CN1225042C - 一种纳米LiNiVO4锂离子电池粉体的制备方法 - Google Patents

一种纳米LiNiVO4锂离子电池粉体的制备方法 Download PDF

Info

Publication number
CN1225042C
CN1225042C CNB2003101059273A CN200310105927A CN1225042C CN 1225042 C CN1225042 C CN 1225042C CN B2003101059273 A CNB2003101059273 A CN B2003101059273A CN 200310105927 A CN200310105927 A CN 200310105927A CN 1225042 C CN1225042 C CN 1225042C
Authority
CN
China
Prior art keywords
powder
mixed
solution
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101059273A
Other languages
English (en)
Other versions
CN1545157A (zh
Inventor
黄剑锋
曹丽云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CNB2003101059273A priority Critical patent/CN1225042C/zh
Publication of CN1545157A publication Critical patent/CN1545157A/zh
Application granted granted Critical
Publication of CN1225042C publication Critical patent/CN1225042C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种纳米LiNiVO4锂离子电池粉体的制备方法,首先将NiCl2·6H2O、LiCl·H2O或Li2CO3、NH4VO3或V2O5按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎得到混合粉体;在混合后的粉体中加入水和尿素或异丙醇溶液搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中进行声化学合成,把经过声化学合成的溶液进行烘干,然后热处理即可。由于本发明既可采用水为溶剂,也可以采用异丙醇为溶剂,均可以获得纳米级粉体;且在制备后期热处理温度低,时间短,可以降低粉体的制备成本,而且合成的粉体稳定性好;且可在较宽的工艺范围内制备出高质量、结晶程度好、粒度小、粒径均匀、无团聚的纳米粉体。

Description

一种纳米LiNiVO4锂离子电池粉体的制备方法
技术领域
本发明涉及一种锂离子电池粉体的制备方法,特别涉及一种纳米LiNiVO4锂离子电池粉体的制备方法。
背景技术
锂离子电池是指使用能吸入或解吸锂离子的碳素材料作为负极活性物质;使用能吸入或解吸锂离子并含有锂离子的金属氧化物作为正极活性物质,基于以上进行化学反应的原理而制成的使用有机溶液作为电解液的可充电电池。电池充放电时,在正、负极反复吸入或解吸的是锂离子,故而称之为锂离子电池。锂离子电池粉因其具有能量密度高,储存同样电能体积小、质量轻,可以小型化、轻量化;工作电压高;可大电流放电、且安全;自放电率小,是镍镉、镍氢电池的1/2-1/3;同时其不含铅、铬等有害物质、无环境污染;无记忆效应;循环次数多、寿命长;适用温度范围宽等特点而得到十分迅速的发展,具有广阔的应用前景。进年来,人们对锂离子蓄电池的高电压、高比能量及优良的循环性能又有了更多的认识,引起人们的极大研究兴趣。在锂离子电池中,采用锂离子嵌入脱嵌材料作为电池电极的活性物质。主要采用碳材料代替金属锂作为负极,采用相对于金属锂有较高的嵌锂电位并能提供锂源的锂过渡金属氧化物作为正极材料。研究较多的如具二维层状结构的LiCoO2、LiNiO2、和LiCo1-xNixO2;具有三维网络尖晶石结构的LiMn2O4等。近来已发现一种锂镍钒酸盐LiNiVO4作为锂离子电池正极活性材料与锂组成的Li/LiNiVO4电池电压高达4.8V(相对于Li),是目前认为最有前途的电池材料之一。LiNiVO4是一种立方晶体,空间群为Fd3m,具有反尖晶石结构。晶体中锂和镍占据氧密堆积形成的八面体间隙位置,钒占据氧密堆积形成的四面体间隙位置。目前合成锂离子电池正极材料通常有固相高温合成法、熔融浸渍法、沉淀凝胶法、水热合成法、乳胶干燥法、微波合成法、薄膜合成法等。而合成LiNiVO4粉体的方法目前很少有文献报道,其性能虽好,但是很难合成,所报道的制备方法只有固相反应高温合成法以及水热合成法和溶胶凝胶法三种。目前LiNiVO4一般采用固相反应高温合成,如Ito等以NiO和LiVO3为原料,按一定比例混合,在1000℃固相反应4天得到LiNiVO4【Ito Y,Phase reaction of the lithium vanadate oxide(LiVO3)system andsome properties of lithium vanadate nickel oxide(LiNiVO4),Nippon KagakuKaishi,1979,111:1483-1487】;Fey等,以LiNiO2和V2O3或V2O5在500℃预烧结4h,然后升温到800℃,再烧结8h得到目标化合物【Fey etal,LiNiVO4:a4.8-volt electrode material for lithium cells,J.Electrochem.Soc.1994,141(9):2279-2282】,这种固相烧结法烧结温度过高,反应时间长、能耗大、后处理复杂、锂钒的高温挥发程度不同、钒氧化物对器皿的腐蚀等使其化学计量难以控制、产物电性能差等缺点,同时产物必须经过研磨,不能获得纳米级的粉体,影响了粉体的电学性能。Lu Chung-hsin等在1998年采用水热发合成了LiNiVO4粉体,但是粒径仍然较大,其方法是以LiOH,V2O5及Ni(AC)2作为先驱物,在700℃反应2h得到目标产物【Lu Chung-hsin,etal,Hydrothermal synthersis of LiNiVO4cathode materials for lithium ionbatteries,J.Mater.Sci.Lett,1998,17(9):733-735】,2000年,Lu Chung-hsin等将水热法加以改进,用异丙醇为溶剂,LiOH,V2O5及Ni(OH)2为前驱体,在较低的温度下(200℃)合成了纳米级的LiNiVO4粉体【Lu Chung-hsin,etal,Hydrothermal preparation of nanometer lithium vanadate nickel oxidepowder at low temperature,Mater.Sci.Eng.,2000,B75:38-42】,这种方法虽然可以制备出纳米LiNiVO4粉体,但是工艺复杂,而且不能用水为溶剂,大大增加了成本,同时合成产物常常含有其它晶相的杂质,而且粉体有较严重的团聚现象。赖琼钰等采用沉淀凝胶法制备了LiNiVO4粉体,其以Li2CO3,NH4VO3和NiCO3为起始物,加蒸馏水后研磨均匀,然后加入草酸溶液以及(NH4)2C2O4溶液,待大量气体产生逸出后,将反应液在80-90℃的水浴中蒸干得到凝胶,将凝胶于450-850℃温度下烧结2-10小时即得到LiNiVO4的单相产物【赖琼玉,卢集正,梁兴龙.湿化学法低温合成LiNiVO4.高等学校化学学报.2000年,21(2):190-192】;这种方法虽然简单,但是其获得的LiNiVO4粒度较粗,而且有团聚现象,这将影响其使用效果。
发明内容
本发明的目的在于提供一种制备温度低,粉体粒径均匀,工艺操作简单且能够获得纳米粒径的LiNiVO4锂离子电池粉体的制备方法。
为达到上述目的,本发明采用的制备方法是:首先将NiCl2·6H2O、LiCl·H2O或Li2CO3、NH4VO3或V2O5按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶水∶尿素为0.8~1∶5~8∶1~1.6的质量比或按粉体∶浓度为100%的异丙醇溶液为1.5~1.7∶3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以15KHz或25KHz或35KHz的超声频率对溶液进行声化学合成,超声作用时间2~6小时;把经过声化学合成的溶液置于60~80℃下进行烘干,然后于450~700℃下热处理1~5小时后即可。
由于本发明既可采用水为溶剂,也可以采用异丙醇为溶剂,其均可以获得纳米级粉体;制备LiNiVO4锂离子电池粉体后期热处理温度低,时间短,可以降低粉体的制备成本,而且合成的粉体稳定性好;且可在较宽的工艺范围内制备出高质量、结晶程度好、粒度小(40-60纳米)、粒径均匀、无团聚的纳米粉体。
附图说明
图1是本发明X-射线衍射图,其中横坐标为2θ角,单位为“度”,纵坐标为衍射强度,单位为“cps”;图2是本发明的透射电镜观察照片。
具体实施方式
实施例1:首先将NiCl2·6H2O、LiCl·H2O、NH4VO3按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶水∶尿素为0.8∶8∶1的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以15KHz的超声频率对溶液进行声化学合成,超声作用时间6小时;把经过声化学合成的溶液置于60℃下进行烘干,然后于700℃下热处理1小时后即可。
实施例2:首先将NiCl2·6H2O、Li2CO3、V2O5按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶水∶尿素为1∶6∶1.6的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以35KHz的超声频率对溶液进行声化学合成,超声作用时间3小时;把经过声化学合成的溶液置于80℃下进行烘干,然后于600℃下热处理5小时后即可。
实施例3:首先将NiCl2·6H2O、LiCl·H2O、V2O5按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶水∶尿素为0.9∶5∶1.3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以25KHz的超声频率对溶液进行声化学合成,超声作用时间5小时;把经过声化学合成的溶液置于70℃下进行烘干,然后于670℃下热处理3小时后即可。
实施例4:首先将NiCl2·6H2O、Li2CO3、NH4VO3按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶浓度为100%的异丙醇溶液为1.5∶3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以35KHz的超声频率对溶液进行声化学合成,超声作用时间2小时;把经过声化学合成的溶液置于65℃下进行烘干,然后于450℃下热处理4小时后即可。
实施例5:首先将NiCl2·6H2O、LiCl·H2O、V2O5按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶浓度为100%的异丙醇溶液为1.7∶3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以15KHz的超声频率对溶液进行声化学合成,超声作用时间4小时;把经过声化学合成的溶液置于73℃下进行烘干,然后于520℃下热处理2小时后即可。
实施例6:首先将NiCl2·6H2O、Li2CO3、NH4VO3按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体:浓度为100%的异丙醇溶液为1.6∶3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以25KHz的超声频率对溶液进行声化学合成,超声作用时间6小时;把经过声化学合成的溶液置于68℃下进行烘干,然后于580℃下热处理1小时后即可。
参见图1、2,按本发明的制备方法制得的锂离子粉体用日本理学D/max2000PCX射线衍射仪分析样品的晶体结构和粒径,粒径测试结果为平均55.6纳米。采用透射电镜对样品进行显微结构观察,可以看出,其粒径在30-70纳米范围内,平均粒径为56纳米,基本上与X衍射测试结果相吻合。

Claims (7)

1.一种纳米LiNiVO4锂离子电池粉体的制备方法,其特征在于:1)首先将NiCl2·6H2O、LiCl·H2O或Li2CO3、NH4VO3或V2O5按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;2)在混合后的粉体中按粉体∶水∶尿素为0.8~1∶5~8∶1~1.6的质量比或按粉体∶浓度为100%的异丙醇溶液为1.5~1.7∶3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以15KHz或25KHz或35KHz的超声频率对溶液进行声化学合成,超声作用时间2~6小时;把经过声化学合成的溶液置于60~80℃下进行烘干,然后于450~700℃下热处理1~5小时后即可。
2.根据权利要求1所述的纳米LiNiVO4锂离子电池粉体的制备方法,其特征在于:首先将NiCl2·6H2O、LiCl·H2O、NH4VO3按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶水∶尿素为0.8∶8∶1的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以15KHz的超声频率对溶液进行声化学合成,超声作用时间6小时;把经过声化学合成的溶液置于60℃下进行烘干,然后于700℃下热处理1小时后即可。
3.根据权利要求1所述的纳米LiNiVO4锂离子电池粉体的制备方法,其特征在于:首先将NiCl2·6H2O、Li2CO3、V2O5按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶水∶尿素为1∶6∶1.6的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以35KHz的超声频率对溶液进行声化学合成,超声作用时间3小时;把经过声化学合成的溶液置于80℃下进行烘干,然后于600℃下热处理5小时后即可。
4.根据权利要求1所述的纳米LiNiVO4锂离子电池粉体的制备方法,其特征在于:首先将NiCl2·6H2O、LiCl·H2O、V2O5按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶水∶尿素为0.9∶5∶1.3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以25KHz的超声频率对溶液进行声化学合成,超声作用时间5小时;把经过声化学合成的溶液置于70℃下进行烘干,然后于670℃下热处理3小时后即可。
5.根据权利要求1所述的一种纳米LiNiVO4锂离子电池粉体的制备方法,其特征在于:首先将NiCl2·6H2O、Li2CO3、NH4VO3按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶浓度为100%的异丙醇溶液为1.5∶3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以35KHz的超声频率对溶液进行声化学合成,超声作用时间2小时;把经过声化学合成的溶液置于65℃下进行烘干,然后于450℃下热处理4小时后即可。
6.根据权利要求1所述的纳米LiNiVO4锂离子电池粉体的制备方法,其特征在于:首先将NiCl2·6H2O、LiCl·H2O、V2O5按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶浓度为100%的异丙醇溶液为1.7∶3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以15KHz的超声频率对溶液进行声化学合成,超声作用时间4小时;把经过声化学合成的溶液置于73℃下进行烘干,然后于520℃下热处理2小时后即可。
7.根据权利要求1所述的纳米LiNiVO4锂离子电池粉体的制备方法,其特征在于:首先将NiCl2·6H2O、Li2CO3、NH4VO3按照Ni∶Li∶V=1∶1∶1的摩尔比进行混合研磨粉碎后使其混合均匀得到混合粉体;在混合后的粉体中按粉体∶浓度为100%的异丙醇溶液为1.6∶3的质量比搅拌均匀;在磁力搅拌下,将多频声化学发生器的发生头放入上述溶液中,以25KHz的超声频率对溶液进行声化学合成,超声作用时间6小时;把经过声化学合成的溶液置于68℃下进行烘干,然后于580℃下热处理1小时后即可。
CNB2003101059273A 2003-11-17 2003-11-17 一种纳米LiNiVO4锂离子电池粉体的制备方法 Expired - Fee Related CN1225042C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2003101059273A CN1225042C (zh) 2003-11-17 2003-11-17 一种纳米LiNiVO4锂离子电池粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2003101059273A CN1225042C (zh) 2003-11-17 2003-11-17 一种纳米LiNiVO4锂离子电池粉体的制备方法

Publications (2)

Publication Number Publication Date
CN1545157A CN1545157A (zh) 2004-11-10
CN1225042C true CN1225042C (zh) 2005-10-26

Family

ID=34333934

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101059273A Expired - Fee Related CN1225042C (zh) 2003-11-17 2003-11-17 一种纳米LiNiVO4锂离子电池粉体的制备方法

Country Status (1)

Country Link
CN (1) CN1225042C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434367C (zh) * 2006-10-26 2008-11-19 中国科学技术大学 Li1+xV3O8纳米粉末电极材料的低温熔盐合成方法
CN102299301A (zh) * 2010-06-25 2011-12-28 深圳市比克电池有限公司 降低碳包覆磷酸铁锂在大电流密度下电极极化的方法
CN110699702B (zh) * 2019-11-05 2020-11-03 陕西科技大学 一种山丘状原位镍钒双金属氢氧化物催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN1545157A (zh) 2004-11-10

Similar Documents

Publication Publication Date Title
Ryu et al. 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries
CN102214819B (zh) 一种锂离子电池梯度正极活性材料钴镍锰酸锂的制备方法
CN104600285B (zh) 一种球形镍锰酸锂正极材料的制备方法
CN101320807A (zh) 多元复合锂离子电池正极材料及其制备方法
CN103035904B (zh) 一种改性锰酸锂材料及其制备方法和应用
CN109461928A (zh) 一种高能量密度多元正极材料及其制备方法
Chen et al. Controlled synthesis of spherical hierarchical LiNi1− x− yCoxAlyO2 (0< x, y< 0.2) via a novel cation exchange process as cathode materials for High-Performance Lithium Batteries
Yang et al. Effects of complexants on [Ni 1/3 Co 1/3 Mn 1/3] CO 3 morphology and electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2
CN102790210A (zh) 一种超临界水热反应制备锂离子电池正极材料锰酸锂的办法
Xie et al. Co 3 (PO 4) 2-coated LiV 3 O 8 as positive materials for rechargeable lithium batteries
CN103811745B (zh) 一种高比容量富锂型锂电池材料的制备方法
CN107293742A (zh) 一种层状单斜相–尖晶石相集成结构的锂电正极材料的制备方法
Ma et al. Effect of metal ion concentration in precursor solution on structure and electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2
Zhou et al. Hierarchical LiNi 0.5 Mn 1.5 O 4 micro-rods with enhanced rate performance for lithium-ion batteries
Zhao et al. Ultrasonic/microwave-assisted co-precipitation method in the synthesis of Li1. 1Mn0. 433Ni0. 233Co0. 233O2 cathode material for lithium-ion batteries
Yang et al. A novel method for the preparation of submicron-sized LiNi0. 8Co0. 2O2 cathode material
He et al. Synthesis and electrochemical properties of chemically substituted LiMn2O4 prepared by a solution-based gel method
CN1225042C (zh) 一种纳米LiNiVO4锂离子电池粉体的制备方法
CN106992295B (zh) 一种单分散α-氧化铁纳米片的制备方法
Qiu et al. Li1. 2Mn0. 6Ni0. 2O2 with 3D porous rod-like hierarchical micro/nanostructure for high-performance cathode material
Chang et al. Synthesis and characterization of nonspherical LiCoO2 with high tap density by two-step drying method
CN101286562A (zh) 一种锂离子电池正极材料的制备方法
CN106384813A (zh) 一种锂离子电池用正极材料的快速合成方法
CN106910887A (zh) 一种富锂锰基正极材料、其制备方法及包含该正极材料的锂离子电池
CN110504447A (zh) 一种氟掺杂的镍钴锰前驱体及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model
CF01 Termination of patent right due to non-payment of annual fee
C19 Lapse of patent right due to non-payment of the annual fee