CN1208818C - Manufacture method of array carbon nanometer tube film transistor - Google Patents

Manufacture method of array carbon nanometer tube film transistor Download PDF

Info

Publication number
CN1208818C
CN1208818C CN 02145889 CN02145889A CN1208818C CN 1208818 C CN1208818 C CN 1208818C CN 02145889 CN02145889 CN 02145889 CN 02145889 A CN02145889 A CN 02145889A CN 1208818 C CN1208818 C CN 1208818C
Authority
CN
China
Prior art keywords
film transistor
thin film
array
carbon nanotube
placed
Prior art date
Application number
CN 02145889
Other languages
Chinese (zh)
Other versions
CN1490856A (en
Inventor
刘云圻
肖恺
胡平安
于贵
王贤保
朱道本
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to CN 02145889 priority Critical patent/CN1208818C/en
Publication of CN1490856A publication Critical patent/CN1490856A/en
Application granted granted Critical
Publication of CN1208818C publication Critical patent/CN1208818C/en

Links

Abstract

本发明公开了一种阵列碳纳米管薄膜晶体管的制备方法,依如下顺序步骤进行:将SiO The present invention discloses a method for preparing a thin-film transistor array of carbon nanotubes, performed according to the following sequential steps of: SiO

Description

一种阵列碳纳米管薄膜晶体管的制备方法 A method for preparing a thin film transistor array of carbon nanotubes

技术领域 FIELD

:本发明涉及一种阵列碳纳米管薄膜晶体管的制备方法。 : The present invention relates to a method for preparing a carbon nanotube thin film transistor array.

背景技术 Background technique

:薄膜晶体管是现代微电子技术的一种关键性元器件,它可以用于显示器、交易卡和身份识别器,易于制造,成本低等优点。 : The thin film transistor is a key component of modern microelectronic technology, which can be used for a display, and a transaction card identification device, easy to manufacture and low cost. 薄膜晶体管主要由源极、漏极、栅极、栅极绝缘层以及半导体组成。 The thin film transistor mainly by the source, a drain, a gate, a gate insulating layer and a semiconductor. 当器件在积累模式时,电荷从源极注入半导体,在源漏之间移动形成电流。 When the device is in the accumulation mode, the semiconductor charge injection from the source electrode, the current move is formed between the source and drain. 目前,用于薄膜晶体管的半导体材料主要是硅基材料,但是随着微电子器件尺寸的不断缩小,硅基电子器件的尺寸已接近其极限。 At present, the semiconductor material is mainly used for the thin film transistor-based material, but as the size of microelectronic devices continue to shrink, the size of silicon-based electronic devices is approaching its limit. 因此开发新的、优良的、可制备更小尺寸器件的半导体材料尤为重要。 Thus the development of new, fine, the semiconductor material can be made smaller size of the device is particularly important.

碳纳米管由于其独特的力学和电学性能,已经成为科学家广泛关注的极具潜力的特殊功能材料和器件材料。 Carbon nanotubes due to their unique mechanical and electrical properties, has become the great potential of special functional materials and devices of widespread concern materials scientists. 目前,碳纳米管被用于制备不同的电子元器件,尤其是具有半导体性能的碳纳米管是制备场效应晶体管的最有前途的材料。 Currently, carbon nanotubes are used for the preparation of various electronic components, especially semiconductor carbon nanotubes having a material property of a field effect transistor is the most promising preparation. 已有许多研究小组利用单根碳纳米管制成了晶体管(1:Derycke,V.;Martel,R.;Appenzeller,J.;Avouris,Ph.Nano.Lett.2001,1,453.2:Martel,R.;Schmidt,T.;Shea,HR;Hertel,T.;Avouris,Ph.Appl.Phys.Lett.1998,73,2447.3:Fuhrer,MS;Kim,BM;Durkop,T.;Brintlinger,T.Nano.Lett.2002,2,755.4:Choi,WB;Chu,JU;Jeong,KS;Bae,EJ;Lee,JW;Kim,JJ;Lee,JOAppl.Phys.Lett.2001,79,3696.)。 There have been many research groups use is made of a single carbon nanotube transistor (1:. Derycke, V; Martel, R; Appenzeller, J; Avouris, Ph.Nano.Lett.2001,1,453.2:.. Martel, R. ; Schmidt, T; Shea, HR; Hertel, T; Avouris, Ph.Appl.Phys.Lett.1998,73,2447.3:... Fuhrer, MS; Kim, BM; Durkop, T; Brintlinger, T.Nano. Lett.2002,2,755.4: Choi, WB; Chu, JU; Jeong, KS; Bae, EJ; Lee, JW; Kim, JJ; Lee, JOAppl.Phys.Lett.2001,79,3696).. 但是这些方法都离不开电子束光刻等仪器来制备,因为要想在宏观层次上测量碳纳米管的电学性能,淀积电极是非常困难的。 However, these methods are inseparable from the electron beam lithography equipment, etc. be prepared, because in order to measure the electrical properties of carbon nanotubes on a macro level, the deposition electrode is very difficult. 目前的方法繁杂而且设备昂贵,这给碳纳米管在器件方面的应用带来了极大的困难和复杂性。 The current method of complex and expensive equipment, which gives the applications of carbon nanotubes in terms of device brought great difficulty and complexity. 因而如何有效、简单、方便地测量碳纳米管的电学性能,成为许多科研和工程技术专家追求的目标。 So how effective, simple, and easily measure the electrical properties of carbon nanotubes, as many scientific and engineering experts goal.

阵列碳纳米管薄膜具有许多优良的电学性能,它的物理和化学性能具有高度的各项异性。 An array of carbon nanotube film has many excellent electrical properties, its physical and chemical properties are highly anisotropic. 目前阵列碳纳米管薄膜已经广泛用于场发射器件的研究(Nilsson,L.;Groening,O.;Emmenegger,C.;Kuettel,O.;Schaller,E.;Schlapbach,L.;Kind,H.;Bonard,JM;Kern,K.Appl.Phys.Lett.2000,76,2071)。 Currently carbon nanotube film has an array of field emission devices study (Nilsson, L is widely used;. Groening, O;. Emmenegger, C;. Kuettel, O;. Schaller, E;. Schlapbach, L;. Kind, H. ; Bonard, JM; Kern, K.Appl.Phys.Lett.2000,76,2071). 王贤保等人用四探针方法测量了阵列碳纳米管膜的不同方向的电子传输性能,发现其径向和横向表现为不同的半导体性能(Wang,XB;Liu,YQ;Yu,G.;Xu,CY;Zhang,JB;Zhu,DBJPhys.Chem.B 2001,105,9422.)。 Paul et al Xian measured by four-probe method of the electron transport properties of a carbon nanotube film array in different directions, radial and transverse found showed different semiconductor properties (Wang, XB; Liu, YQ; Yu, G;. Xu , CY; Zhang, JB; Zhu, DBJPhys.Chem.B 2001,105,9422).. 因此,阵列碳纳米管膜可以应用于许多半导体器件,尤其是作为制备薄膜晶体管的半导体材料。 Thus, the carbon nanotube film can be applied to an array of a plurality of semiconductor devices, in particular semiconductor material prepared as a thin film transistor.

发明内容 SUMMARY

:本发明利用一种阵列碳纳米管膜作为半导体材料,制备了薄膜晶体管器件。 : The present invention utilizes a carbon nanotube array film as a semiconductor material, a thin film transistor device was prepared. 通过一种简单的方法,无需任何复杂的预处理过程,直接在栅极绝缘层上大面积生长出阵列规整、结构均匀的碳纳米管薄膜。 In a simple way, without any complicated pre-treatment process, the gate insulating layer directly on the large area array grown regular, uniform structure carbon nanotube film. 然后在膜上用真空蒸镀的方法淀积金电极作为源、漏电极,并在室温下发现这种材料具有优良的场效应性能,其迁移率很高,可与硅电子器件相媲美。 In the method of film is then deposited by vacuum evaporation gold electrode as a source, a drain electrode, and found that at room temperature such a material has excellent properties FET, its high mobility can be comparable with silicon electronics.

本发明使用的阵列碳纳米管薄膜是按照文献(1:Wang,XB;Liu,YQ;Zhu,DBAppl.Phys.A.2000,71,347.2:刘云圻,王贤保,朱道本,申请号:01124300.7)合成的,只是将n-型单晶硅片换为SiO2/高掺杂Si基片,其由直径为20到200纳米,长度为1到100微米的结构均匀、阵列规整的碳纳米管阵列组成。 An array of carbon nanotube film of the present invention are described in the literature (1: Wang, XB; Liu, YQ; Zhu, DBAppl.Phys.A.2000,71,347.2: Liu Qi, Xian Paul, Zhu Daoben, application number: 01124300.7) Synthesis of except that the n- type monocrystalline silicon wafer changed to SiO2 / highly doped Si substrate having a diameter of from 20 to 200 nanometers, a length of 1 to 100 micron uniform structure, the array of regular arrays of carbon nanotubes.

本发明的一种阵列碳纳米管薄膜晶体管的制备方法,依如下顺序步骤进行:以高掺杂硅作为栅电极,其上氧化一层200-400纳米的SiO2作为栅极绝缘层,将此SiO2/高掺杂硅基片放入石英管中部,通入氢气或氩气中的一种气体,气体的流量控制一般为每分钟10-100毫升,将控温仪设置到800-1200℃,开始加热,当炉心温度达到设置温度时,将盛有金属酞菁的石英舟放入炉口温度为500-600℃的区域,金属酞菁的用量一般为石英舟体积的1/6-2/3,恒温1-60分钟后,停止加热,继续通氢气使电炉冷至10-40℃,在基片上得到列阵碳纳米管薄膜,将其放入真空镀膜机,利用叉指电极模板真空蒸镀金作为薄膜晶体管的源、漏极,薄膜晶体管的沟道长度为0.1-0.5毫米,宽度为50-66毫米。 A method for preparing a thin film transistor array according to the present invention, carbon nanotubes, performed according to the following sequence of steps: a highly doped silicon as a gate electrode on the oxide layer of SiO2 200-400 nm as the gate insulating layer, this SiO2 / highly doped silicon substrate placed in the middle of a quartz tube, into one gas of hydrogen gas or argon gas, gas flow control is generally 10 to 100 milliliters per minute, the temperature control device is provided to 800-1200 ℃, started heating the reactor core when the temperature reaches the set temperature, the metal phthalocyanine is filled with quartz boat was placed in a furnace inlet temperature region of 500-600 deg.] C, the metal phthalocyanine quartz boat volume amount of usually 1 / 6-2 / 3 , temperature 60 minutes after heating was stopped, hydrogen was continuously cooled to 10-40 deg.] C electric furnace, to obtain a carbon nanotube array on a substrate film, which was placed in a vacuum coating machine, the interdigital electrode using vacuum evaporation gold template as the source of the thin film transistor, the drain channel length, the thin film transistor is 0.1 to 0.5 mm and a width of 50-66 mm. 利用HP4140B半导体测试仪,在源漏电压和栅极电压为0--1V的范围内扫描,从而得出其迁移率和开关比。 HP4140B using a semiconductor tester, the source-drain voltage and the gate voltage within a range 0--1V scan, thus proving its mobility and on-off ratio.

本发明的器件是由碳纳米管膜制备的P沟道薄膜晶体管,其空穴的场效应迁移率高达79.5cm2/Vs.另外,本发明的P沟道器件的开关比大于100。 Device of the present invention is a P-channel thin film transistor produced by a carbon nanotube film, which high field-effect mobility of holes 79.5cm2 / Vs. In addition, P-channel switching device of the present invention is greater than 100. 而且,这些性能都是在空气中测量得到的。 Furthermore, these properties are measured in air.

本发明制备的碳纳米管薄膜晶体管具有下述特征和优点:1.本发明制备的阵列碳纳米管薄膜晶体管器件在室温下具有比较高的空穴迁移率,是一种理想的薄膜晶体管半导体材料。 Preparing a carbon nanotube thin film transistor of the present invention has the following features and advantages: a carbon nanotube film transistor array device of the present invention is prepared having a relatively high hole mobility at room temperature, a thin film transistor is an ideal semiconductor material .

2.通过改变反应条件,可以控制碳纳米管的结构,从而影响器件的空穴传输性能。 2. By changing the reaction conditions, the structure of carbon nanotubes can be controlled, thus affecting the performance of the device hole transport.

3.利用本发明的方法制备的薄膜晶体管与传统的硅晶体管相比,工艺简单,成本低廉。 3. The thin film transistors produced using the method of the invention compared with conventional silicon transistors, the process is simple, low cost.

4.本发明制备的阵列碳纳米管薄膜晶体管与有机薄膜晶体管相比,有机薄膜晶体管的场效应迁移率的并且在高温下性能降低。 The thin film transistor array of carbon nanotubes prepared in the present invention as compared to 4. The organic thin film transistor, the field effect mobility of an organic thin film transistor and reduced performance at high temperatures. 而碳纳米管在高温下其结构性能没有大的影响,一般多壁碳纳米管在空气中600℃才开始氧化。 And carbon nanotubes at a high temperature properties without a large impact on the structure, MWNTs generally oxidized in the air began to 600 ℃. 因此阵列碳纳米管薄膜晶体管在高温时也具有优良的性能和可靠性。 Thus the thin film transistor array of carbon nanotubes at high temperatures with excellent performance and reliability.

附图说明 BRIEF DESCRIPTION

图1阵列碳纳米管薄膜晶体管的结构图。 FIG configuration diagram of the thin film transistor array 1 of the carbon nanotube. 1,高掺杂硅栅极;2,二氧化硅绝缘层;3,碳纳米管膜;4,源极;5,漏极。 1, a highly doped silicon gate; 2, the insulating layer is silicon dioxide; 3, carbon nanotube film; 4, a source electrode; 5, the drain electrode.

图2扫描电子显微镜拍摄的阵列碳纳米管薄膜的照片图3透射电子显微镜拍摄碳纳米管薄膜的形貌。 An array of carbon nanotube film of FIG. 2 taken by a scanning electron microscope photograph of a transmission electron microscope photographing 3 carbon nanotube film morphology.

图4扫描电子显微镜拍摄的阵列碳纳米管薄膜晶体管的照片。 Photo thin film transistor array of carbon nanotubes 4 a scanning electron microscope photography.

图5碳纳米管薄膜晶体管的输出特性曲线图6碳纳米管薄膜晶体管的转移特性曲线具体实施方式下面结合附图和实施实例对本发明进行详细说明。 FIG 5 carbon nanotube output characteristics of the thin film transistor of FIG. 6 carbon nanotube thin film transistor transfer characteristic curve DETAILED DESCRIPTION The present invention will be described in detail in conjunction with the accompanying drawings and embodiment examples. 但本发明并不限于此例。 However, the present invention is not limited to this example.

实施例1如图1所示,本发明的一种阵列碳纳米管薄膜晶体管结构依次包括高掺杂硅为栅极1,二氧化硅2为绝缘层,阵列碳纳米管膜3作为半导体材料,金电极4,5为源、漏电极。 Example Embodiment 1 FIG 1 A carbon nanotube thin film transistor array according to the present invention comprises successively a gate highly doped silicon 1, 2 is a silicon dioxide insulating layer, the carbon nanotube film 3 as an array of semiconductor material, 4,5 gold electrode as source and drain electrodes. 将一块20×20mm大小的SiO2/Si基片,放入石英管中部,连接好配气系统,以每分钟20毫升的流量通入氢气,设置温度950℃,使电炉升温,当炉心温度达到900℃时,将盛有0.5克酞菁铁的石英舟(5毫升)放入炉口温度为550℃的区域恒温5分钟后停止加热。 A piece of 20 × 20mm size SiO2 / Si substrate, into a quartz tube middle connect gas distribution system, a flow rate of 20 ml per minute into hydrogen, the set temperature 950 deg.] C, electric furnace heating, when the reactor core temperature reaches 900 when ℃, will be filled with 0.5 g of iron phthalocyanine quartz boats (5 ml) was placed in a furnace zone thermostat inlet temperature of 550 deg.] C the heating was stopped after 5 minutes. 冷却至室温。 Cooled to room temperature. 制得直径为40纳米,长度6微米的阵列规整、尺寸均匀的碳纳米管。 A diameter of about 40 nm, a length of 6 m array of regular, uniform size carbon nanotubes. 纳米管的长度有扫描电子显微镜照片测得(图2)和估算,直径由透射电子显微镜照片(图3)测得。 Length of the nanotubes are measured by scanning electron micrograph (FIG. 2) and the estimated diameter obtained by the transmission electron microscope photograph (FIG. 3) measured. 然后在镀膜机中用叉指电极模板真空蒸镀金为源漏电极,沟道长度和宽度分别为0.4毫米和66毫米。 Then coater with the interdigital electrode template vacuum evaporation gold source drain electrodes, the channel length and width of 0.4 mm and 66 mm. 器件的结构示意图如图1所示,器件的形貌可由扫描电子显微镜照片(图4)看到。 The schematic structure of the device shown in Figure 1, by a scanning electron microscope photograph of the morphology of the device (4) seen. 最后,用HP4140B半导体测试仪测量器件的输出特性曲线(图5)和转移特性曲线(图6),源漏电压和栅极电压在0--1V扫描。 Finally, the output characteristic curve of the semiconductor tester HP4140B measuring device (FIG. 5) and the transfer characteristic curve (FIG. 6), the source-drain voltage and the gate voltage 0--1V scan. 在空气中测量器件的空穴场效应迁移率为~79.3cm2/Vs,开关比大于~100。 Measuring means in the air hole field-effect mobility ~ 79.3cm2 / Vs, greater than ~ 100 switches.

实施例2按实施例1的制备方法,只是将沟道长度和宽度改变为0.2毫米和53毫米,在室温下测量所得的器件的空穴场效应迁移率为~48.9cm2/Vs,开关比大于~75。 Example 2 prepared in Example 1, except that changing the channel length and width of 0.2 mm and 53 mm, the device obtained were measured at room temperature, the hole mobility of the field effect ~ 48.9cm2 / Vs, greater than the switch ~ 75.

Claims (4)

1.一种阵列碳纳米管薄膜晶体管的制备方法,依如下顺序步骤进行:以高掺杂硅作为栅电极,其上氧化一层200-400纳米的SiO2作为栅极绝缘层,将此SiO2/高掺杂硅基片放入石英管中部,通入氢气或氩气中的一种气体,将控温仪设置到800-1200℃,开始加热,当炉心温度达到设置温度时,将盛有金属酞菁的石英舟放入炉口温度为500-600℃的区域,恒温1-60分钟后,停止加热,继续通氢气使电炉冷至10-40℃,在基片上得到阵列碳纳米管薄膜,将其放入真空镀膜机,利用叉指电极模板真空蒸镀金作为薄膜晶体管的源、漏极。 1. A method for preparing a thin film transistor array of carbon nanotubes, performed according to the following sequential steps: a high-doped silicon as a gate electrode on the oxide layer 200-400 SiO2 nm as the gate insulating layer, this SiO2 / a highly doped silicon substrate placed in the middle of a quartz tube, into hydrogen gas or a gaseous argon, the temperature control device is provided to 800-1200 ℃, heating was started, the reactor core when the temperature reaches the set temperature, the metal will be filled with phthalocyanine quartz boat was placed in a furnace inlet temperature region of 500-600 deg.] C, 1-60 minutes after the thermostat, the heating was stopped, hydrogen was continuously cooled to 10-40 deg.] C electric furnace, to obtain a carbon nanotube film on the array substrate, which was placed in a vacuum coating machine, the interdigital electrode template using vacuum deposition of gold thin film transistor, a source, a drain.
2.根据权利要求1的制备方法,其特征在于:所述气体的流量控制为每分钟10-100毫升。 2. The production method according to claim 1, wherein: said gas flow rate is controlled to 10-100 mL per minute.
3.根据权利要求1的制备方法,其特征在于:所述金属酞菁的用量为石英舟体积的1/6-2/3。 3. The production method according to claim 1, wherein: an amount of the metal phthalocyanine is quartz boat volume of 1 / 6-2 / 3.
4.根据权利要求1的制备方法,其特征在于:所述薄膜晶体管的沟道长度为0.1-0.5毫米,宽度为50-66毫米。 4. The production method according to claim 1, wherein: the thin film transistor channel length of 0.1 to 0.5 mm and a width of 50-66 mm.
CN 02145889 2002-10-16 2002-10-16 Manufacture method of array carbon nanometer tube film transistor CN1208818C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02145889 CN1208818C (en) 2002-10-16 2002-10-16 Manufacture method of array carbon nanometer tube film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02145889 CN1208818C (en) 2002-10-16 2002-10-16 Manufacture method of array carbon nanometer tube film transistor

Publications (2)

Publication Number Publication Date
CN1490856A CN1490856A (en) 2004-04-21
CN1208818C true CN1208818C (en) 2005-06-29

Family

ID=34148589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02145889 CN1208818C (en) 2002-10-16 2002-10-16 Manufacture method of array carbon nanometer tube film transistor

Country Status (1)

Country Link
CN (1) CN1208818C (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427388C (en) 2005-11-25 2008-10-22 清华大学;美国路易斯安娜州立大学 Large-area ultra-thin carbon nanotube film and its preparation process
CN100488865C (en) 2006-09-11 2009-05-20 厦门大学 Method for preparing Nano getter
CN101497437B (en) 2008-02-01 2012-11-21 清华大学 Method for preparing carbon nano-tube compound film
CN101582449B (en) 2008-05-14 2011-12-14 清华大学 The thin film transistor
CN101582444A (en) 2008-05-14 2009-11-18 清华大学;鸿富锦精密工业(深圳)有限公司 Thin film transistor
CN101582445B (en) 2008-05-14 2012-05-16 清华大学 Thin film transistor
CN101582446B (en) 2008-05-14 2011-02-02 鸿富锦精密工业(深圳)有限公司 Thin film transistor
CN101582382B (en) 2008-05-14 2011-03-23 鸿富锦精密工业(深圳)有限公司 Preparation method of thin film transistor
CN101582448B (en) 2008-05-14 2012-09-19 清华大学 The thin film transistor
CN101582381B (en) 2008-05-14 2011-01-26 鸿富锦精密工业(深圳)有限公司 Preparation method of thin film transistor
CN101582450B (en) 2008-05-16 2012-03-28 清华大学 The thin film transistor
CN101587839B (en) 2008-05-23 2011-12-21 清华大学 A method of preparing a thin film transistor
CN101593699B (en) 2008-05-30 2010-11-10 清华大学;鸿富锦精密工业(深圳)有限公司 Method for preparing thin film transistor
CN101599495B (en) 2008-06-04 2013-01-09 清华大学 Thin-film transistor panel
CN101625466B (en) 2008-07-09 2012-12-19 清华大学 Touch liquid crystal display screen
CN101997035B (en) 2009-08-14 2012-08-29 清华大学 The thin film transistor
CN105609636B (en) * 2016-02-17 2018-05-08 上海交通大学 Oriented single walled carbon nanotubes as a channel array and a method for fabricating field effect transistor
CN108962759B (en) * 2018-07-15 2019-07-30 吉林建筑大学 A kind of preparation method of zinc oxide thin-film transistor

Also Published As

Publication number Publication date
CN1490856A (en) 2004-04-21

Similar Documents

Publication Publication Date Title
Lu et al. Nanowire transistor performance limits and applications
Min et al. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets
Snow et al. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate
Puigdollers et al. Pentacene thin-film transistors with polymeric gate dielectric
Radosavljević et al. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors
Martel et al. Carbon nanotube field-effect transistors and logic circuits
Duan et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons
Sun et al. A review of carbon nanotube‐and graphene‐based flexible thin‐film transistors
KR100982419B1 (en) Method of forming conductive line of semiconductor device using carbon nanotube and semiconductor device manufactured by the method
Chen et al. Self-aligned carbon nanotube transistors with charge transfer doping
Kim et al. Hysteresis caused by water molecules in carbon nanotube field-effect transistors
Ante et al. Contact resistance and megahertz operation of aggressively scaled organic transistors
Fuhrer et al. High-mobility nanotube transistor memory
Reese et al. Organic single-crystal field-effect transistors
Jang et al. Highly crystalline soluble acene crystal arrays for organic transistors: mechanism of crystal growth during dip‐coating
Wang et al. Carbon nanotube electronics–moving forward
Martel et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes
Patil et al. Wafer-scale growth and transfer of aligned single-walled carbon nanotubes
Manohara et al. Carbon nanotube Schottky diodes using Ti− Schottky and Pt− Ohmic contacts for high frequency applications
EP1519418A1 (en) Semiconductor device and method for manufacturing same
Avouris et al. Carbon nanotube electronics
Shimada et al. Ambipolar field-effect transistor behavior of Gd@ C 82 metallofullerene peapods
Liao et al. High‐Performance Top‐Gated Graphene‐Nanoribbon Transistors Using Zirconium Oxide Nanowires as High‐Dielectric‐Constant Gate Dielectrics
Javey et al. Electrical properties and devices of large-diameter single-walled carbon nanotubes
Akbar et al. Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C19 Lapse of patent right due to non-payment of the annual fee