longitude, and for each satellite in said constellation of selected parameter group consisting of ground track.
  8. 权利要求8:一个向在一个目标地理区域中的诸固定的和移动的接收机提供诸声频卫星广播发射的方法,该区域,至少部分地,处在一个纬度高于约30°N或纬度低于30°S的范围内,包括提供一个有多颗卫星的星座,每一颗卫星都在它自己的轨道平面中,每一颗卫星都有一个围绕地球转动的周期,该周期基本上和地球围绕它自己的轴转动的转动周期相同,每一颗卫星都有一个在约40°到80°范围内的倾斜度,每一颗卫星都有一个约0.15到约0.30的偏心率,并从所说的诸卫星中的2颗或更多颗发射内容基本相同的诸声频广播信号。 Claim 8: A method of providing audio satellite broadcast all transmitted to the target in a fixed geographic area and all mobile receivers in the region, at least in part, in a latitude above 30 ° N or lower by about latitude in the range of 30 ° S comprising providing a constellation of multiple satellites, each satellite in its own orbital plane, each satellite has a period of rotation of the earth around the Earth, and the cycle is substantially same period of rotation about its own rotational axis, each satellite has a range from about 40 ° to 80 ° range of inclination, each satellite has an eccentricity of about 0.15 to about 0.30, and from the two or more pieces of said content transmitting satellites in substantially the same all audio broadcasting signal.
  9. 权利要求9:权利要求8的方法进一步包括提供在来自所说的星座中的2颗或更多颗卫星的所说的诸声频广播信号之间的空间分集。 Claim 9: The method of claim 8 further comprising providing from said constellation of two or more satellites of said spatial diversity such audio signals between the broadcast.
  10. 权利要求10:权利要求8的方法进一步包括选择诸轨道平面间距和在所说的星座中的所说的诸卫星中间的相对的卫星定相,以便使诸声频广播信号到所说的目标地理区域的诸发射最佳化。 Claim 10: The method of claim 8 further comprising selecting the various satellites of said satellite relative to the intermediate orbital plane of said pitch and at a given phase constellation, so that all audio broadcast signals to said target geographic area the various emission optimized.
  11. 权利要求11:权利要求8的方法进一步包括在所说的诸固定的和移动的接收机,接收来自在所说的星座中的至少一颗卫星的诸声频广播信号,以便在所说的诸固定的和移动的接收机上重现诸信号。 Claim 11: The method of claim 8 further comprising all of said fixed and mobile receivers, all receiving acoustic energy from at least one satellite in said constellation broadcast pilot signal to all of said fixed in and reproducing the signals on the movement of the receiver.
  12. 权利要求12:权利要求8的方法进一步包括提供在来自所说的星座中的2颗或更多颗卫星的基本上相同的诸声频广播信号之间的时间分集。 Claim 12: The method of claim 8 further comprising providing two or time diversity between substantially identical broadcast signals such acoustic more satellites of said constellation from the.
CNB991010132A 1996-03-14 1999-01-07 Satellite audio broadcast system and method for providing audio satellite broadcast radiation CN1174563C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/082,489 US6223019B1 (en) 1996-03-14 1998-05-20 Efficient high latitude service area satellite mobile broadcasting systems

Publications (2)

Publication Number Publication Date
CN1236232A true CN1236232A (en) 1999-11-24
CN1174563C CN1174563C (en) 2004-11-03



Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991010132A CN1174563C (en) 1996-03-14 1999-01-07 Satellite audio broadcast system and method for providing audio satellite broadcast radiation

Country Status (8)

Country Link
US (2) US6223019B1 (en)
EP (1) EP0959573A3 (en)
JP (1) JP3108689B2 (en)
CN (1) CN1174563C (en)
AU (1) AU759284B2 (en)
CA (1) CA2255220C (en)
MX (1) MXPA99001381A (en)
NO (1) NO318038B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888183A (en) * 2014-03-28 2014-06-25 中国科学院国家天文台 Method for achieving all-weather communication by means of two IGSO communication satellites

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189136A1 (en) * 1998-05-20 2003-10-09 Toshihide Maeda Communication system, communication receiving device and communication terminal in the system
US6257526B1 (en) * 1998-11-09 2001-07-10 Hughes Electronics Corporation Satellite system and method of deploying same
US6327523B2 (en) 1999-01-21 2001-12-04 Hughes Electronics Corporation Overhead system of inclined eccentric geosynchronous orbitting satellites
US6457678B1 (en) * 1999-08-16 2002-10-01 Mobile Communications Holdings, Inc. Constellation of elliptical orbit satellites with line of apsides lying in or near the equatorial plane
US6491257B1 (en) * 1999-10-13 2002-12-10 Motorola, Inc. Technique for satellite constellation growth
US6347216B1 (en) 1999-11-04 2002-02-12 Xm Satellite Radio Inc. Method and system for providing geographic specific services in a satellite communications network
US6442385B1 (en) * 1999-11-04 2002-08-27 Xm Satellite Radio, Inc. Method and apparatus for selectively operating satellites in tundra orbits to reduce receiver buffering requirements for time diversity signals
US6778810B1 (en) * 1999-12-03 2004-08-17 The Directtv Group, Inc. Method and apparatus for mitigating interference from terrestrial broadcasts sharing the same channel with satellite broadcasts using an antenna with posterior sidelobes
US7184761B1 (en) * 2000-03-27 2007-02-27 The Directv Group, Inc. Satellite communications system
US7369809B1 (en) * 2000-10-30 2008-05-06 The Directv Group, Inc. System and method for continuous broadcast service from non-geostationary orbits
JP2002157516A (en) * 2000-11-17 2002-05-31 Hitachi Ltd Method and device for providing advertisement information
US6851651B2 (en) * 2002-02-15 2005-02-08 Lockheed Martin Corporation Constellation of spacecraft, and broadcasting method using said constellation
US20030181159A1 (en) * 2002-03-22 2003-09-25 Paul Heinerscheid Combination of multiple regional beams and a wide-area beam provided by a satellite system
US7669803B2 (en) * 2004-12-07 2010-03-02 Lockheed Martin Corporation Optimized land mobile satellite system for north american coverage
US7624948B2 (en) * 2004-12-07 2009-12-01 Lockheed Martin Corporation Optimized land mobile satellite configuration and steering method
US7672638B1 (en) * 2005-03-16 2010-03-02 Lockheed Martin Corporation Geosynchronous satellite constellation
US7519324B2 (en) * 2005-03-16 2009-04-14 Lockheed Martin Corporation Geosynchronous satellite constellation
US7454272B1 (en) * 2005-08-25 2008-11-18 Raytheon Company Geostationary stationkeeping method
US20070063982A1 (en) * 2005-09-19 2007-03-22 Tran Bao Q Integrated rendering of sound and image on a display
US20070171891A1 (en) * 2006-01-26 2007-07-26 Available For Licensing Cellular device with broadcast radio or TV receiver
US20070222734A1 (en) * 2006-03-25 2007-09-27 Tran Bao Q Mobile device capable of receiving music or video content from satellite radio providers
US7827491B2 (en) * 2006-05-12 2010-11-02 Tran Bao Q Systems and methods for video editing
US7840180B2 (en) * 2006-12-22 2010-11-23 The Boeing Company Molniya orbit satellite systems, apparatus, and methods
US20080178233A1 (en) * 2007-01-22 2008-07-24 Goc Richard J Audio and video program purchasing
US8016240B2 (en) * 2007-03-29 2011-09-13 The Boeing Company Satellites and satellite fleet implementation methods and apparatus
US9045239B2 (en) * 2009-01-14 2015-06-02 Space Systems/Loral, Llc Spacecraft payload orientation steering
US8238903B2 (en) * 2009-02-19 2012-08-07 Korb C Laurence Methods for optimizing the performance, cost and constellation design of satellites for full and partial earth coverage
US20120119034A1 (en) * 2009-07-02 2012-05-17 Space Systems/Loral, Inc. Deorbiting a Spacecraft from a Highly Inclined Elliptical Orbit
FR2962411B1 (en) * 2010-07-12 2014-03-14 Astrium Sas A method of making a space surveillance system for monitoring near space
US20160137317A1 (en) * 2011-09-30 2016-05-19 Telesat Canada Satellite System and Method for Global Coverage
CA2716174A1 (en) * 2010-10-01 2012-04-01 Telesat Canada Satellite system
US10329034B2 (en) 2016-02-26 2019-06-25 Space Systems/Loral, Llc Efficient orbital storage and deployment for spacecraft in inclined geosynchronous orbit

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959644A (en) 1957-06-13 1960-11-08 Motorola Inc Electronic device
US3163820A (en) 1961-05-22 1964-12-29 Bell Telephone Labor Inc Satellite communication system employing a retrograding orbit
US3836969A (en) 1971-10-26 1974-09-17 Rca Corp Geo-synchronous satellites in quasi-equatorial orbits
US3825837A (en) 1972-06-01 1974-07-23 Communications Satellite Corp Television radio frequency switch
JPS577490B2 (en) 1974-02-26 1982-02-10
US4021737A (en) 1975-06-04 1977-05-03 Trask Burdick S System for processing and transmitting audio signals received from a television set for reproduction by a high fidelity FM receiver
US4286262A (en) 1975-09-02 1981-08-25 Mallard Manufacturing Corporation Electronic transmitter device
US4038600A (en) 1976-02-17 1977-07-26 Westinghouse Electric Corporation Power control on satellite uplinks
US4291409A (en) 1978-06-20 1981-09-22 The Mitre Corporation Spread spectrum communications method and apparatus
US4291410A (en) 1979-10-24 1981-09-22 Rockwell International Corporation Multipath diversity spread spectrum receiver
DE3145207A1 (en) 1981-02-28 1982-09-23 Siemens Ag Telecommunications Satellite system with geosynchronous position grind
GB2098821A (en) 1981-03-20 1982-11-24 Chan Kong Philip Radio receiver
JPS5819782A (en) 1981-07-29 1983-02-04 Tdk Corp Receiver
US4630058A (en) 1982-02-26 1986-12-16 Rca Corporation Satellite communication system
US4535476A (en) 1982-12-01 1985-08-13 At&T Bell Laboratories Offset geometry, interference canceling receiver
US4660196A (en) 1983-08-01 1987-04-21 Scientific Atlanta, Inc. Digital audio satellite transmission system
US4532635A (en) 1983-08-19 1985-07-30 Rca Corporation System and method employing two hop spread spectrum signal transmissions between small earth stations via a satellite and a large earth station and structure and method for synchronizing such transmissions
US4742410A (en) 1983-12-16 1988-05-03 Josephine County Technology, Inc. Disk drive system with head protection mechanism
US4640987A (en) 1984-04-23 1987-02-03 Keizo Tsukada Cordless telephone
DE3426851C1 (en) 1984-07-20 1985-10-17 Deutsche Forsch Luft Raumfahrt Satellite navigation system
US4560945A (en) 1984-09-04 1985-12-24 Westinghouse Electric Corp. Adaptive feedforward cancellation technique that is effective in reducing amplifier harmonic distortion products as well as intermodulation distortion products
US4588958A (en) 1985-03-29 1986-05-13 Rca Corporation Adjustable reflective predistortion circuit
US4809935A (en) * 1985-07-31 1989-03-07 Analytic Services, Inc. Satellite continuous coverage constellations
US4712250A (en) 1985-08-12 1987-12-08 Sound Sender, Inc. Tape player adapter for car radio
JPS6258732A (en) 1985-09-06 1987-03-14 Nippon Soken Inc On-vehicle communication equipment
JPH047852B2 (en) 1985-09-12 1992-02-13 Kokusai Denshin Denwa Co Ltd
US4685133A (en) 1985-09-16 1987-08-04 Inr Technologies, Inc. Wireless audio transmission system
US4720873A (en) 1985-09-18 1988-01-19 Ricky R. Goodman Satellite audio broadcasting system
US4801940A (en) 1985-10-30 1989-01-31 Capetronic (Bsr) Ltd. Satellite seeking system for earth-station antennas for TVRO systems
US4823341A (en) 1986-08-14 1989-04-18 Hughes Aircraft Company Satellite communications system having frequency addressable high gain downlink beams
US4831619A (en) 1986-08-14 1989-05-16 Hughes Aircraft Company Satellite communications system having multiple downlink beams powered by pooled transmitters
JPS6346824A (en) 1986-08-14 1988-02-27 Kokusai Denshin Denwa Co Ltd <Kdd> Transmission power control system
US4879711A (en) 1986-08-14 1989-11-07 Hughes Aircraft Company Satellite communications system employing frequency reuse
CA1334292C (en) 1986-10-06 1995-02-07 Andrew E. Turner Apogee at constant time-of-day equatorial (ace) orbit
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US4829570A (en) 1987-05-22 1989-05-09 Recoton Corporation Wireless remote speaker system
FR2628274B1 (en) 1988-03-02 1990-08-10 Centre Nat Etd Spatiales Communications system with moving is using satellites
JPH01307302A (en) 1988-06-06 1989-12-12 Nec Corp Loop antenna for portable radio equipment
US4908847A (en) 1988-11-10 1990-03-13 Telcor, Inc. Adaptor set for converting standard telephone into cordless telephone
JPH0338932A (en) 1989-07-06 1991-02-20 Oki Electric Ind Co Ltd Space diversity system
US5048118A (en) 1989-07-10 1991-09-10 Motorola, Inc. Combination dual loop antenna and bezel with detachable lens cap
FR2650135B1 (en) 1989-07-19 1994-05-20 Centre Nal Etudes Spatiales Satellite orbiting of proceeds by gravity assist
US5036523A (en) 1989-10-03 1991-07-30 Geostar Corporation Automatic frequency control of satellite transmitted spread spectrum signals
DE69019825T2 (en) 1989-11-06 1995-12-21 Motorola Inc Satellite transmission system.
US5274840A (en) 1989-11-06 1993-12-28 Motorola, Inc. Satellite communication system
US5015965A (en) 1989-11-22 1991-05-14 General Electric Company Predistortion equalizer with resistive combiners and dividers
US5239670A (en) 1989-11-30 1993-08-24 Motorola, Inc. Satellite based global paging system
US5038341A (en) 1989-12-01 1991-08-06 Hughes Aircraft Company Relay communication system
US5126748A (en) 1989-12-05 1992-06-30 Qualcomm Incorporated Dual satellite navigation system and method
US5017926A (en) 1989-12-05 1991-05-21 Qualcomm, Inc. Dual satellite navigation system
US5155494A (en) 1989-12-08 1992-10-13 Larsen Electronics, Inc. Vehicle antenna system
US5073900A (en) 1990-03-19 1991-12-17 Mallinckrodt Albert J Integrated cellular communications system
IT1239472B (en) 1990-04-09 1993-11-02 Sits Soc It Telecom Siemens Linearizer type predistortion for microwave power amplifiers
DE4111705C2 (en) 1990-04-28 1998-03-19 Pioneer Electronic Corp Tone modulation system
JP2873872B2 (en) 1990-09-06 1999-03-24 株式会社ソキア c / a code elimination type frequency diversity correlation reception method in Gps
US5283780A (en) 1990-10-18 1994-02-01 Stanford Telecommunications, Inc. Digital audio broadcasting system
US5303393A (en) 1990-11-06 1994-04-12 Radio Satellite Corporation Integrated radio satellite response system and method
US5455823A (en) * 1990-11-06 1995-10-03 Radio Satellite Corporation Integrated communications terminal
US5251328A (en) 1990-12-20 1993-10-05 At&T Bell Laboratories Predistortion technique for communications systems
US5148452A (en) 1990-12-31 1992-09-15 Motorola, Inc. Global positioning system digital receiver
US5408686A (en) 1991-02-19 1995-04-18 Mankovitz; Roy J. Apparatus and methods for music and lyrics broadcasting
US5433726A (en) 1991-04-22 1995-07-18 Trw Inc. Medium-earth-altitude satellite-based cellular telecommunications system
US5439190A (en) 1991-04-22 1995-08-08 Trw Inc. Medium-earth-altitude satellite-based cellular telecommunications
US5175557A (en) 1991-07-18 1992-12-29 Motorola, Inc. Two channel global positioning system receiver
IL98893A (en) * 1991-07-19 1996-07-23 Mass Jonathan Artificial satellite communication system
US5319716A (en) 1991-09-17 1994-06-07 Recoton Corporation Wireless CD/automobile radio adapter
US5153598A (en) 1991-09-26 1992-10-06 Alves Jr Daniel F Global Positioning System telecommand link
US5485485A (en) 1992-04-10 1996-01-16 Cd Radio Inc. Radio frequency broadcasting systems and methods using two low-cost geosynchronous satellites and hemispherical coverage antennas
US5278863A (en) 1992-04-10 1994-01-11 Cd Radio Incorporated Radio frequency broadcasting systems and methods using two low-cost geosynchronous satellites
US5233626A (en) 1992-05-11 1993-08-03 Space Systems/Loral Inc. Repeater diversity spread spectrum communication system
JP2706600B2 (en) * 1992-05-28 1998-01-28 ティアールダブリュー インコーポレイテッド Cellular telecommunications system to a medium earth altitude satellite based
US5582367A (en) 1992-06-02 1996-12-10 Mobile Communications Holdings, Inc. Elliptical orbit satellite, system, and deployment with controllable coverage characteristics
US5349606A (en) 1992-12-31 1994-09-20 Gte Government Systems Corporation Apparatus for multipath DSSS communications
US5345244A (en) 1993-01-12 1994-09-06 Trimble Navigation Limited Cordless SPS smart antenna device
FR2703199B1 (en) 1993-03-26 1995-06-02 Matra Communication A method of radio-electric transmission using repeater stations with spectrum reversal.
JP3181440B2 (en) 1993-07-30 2001-07-03 松下通信工業株式会社 Cdma system communication device
WO1995005037A1 (en) 1993-08-06 1995-02-16 Ntt Mobile Communications Network Inc. Receiver and repeater for spread spectrum communication
TW239242B (en) 1994-03-28 1995-01-21 Leo One Ip L L C Satellite system using equatorial & polar orbit relays
US5638399A (en) * 1994-11-15 1997-06-10 Stanford Telecommunications, Inc. Multi-beam satellite communication system with user terminal frequencies having transceivers using the same set of frequency hopping
US5551065A (en) 1994-12-19 1996-08-27 Honore; David Wireless solar entertainment system
US5641134A (en) 1994-12-27 1997-06-24 Motorola, Inc. Satellite cellular telephone and data communication system at an inclined orbit
FR2729116B1 (en) * 1995-01-06 1997-03-07
US5508756A (en) 1995-02-08 1996-04-16 Landy; Bruce T.V. signal tuner in a tape cassette body and method therefor
US5592471A (en) 1995-04-21 1997-01-07 Cd Radio Inc. Mobile radio receivers using time diversity to avoid service outages in multichannel broadcast transmission systems
US6226493B1 (en) 1996-05-31 2001-05-01 Motorola, Inc. Geosynchronous satellite communication system and method
US6019318A (en) * 1997-06-16 2000-02-01 Hugehs Electronics Corporation Coordinatable system of inclined geosynchronous satellite orbits
US5907582A (en) * 1997-08-11 1999-05-25 Orbital Sciences Corporation System for turbo-coded satellite digital audio broadcasting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888183A (en) * 2014-03-28 2014-06-25 中国科学院国家天文台 Method for achieving all-weather communication by means of two IGSO communication satellites
CN103888183B (en) * 2014-03-28 2018-01-09 中国科学院国家天文台 Igso communication satellite utilizing two-day communication is achieved when the method of

Also Published As

Publication number Publication date
EP0959573A2 (en) 1999-11-24
CA2255220C (en) 2011-11-29
NO990114D0 (en) 1999-01-12
JP3108689B2 (en) 2000-11-13
NO318038B1 (en) 2005-01-24
US6223019B1 (en) 2001-04-24
EP0959573A3 (en) 2002-05-02
US6564053B1 (en) 2003-05-13
CN1174563C (en) 2004-11-03
JP2000013297A (en) 2000-01-14
MXPA99001381A (en) 2005-04-11
AU9703098A (en) 1999-12-02
AU759284B2 (en) 2003-04-10
NO990114L (en) 1999-11-22
CA2255220A1 (en) 1999-11-20

Similar Documents

Publication Publication Date Title
US8639182B2 (en) Inter-satellite crosslink communications system, apparatus, method and computer program product
US7324056B2 (en) Broadband communication system for mobile users in a satellite-based network
US6061562A (en) Wireless communication using an airborne switching node
Karasawa et al. Analysis of availability improvement in LMSS by means of satellite diversity based on three-state propagation channel model
JP6333724B2 (en) Interference mitigation techniques for air-to-ground system
US6708029B2 (en) Broadband communication system for mobile users in a satellite-based network
EP0886392B1 (en) Coordinate system for inclined geosynchronous satellite orbits
CA2544567C (en) Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
US5433726A (en) Medium-earth-altitude satellite-based cellular telecommunications system
EP0837569A2 (en) Multiple satellite fade attenuation control system
US6151308A (en) Elevated communication hub and method of operation therefor
US6336030B2 (en) Method and system for providing satellite coverage using fixed spot beams and scanned spot beams
US7627284B2 (en) Method and apparatus for providing wideband services using medium and low earth orbit satellites
US6847801B2 (en) Communications system and method employing forward satellite links using multiple simultaneous data rates
US7558568B2 (en) Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US9461806B2 (en) Providing different transmit and/or receive modes in different sectors of a wireless base station
EP0648027A1 (en) Medium-earth-altitude satellite based cellular telecommunications
US20090186622A1 (en) Systems and Methods for Modifying Antenna Radiation Patterns of Peripheral Base Stations of a Terrestrial Network to Allow Reduced Interference
US6460808B2 (en) Satellite system and method of deploying same
Maral et al. Satellite communications systems: systems, techniques and technology
US7047029B1 (en) Adaptive transmission system
US6333924B1 (en) High latitude geostationary satellite system
Lutz et al. Satellite systems for personal and broadband communications
US6941111B2 (en) Method and apparatus using a binary search pattern for identifying an interfering mobile terminal
US6104911A (en) Communication system with satellite diversity and method of operation thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model