CN118885862A - Marine geological data mining and analysis system based on artificial intelligence - Google Patents

Marine geological data mining and analysis system based on artificial intelligence Download PDF

Info

Publication number
CN118885862A
CN118885862A CN202411388314.3A CN202411388314A CN118885862A CN 118885862 A CN118885862 A CN 118885862A CN 202411388314 A CN202411388314 A CN 202411388314A CN 118885862 A CN118885862 A CN 118885862A
Authority
CN
China
Prior art keywords
feature
unit
data
feature map
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202411388314.3A
Other languages
Chinese (zh)
Inventor
�田�浩
赵京涛
武复宇
阚靖
李攀峰
黄龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute of Marine Geology
Original Assignee
Qingdao Institute of Marine Geology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Institute of Marine Geology filed Critical Qingdao Institute of Marine Geology
Priority to CN202411388314.3A priority Critical patent/CN118885862A/en
Publication of CN118885862A publication Critical patent/CN118885862A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V20/00Geomodelling in general
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • G06T13/203D [Three Dimensional] animation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Human Computer Interaction (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及海洋地质数据处理技术领域,具体涉及基于人工智能的海洋地质数据挖掘与分析系统,包括多源数据采集模块、数据预处理模块、特征提取模块、多尺度特征聚合模块、特征对比分析模块以及结果可视化模块;其中:多源数据采集模块:用于采集海洋地质原始数据;数据预处理模块:进行同步预处理;特征提取模块:进行深度特征提取;多尺度特征融合模块:用于生成融合特征表示;特征匹配识别模块:用于对海底微特征进行识别和分类。本发明,通过结合先进的人工智能技术和三维可视化方法,显著提升了海底微特征的识别精度和数据融合效率,同时通过直观的图形界面增强了用户的交互体验和地质分析的实用性。

The present invention relates to the field of marine geological data processing technology, and specifically to a marine geological data mining and analysis system based on artificial intelligence, including a multi-source data acquisition module, a data preprocessing module, a feature extraction module, a multi-scale feature aggregation module, a feature comparison analysis module, and a result visualization module; wherein: the multi-source data acquisition module is used to collect raw marine geological data; the data preprocessing module performs synchronous preprocessing; the feature extraction module performs deep feature extraction; the multi-scale feature fusion module is used to generate fusion feature representation; the feature matching recognition module is used to recognize and classify seabed micro-features. The present invention significantly improves the recognition accuracy and data fusion efficiency of seabed micro-features by combining advanced artificial intelligence technology and three-dimensional visualization methods, and at the same time enhances the user's interactive experience and the practicality of geological analysis through an intuitive graphical interface.

Description

基于人工智能的海洋地质数据挖掘与分析系统Marine geological data mining and analysis system based on artificial intelligence

技术领域Technical Field

本发明涉及海洋地质数据处理技术领域,尤其涉及基于人工智能的海洋地质数据挖掘与分析系统。The present invention relates to the field of marine geological data processing technology, and in particular to a marine geological data mining and analysis system based on artificial intelligence.

背景技术Background Art

海洋地质研究中,对海底微特征的识别与分析是理解海洋地质过程的关键,海底微特征,包括裂隙、断层及沉积物边界等,对于预测地质灾害、资源评估和环境监测具有重要意义,传统的方法依赖于二维图像处理和简单的数据融合技术,这些方法在处理海量多源海底地质数据时常常显得力不从心,难以有效捕捉和解析复杂的地质结构及其动态变化,此外,现有的地质数据分析系统常常缺乏有效的数据融合机制,使得从不同传感器和测量技术获得的数据难以被整合在一起进行全面分析。In marine geological research, the identification and analysis of seabed microfeatures is the key to understanding marine geological processes. Seabed microfeatures, including cracks, faults and sediment boundaries, are of great significance for predicting geological disasters, resource assessment and environmental monitoring. Traditional methods rely on two-dimensional image processing and simple data fusion technology. These methods often seem to be incapable of processing massive multi-source seabed geological data, and it is difficult to effectively capture and analyze complex geological structures and their dynamic changes. In addition, existing geological data analysis systems often lack effective data fusion mechanisms, making it difficult to integrate data obtained from different sensors and measurement technologies for comprehensive analysis.

现有技术中的主要问题在于无法有效地识别和分类海底的微小地质特征,并且难以直观地展示这些特征的空间分布和演变过程,尤其是在多尺度特征的融合和三维可视化方面存在明显短板,这限制了科研人员和工程师对复杂海底地质环境的理解和应对能力。因此,研发一个能够综合利用多源数据、进行高效特征融合,并通过高级三维可视化技术展示地质特征的分析系统,成为提高海底地质分析精度和效率的必要路径。The main problem with existing technologies is that they cannot effectively identify and classify tiny geological features on the seafloor, and it is difficult to intuitively display the spatial distribution and evolution of these features, especially in the fusion of multi-scale features and three-dimensional visualization. This limits the understanding and response capabilities of researchers and engineers to complex seafloor geological environments. Therefore, developing an analysis system that can comprehensively utilize multi-source data, perform efficient feature fusion, and display geological features through advanced three-dimensional visualization technology has become a necessary path to improve the accuracy and efficiency of seafloor geological analysis.

发明内容Summary of the invention

基于上述目的,本发明提供了基于人工智能的海洋地质数据挖掘与分析系统。Based on the above objectives, the present invention provides an artificial intelligence-based marine geological data mining and analysis system.

基于人工智能的海洋地质数据挖掘与分析系统,包括多源数据采集模块、数据预处理模块、特征提取模块、多尺度特征聚合模块、特征对比分析模块以及结果可视化模块;其中:The marine geological data mining and analysis system based on artificial intelligence includes a multi-source data acquisition module, a data preprocessing module, a feature extraction module, a multi-scale feature aggregation module, a feature comparison and analysis module, and a result visualization module; among which:

多源数据采集模块:用于采集海洋地质原始数据,所述原始数据包括高分辨率声学数据、海底图像数据和地震波数据;Multi-source data acquisition module: used to collect raw marine geological data, including high-resolution acoustic data, seabed image data and seismic wave data;

数据预处理模块:接收来自多源数据采集模块的原始数据,并对不同类型的数据进行同步预处理,包括噪声过滤、标准化以及缺失值填充,以生成标准化数据;Data preprocessing module: receives raw data from the multi-source data acquisition module and performs synchronous preprocessing on different types of data, including noise filtering, standardization, and missing value filling to generate standardized data;

特征提取模块:接收预处理后的标准化数据,利用引入注意力机制的卷积神经网络对标准化数据进行深度特征提取,所述注意力机制通过加权方式聚焦于微小地质特征区域,增强对微裂隙、微断层和沉积物边界细节的识别能力;Feature extraction module: receives the preprocessed standardized data and uses a convolutional neural network with an attention mechanism to perform deep feature extraction on the standardized data. The attention mechanism focuses on small geological feature areas in a weighted manner to enhance the recognition of microcracks, microfaults and sediment boundary details;

多尺度特征融合模块:用于接收所述深度特征,并通过多尺度卷积核对不同尺度的特征进行融合,生成融合特征表示;Multi-scale feature fusion module: used to receive the depth features and fuse features of different scales through multi-scale convolution kernels to generate fused feature representation;

特征匹配识别模块:用于接收所述融合特征表示,并将其与预先建立的海洋地质微特征数据库中的标准特征进行匹配,采用相似度计算方法,对海底微特征进行识别和分类;Feature matching and identification module: used to receive the fused feature representation, match it with the standard features in the pre-established marine geological micro-feature database, and use a similarity calculation method to identify and classify the seabed micro-features;

结果可视化展示模块:与所述特征匹配识别模块连接,接收识别和分类结果,利用三维可视化技术,将海底微特征的空间分布和演变过程以图形化界面展示。Result visualization display module: connected with the feature matching and recognition module, receiving the recognition and classification results, and using three-dimensional visualization technology to display the spatial distribution and evolution process of seabed micro-features in a graphical interface.

可选的,所述多源数据采集模块包括高分辨率声学探测单元、海底摄像单元、地震波探测单元以及数据同步控制单元;其中:Optionally, the multi-source data acquisition module includes a high-resolution acoustic detection unit, a seafloor camera unit, a seismic wave detection unit and a data synchronization control unit; wherein:

高分辨率声学探测单元:用于通过水下声学探测器采集海床及其周围环境的声学反射数据,所述声学数据通过多频段声学传感器阵列进行探测,声学信号的频率范围设定为10Hz至100kHz;High-resolution acoustic detection unit: used to collect acoustic reflection data of the seabed and its surrounding environment through an underwater acoustic detector. The acoustic data is detected through a multi-band acoustic sensor array, and the frequency range of the acoustic signal is set to 10Hz to 100kHz;

海底摄像单元:用于通过高分辨率摄像机或光学成像设备实时采集海底图像数据;Seabed camera unit: used to collect seabed image data in real time through a high-resolution camera or optical imaging equipment;

地震波探测单元:用于通过海底地震传感器采集来自地震活动和地质运动的地震波信号,所述地震波数据包括纵波和横波信息;Seismic wave detection unit: used to collect seismic wave signals from seismic activities and geological movements through seabed seismic sensors, and the seismic wave data includes longitudinal wave and transverse wave information;

数据同步控制单元:与所述高分辨率声学探测单元、海底摄像单元和地震波探测单元连接,用于对各种数据进行同步处理,所述同步处理通过精密时钟校准,确保数据误差不超过1毫秒。Data synchronization control unit: connected to the high-resolution acoustic detection unit, the seabed camera unit and the seismic wave detection unit, and used for synchronous processing of various data. The synchronous processing is calibrated by a precise clock to ensure that the data error does not exceed 1 millisecond.

可选的,所述数据预处理模块包括噪声过滤单元、数据标准化单元以及缺失值填充单元;其中:Optionally, the data preprocessing module includes a noise filtering unit, a data standardization unit and a missing value filling unit; wherein:

噪声过滤单元:用于对来自多源数据采集模块的不同类型原始数据进行噪声过滤,具体采用多级自适应滤波算法,针对声学数据中存在的水下噪声、回波干扰以及地震波数据中的环境干扰进行逐级消除;Noise filtering unit: used to filter noise of different types of raw data from multi-source data acquisition modules. Specifically, a multi-level adaptive filtering algorithm is used to eliminate underwater noise and echo interference in acoustic data and environmental interference in seismic wave data step by step.

数据标准化单元:用于对滤波后的多类型数据进行标准化处理,所述标准化单元通过最小-最大归一化方法,将不同类型数据的数值范围缩放至预定范围内,对于声学数据的幅值范围归一化到[0,1],图像数据像素值归一化为[0,255],地震波数据的振幅标准化至[-1,1];Data normalization unit: used to perform normalization processing on the filtered multi-type data. The normalization unit scales the numerical range of different types of data to a predetermined range through the minimum-maximum normalization method. The amplitude range of acoustic data is normalized to [0,1], the pixel value of image data is normalized to [0,255], and the amplitude of seismic wave data is normalized to [-1,1];

缺失值填充单元:用于对经过标准化处理后的数据进行缺失值的填充,所述缺失值填充单元采用基于插值法的填充技术,具体针对连续型数据,使用线性插值法填补缺失数据点;针对离散型数据,使用最近邻插值法对缺失像素进行填充,确保数据的完整性和连续性。Missing value filling unit: used to fill missing values in the data after standardization. The missing value filling unit adopts a filling technology based on interpolation. Specifically, for continuous data, linear interpolation is used to fill missing data points; for discrete data, the nearest neighbor interpolation method is used to fill missing pixels to ensure the integrity and continuity of the data.

可选的,所述特征提取模块包括卷积层单元、注意力机制单元、加权特征映射单元、特征池化单元以及特征输出单元;其中:Optionally, the feature extraction module includes a convolutional layer unit, an attention mechanism unit, a weighted feature mapping unit, a feature pooling unit and a feature output unit; wherein:

卷积层单元:用于接收数据预处理模块输出的标准化数据,通过多层卷积操作对数据进行特征提取,包括海底结构的边缘、裂缝和沉积物特征;Convolutional layer unit: used to receive the standardized data output by the data preprocessing module and extract features of the data through multi-layer convolution operations, including the edges, cracks and sediment features of the seabed structure;

注意力机制单元:用于增强对微小地质特征的识别能力,所述注意力机制通过在每一层卷积后计算特征图的权重,自动聚焦于与微裂隙、微断层和沉积物边界相关的重要区域;Attention mechanism unit: used to enhance the recognition of tiny geological features. The attention mechanism automatically focuses on important areas related to microcracks, microfaults, and sediment boundaries by calculating the weight of the feature map after each layer of convolution.

加权特征映射单元:用于对特征图进行加权操作,根据注意力机制生成的权重对特征图中的每个区域进行加权处理,权重越高的区域表示其与对应地质特征的相关性越强;Weighted feature mapping unit: used to perform weighted operations on feature maps. Each area in the feature map is weighted according to the weights generated by the attention mechanism. The higher the weight, the stronger the correlation with the corresponding geological features.

特征池化单元:用于对加权后的特征图进行池化处理,通过全局平均池化操作缩小数据规模,同时保留微特征信息,以有效减少数据维度,防止过拟合;Feature pooling unit: used to perform pooling on the weighted feature maps, reduce the data size through global average pooling operations, and retain micro-feature information to effectively reduce data dimensions and prevent overfitting;

特征输出单元:用于输出经过卷积和注意力机制处理后的深度特征图,所述深度特征图包括微裂隙、微断层以及沉积物边界的具体特征。Feature output unit: used to output the deep feature map processed by convolution and attention mechanism, wherein the deep feature map includes the specific features of microcracks, microfaults and sediment boundaries.

可选的,所述注意力机制单元包括:Optionally, the attention mechanism unit includes:

特征图生成:接收卷积层单元输出的特征图,设输入特征图为,其中h表示特征图的高度,w表示宽度,c表示通道数;Feature map generation: Receive the feature map output by the convolutional layer unit, and set the input feature map to be , where h represents the height of the feature map, w represents the width, and c represents the number of channels;

空间注意力权重计算:对特征图T的每个空间位置进行全局池化操作,生成空间注意力权重图Spatial attention weight calculation: Perform a global pooling operation on each spatial position of the feature map T to generate a spatial attention weight map ;

通道注意力权重计算:计算特征图在通道维度的注意力权重,通过对特征图T进行全局平均池化和最大池化操作,生成两个通道注意力向量;并将通过全连接层进行融合,生成最终的通道注意力权重Channel attention weight calculation: Calculate the attention weight of the feature map in the channel dimension, and generate two channel attention vectors by performing global average pooling and maximum pooling operations on the feature map T and ; and and Fusion is performed through the fully connected layer to generate the final channel attention weight ;

特征加权处理:将计算得到的空间注意力权重和通道注意力权重应用于特征图T,生成经过空间和通道加权后的特征图值Feature weighting processing: The calculated spatial attention weights and channel attention weights Applied to the feature map T to generate spatially and channel-weighted feature map values ;

特征输出:输出经过加权处理后的特征图Feature output: Output the weighted feature map .

可选的,所述特征池化单元具体包括:Optionally, the feature pooling unit specifically includes:

接收加权特征图:接收加权特征映射单元输出的特征图,其中i和j分别表示特征图的空间位置索引,k表示通道索引,特征图的维度为,其中h为高度,w为宽度,c为通道数;Receive weighted feature map: Receive the feature map output by the weighted feature mapping unit , where i and j represent the spatial position index of the feature map, k represents the channel index, and the dimension of the feature map is , where h is the height, w is the width, and c is the number of channels;

全局平均池化计算:对加权后的特征图进行全局平均池化处理,对每个通道的所有空间位置的值进行平均,计算公式为:Global average pooling calculation: weighted feature map Perform global average pooling to average the values of all spatial positions of each channel. The calculation formula is:

,其中,表示通道k的全局平均池化结果,为加权后的特征图值,h和w分别为特征图的高度和宽度;通过对特征图中的所有空间位置进行平均操作,从而将每个通道的空间信息压缩为一个值; ,in, represents the global average pooling result of channel k, is the weighted feature map value, h and w are the height and width of the feature map respectively; by averaging all spatial positions in the feature map, the spatial information of each channel is compressed into one value;

数据规模缩减:经过全局平均池化后,特征图的空间维度从缩小为Data size reduction: After global average pooling, the spatial dimension of the feature map is reduced from Reduce to ;

特征输出:输出池化后的特征Feature output: output pooled features .

可选的,所述多尺度特征融合模块包括多尺度卷积单元、尺度特征组合单元、融合特征归一化单元以及融合特征输出单元;其中:Optionally, the multi-scale feature fusion module includes a multi-scale convolution unit, a scale feature combination unit, a fusion feature normalization unit and a fusion feature output unit; wherein:

多尺度卷积单元:接收来自特征提取模块的深度特征图,其中i和j分别表示特征图的空间坐标,k表示通道索引;并通过不同大小的卷积核对特征图进行卷积操作,提取不同尺度的特征信息,设卷积核大小分别为,每个卷积核用于对特征图进行卷积操作后生成不同尺度的特征映射;Multi-scale convolutional unit: receives the deep feature map from the feature extraction module , where i and j represent the spatial coordinates of the feature map, and k represents the channel index; and convolution operations are performed on the feature map through convolution kernels of different sizes to extract feature information of different scales. The convolution kernel sizes are , and , each convolution kernel is used to generate feature maps of different scales after performing convolution operations on the feature map;

尺度特征组合单元:将多尺度卷积单元输出的不同尺度的特征映射进行组合,具体针对每个尺度n,生成的特征图通过拼接操作组合成一个融合后的特征表示Scale feature combination unit: combines the feature maps of different scales output by the multi-scale convolution unit. Specifically for each scale n, the generated feature map Combined into a fused feature representation through concatenation operation ;

融合特征归一化单元:对组合后的融合特征图进行归一化处理,生成归一化后的融合特征图Fusion feature normalization unit: the combined fusion feature map Perform normalization to generate a normalized fusion feature map ;

融合特征输出单元:用于输出归一化处理后的融合特征图,所述归一化后的融合特征图包括不同大小的裂隙、沉积物边界。Fusion feature output unit: used to output the normalized fusion feature map The normalized fused feature map includes cracks and sediment boundaries of different sizes.

可选的,所述特征匹配识别模块包括特征数据库单元、特征向量生成单元、相似度计算单元以及识别与分类单元;其中:Optionally, the feature matching and identification module includes a feature database unit, a feature vector generation unit, a similarity calculation unit, and an identification and classification unit; wherein:

特征数据库单元:用于存储预先建立的海洋地质微特征数据库,所述数据库中包括经过分类和标定的微裂隙、微断层和沉积物边界的标准特征,其中每个标准特征都以预定的特征向量形式表示;Feature database unit: used to store a pre-established marine geological micro-feature database, wherein the database includes standard features of classified and calibrated micro-cracks, micro-faults and sediment boundaries, wherein each standard feature is represented in the form of a predetermined feature vector;

特征向量生成单元:接收融合特征图,并将融合特征图转换为特征向量形式Feature vector generation unit: receiving fused feature map , and convert the fused feature map into a feature vector form ;

相似度计算单元:通过相似度计算方法,将生成的特征向量与特征数据库单元中的标准特征进行匹配,计算每一个标准特征与融合特征的相似度;Similarity calculation unit: Through the similarity calculation method, the generated feature vector Standard features in feature database units Perform matching and calculate the similarity between each standard feature and the fusion feature;

识别与分类单元:对相似度计算单元输出的相似度值进行排序,选择相似度值最高的标准特征,并根据预定的相似度阈值对微特征进行识别与分类。Identification and classification unit: sorts the similarity values output by the similarity calculation unit, selects the standard feature with the highest similarity value, and identifies and classifies the micro-features according to a predetermined similarity threshold.

可选的,所述识别与分类单元具体包括:Optionally, the identification and classification unit specifically includes:

相似度排序:对所有相似度值进行排序,排列顺序为从高到低,并选择相似度值最高的标准特征,排序表达式为:,其中,m为数据库中特征的总数,表示最高的相似度值;Similarity sorting: Sort all similarity values from high to low, and select the standard feature with the highest similarity value. The sorting expression is: , where m is the total number of features in the database, Indicates the highest similarity value;

阈值判断:对最高相似度值进行阈值判断,设定相似度间值,用于判断相似度值是否满足以下条件:,则识别为标准特征Threshold judgment: Perform threshold judgment on the highest similarity value and set the similarity interval value , used to determine whether the similarity value meets the following conditions: , then it is identified as a standard feature ;

特征分类:根据相似度阈值判断的结果进行特征分类,具体当时,则将微特征归类为标准特征的类别;若,则微特征被标记为新的特征,表示其与数据库中的标准特征不匹配。Feature classification: feature classification is performed based on the results of similarity threshold judgment. , the microfeature is classified as a standard feature If , then the micro-feature is marked as a new feature, indicating that it does not match the standard feature in the database.

可选的,所述结果可视化展示模块包括三维模型生成单元、时间演化处理单元、特征标注单元、三维交互单元以及动态展示控制单元;其中:Optionally, the result visualization display module includes a three-dimensional model generation unit, a time evolution processing unit, a feature annotation unit, a three-dimensional interaction unit and a dynamic display control unit; wherein:

三维模型生成单元:用于将识别与分类模块输出的微特征数据转换为三维坐标系下的空间表示;3D model generation unit: used to convert the micro-feature data output by the recognition and classification module into a spatial representation in a 3D coordinate system;

时间演化处理单元:用于将不同时间段内采集到的海底微特征数据进行时间序列分析,并将识别出的微特征的变化过程转换为可视化动画;Time evolution processing unit: used to perform time series analysis on the seafloor micro-feature data collected in different time periods, and convert the change process of the identified micro-features into visual animations;

特征标注单元:用于对三维模型中的微特征进行标签标注,每个微特征根据分类结果添加相应的标签,让用户能通过点击或悬停获取微特征的具体信息;Feature labeling unit: used to label micro-features in the 3D model. Each micro-feature is labeled according to the classification result, so that users can obtain specific information about the micro-feature by clicking or hovering.

三维交互单元:用于提供用户与三维模型的交互功能。3D interaction unit: used to provide interaction function between users and 3D models.

本发明的有益效果:Beneficial effects of the present invention:

本发明,通过引入基于人工智能的深度学习框架和注意力机制,显著提高了对海底微特征,如裂隙、断层及沉积物边界的识别精度,利用多尺度卷积核进行特征融合,能够有效地处理来自不同传感器的多源数据,保证了数据处理的高效性和准确性,这种方法能够在海量数据中准确识别和分类关键地质特征,对于提高海底地质分析的可靠性具有重要意义。The present invention significantly improves the recognition accuracy of seabed micro-features such as cracks, faults and sediment boundaries by introducing a deep learning framework and attention mechanism based on artificial intelligence. It uses multi-scale convolution kernels for feature fusion and can effectively process multi-source data from different sensors, ensuring the efficiency and accuracy of data processing. This method can accurately identify and classify key geological features in massive data, which is of great significance for improving the reliability of seabed geological analysis.

本发明,采用先进的三维可视化技术,将复杂的海底地质特征以图形化界面展现,增强了数据的可读性和易理解性,通过三维模型生成、时间演化处理及交互单元的设计,使得用户可以直观地观察到微特征的空间分布及其随时间的演变过程,大大增强了用户的交互体验。The present invention adopts advanced three-dimensional visualization technology to display complex seabed geological features in a graphical interface, thereby enhancing the readability and comprehensibility of the data. Through three-dimensional model generation, time evolution processing and interactive unit design, users can intuitively observe the spatial distribution of micro-features and their evolution over time, greatly enhancing the user's interactive experience.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings in the following description are only for the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.

图1为本发明实施例的海洋地质数据挖掘与分析系统示意图;FIG1 is a schematic diagram of a marine geological data mining and analysis system according to an embodiment of the present invention;

图2为本发明实施例的特征提取模块示意图。FIG. 2 is a schematic diagram of a feature extraction module according to an embodiment of the present invention.

具体实施方式DETAILED DESCRIPTION

下面结合附图和具体实施例对本发明进行详细描述。同时在这里做以说明的是,为了使实施例更加详尽,下面的实施例为最佳、优选实施例,对于一些公知技术本领域技术人员也可采用其他替代方式而进行实施;而且附图部分仅是为了更具体的描述实施例,而并不旨在对本发明进行具体的限定。The present invention is described in detail below in conjunction with the accompanying drawings and specific embodiments. At the same time, it is explained here that in order to make the embodiments more detailed, the following embodiments are the best and preferred embodiments, and those skilled in the art may also adopt other alternatives to implement some known technologies; and the accompanying drawings are only for more specific description of the embodiments, and are not intended to specifically limit the present invention.

需要指出的是,在说明书中提到“一个实施例”、“实施例”、“示例性实施例”、“一些实施例”等指示所述的实施例可以包括特定特征、结构或特性,但未必每个实施例都包括该特定特征、结构或特性。另外,在结合实施例描述特定特征、结构或特性时,结合其它实施例(无论是否明确描述)实现这种特征、结构或特性应在相关领域技术人员的知识范围内。It should be noted that the references to "one embodiment", "embodiment", "exemplary embodiments", "some embodiments" and the like in the specification indicate that the embodiments described may include specific features, structures or characteristics, but not every embodiment may include the specific features, structures or characteristics. In addition, when a specific feature, structure or characteristic is described in conjunction with an embodiment, it should be within the knowledge of a person skilled in the art to implement such feature, structure or characteristic in conjunction with other embodiments (whether or not explicitly described).

通常,可以至少部分从上下文中的使用来理解术语。例如,至少部分取决于上下文,本文中使用的术语“一个或多个”可以用于描述单数意义的任何特征、结构或特性,或者可以用于描述复数意义的特征、结构或特性的组合。另外,术语“基于”可以被理解为不一定旨在传达一组排他性的因素,而是可以替代地,至少部分地取决于上下文,允许存在不一定明确描述的其他因素。In general, a term can be understood, at least in part, from its use in context. For example, depending, at least in part, on the context, the term "one or more" as used herein can be used to describe any feature, structure, or characteristic in the singular sense, or can be used to describe a combination of features, structures, or characteristics in the plural sense. Additionally, the term "based on" can be understood as not necessarily intended to convey an exclusive set of factors, but can instead, depending, at least in part, on the context, allow for the presence of other factors that are not necessarily explicitly described.

如图1-图2所示,基于人工智能的海洋地质数据挖掘与分析系统,包括多源数据采集模块、数据预处理模块、特征提取模块、多尺度特征聚合模块、特征对比分析模块以及结果可视化模块;其中:As shown in Figures 1 and 2, the marine geological data mining and analysis system based on artificial intelligence includes a multi-source data acquisition module, a data preprocessing module, a feature extraction module, a multi-scale feature aggregation module, a feature comparison and analysis module, and a result visualization module; among which:

多源数据采集模块:用于采集海洋地质原始数据,原始数据包括高分辨率声学数据、海底图像数据和地震波数据;Multi-source data acquisition module: used to collect raw marine geological data, including high-resolution acoustic data, seabed image data and seismic wave data;

数据预处理模块:接收来自多源数据采集模块的原始数据,并对不同类型的数据进行同步预处理,包括噪声过滤、标准化以及缺失值填充,以生成标准化数据;Data preprocessing module: receives raw data from the multi-source data acquisition module and performs synchronous preprocessing on different types of data, including noise filtering, standardization, and missing value filling to generate standardized data;

特征提取模块:接收预处理后的标准化数据,利用引入注意力机制的卷积神经网络对标准化数据进行深度特征提取,注意力机制通过加权方式聚焦于微小地质特征区域,增强对微裂隙、微断层和沉积物边界细节的识别能力;Feature extraction module: Receives preprocessed standardized data and uses a convolutional neural network with an attention mechanism to perform deep feature extraction on the standardized data. The attention mechanism focuses on small geological feature areas in a weighted manner to enhance the recognition of microcracks, microfaults, and sediment boundary details;

多尺度特征融合模块:用于接收深度特征,并通过多尺度卷积核对不同尺度的特征进行融合,生成融合特征表示,以确保系统对各种尺度的海底微特征均具备良好的识别效果;Multi-scale feature fusion module: used to receive depth features and fuse features of different scales through multi-scale convolution kernels to generate fused feature representations to ensure that the system has good recognition effects on seabed micro-features of various scales;

特征匹配识别模块:用于接收融合特征表示,并将其与预先建立的海洋地质微特征数据库中的标准特征进行匹配,采用相似度计算方法,对海底微特征进行识别和分类,数据库包含已知的微裂隙、微断层、沉积物边界等特征样本;Feature matching and recognition module: used to receive the fused feature representation and match it with the standard features in the pre-established marine geological micro-feature database, and use the similarity calculation method to identify and classify the seabed micro-features. The database contains known feature samples such as micro-cracks, micro-faults, and sediment boundaries;

结果可视化展示模块:与特征匹配识别模块连接,接收识别和分类结果,利用三维可视化技术,将海底微特征的空间分布和演变过程以图形化界面展示。Result visualization display module: connected with the feature matching and recognition module, it receives the recognition and classification results and uses three-dimensional visualization technology to display the spatial distribution and evolution process of seabed micro-features in a graphical interface.

多源数据采集模块包括高分辨率声学探测单元、海底摄像单元、地震波探测单元以及数据同步控制单元;其中:The multi-source data acquisition module includes a high-resolution acoustic detection unit, a seafloor camera unit, a seismic wave detection unit, and a data synchronization control unit; wherein:

高分辨率声学探测单元:用于通过水下声学探测器采集海床及其周围环境的声学反射数据,声学数据通过多频段声学传感器阵列进行探测,声学信号的频率范围设定为10Hz至100kHz,以确保声波能够穿透沉积层并反射微小地质特征,最终得到高分辨率的三维声学数据图像;High-resolution acoustic detection unit: used to collect acoustic reflection data of the seabed and its surrounding environment through underwater acoustic detectors. The acoustic data is detected by a multi-band acoustic sensor array. The frequency range of the acoustic signal is set to 10Hz to 100kHz to ensure that the sound waves can penetrate the sediment layer and reflect tiny geological features, ultimately obtaining a high-resolution three-dimensional acoustic data image;

海底摄像单元:用于通过高分辨率摄像机或光学成像设备实时采集海底图像数据,摄像单元采用光学透镜和多光谱成像技术,能够捕获海床表面微小结构的视觉信息,图像分辨率设置为至少4K级别,以确保对细小裂缝、沉积物边界等微特征的清晰捕捉;Submarine camera unit: used to collect seabed image data in real time through high-resolution cameras or optical imaging equipment. The camera unit uses optical lenses and multi-spectral imaging technology to capture visual information of microstructures on the seabed surface. The image resolution is set to at least 4K level to ensure clear capture of micro features such as small cracks and sediment boundaries;

地震波探测单元:用于通过海底地震传感器采集来自地震活动和地质运动的地震波信号,地震波数据包括纵波和横波信息,地震传感器的采集频率设定为0.1Hz至50Hz,确保能够检测到深海地质活动中的细微波动并定位地震源;Seismic wave detection unit: used to collect seismic wave signals from seismic activities and geological movements through seabed seismic sensors. Seismic wave data includes longitudinal and transverse wave information. The acquisition frequency of the seismic sensor is set at 0.1Hz to 50Hz to ensure that subtle fluctuations in deep-sea geological activities can be detected and the earthquake source can be located;

数据同步控制单元:与高分辨率声学探测单元、海底摄像单元和地震波探测单元连接,用于对各种数据进行同步处理,确保声学数据、图像数据和地震波数据能够在同一时间框架下进行记录和处理,同步处理通过精密时钟校准,确保数据误差不超过1毫秒;上述单元通过部署在海底的多类型传感器并结合数据同步控制单元,能够确保高分辨率声学数据、海底图像数据和地震波数据的同步采集与处理,这样,不仅提高了多源数据的完整性和一致性,还增强了对海洋地质微特征的识别精度。Data synchronization control unit: connected to the high-resolution acoustic detection unit, seabed camera unit and seismic wave detection unit, used for synchronous processing of various data to ensure that acoustic data, image data and seismic wave data can be recorded and processed in the same time frame. The synchronous processing is calibrated by precise clock to ensure that the data error does not exceed 1 millisecond; the above-mentioned units can ensure the synchronous collection and processing of high-resolution acoustic data, seabed image data and seismic wave data by deploying multiple types of sensors on the seabed and combining with the data synchronization control unit. This not only improves the integrity and consistency of multi-source data, but also enhances the recognition accuracy of marine geological micro-features.

数据预处理模块包括噪声过滤单元、数据标准化单元以及缺失值填充单元;其中:The data preprocessing module includes a noise filtering unit, a data standardization unit, and a missing value filling unit; wherein:

噪声过滤单元:用于对来自多源数据采集模块的不同类型原始数据进行噪声过滤,具体采用多级自适应滤波算法,针对声学数据中存在的水下噪声、回波干扰以及地震波数据中的环境干扰进行逐级消除;Noise filtering unit: used to filter noise of different types of raw data from multi-source data acquisition modules. Specifically, a multi-level adaptive filtering algorithm is used to eliminate underwater noise and echo interference in acoustic data and environmental interference in seismic wave data step by step.

具体对于声学数据中的噪声,采用自适应滤波算法,滤波公式如下:,其中,为滤波后的信号,为原始信号,为噪声信号,为噪声抑制因子,依据环境噪声特性自适应调整;Specifically for the noise in the acoustic data, an adaptive filtering algorithm is used, and the filtering formula is as follows: ,in, is the filtered signal, is the original signal, is the noise signal, is the noise suppression factor, which is adaptively adjusted according to the characteristics of the ambient noise;

对于地震波数据中的噪声,使用带通滤波器,过滤掉不在目标频率范围内的地震信号,带通滤波的传递函数为:,其中,为地震信号的低频和高频截止频率;For the noise in the seismic wave data, a bandpass filter is used to filter out the seismic signals that are not within the target frequency range. The transfer function of the bandpass filter is: ,in, and are the low-frequency and high-frequency cutoff frequencies of the seismic signal;

对于图像数据,采用基于小波变换的去噪算法,通过小波系数的阈值处理,减少图像中的噪声;图像去噪公式为:,其中,为小波系数,T为阈值,噪声小于阈值的系数被置为零,以消除噪声。For image data, a denoising algorithm based on wavelet transform is used to reduce the noise in the image through threshold processing of wavelet coefficients; the image denoising formula is: ,in, is the wavelet coefficient, T is the threshold, and the coefficients with noise less than the threshold are set to zero to eliminate the noise.

数据标准化单元:用于对滤波后的多类型数据进行标准化处理,标准化单元通过最小-最大归一化方法,将不同类型数据的数值范围缩放至预定范围内,对于声学数据的幅值范围归一化到[0,1],图像数据像素值归一化为[0,255],地震波数据的振幅标准化至[-1,1],让不同类型数据之间的可比较性和一致性;Data normalization unit: used to normalize the filtered multi-type data. The normalization unit uses the minimum-maximum normalization method to scale the value range of different types of data to a predetermined range. The amplitude range of acoustic data is normalized to [0,1], the pixel value of image data is normalized to [0,255], and the amplitude of seismic wave data is normalized to [-1,1], so that the comparability and consistency between different types of data are achieved.

缺失值填充单元:用于对经过标准化处理后的数据进行缺失值的填充,缺失值填充单元采用基于插值法的填充技术,具体针对连续型数据(如声学数据和地震波数据),使用线性插值法填补缺失数据点;针对离散型数据(如图像数据),使用最近邻插值法对缺失像素进行填充,确保数据的完整性和连续性;对于声学数据和地震波数据,使用线性插值法,公式如下:,其中,为填充后的数据值,为已知数据点,t为待填补的数据点;对于图像数据,使用最近邻插值法,填补缺失像素的公式为:,其中,为待填充的像素点,为距离最近的已知像素点的值;通过噪声过滤单元的多级自适应滤波算法,结合标准化单元和缺失值填充单元,数据预处理模块能够高效地消除噪声、归一化数据并准确填补缺失值,生成一致的标准化数据,为后续的特征提取和分析提供了可靠的数据基础。Missing value filling unit: used to fill missing values in the data after standardization. The missing value filling unit adopts a filling technology based on interpolation. Specifically, for continuous data (such as acoustic data and seismic wave data), linear interpolation is used to fill missing data points; for discrete data (such as image data), the nearest neighbor interpolation method is used to fill missing pixels to ensure the integrity and continuity of the data; for acoustic data and seismic wave data, linear interpolation is used, and the formula is as follows: ,in, is the data value after filling, and is a known data point, and t is a data point to be filled. For image data, the nearest neighbor interpolation method is used, and the formula for filling missing pixels is: ,in, is the pixel to be filled, is the value of the nearest known pixel point; through the multi-level adaptive filtering algorithm of the noise filtering unit, combined with the standardization unit and the missing value filling unit, the data preprocessing module can efficiently eliminate noise, normalize data and accurately fill in missing values, generate consistent standardized data, and provide a reliable data foundation for subsequent feature extraction and analysis.

特征提取模块包括卷积层单元、注意力机制单元、加权特征映射单元、特征池化单元以及特征输出单元;其中:The feature extraction module includes a convolutional layer unit, an attention mechanism unit, a weighted feature mapping unit, a feature pooling unit, and a feature output unit; wherein:

卷积层单元:用于接收数据预处理模块输出的标准化数据,通过多层卷积操作对数据进行特征提取,卷积核用于提取不同尺度的地质特征,包括海底结构的边缘、裂缝和沉积物特征,卷积层的作用在于逐层获取不同维度的特征,确保模型能够捕捉到低级到高级的地质信息;Convolutional layer unit: used to receive the standardized data output by the data preprocessing module, and extract features from the data through multi-layer convolution operations. The convolution kernel is used to extract geological features of different scales, including the edges, cracks and sediment features of the seabed structure. The role of the convolutional layer is to obtain features of different dimensions layer by layer to ensure that the model can capture low-level to high-level geological information;

注意力机制单元:用于增强对微小地质特征的识别能力,注意力机制通过在每一层卷积后计算特征图的权重,自动聚焦于与微裂隙、微断层和沉积物边界相关的重要区域,具体来说,注意力机制通过加权特征图中的不同区域,动态调整模型的注意力,确保更高的计算资源分配给关键特征区域,同时减少对不相关区域的影响;Attention mechanism unit: used to enhance the recognition of tiny geological features. The attention mechanism automatically focuses on important areas related to microcracks, microfaults, and sediment boundaries by calculating the weights of the feature map after each convolution layer. Specifically, the attention mechanism dynamically adjusts the model's attention by weighting different areas in the feature map, ensuring that higher computing resources are allocated to key feature areas while reducing the impact on irrelevant areas.

加权特征映射单元:用于对特征图进行加权操作,根据注意力机制生成的权重对特征图中的每个区域进行加权处理,权重越高的区域表示其与对应地质特征的相关性越强,通过这一操作,微小的地质特征如裂隙和边界的特征信息得以增强,从而提高识别精度;Weighted feature mapping unit: used to perform weighted operations on feature maps. Each area in the feature map is weighted according to the weights generated by the attention mechanism. The higher the weight, the stronger the correlation with the corresponding geological features. Through this operation, the feature information of tiny geological features such as cracks and boundaries can be enhanced, thereby improving recognition accuracy.

特征池化单元:用于对加权后的特征图进行池化处理,通过全局平均池化操作缩小数据规模,同时保留微特征信息,以有效减少数据维度,防止过拟合,同时保持微特征的空间位置和形状信息;Feature pooling unit: used to perform pooling on the weighted feature map, reduce the data size through global average pooling operation, and retain micro-feature information, so as to effectively reduce the data dimension, prevent overfitting, and maintain the spatial position and shape information of micro-features;

特征输出单元:用于输出经过卷积和注意力机制处理后的深度特征图,深度特征图中包含了海底微小特征的详细信息,包括微裂隙、微断层以及沉积物边界的具体特征,供后续特征融合模块处理。Feature output unit: used to output the deep feature map after convolution and attention mechanism processing. The deep feature map contains detailed information of the tiny features of the seabed, including microcracks, microfaults and specific features of sediment boundaries, for subsequent feature fusion module processing.

注意力机制单元包括:The attention mechanism unit includes:

特征图生成:接收卷积层单元输出的特征图,设输入特征图为,其中h表示特征图的高度,w表示宽度,c表示通道数,此特征图T包含了不同空间位置的海洋地质特征信息,包括微裂隙、微断层和沉积物边界;Feature map generation: Receive the feature map output by the convolutional layer unit, and set the input feature map to be , where h represents the height of the feature map, w represents the width, and c represents the number of channels. This feature map T contains the marine geological feature information at different spatial locations, including microcracks, microfaults, and sediment boundaries;

空间注意力权重计算:对特征图T的每个空间位置进行全局池化操作,生成空间注意力权重图;池化操作对每个位置计算平均值,公式如下:,其中,表示位置的空间注意力值,反映了该位置在通道维度上的平均响应强度,较大的值意味着该位置在识别微特征(如微裂隙、沉积物边界)方面更为重要;Spatial attention weight calculation: Perform a global pooling operation on each spatial position of the feature map T to generate a spatial attention weight map ; The pooling operation calculates the average value for each position, and the formula is as follows: ,in, Indicates location The spatial attention value reflects the average response strength of the position in the channel dimension. Values mean that the location is more important in identifying microfeatures (e.g., microcracks, sediment boundaries);

通道注意力权重计算:计算特征图在通道维度的注意力权重,通过对特征图T进行全局平均池化和最大池化操作,生成两个通道注意力向量,公式为:,其中,表示通道k的平均响应值,表示通道k在特征图T上的最大响应值;并将通过全连接层进行融合,生成最终的通道注意力权重,公式为:,其中,为通道维度的可学习权重矩阵,为Sigmoid激活函数,用于将权重值限制在范围内;Channel attention weight calculation: Calculate the attention weight of the feature map in the channel dimension, and generate two channel attention vectors by performing global average pooling and maximum pooling operations on the feature map T and , the formula is: and ,in, represents the average response value of channel k, represents the maximum response value of channel k on the feature map T; and Fusion is performed through the fully connected layer to generate the final channel attention weight , the formula is: ,in, and is the learnable weight matrix of the channel dimension, is the Sigmoid activation function, which is used to limit the weight value to within the scope;

特征加权处理:将计算得到的空间注意力权重和通道注意力权重应用于特征图T,生成经过空间和通道加权后的特征图值,具体先利用通道注意力权重对特征图在通道维度上进行加权,公式如下:,其中,为通道加权后的特征图值,表示特定通道k对应位置的特征权重;然后再利用空间注意力权重对空间维度进行加权处理,公式为:,其中,为经过空间和通道加权后的特征图值,反映了对关键地质区域的聚焦效果,增强了对微特征的识别;Feature weighting processing: The calculated spatial attention weights and channel attention weights Applied to the feature map T to generate spatially and channel-weighted feature map values Specifically, we first use the channel attention weight The feature map is weighted in the channel dimension, and the formula is as follows: ,in, It is the value of the feature map after channel weighting, indicating the corresponding position of a specific channel k The feature weights of ; and then use the spatial attention weights The spatial dimension is weighted, and the formula is: ,in, It is the feature map value after spatial and channel weighting, reflecting the focusing effect on key geological areas and enhancing the recognition of micro-features;

特征输出:输出经过加权处理后的特征图,该特征图包含了关键的地质信息,如微裂隙和沉积物边界,经过注意力机制的加权,系统能够聚焦于这些微小的地质特征区域,确保更多计算资源用于这些关键区域的识别和处理;通过上述步骤,注意力机制单元能够根据空间位置和通道维度的特征响应,动态调整对特征图的加权处理,使系统聚焦于与海洋地质微特征相关的关键区域,结合空间和通道注意力的加权处理,有效提高了对微裂隙、微断层和沉积物边界等细节特征的识别能力,减少了不相关区域的影响,显著增强了特征提取的准确性和效率。Feature output: Output the weighted feature map , the feature map contains key geological information, such as microcracks and sediment boundaries. After weighting by the attention mechanism, the system can focus on these tiny geological feature areas, ensuring that more computing resources are used for the identification and processing of these key areas; through the above steps, the attention mechanism unit can dynamically adjust the weighted processing of the feature map according to the characteristic response of the spatial position and channel dimension, so that the system can focus on the key areas related to the marine geological micro-features. Combined with the weighted processing of spatial and channel attention, it effectively improves the recognition ability of detailed features such as microcracks, microfaults and sediment boundaries, reduces the influence of irrelevant areas, and significantly enhances the accuracy and efficiency of feature extraction.

特征池化单元具体包括:The feature pooling unit specifically includes:

接收加权特征图:接收加权特征映射单元输出的特征图,其中i和j分别表示特征图的空间位置索引,k表示通道索引,特征图的维度为,其中h为高度,w为宽度,c为通道数;Receive weighted feature map: Receive the feature map output by the weighted feature mapping unit , where i and j represent the spatial position index of the feature map, k represents the channel index, and the dimension of the feature map is , where h is the height, w is the width, and c is the number of channels;

全局平均池化计算:对加权后的特征图进行全局平均池化处理,对每个通道的所有空间位置的值进行平均,计算公式为:Global average pooling calculation: weighted feature map Perform global average pooling to average the values of all spatial positions of each channel. The calculation formula is:

,其中,表示通道k的全局平均池化结果,为加权后的特征图值,h和w分别为特征图的高度和宽度;通过对特征图中的所有空间位置进行平均操作,从而将每个通道的空间信息压缩为一个值; ,in, represents the global average pooling result of channel k, is the weighted feature map value, h and w are the height and width of the feature map respectively; by averaging all spatial positions in the feature map, the spatial information of each channel is compressed into one value;

数据规模缩减:经过全局平均池化后,特征图的空间维度从缩小为,虽然数据规模大幅度缩减,但每个通道中的微特征信息(如微裂隙、微断层等关键地质特征)通过池化保留下来,每个通道的平均值代表该通道特征的全局重要性;Data size reduction: After global average pooling, the spatial dimension of the feature map is reduced from Reduce to ,Although the data size is greatly reduced, the micro-feature information in each channel (such as key geological features such as micro-cracks, micro-faults) is retained through pooling, and the average value of each channel represents the global importance of the ,feature of the channel;

特征输出:输出池化后的特征,该特征向量保留了每个通道中全局加权后的特征信息,提供了每个通道对微特征区域的响应强度,此向量可以用于后续的分类或地质特征分析;通过全局平均池化操作,特征池化单元有效地缩小了特征图的空间维度,降低了数据规模,但同时保留了每个通道对微特征的响应信息,此处理确保在降低数据量的同时保留了关键的地质特征,有助于提高后续地质特征分类和分析的效率,并减轻计算负担。Feature output: output pooled features , the feature vector retains the globally weighted feature information in each channel and provides the response intensity of each channel to the micro-feature area. This vector can be used for subsequent classification or geological feature analysis; through the global average pooling operation, the feature pooling unit effectively reduces the spatial dimension of the feature map and reduces the data scale, but at the same time retains the response information of each channel to the micro-feature. This processing ensures that the key geological features are retained while reducing the amount of data, which helps to improve the efficiency of subsequent geological feature classification and analysis and reduce the computational burden.

多尺度特征融合模块包括多尺度卷积单元、尺度特征组合单元、融合特征归一化单元以及融合特征输出单元;其中:The multi-scale feature fusion module includes a multi-scale convolution unit, a scale feature combination unit, a fusion feature normalization unit and a fusion feature output unit; wherein:

多尺度卷积单元:接收来自特征提取模块的深度特征图,其中i和j分别表示特征图的空间坐标,k表示通道索引;并通过不同大小的卷积核对特征图进行卷积操作,提取不同尺度的特征信息,设卷积核大小分别为,每个卷积核用于对特征图进行卷积操作后生成不同尺度的特征映射,卷积计算公式为:Multi-scale convolutional unit: receives the deep feature map from the feature extraction module , where i and j represent the spatial coordinates of the feature map, and k represents the channel index; and convolution operations are performed on the feature map through convolution kernels of different sizes to extract feature information of different scales. The convolution kernel sizes are , and , each convolution kernel is used to generate feature maps of different scales after performing convolution operations on the feature map. The convolution calculation formula is:

,其中,表示尺度n下的卷积特征图,分别表示卷积核的高度和宽度,为卷积核的权重; ,in, represents the convolution feature map at scale n, and Represent the height and width of the convolution kernel respectively, is the weight of the convolution kernel;

尺度特征组合单元:将多尺度卷积单元输出的不同尺度的特征映射进行组合,具体针对每个尺度n,生成的特征图通过拼接操作组合成一个融合后的特征表示;拼接操作将不同尺度的特征图在通道维度上进行连接,公式为:,其中,为融合后的特征图,包含了不同尺度下的地质特征信息,此操作确保了多尺度特征在空间和通道维度上的综合;Scale feature combination unit: combines the feature maps of different scales output by the multi-scale convolution unit. Specifically for each scale n, the generated feature map Combined into a fused feature representation through concatenation operation ; The concatenation operation connects feature maps of different scales in the channel dimension. The formula is: ,in, The fused feature map contains geological feature information at different scales. This operation ensures the integration of multi-scale features in spatial and channel dimensions.

融合特征归一化单元:对组合后的融合特征图进行归一化处理,生成归一化后的融合特征图,确保每个尺度特征的数值范围一致,从而避免在后续处理中某一尺度特征占据过多的权重;归一化处理采用最小-最大归一化,公式为:,其中,为归一化后的融合特征图,分别为融合特征图的最小值和最大值;Fusion feature normalization unit: the combined fusion feature map Perform normalization to generate a normalized fusion feature map , ensuring that the numerical range of each scale feature is consistent, so as to avoid a certain scale feature occupying too much weight in subsequent processing; the normalization process adopts the minimum-maximum normalization, and the formula is: ,in, is the normalized fusion feature map, and are the minimum and maximum values of the fused feature map respectively;

融合特征输出单元:用于输出归一化处理后的融合特征图,归一化后的融合特征图同时保留了来自不同尺度的微特征信息,包括不同大小的裂隙、沉积物边界,有效地提高了系统对多尺度地质特征的感知和识别能力。Fusion feature output unit: used to output the normalized fusion feature map ,The normalized fusion feature map simultaneously retains the micro-feature information from different scales, including cracks and sediment boundaries of different sizes, which effectively improves the system’s ability to perceive and recognize multi-scale geological features.

特征匹配识别模块包括特征数据库单元、特征向量生成单元、相似度计算单元以及识别与分类单元;其中:The feature matching recognition module includes a feature database unit, a feature vector generation unit, a similarity calculation unit, and a recognition and classification unit; wherein:

特征数据库单元:用于存储预先建立的海洋地质微特征数据库,数据库中包括经过分类和标定的微裂隙、微断层和沉积物边界的标准特征,其中每个标准特征都以预定的特征向量形式表示,具体设标准特征为,其中,k为数据库中特征的索引,n为特征向量的维度;Feature database unit: used to store the pre-established marine geological micro-feature database, which includes the classified and calibrated standard features of micro-cracks, micro-faults and sediment boundaries, each of which is represented in the form of a predetermined feature vector. , where k is the index of the feature in the database and n is the dimension of the feature vector;

特征向量生成单元:接收融合特征图,并将融合特征图转换为特征向量形式,其中,n为特征向量的维度,此特征向量用于与数据库中的标准特征进行匹配,提取出海底微特征的数值表示;Feature vector generation unit: receiving fused feature map , and convert the fused feature map into a feature vector form , where n is the dimension of the feature vector, which is used to match the standard features in the database and extract the numerical representation of the seafloor micro-features;

相似度计算单元:通过相似度计算方法,将生成的特征向量与特征数据库单元中的标准特征进行匹配,计算每一个标准特征与融合特征的相似度,相似度的计算基于余弦相似度方法,公式如下:,其中,为融合特征与数据库中特征k的相似度值,表示向量点积,分别表示向量的欧几里得范数;Similarity calculation unit: Through the similarity calculation method, the generated feature vector Standard features in feature database units Matching is performed and the similarity between each standard feature and the fusion feature is calculated. The similarity is calculated based on the cosine similarity method. The formula is as follows: ,in, is the similarity value between the fusion feature and feature k in the database, represents the vector dot product, and They represent the Euclidean norm of the vector respectively;

识别与分类单元:对相似度计算单元输出的相似度值进行排序,选择相似度值最高的标准特征,并根据预定的相似度阈值对微特征进行识别与分类;特征匹配识别模块通过特征向量生成和相似度计算,能够高效地将融合特征与标准特征库进行匹配,利用余弦相似度算法准确评估微特征与标准特征的相似性,并结合相似度阈值实现精准的微特征识别与分类,这一模块确保了海洋地质微特征的高效处理与精确分析,显著提升了系统的性能。Identification and classification unit: Sort the similarity values output by the similarity calculation unit, select the standard feature with the highest similarity value, and identify and classify the microfeatures according to the predetermined similarity threshold; the feature matching recognition module can efficiently match the fusion features with the standard feature library through feature vector generation and similarity calculation, and use the cosine similarity algorithm to accurately evaluate the similarity between microfeatures and standard features, and combine the similarity threshold to achieve accurate microfeature recognition and classification. This module ensures efficient processing and accurate analysis of marine geological microfeatures, significantly improving the performance of the system.

识别与分类单元具体包括:Identification and classification units include:

相似度排序:对所有相似度值进行排序,排列顺序为从高到低,并选择相似度值最高的标准特征,排序表达式为:,其中,m为数据库中特征的总数,表示最高的相似度值,对应的标准特征为,其中为与该最高相似度值对应的标准特征索引;Similarity sorting: Sort all similarity values from high to low, and select the standard feature with the highest similarity value. The sorting expression is: , where m is the total number of features in the database, Represents the highest similarity value, and the corresponding standard feature is ,in is the standard feature index corresponding to the highest similarity value;

阈值判断:对最高相似度值进行阈值判断,设定相似度阈值,用于判断相似度值是否满足以下条件:,则识别为标准特征,其中,为相似度阈值,用于确定微特征是否匹配标准特征;当时,认为微特征与标准特征匹配;Threshold judgment: Perform threshold judgment on the highest similarity value and set the similarity threshold , used to determine whether the similarity value meets the following conditions: , then it is identified as a standard feature ,in, is the similarity threshold used to determine whether the microfeature matches the standard feature ;when When , the micro-feature is considered to match the standard feature;

特征分类:根据相似度阈值判断的结果进行特征分类,具体当时,则将微特征归类为标准特征的类别;若,则微特征被标记为新的特征,表示其与数据库中的标准特征不匹配,通过相似度排序和阈值判断,识别与分类单元能够精准地从数据库中选择与微特征最匹配的标准特征,阈值判断机制确保了识别结果的可靠性,同时通过特征分类步骤实现了微特征的动态归类,提高了微特征识别的效率和准确性。Feature classification: feature classification is performed based on the results of similarity threshold judgment. , the microfeature is classified as a standard feature If , the micro-feature is marked as a new feature, indicating that it does not match the standard feature in the database. Through similarity sorting and threshold judgment, the recognition and classification unit can accurately select the standard feature that best matches the micro-feature from the database. The threshold judgment mechanism ensures the reliability of the recognition result. At the same time, the dynamic classification of micro-features is realized through the feature classification step, which improves the efficiency and accuracy of micro-feature recognition.

结果可视化展示模块包括三维模型生成单元、时间演化处理单元、特征标注单元、三维交互单元以及动态展示控制单元;其中:The result visualization display module includes a 3D model generation unit, a time evolution processing unit, a feature annotation unit, a 3D interaction unit, and a dynamic display control unit; wherein:

三维模型生成单元:用于将识别与分类模块输出的微特征数据转换为三维坐标系下的空间表示,根据海底微特征的空间位置信息(如裂隙、断层、沉积物边界的具体位置),在三维坐标系中生成相应的几何模型,该几何模型包括微特征的形状、大小、方向和空间分布,生成的三维模型能够清晰展示海底微特征的空间结构;3D model generation unit: used to convert the micro-feature data output by the recognition and classification module into a spatial representation in a 3D coordinate system. According to the spatial position information of the seabed micro-features (such as the specific position of cracks, faults, and sediment boundaries), a corresponding geometric model is generated in the 3D coordinate system. The geometric model includes the shape, size, direction, and spatial distribution of the micro-features. The generated 3D model can clearly show the spatial structure of the seabed micro-features.

时间演化处理单元:用于将不同时间段内采集到的海底微特征数据进行时间序列分析,并将识别出的微特征的变化过程(如裂隙扩展、断层位移等)转换为可视化动画;在三维空间模型中叠加时间轴,展示海底微特征在不同时间点的演变情况,生成动态的三维动画演示,用户可以在时间轴上进行拖动,查看不同时间段内海底地质特征的变化趋势;Time evolution processing unit: used to perform time series analysis on the seafloor micro-feature data collected in different time periods, and convert the change process of the identified micro-features (such as crack expansion, fault displacement, etc.) into a visual animation; superimpose the time axis in the three-dimensional space model to show the evolution of the seafloor micro-features at different time points, and generate a dynamic three-dimensional animation demonstration. Users can drag on the time axis to view the change trend of the seafloor geological features in different time periods;

特征标注单元:用于对三维模型中的微特征进行标签标注,每个微特征根据分类结果(如裂隙、断层、沉积物边界)添加相应的标签,让用户能通过点击或悬停获取微特征的具体信息,标注内容包括特征类型、位置坐标、变化速率等重要信息,帮助用户快速了解微特征的性质和演变情况;Feature annotation unit: used to label micro-features in the 3D model. Each micro-feature is labeled according to the classification results (such as cracks, faults, and sediment boundaries), so that users can obtain specific information about the micro-feature by clicking or hovering. The annotation content includes important information such as feature type, location coordinates, and change rate, helping users quickly understand the nature and evolution of micro-features.

三维交互单元:用于提供用户与三维模型的交互功能,让用户能通过旋转、缩放、平移的操作自由查看三维模型中的微特征细节,调整观察角度,放大特定区域,或者根据需求显示或隐藏某些微特征的标签,该交互功能使用户能够深入了解海底地质特征的空间分布和细节;通过结果可视化展示模块的三维模型生成、时间演化处理、特征标注和三维交互,系统能够将识别和分类后的海底微特征以直观的三维图形化界面展示出来,清晰展示微特征的空间分布和演变过程,用户可以自由操作三维模型,查看微特征的详细信息和动态变化,从而显著提高了地质分析的效率和准确性。3D interactive unit: used to provide users with interactive functions with 3D models, allowing users to freely view the micro-feature details in the 3D model through rotation, zooming, and translation operations, adjust the viewing angle, zoom in on specific areas, or display or hide labels of certain micro-features as needed. This interactive function enables users to gain an in-depth understanding of the spatial distribution and details of seabed geological features; through the 3D model generation, time evolution processing, feature annotation and 3D interaction of the result visualization display module, the system can display the identified and classified seabed micro-features in an intuitive 3D graphical interface, clearly showing the spatial distribution and evolution process of the micro-features. Users can freely operate the 3D model and view the detailed information and dynamic changes of the micro-features, thereby significantly improving the efficiency and accuracy of geological analysis.

本发明涵盖任何在本发明的精髓和范围上做的替代、修改、等效方法以及方案。为了使公众对本发明有彻底的了解,在以下本发明优选实施例中详细说明了具体的细节,而对本领域技术人员来说没有这些细节的描述也可以完全理解本发明。另外,为了避免对本发明的实质造成不必要的混淆,并没有详细说明众所周知的方法、过程、流程、元件和电路等。The present invention covers any substitution, modification, equivalent method and scheme made on the essence and scope of the present invention. In order to make the public have a thorough understanding of the present invention, specific details are described in detail in the following preferred embodiments of the present invention, but those skilled in the art can fully understand the present invention without the description of these details. In addition, in order to avoid unnecessary confusion about the essence of the present invention, well-known methods, processes, procedures, components and circuits are not described in detail.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principle of the present invention. These improvements and modifications should also be regarded as the scope of protection of the present invention.

Claims (10)

1.基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,包括多源数据采集模块、数据预处理模块、特征提取模块、多尺度特征聚合模块、特征对比分析模块以及结果可视化模块;其中:1. An artificial intelligence-based marine geological data mining and analysis system, characterized by comprising a multi-source data acquisition module, a data preprocessing module, a feature extraction module, a multi-scale feature aggregation module, a feature comparison and analysis module, and a result visualization module; wherein: 多源数据采集模块:用于采集海洋地质原始数据,所述原始数据包括高分辨率声学数据、海底图像数据和地震波数据;Multi-source data acquisition module: used to collect raw marine geological data, including high-resolution acoustic data, seabed image data and seismic wave data; 数据预处理模块:接收来自多源数据采集模块的原始数据,并对不同类型的数据进行同步预处理,包括噪声过滤、标准化以及缺失值填充,以生成标准化数据;Data preprocessing module: receives raw data from the multi-source data acquisition module and performs synchronous preprocessing on different types of data, including noise filtering, standardization, and missing value filling to generate standardized data; 特征提取模块:接收预处理后的标准化数据,利用引入注意力机制的卷积神经网络对标准化数据进行深度特征提取,所述注意力机制通过加权方式聚焦于微小地质特征区域,增强对微裂隙、微断层和沉积物边界细节的识别能力;Feature extraction module: receives the preprocessed standardized data and uses a convolutional neural network with an attention mechanism to perform deep feature extraction on the standardized data. The attention mechanism focuses on small geological feature areas in a weighted manner to enhance the recognition of microcracks, microfaults and sediment boundary details; 多尺度特征融合模块:用于接收所述深度特征,并通过多尺度卷积核对不同尺度的特征进行融合,生成融合特征表示;Multi-scale feature fusion module: used to receive the depth features and fuse features of different scales through multi-scale convolution kernels to generate fused feature representation; 特征匹配识别模块:用于接收所述融合特征表示,并将其与预先建立的海洋地质微特征数据库中的标准特征进行匹配,采用相似度计算方法,对海底微特征进行识别和分类;Feature matching and identification module: used to receive the fused feature representation, match it with the standard features in the pre-established marine geological micro-feature database, and use a similarity calculation method to identify and classify the seabed micro-features; 结果可视化展示模块:与所述特征匹配识别模块连接,接收识别和分类结果,利用三维可视化技术,将海底微特征的空间分布和演变过程以图形化界面展示。Result visualization display module: connected with the feature matching and recognition module, receiving the recognition and classification results, and using three-dimensional visualization technology to display the spatial distribution and evolution process of seabed micro-features in a graphical interface. 2.根据权利要求1所述的基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,所述多源数据采集模块包括高分辨率声学探测单元、海底摄像单元、地震波探测单元以及数据同步控制单元;其中:2. The marine geological data mining and analysis system based on artificial intelligence according to claim 1 is characterized in that the multi-source data acquisition module includes a high-resolution acoustic detection unit, a seabed camera unit, a seismic wave detection unit and a data synchronization control unit; wherein: 高分辨率声学探测单元:用于通过水下声学探测器采集海床及其周围环境的声学反射数据,所述声学数据通过多频段声学传感器阵列进行探测,声学信号的频率范围设定为10Hz至100kHz;High-resolution acoustic detection unit: used to collect acoustic reflection data of the seabed and its surrounding environment through an underwater acoustic detector. The acoustic data is detected through a multi-band acoustic sensor array, and the frequency range of the acoustic signal is set to 10Hz to 100kHz; 海底摄像单元:用于通过高分辨率摄像机或光学成像设备实时采集海底图像数据;Seabed camera unit: used to collect seabed image data in real time through a high-resolution camera or optical imaging equipment; 地震波探测单元:用于通过海底地震传感器采集来自地震活动和地质运动的地震波信号,所述地震波数据包括纵波和横波信息;Seismic wave detection unit: used to collect seismic wave signals from seismic activities and geological movements through seabed seismic sensors, and the seismic wave data includes longitudinal wave and transverse wave information; 数据同步控制单元:与所述高分辨率声学探测单元、海底摄像单元和地震波探测单元连接,用于对各种数据进行同步处理,所述同步处理通过精密时钟校准,确保数据误差不超过1毫秒。Data synchronization control unit: connected to the high-resolution acoustic detection unit, the seabed camera unit and the seismic wave detection unit, and used for synchronous processing of various data. The synchronous processing is calibrated by a precise clock to ensure that the data error does not exceed 1 millisecond. 3.根据权利要求1所述的基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,所述数据预处理模块包括噪声过滤单元、数据标准化单元以及缺失值填充单元;其中:3. The marine geological data mining and analysis system based on artificial intelligence according to claim 1 is characterized in that the data preprocessing module includes a noise filtering unit, a data standardization unit and a missing value filling unit; wherein: 噪声过滤单元:用于对来自多源数据采集模块的不同类型原始数据进行噪声过滤,具体采用多级自适应滤波算法,针对声学数据中存在的水下噪声、回波干扰以及地震波数据中的环境干扰进行逐级消除;Noise filtering unit: used to filter noise of different types of raw data from multi-source data acquisition modules. Specifically, a multi-level adaptive filtering algorithm is used to eliminate underwater noise and echo interference in acoustic data and environmental interference in seismic wave data step by step. 数据标准化单元:用于对滤波后的多类型数据进行标准化处理,所述标准化单元通过最小-最大归一化方法,将不同类型数据的数值范围缩放至预定范围内,对于声学数据的幅值范围归一化到[0,1],图像数据像素值归一化为[0,255],地震波数据的振幅标准化至[-1,1];Data normalization unit: used to perform normalization processing on the filtered multi-type data. The normalization unit scales the numerical range of different types of data to a predetermined range through the minimum-maximum normalization method. The amplitude range of acoustic data is normalized to [0,1], the pixel value of image data is normalized to [0,255], and the amplitude of seismic wave data is normalized to [-1,1]; 缺失值填充单元:用于对经过标准化处理后的数据进行缺失值的填充,所述缺失值填充单元采用基于插值法的填充技术,具体针对连续型数据,使用线性插值法填补缺失数据点;针对离散型数据,使用最近邻插值法对缺失像素进行填充,确保数据的完整性和连续性。Missing value filling unit: used to fill missing values in the data after standardization. The missing value filling unit adopts a filling technology based on interpolation. Specifically, for continuous data, linear interpolation is used to fill missing data points; for discrete data, the nearest neighbor interpolation method is used to fill missing pixels to ensure the integrity and continuity of the data. 4.根据权利要求1所述的基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,所述特征提取模块包括卷积层单元、注意力机制单元、加权特征映射单元、特征池化单元以及特征输出单元;其中:4. The marine geological data mining and analysis system based on artificial intelligence according to claim 1, characterized in that the feature extraction module includes a convolutional layer unit, an attention mechanism unit, a weighted feature mapping unit, a feature pooling unit and a feature output unit; wherein: 卷积层单元:用于接收数据预处理模块输出的标准化数据,通过多层卷积操作对数据进行特征提取,包括海底结构的边缘、裂缝和沉积物特征;Convolutional layer unit: used to receive the standardized data output by the data preprocessing module and extract features of the data through multi-layer convolution operations, including the edges, cracks and sediment features of the seabed structure; 注意力机制单元:用于增强对微小地质特征的识别能力,所述注意力机制通过在每一层卷积后计算特征图的权重,自动聚焦于与微裂隙、微断层和沉积物边界相关的重要区域;Attention mechanism unit: used to enhance the recognition of tiny geological features. The attention mechanism automatically focuses on important areas related to microcracks, microfaults, and sediment boundaries by calculating the weight of the feature map after each layer of convolution. 加权特征映射单元:用于对特征图进行加权操作,根据注意力机制生成的权重对特征图中的每个区域进行加权处理,权重越高的区域表示其与对应地质特征的相关性越强;Weighted feature mapping unit: used to perform weighted operations on feature maps. Each area in the feature map is weighted according to the weights generated by the attention mechanism. The higher the weight, the stronger the correlation with the corresponding geological features. 特征池化单元:用于对加权后的特征图进行池化处理,通过全局平均池化操作缩小数据规模,同时保留微特征信息,以有效减少数据维度,防止过拟合;Feature pooling unit: used to perform pooling on the weighted feature maps, reduce the data size through global average pooling operations, and retain micro-feature information to effectively reduce data dimensions and prevent overfitting; 特征输出单元:用于输出经过卷积和注意力机制处理后的深度特征图,所述深度特征图包括微裂隙、微断层以及沉积物边界的具体特征。Feature output unit: used to output the deep feature map processed by convolution and attention mechanism, wherein the deep feature map includes the specific features of microcracks, microfaults and sediment boundaries. 5.根据权利要求4所述的基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,所述注意力机制单元包括:5. The marine geological data mining and analysis system based on artificial intelligence according to claim 4, characterized in that the attention mechanism unit comprises: 特征图生成:接收卷积层单元输出的特征图,设输入特征图为,其中h表示特征图的高度,w表示宽度,c表示通道数;Feature map generation: Receive the feature map output by the convolutional layer unit, and set the input feature map to be , where h represents the height of the feature map, w represents the width, and c represents the number of channels; 空间注意力权重计算:对特征图T的每个空间位置进行全局池化操作,生成空间注意力权重图Spatial attention weight calculation: Perform a global pooling operation on each spatial position of the feature map T to generate a spatial attention weight map ; 通道注意力权重计算:计算特征图在通道维度的注意力权重,通过对特征图T进行全局平均池化和最大池化操作,生成两个通道注意力向量;并将通过全连接层进行融合,生成最终的通道注意力权重Channel attention weight calculation: Calculate the attention weight of the feature map in the channel dimension, and generate two channel attention vectors by performing global average pooling and maximum pooling operations on the feature map T and ; and and Fusion is performed through the fully connected layer to generate the final channel attention weight ; 特征加权处理:将计算得到的空间注意力权重和通道注意力权重应用于特征图T,生成经过空间和通道加权后的特征图值Feature weighting processing: The calculated spatial attention weights and channel attention weights Applied to the feature map T to generate spatially and channel-weighted feature map values ; 特征输出:输出经过加权处理后的特征图Feature output: Output the weighted feature map . 6.根据权利要求5所述的基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,所述特征池化单元具体包括:6. The marine geological data mining and analysis system based on artificial intelligence according to claim 5, characterized in that the feature pooling unit specifically includes: 接收加权特征图:接收加权特征映射单元输出的特征图,其中i和j分别表示特征图的空间位置索引,k表示通道索引,特征图的维度为,其中h为高度,w为宽度,c为通道数;Receive weighted feature map: Receive the feature map output by the weighted feature mapping unit , where i and j represent the spatial position index of the feature map, k represents the channel index, and the dimension of the feature map is , where h is the height, w is the width, and c is the number of channels; 全局平均池化计算:对加权后的特征图进行全局平均池化处理,对每个通道的所有空间位置的值进行平均,计算公式为:Global average pooling calculation: weighted feature map Perform global average pooling to average the values of all spatial positions of each channel. The calculation formula is: ,其中,表示通道k的全局平均池化结果,为加权后的特征图值,h和w分别为特征图的高度和宽度;通过对特征图中的所有空间位置进行平均操作,从而将每个通道的空间信息压缩为一个值; ,in, represents the global average pooling result of channel k, is the weighted feature map value, h and w are the height and width of the feature map respectively; by averaging all spatial positions in the feature map, the spatial information of each channel is compressed into one value; 数据规模缩减:经过全局平均池化后,特征图的空间维度从缩小为Data size reduction: After global average pooling, the spatial dimension of the feature map is reduced from Reduce to ; 特征输出:输出池化后的特征Feature output: output pooled features . 7.根据权利要求1所述的基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,所述多尺度特征融合模块包括多尺度卷积单元、尺度特征组合单元、融合特征归一化单元以及融合特征输出单元;其中:7. The marine geological data mining and analysis system based on artificial intelligence according to claim 1 is characterized in that the multi-scale feature fusion module includes a multi-scale convolution unit, a scale feature combination unit, a fusion feature normalization unit and a fusion feature output unit; wherein: 多尺度卷积单元:接收来自特征提取模块的深度特征图,其中i和j分别表示特征图的空间坐标,k表示通道索引;并通过不同大小的卷积核对特征图进行卷积操作,提取不同尺度的特征信息,设卷积核大小分别为,每个卷积核用于对特征图进行卷积操作后生成不同尺度的特征映射;Multi-scale convolutional unit: receives the deep feature map from the feature extraction module , where i and j represent the spatial coordinates of the feature map, and k represents the channel index; and convolution operations are performed on the feature map through convolution kernels of different sizes to extract feature information of different scales. The convolution kernel sizes are , and , each convolution kernel is used to generate feature maps of different scales after performing convolution operations on the feature map; 尺度特征组合单元:将多尺度卷积单元输出的不同尺度的特征映射进行组合,具体针对每个尺度n,生成的特征图通过拼接操作组合成一个融合后的特征表示Scale feature combination unit: combines the feature maps of different scales output by the multi-scale convolution unit. Specifically for each scale n, the generated feature map Combined into a fused feature representation through concatenation operation ; 融合特征归一化单元:对组合后的融合特征图进行归一化处理,生成归一化后的融合特征图Fusion feature normalization unit: the combined fusion feature map Perform normalization to generate a normalized fusion feature map ; 融合特征输出单元:用于输出归一化处理后的融合特征图,所述归一化后的融合特征图包括不同大小的裂隙、沉积物边界。Fusion feature output unit: used to output the normalized fusion feature map The normalized fused feature map includes cracks and sediment boundaries of different sizes. 8.根据权利要求7所述的基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,所述特征匹配识别模块包括特征数据库单元、特征向量生成单元、相似度计算单元以及识别与分类单元;其中:8. The marine geological data mining and analysis system based on artificial intelligence according to claim 7 is characterized in that the feature matching and recognition module includes a feature database unit, a feature vector generation unit, a similarity calculation unit and a recognition and classification unit; wherein: 特征数据库单元:用于存储预先建立的海洋地质微特征数据库,所述数据库中包括经过分类和标定的微裂隙、微断层和沉积物边界的标准特征,其中每个标准特征都以预定的特征向量形式表示;Feature database unit: used to store a pre-established marine geological micro-feature database, wherein the database includes standard features of classified and calibrated micro-cracks, micro-faults and sediment boundaries, wherein each standard feature is represented in the form of a predetermined feature vector; 特征向量生成单元:接收融合特征图,并将融合特征图转换为特征向量形式Feature vector generation unit: receiving fused feature map , and convert the fused feature map into a feature vector form ; 相似度计算单元:通过相似度计算方法,将生成的特征向量与特征数据库单元中的标准特征进行匹配,计算每一个标准特征与融合特征的相似度;Similarity calculation unit: Through the similarity calculation method, the generated feature vector Standard features in feature database units Perform matching and calculate the similarity between each standard feature and the fusion feature; 识别与分类单元:对相似度计算单元输出的相似度值进行排序,选择相似度值最高的标准特征,并根据预定的相似度阈值对微特征进行识别与分类。Identification and classification unit: sorts the similarity values output by the similarity calculation unit, selects the standard feature with the highest similarity value, and identifies and classifies the micro-features according to a predetermined similarity threshold. 9.根据权利要求8所述的基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,所述识别与分类单元具体包括:9. The marine geological data mining and analysis system based on artificial intelligence according to claim 8, characterized in that the identification and classification unit specifically includes: 相似度排序:对所有相似度值进行排序,排列顺序为从高到低,并选择相似度值最高的标准特征,排序表达式为:,其中,m为数据库中特征的总数,表示最高的相似度值;Similarity sorting: Sort all similarity values from high to low, and select the standard feature with the highest similarity value. The sorting expression is: , where m is the total number of features in the database, Indicates the highest similarity value; 阈值判断:对最高相似度值进行阈值判断,设定相似度间值,用于判断相似度值是否满足以下条件:,则识别为标准特征Threshold judgment: Perform threshold judgment on the highest similarity value and set the similarity interval value , used to determine whether the similarity value meets the following conditions: , then it is identified as a standard feature ; 特征分类:根据相似度阈值判断的结果进行特征分类,具体当时,则将微特征归类为标准特征的类别;若,则微特征被标记为新的特征,表示其与数据库中的标准特征不匹配。Feature classification: feature classification is performed based on the results of similarity threshold judgment. , the microfeature is classified as a standard feature If , then the micro-feature is marked as a new feature, indicating that it does not match the standard feature in the database. 10.根据权利要求1所述的基于人工智能的海洋地质数据挖掘与分析系统,其特征在于,所述结果可视化展示模块包括三维模型生成单元、时间演化处理单元、特征标注单元、三维交互单元以及动态展示控制单元;其中:10. The marine geological data mining and analysis system based on artificial intelligence according to claim 1, characterized in that the result visualization display module includes a three-dimensional model generation unit, a time evolution processing unit, a feature annotation unit, a three-dimensional interaction unit and a dynamic display control unit; wherein: 三维模型生成单元:用于将识别与分类模块输出的微特征数据转换为三维坐标系下的空间表示;3D model generation unit: used to convert the micro-feature data output by the recognition and classification module into a spatial representation in a 3D coordinate system; 时间演化处理单元:用于将不同时间段内采集到的海底微特征数据进行时间序列分析,并将识别出的微特征的变化过程转换为可视化动画;Time evolution processing unit: used to perform time series analysis on the seafloor micro-feature data collected in different time periods, and convert the change process of the identified micro-features into visual animations; 特征标注单元:用于对三维模型中的微特征进行标签标注,每个微特征根据分类结果添加相应的标签,让用户能通过点击或悬停获取微特征的具体信息;Feature labeling unit: used to label micro-features in the 3D model. Each micro-feature is labeled according to the classification result, so that users can obtain specific information about the micro-feature by clicking or hovering. 三维交互单元:用于提供用户与三维模型的交互功能。3D interaction unit: used to provide interaction function between users and 3D models.
CN202411388314.3A 2024-10-08 2024-10-08 Marine geological data mining and analysis system based on artificial intelligence Pending CN118885862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411388314.3A CN118885862A (en) 2024-10-08 2024-10-08 Marine geological data mining and analysis system based on artificial intelligence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411388314.3A CN118885862A (en) 2024-10-08 2024-10-08 Marine geological data mining and analysis system based on artificial intelligence

Publications (1)

Publication Number Publication Date
CN118885862A true CN118885862A (en) 2024-11-01

Family

ID=93234892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411388314.3A Pending CN118885862A (en) 2024-10-08 2024-10-08 Marine geological data mining and analysis system based on artificial intelligence

Country Status (1)

Country Link
CN (1) CN118885862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119291776A (en) * 2024-12-10 2025-01-10 青岛海洋地质研究所 A method for analyzing active faults in marine areas based on fusion interpretation of acoustic stratigraphic data
CN119805614A (en) * 2025-03-14 2025-04-11 中国海洋大学 Shipborne and submarine-borne ocean geophysical data real-time processing and analysis system
CN120212959A (en) * 2025-05-28 2025-06-27 中国科学院国家空间科学中心 A seabed terrain quality evaluation system and method based on multi-dimensional indicators

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105575397A (en) * 2014-10-08 2016-05-11 展讯通信(上海)有限公司 Voice noise reduction method and voice collection device
RU2015109204A (en) * 2015-03-16 2016-10-10 Общество с ограниченной ответственностью "Морские Инновации" SYSTEM AND METHOD OF 3D RESEARCH OF THE SEA FOR ENGINEERING
KR101680589B1 (en) * 2016-05-09 2016-11-30 한국건설기술연구원 Automatic deduction method of geological structures in seabed using echo sounder data
CN116604151A (en) * 2023-05-19 2023-08-18 上海交通大学宁波人工智能研究院 A MIG welding seam state monitoring system and method based on audio-visual dual mode
CN118035483A (en) * 2024-02-20 2024-05-14 新疆大学 Deep hash media searching method of double-branch attention mechanism
CN118070654A (en) * 2024-02-27 2024-05-24 浙江伟卓科技有限责任公司 Submarine shallow stratum modeling method, device, equipment and storage medium
CN118094333A (en) * 2024-03-08 2024-05-28 南通大学 Human behavior classification method based on pyramid multi-scale channel attention mechanism
CN118134870A (en) * 2024-03-05 2024-06-04 武汉理工大学三亚科教创新园 A method and system for detecting a directional marine vessel
CN118172775A (en) * 2024-01-23 2024-06-11 北京航空航天大学 A SAR target open set recognition method and device based on enhanced class separability
CN118553225A (en) * 2024-06-03 2024-08-27 南昌工学院 Signal processing system and device in dynamic noise environment
CN118570404A (en) * 2024-05-24 2024-08-30 海南科力千方科技有限公司 Marine shallow geological model display method based on virtual engine and 3D modeling

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105575397A (en) * 2014-10-08 2016-05-11 展讯通信(上海)有限公司 Voice noise reduction method and voice collection device
RU2015109204A (en) * 2015-03-16 2016-10-10 Общество с ограниченной ответственностью "Морские Инновации" SYSTEM AND METHOD OF 3D RESEARCH OF THE SEA FOR ENGINEERING
KR101680589B1 (en) * 2016-05-09 2016-11-30 한국건설기술연구원 Automatic deduction method of geological structures in seabed using echo sounder data
CN116604151A (en) * 2023-05-19 2023-08-18 上海交通大学宁波人工智能研究院 A MIG welding seam state monitoring system and method based on audio-visual dual mode
CN118172775A (en) * 2024-01-23 2024-06-11 北京航空航天大学 A SAR target open set recognition method and device based on enhanced class separability
CN118035483A (en) * 2024-02-20 2024-05-14 新疆大学 Deep hash media searching method of double-branch attention mechanism
CN118070654A (en) * 2024-02-27 2024-05-24 浙江伟卓科技有限责任公司 Submarine shallow stratum modeling method, device, equipment and storage medium
CN118134870A (en) * 2024-03-05 2024-06-04 武汉理工大学三亚科教创新园 A method and system for detecting a directional marine vessel
CN118094333A (en) * 2024-03-08 2024-05-28 南通大学 Human behavior classification method based on pyramid multi-scale channel attention mechanism
CN118570404A (en) * 2024-05-24 2024-08-30 海南科力千方科技有限公司 Marine shallow geological model display method based on virtual engine and 3D modeling
CN118553225A (en) * 2024-06-03 2024-08-27 南昌工学院 Signal processing system and device in dynamic noise environment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴茂贵等: "《智能系统与技术丛书 Python深度学习 基于PyTorch 第2版》", 31 January 2023, 北京:机械工业出版社, pages: 191 - 192 *
宋瑞有;于俊峰;晁彩霞;宋鹏;潘光超;: "裂隙识别技术及其在油气和水合物勘探中的应用", 热带海洋学报, no. 01, 13 January 2020 (2020-01-13) *
曲克信: "《中国地球物理学会60年》", 30 September 2007, 北京:地震出版社, pages: 52 - 54 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119291776A (en) * 2024-12-10 2025-01-10 青岛海洋地质研究所 A method for analyzing active faults in marine areas based on fusion interpretation of acoustic stratigraphic data
CN119805614A (en) * 2025-03-14 2025-04-11 中国海洋大学 Shipborne and submarine-borne ocean geophysical data real-time processing and analysis system
CN120212959A (en) * 2025-05-28 2025-06-27 中国科学院国家空间科学中心 A seabed terrain quality evaluation system and method based on multi-dimensional indicators

Similar Documents

Publication Publication Date Title
CN118885862A (en) Marine geological data mining and analysis system based on artificial intelligence
CN103903237B (en) Sonar image sequence assembly method is swept before one kind
CN117079117A (en) Underwater image processing and target recognition methods and devices, storage media and electronic equipment
CN111767826B (en) Anomaly detection method for fixed-point scenes
CN112102197A (en) Underwater target detection system and method for assisting diver
CN112507861A (en) Pedestrian detection method based on multilayer convolution feature fusion
CN115527105B (en) An underwater target detection method based on multi-scale feature learning
CN111814696A (en) Video ship target detection method based on improved YOLOv3
CN113780305A (en) A salient object detection method based on the interaction of two cues
CN114565753B (en) A method for identifying small targets of drones based on improved YOLOv4 network
CN113762271B (en) SAR image semantic segmentation method and system based on irregular convolution kernel neural network model
CN114241386A (en) Method for detecting and identifying hidden danger of power transmission line based on real-time video stream
CN116310851B (en) Change Detection Method of Remote Sensing Image
CN118865003A (en) A method, medium and system for real-time target detection and classification based on sonar images
CN117765368A (en) Light-weight YOLOv8 optical fiber distributed vibration signal image detection method
CN117746256A (en) Remote sensing image processing method applied to volcanic disaster monitoring
CN119131580A (en) YOLOv8 improved model training method and ship detection method
CN118397514A (en) Defect hidden danger detection method and device for power transmission line, storage medium and computer equipment
CN116208829A (en) Panoramic imaging and state recognition system and method of rock drilling environment
CN116129275A (en) Mountain fire smoke identification method based on interference suppression threshold voting strategy
DeBortoli et al. Assessing perception quality in sonar images using global context
CN120472322B (en) Landslide detection method, device, program product and electronic equipment
CN117036982B (en) Method and device for processing optical satellite image of mariculture area, equipment and medium
CN120198688B (en) Winter wheat growth monitoring method at heading stage based on monocular depth estimation
CN119471700B (en) Multi-dimensional fish school sensing device and method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination