CN118783751A - Apparatus and method for fast decay control of switched capacitor converter - Google Patents
Apparatus and method for fast decay control of switched capacitor converter Download PDFInfo
- Publication number
- CN118783751A CN118783751A CN202310365255.7A CN202310365255A CN118783751A CN 118783751 A CN118783751 A CN 118783751A CN 202310365255 A CN202310365255 A CN 202310365255A CN 118783751 A CN118783751 A CN 118783751A
- Authority
- CN
- China
- Prior art keywords
- capacitor converter
- switched capacitor
- signal
- discharge
- ovp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 171
- 238000000034 method Methods 0.000 title abstract description 45
- 230000004044 response Effects 0.000 claims abstract description 52
- 230000015654 memory Effects 0.000 claims description 32
- 230000001960 triggered effect Effects 0.000 claims description 17
- 238000013016 damping Methods 0.000 claims description 14
- 238000007599 discharging Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 11
- 238000004088 simulation Methods 0.000 description 10
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 7
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 240000001436 Antirrhinum majus Species 0.000 description 1
- 101100067427 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FUS3 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/322—Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/06—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本公开提供了用于开关电容转换器的快速衰减控制的装置和方法。在一些实施例中,用于开关电容转换器的衰减控制电路包括过压保护(OVP)组件和放电组件。OVP组件被配置为响应于开关电容转换器的输出电压大于OVP阈值来输出OVP信号。放电组件被配置为响应于OVP信号和衰减使能信号两者来对开关电容转换器的输出电压进行放电。还公开并要求保护其他实施例。
The present disclosure provides an apparatus and method for fast decay control of a switched capacitor converter. In some embodiments, an decay control circuit for a switched capacitor converter includes an overvoltage protection (OVP) component and a discharge component. The OVP component is configured to output an OVP signal in response to an output voltage of the switched capacitor converter being greater than an OVP threshold. The discharge component is configured to discharge the output voltage of the switched capacitor converter in response to both the OVP signal and the decay enable signal. Other embodiments are also disclosed and claimed.
Description
技术领域Technical Field
本公开的实施例总体涉及电路领域,具体地,涉及用于开关电容转换器的快速衰减控制的装置和方法。Embodiments of the present disclosure generally relate to the field of circuits, and more particularly, to an apparatus and method for fast decay control of a switched capacitor converter.
背景技术Background Art
开关电容转换器在诸如集成电路等许多电路中起着重要的作用。开关电容转换器是一种信号方向调节器。然而,它仅仅具有上调的能力,而缺乏下调的能力。因此,改善开关电容转换器的调节能力是可取的。Switched capacitor converters play an important role in many circuits such as integrated circuits. Switched capacitor converters are a type of signal direction regulator. However, they only have the ability to regulate upwards, but lack the ability to regulate downwards. Therefore, it is desirable to improve the regulation capability of switched capacitor converters.
发明内容Summary of the invention
本公开的一方面提供了一种用于开关电容转换器的衰减控制电路。该衰减控制电路包括过压保护(OVP)组件,所述OVP组件被配置为响应于所述开关电容转换器的输出电压大于OVP阈值来输出OVP信号。该衰减控制电路还包括放电组件,所述放电组件被配置为响应于所述OVP信号和衰减使能信号两者来对所述开关电容转换器的输出电压进行放电。One aspect of the present disclosure provides an attenuation control circuit for a switched capacitor converter. The attenuation control circuit includes an overvoltage protection (OVP) component configured to output an OVP signal in response to an output voltage of the switched capacitor converter being greater than an OVP threshold. The attenuation control circuit also includes a discharge component configured to discharge the output voltage of the switched capacitor converter in response to both the OVP signal and an attenuation enable signal.
本公开的一方面提供了一种计算机系统。该计算机系统包括:存储器;和处理器,所述处理器与所述存储器耦合。所述处理器包括用于开关电容转换器的衰减控制电路。所述衰减控制电路包括过压保护(OVP)组件,所述OVP组件被配置为响应于所述开关电容转换器的输出电压大于OVP阈值来输出OVP信号。所述衰减控制电路还包括放电组件,所述放电组件被配置为响应于所述OVP信号和衰减使能信号两者来对所述开关电容转换器的输出电压进行放电。One aspect of the present disclosure provides a computer system. The computer system includes: a memory; and a processor, the processor being coupled to the memory. The processor includes an attenuation control circuit for a switched capacitor converter. The attenuation control circuit includes an overvoltage protection (OVP) component, the OVP component being configured to output an OVP signal in response to an output voltage of the switched capacitor converter being greater than an OVP threshold. The attenuation control circuit also includes a discharge component, the discharge component being configured to discharge the output voltage of the switched capacitor converter in response to both the OVP signal and an attenuation enable signal.
本公开的一方面提供了一种用于开关电容转换器的衰减控制方法。该衰减控制方法包括响应于所述开关电容转换器的输出电压大于OVP阈值来触发OVP组件输出OVP信号。该衰减控制方法还包括响应于所述OVP信号和衰减使能信号两者来开启放电组件以对所述开关电容转换器的输出电压进行放电。One aspect of the present disclosure provides an attenuation control method for a switched capacitor converter. The attenuation control method includes triggering an OVP component to output an OVP signal in response to an output voltage of the switched capacitor converter being greater than an OVP threshold. The attenuation control method also includes turning on a discharge component in response to both the OVP signal and an attenuation enable signal to discharge the output voltage of the switched capacitor converter.
本公开的一方面提供了一种用于开关电容转换器的衰减控制的设备。该设备包括用于执行所述方法的装置。One aspect of the present disclosure provides a device for attenuation control of a switched capacitor converter, wherein the device includes means for executing the method.
本公开的一方面提供了一种计算机可读介质,其上存储有指令,该指令当被处理器电路执行时使得处理器电路执行所述方法。One aspect of the present disclosure provides a computer readable medium having instructions stored thereon, which when executed by a processor circuit causes the processor circuit to perform the method.
本公开的一方面提供了一种衰减控制电路,用于执行所述方法。One aspect of the present disclosure provides a damping control circuit for executing the method.
本公开的一方面提供了一种计算机系统,该计算机系统包括存储器和与该存储器耦合的处理器。该处理器包括衰减控制电路,该衰减控制电路被配置为执行所述方法。One aspect of the present disclosure provides a computer system, the computer system comprising a memory and a processor coupled to the memory, the processor comprising an attenuation control circuit, the attenuation control circuit being configured to execute the method.
本公开的一方面提供了一种计算机系统,该计算机系统包括存储器和与该存储器耦合的处理器。该处理器包括所述衰减控制电路。One aspect of the present disclosure provides a computer system, the computer system comprising a memory and a processor coupled to the memory, the processor comprising the attenuation control circuit.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
在附图中,将通过示例而非限制的方式说明本公开的实施例,其中相同的参考标号指代相似的要素。Embodiments of the present disclosure will be illustrated by way of example and not limitation in the accompanying drawings in which like reference numerals refer to similar elements.
图1示出了开关电容转换器在衰减场景下跟踪目标参考电压的能力的示例。Figure 1 shows an example of the ability of a switched capacitor converter to track a target reference voltage in a fading scenario.
图2示出了开关电容转换器在过压场景下跟踪目标参考电压的能力的示例。Figure 2 shows an example of the ability of a switched capacitor converter to track a target reference voltage during an overvoltage scenario.
图3示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。FIG. 3 illustrates an example of a damping control system for a switched capacitor converter according to some embodiments of the present invention.
图4示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。FIG. 4 illustrates an example of a damping control system for a switched capacitor converter according to some embodiments of the present invention.
图5示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制的流程图。FIG. 5 shows a flow chart of damping control for a switched capacitor converter according to some embodiments of the present invention.
图6示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。FIG. 6 illustrates an example of a damping control system for a switched capacitor converter according to some embodiments of the present invention.
图7示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制的流程图。FIG. 7 shows a flow chart of damping control for a switched capacitor converter according to some embodiments of the present invention.
图8示出了根据本发明的一些实施例的脉冲宽度调整的示例。FIG. 8 illustrates an example of pulse width modulation according to some embodiments of the present invention.
图9示出了图6的衰减控制系统的仿真结果的示例。FIG. 9 shows an example of simulation results of the attenuation control system of FIG. 6 .
图10示出了图6的衰减控制系统的仿真结果的示例。FIG. 10 shows an example of simulation results of the attenuation control system of FIG. 6 .
图11示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。FIG. 11 shows an example of a damping control system for a switched capacitor converter according to some embodiments of the present invention.
图12示出了图11的衰减控制系统的仿真结果的示例。FIG. 12 shows an example of simulation results of the attenuation control system of FIG. 11 .
图13示出了图11的衰减控制系统的仿真结果的示例。FIG. 13 shows an example of simulation results of the attenuation control system of FIG. 11 .
图14示出了图11的衰减控制系统的仿真结果的示例。FIG. 14 shows an example of simulation results of the attenuation control system of FIG. 11 .
图15示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。FIG. 15 shows an example of a damping control system for a switched capacitor converter according to some embodiments of the present invention.
图16示出了图15的衰减控制系统的仿真结果的示例。FIG. 16 shows an example of simulation results of the attenuation control system of FIG. 15 .
图17示出了图15的衰减控制系统的仿真结果的示例。FIG. 17 shows an example of simulation results of the attenuation control system of FIG. 15 .
图18示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。FIG. 18 illustrates an example of a damping control system for a switched capacitor converter according to some embodiments of the present invention.
图19是根据本发明的实施例的系统的一部分的框图。19 is a block diagram of a portion of a system according to an embodiment of the present invention.
图20是根据本发明的实施例的处理器的框图。FIG. 20 is a block diagram of a processor according to an embodiment of the present invention.
图21是根据本发明的实施例的示例SoC的框图。FIG. 21 is a block diagram of an example SoC according to an embodiment of the present invention.
图22是可与实施例一起使用的示例系统的框图。22 is a block diagram of an example system that may be used with embodiments.
图23是可与实施例一起使用的另一示例系统的框图。23 is a block diagram of another example system that may be used with embodiments.
图24是根据本发明的实施例的计算机系统的框图。24 is a block diagram of a computer system according to an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
将使用本领域技术人员通常采用的术语来描述说明性实施例的各个方面,以将本公开的实质传达给本领域其他技术人员。然而,对于本领域技术人员易于理解的是,可以使用所描述方面的部分来实践许多替代实施例。出于解释的目的,阐述了具体的数字、材料和配置,以提供对说明性实施例的透彻理解。然而,对于本领域技术人员易于理解的是,可以在没有这些具体细节的情况下实践替代实施例。在其他情况下,可以省略或简化众所周知的特征,以避免模糊说明性实施例。The various aspects of the illustrative embodiments will be described using terms commonly used by those skilled in the art to convey the essence of the present disclosure to other persons skilled in the art. However, it will be readily understood by those skilled in the art that many alternative embodiments may be practiced using portions of the described aspects. For purposes of explanation, specific numbers, materials, and configurations are set forth to provide a thorough understanding of the illustrative embodiments. However, it will be readily understood by those skilled in the art that alternative embodiments may be practiced without these specific details. In other cases, well-known features may be omitted or simplified to avoid blurring the illustrative embodiments.
此外,各种操作将以最有助于理解说明性实施例的方式被描述为多个离散操作;然而,描述的顺序不应被解释为暗示这些操作必须依赖于顺序。特别是,这些操作不需要按照呈现的顺序执行。Furthermore, various operations will be described as multiple discrete operations in a manner that is most helpful for understanding the illustrative embodiments; however, the order of description should not be construed as implying that these operations are necessarily order dependent. In particular, these operations do not need to be performed in the order presented.
本文重复使用短语“在实施例中”、“在一种实施例中”和“在一些实施例中”。该短语通常不是指同一实施例;但是,它可能指同一实施例。除非上下文另有规定,否则术语“包含”、“具有”和“包括”是同义词。短语“A或B”和“A/B”表示“(A),(B)或(A和B)”。The phrases "in an embodiment," "in one embodiment," and "in some embodiments" are used repeatedly herein. The phrase generally does not refer to the same embodiment; however, it may. The terms "comprising," "having," and "including" are synonymous unless the context dictates otherwise. The phrases "A or B" and "A/B" mean "(A), (B), or (A and B)."
开关电容转换器是一种信号方向调节器。然而,它仅仅具有上调的能力,而缺乏下调的能力。开关电容转换器的输出电压的下降率完全取决于负载电流。对于轻负载应用,开关电容转换器将失去跟踪目标参考电压的能力。图1示出了开关电容转换器在衰减场景下跟踪目标参考电压的能力的示例。如图1所示,输出电压的衰减速度较慢,不能跟踪目标参考电压。此外,在过压场景下,开关电容转换器将不对负载提供保护。图2示出了开关电容转换器在过压场景下跟踪目标参考电压的能力的示例。如图2所示,输出电压超过目标参考电压,因此负载暴露在过压下。The switched capacitor converter is a signal direction regulator. However, it only has the ability to adjust upward and lacks the ability to adjust downward. The rate of decrease of the output voltage of the switched capacitor converter depends entirely on the load current. For light load applications, the switched capacitor converter will lose the ability to track the target reference voltage. Figure 1 shows an example of the ability of the switched capacitor converter to track the target reference voltage in an attenuation scenario. As shown in Figure 1, the decay rate of the output voltage is slow and cannot track the target reference voltage. In addition, in an overvoltage scenario, the switched capacitor converter will not provide protection to the load. Figure 2 shows an example of the ability of the switched capacitor converter to track the target reference voltage in an overvoltage scenario. As shown in Figure 2, the output voltage exceeds the target reference voltage, so the load is exposed to overvoltage.
通常,开关电容转换器系统依赖于负载电流来对输出电压进行放电,并限制参考电压衰减速度以匹配输出电压的下降率。例如,开关电容转换器电路(例如英特尔公司的C2VR PTR芯片)的负载范围很大。例如,C2VR PTR芯片包含2个Quad和1个Zoog,这允许电路为1A到10A的负载电流供电。如果负载电流在1A左右,参考衰减速度不能高于1.4mV/ns(700nF输出电容)。此外,在实际应用中,不同温度/工艺变化下的泄漏电流甚至可能例如小于最大指定负载电流的10%,这意味着衰减速率还需要进一步增强。Typically, switched capacitor converter systems rely on the load current to discharge the output voltage and limit the reference voltage decay speed to match the output voltage drop rate. For example, the load range of switched capacitor converter circuits (such as Intel's C2VR PTR chip) is very large. For example, the C2VR PTR chip contains 2 Quads and 1 Zoog, which allows the circuit to power load currents from 1A to 10A. If the load current is around 1A, the reference decay speed cannot be higher than 1.4mV/ns (700nF output capacitor). In addition, in actual applications, the leakage current under different temperature/process variations may even be less than 10% of the maximum specified load current, which means that the decay rate needs to be further enhanced.
图3示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例300。FIG. 3 illustrates an example 300 of a damping control system for a switched capacitor converter according to some embodiments of the present invention.
如图3所示,针对开关电容转换器310设计了衰减控制系统。该衰减控制系统包括放电组件320、放电触发组件330、以及开关组件340。在一些实施例中,放电触发组件330可以基于开关电容转换器310的输出电压,来触发放电组件320对开关电容转换器310的输出电压进行放电。放电触发组件330当触发放电组件320进行放电时,可以控制开关组件340禁用开关电容转换器310。放电触发组件330当停止对放电组件320的放电时,可以控制开关组件340启用开关电容转换器310。As shown in FIG3 , an attenuation control system is designed for the switched capacitor converter 310. The attenuation control system includes a discharge component 320, a discharge trigger component 330, and a switch component 340. In some embodiments, the discharge trigger component 330 can trigger the discharge component 320 to discharge the output voltage of the switched capacitor converter 310 based on the output voltage of the switched capacitor converter 310. When the discharge trigger component 330 triggers the discharge component 320 to discharge, the switch component 340 can be controlled to disable the switched capacitor converter 310. When the discharge trigger component 330 stops discharging the discharge component 320, the switch component 340 can be controlled to enable the switched capacitor converter 310.
在一些实施例中,放电触发组件330可包括过压保护(OVP)组件,该OVP组件被配置为响应于开关电容器转换器310的输出电压大于OVP阈值而输出OVP信号。放电组件320被配置为响应OVP信号和衰减使能信号两者而对开关电容转换器310的输出电压进行放电。In some embodiments, the discharge trigger component 330 may include an overvoltage protection (OVP) component configured to output an OVP signal in response to the output voltage of the switched capacitor converter 310 being greater than an OVP threshold. The discharge component 320 is configured to discharge the output voltage of the switched capacitor converter 310 in response to both the OVP signal and the decay enable signal.
在一些实施例中,当开关电容转换器310的目标输出电压降低时,生成衰减使能信号。换句话说,衰减使能信号的窗口对应于目标输出电压的降低时段。例如,如果预期开关电容转换器310的目标输出电压在时间窗口M(时域从t1到t2)内从A降低到B,则在t1处生成衰减使能信号并持续到t2。在t2时,衰减完成,可以生成衰减完成信号。In some embodiments, when the target output voltage of the switched capacitor converter 310 is reduced, the decay enable signal is generated. In other words, the window of the decay enable signal corresponds to the reduction period of the target output voltage. For example, if the target output voltage of the switched capacitor converter 310 is expected to decrease from A to B within the time window M (time domain from t1 to t2), the decay enable signal is generated at t1 and lasts until t2. At t2, the decay is completed and a decay completion signal can be generated.
通常,开关电容转换器基于反馈比较器工作。具体来说,当反馈比较器检测到开关电容转换器的输出电压小于目标阈值,例如,数字模拟转换器(DAC)信号,反馈比较器将提供(一个或多个)时钟脉冲来触发开关电容转换器以增加其输出电压(上调)。当反馈比较器检测到开关电容转换器的输出电压大于DAC信号时,反馈比较器将停止提供时钟脉冲,以等待输出电压降低。Typically, the switched capacitor converter operates based on a feedback comparator. Specifically, when the feedback comparator detects that the output voltage of the switched capacitor converter is less than a target threshold, such as a digital-to-analog converter (DAC) signal, the feedback comparator will provide (one or more) clock pulses to trigger the switched capacitor converter to increase its output voltage (up regulation). When the feedback comparator detects that the output voltage of the switched capacitor converter is greater than the DAC signal, the feedback comparator will stop providing clock pulses to wait for the output voltage to decrease.
图4示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。衰减控制依赖于OVP比较器430和反馈比较器450两者,如图4所示。当衰减被使能时,如果检测到过压信号,则与门440的输出为高。然后反馈比较器450将与开关电容转换器410断开连接,并且在过压信号复位之前(例如,在输出电压不大于OVP阈值之前),放电组件(例如,如图4所示的放电晶体管420)将处于开启状态。如果过压信号复位,则反馈比较器输出将再次连接到开关电容转换器410以调节输出电压,直到触发下一个过压脉冲。在一些实施例中,OVP阈值是可变的。它可能随DAC信号而变化。FIG4 shows an example of an attenuation control system for a switched capacitor converter according to some embodiments of the present invention. Attenuation control relies on both the OVP comparator 430 and the feedback comparator 450, as shown in FIG4 . When attenuation is enabled, if an overvoltage signal is detected, the output of the AND gate 440 is high. The feedback comparator 450 will then be disconnected from the switched capacitor converter 410, and the discharge component (e.g., the discharge transistor 420 shown in FIG4 ) will be in the on state before the overvoltage signal is reset (e.g., before the output voltage is not greater than the OVP threshold). If the overvoltage signal is reset, the feedback comparator output will be connected to the switched capacitor converter 410 again to regulate the output voltage until the next overvoltage pulse is triggered. In some embodiments, the OVP threshold is variable. It may vary with the DAC signal.
开关组件460用于控制反馈比较器450和开关电容转换器410之间的连接,下面将结合图5详细说明。The switch component 460 is used to control the connection between the feedback comparator 450 and the switched capacitor converter 410 , which will be described in detail below in conjunction with FIG. 5 .
图5示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制的流程图。如图所示,确定衰减是否被使能,例如,是否有衰减使能信号。如果是,则确定OVP是否被触发;如果否,则电路检测衰减使能信号。FIG5 shows a flow chart of attenuation control for a switched capacitor converter according to some embodiments of the present invention. As shown in the figure, it is determined whether attenuation is enabled, for example, whether there is an attenuation enable signal. If yes, it is determined whether OVP is triggered; if not, the circuit detects the attenuation enable signal.
当确定OVP被触发时,则如图4所示的S1接通(turn on),S2关断(turn off),从而断开反馈比较器450和开关电容转换器410之间的连接。如果检测到衰减完成信号,则S1关断,S2接通,这恢复了反馈比较器450和开关电容转换器410之间的连接。反过来,当确定OVP没有被触发时,S2接通,S1关断,这闭合了反馈比较器450和开关电容转换器410之间的连接。When it is determined that OVP is triggered, S1 as shown in FIG. 4 is turned on and S2 is turned off, thereby disconnecting the connection between the feedback comparator 450 and the switched capacitor converter 410. If the decay completion signal is detected, S1 is turned off and S2 is turned on, which restores the connection between the feedback comparator 450 and the switched capacitor converter 410. Conversely, when it is determined that OVP is not triggered, S2 is turned on and S1 is turned off, which closes the connection between the feedback comparator 450 and the switched capacitor converter 410.
在一些实施例中,S1可以连接到地,因此,当S1接通时,开关电容转换器410的输入端接地以断开与反馈比较器450的连接。In some embodiments, S1 may be connected to ground, so when S1 is turned on, the input of the switched capacitor converter 410 is grounded to disconnect from the feedback comparator 450 .
参考图4,在一些实施例中,来自与门440的信号可以在输入到放电晶体管420之前被输入到脉冲宽度调节组件470。利用脉冲宽度调节组件470,可设计放电晶体管420的放电时段。4, in some embodiments, the signal from the AND gate 440 may be input to the pulse width adjustment component 470 before being input to the discharge transistor 420. Using the pulse width adjustment component 470, the discharge period of the discharge transistor 420 may be designed.
在一些实施例中,如图4所示,在放电晶体管420之前设置门驱动器480,用于启动放电晶体管420。In some embodiments, as shown in FIG. 4 , a gate driver 480 is provided before the discharge transistor 420 to enable the discharge transistor 420 .
如上所述,当检测到OVP信号和衰减使能信号两者时,可以触发放电组件。上述操作工作在衰减模式(也称为快速衰减模式或放电模式),其中目标输出电压发生改变。但是,在目标输出电压保持不变的稳态模式下,可以监测反馈比较器的输出脉冲。如果反馈比较器长时间(例如,比开关电容转换器的时钟周期长10倍)未能发射脉冲,则也可以启用放电电路。在这种情况下,当检测到OVP信号和衰减使能信号两者时触发放电组件。但是,衰减使能信号是在反馈比较器在预设的时间内未能发射脉冲时被触发的。As described above, the discharge component can be triggered when both the OVP signal and the decay enable signal are detected. The above operation operates in a decay mode (also known as a fast decay mode or a discharge mode), in which the target output voltage changes. However, in a steady-state mode where the target output voltage remains unchanged, the output pulse of the feedback comparator can be monitored. If the feedback comparator fails to emit a pulse for a long time (for example, 10 times longer than the clock period of the switched capacitor converter), the discharge circuit can also be enabled. In this case, the discharge component is triggered when both the OVP signal and the decay enable signal are detected. However, the decay enable signal is triggered when the feedback comparator fails to emit a pulse within a preset time.
图6示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。在图6中,开关电容转换器610、放电晶体管620、OVP组件630、与门640、反馈比较器650、脉冲宽度调节组件670以及门驱动器680分别对应于图4中的开关电容转换器410、放电晶体管420、OVP组件430、与门440、反馈比较器450、脉冲宽度调节组件470以及门驱动器480,这里不再重复。与图4相比,图6中的衰减控制系统还包括欠压保护(UVP)组件690。它被配置为响应于开关电容器转换器610的输出电压小于UVP阈值而输出UVP信号。如图所示,UVP信号和衰减完成信号连接到或门692,该或门可以控制开关组件660。换句话说,当触发UVP信号或衰减完成信号时,开关组件660被控制,下面将结合图7详细说明。FIG6 shows an example of an attenuation control system for a switched capacitor converter according to some embodiments of the present invention. In FIG6, the switched capacitor converter 610, the discharge transistor 620, the OVP component 630, the AND gate 640, the feedback comparator 650, the pulse width adjustment component 670, and the gate driver 680 correspond to the switched capacitor converter 410, the discharge transistor 420, the OVP component 430, the AND gate 440, the feedback comparator 450, the pulse width adjustment component 470, and the gate driver 480 in FIG4, respectively, and are not repeated here. Compared with FIG4, the attenuation control system in FIG6 also includes an undervoltage protection (UVP) component 690. It is configured to output a UVP signal in response to the output voltage of the switched capacitor converter 610 being less than the UVP threshold. As shown in the figure, the UVP signal and the attenuation completion signal are connected to an OR gate 692, which can control the switch component 660. In other words, when the UVP signal or the attenuation completion signal is triggered, the switch component 660 is controlled, which will be described in detail in conjunction with FIG7 below.
图7示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制的流程图。如图所示,确定衰减是否被使能,例如,是否有衰减使能信号。如果是,则确定OVP是否被触发。当确定OVP被触发时,如图6所示的S1接通,S2关断,从而断开反馈比较器650与开关电容转换器610之间的连接。这将继续工作,直到UVP组件690发射脉冲或控制回路接收到“衰减完成”信号。当没有OVP信号时,表明负载电流大到足以跟随参考电压的速度。如果检测到衰减完成信号或UVP信号,则S1关断,S2接通,这恢复了反馈比较器650和开关电容转换器610之间的连接,从而使得来自反馈比较器650的时钟信号将被发送到开关电容转换器610。FIG7 shows a flow chart of attenuation control for a switched capacitor converter according to some embodiments of the present invention. As shown, it is determined whether attenuation is enabled, for example, whether there is an attenuation enable signal. If so, it is determined whether OVP is triggered. When it is determined that OVP is triggered, S1 as shown in FIG6 is turned on and S2 is turned off, thereby disconnecting the connection between the feedback comparator 650 and the switched capacitor converter 610. This will continue to work until the UVP component 690 emits a pulse or the control loop receives a "attenuation completion" signal. When there is no OVP signal, it indicates that the load current is large enough to follow the speed of the reference voltage. If the attenuation completion signal or UVP signal is detected, S1 is turned off and S2 is turned on, which restores the connection between the feedback comparator 650 and the switched capacitor converter 610, so that the clock signal from the feedback comparator 650 will be sent to the switched capacitor converter 610.
参考回图6,开关组件660可以以不同于开关组件460的方式来实现。如图6所示,S1被连接到脉冲宽度调节组件670,S2被连接到开关电容转换器610。当S1接通,S2关断时,反馈比较器650和开关电容转换器610之间的连接是断开的,开关电容转换器610的输入是浮动的。此外,反馈比较器650的时钟脉冲被输入到脉冲宽度调整组件670。以这种方式,放电晶体管620的放电时段基于开关电容器转换器610的时钟信号。当S2接通,S1关断时,反馈比较器650与开关电容转换器610之间的连接闭合,反馈比较器650的时钟脉冲可以被输入到开关电容转换器610。Referring back to FIG. 6 , the switch component 660 may be implemented in a manner different from the switch component 460 . As shown in FIG. 6 , S1 is connected to the pulse width adjustment component 670 and S2 is connected to the switch capacitor converter 610 . When S1 is turned on and S2 is turned off, the connection between the feedback comparator 650 and the switch capacitor converter 610 is disconnected and the input of the switch capacitor converter 610 is floating. In addition, the clock pulse of the feedback comparator 650 is input to the pulse width adjustment component 670 . In this way, the discharge period of the discharge transistor 620 is based on the clock signal of the switch capacitor converter 610 . When S2 is turned on and S1 is turned off, the connection between the feedback comparator 650 and the switch capacitor converter 610 is closed and the clock pulse of the feedback comparator 650 can be input to the switch capacitor converter 610 .
如图6所示,在门驱动器680之前提供了非门694。由于开关式电容转换器610的上调能力,当开关式电容转换器610的输出电压低于DAC信号时,反馈比较器650将输出高信号来触发开关式电容转换器610提高其输出电压。但是启动放电晶体管620也是需要高信号的。因此,当过压发生时,反馈比较器650的输出是低信号,因而需要通过非门694反向为高信号,以通过放电晶体管620进行放电。As shown in FIG6 , a NOT gate 694 is provided before the gate driver 680. Due to the up-regulation capability of the switched capacitor converter 610, when the output voltage of the switched capacitor converter 610 is lower than the DAC signal, the feedback comparator 650 will output a high signal to trigger the switched capacitor converter 610 to increase its output voltage. However, a high signal is also required to start the discharge transistor 620. Therefore, when an overvoltage occurs, the output of the feedback comparator 650 is a low signal, and thus needs to be reversed to a high signal through the NOT gate 694 to discharge through the discharge transistor 620.
反馈比较器可以发射具有固定脉冲宽度的时钟。脉冲宽度调节组件可以改变时钟频率以改变用于放电的脉冲宽度。图8示出了根据本发明的一些实施例的脉冲宽度调整的示例。如图所示,时钟频率被减半。然而,其他调节方式也是适用的,本公开在该方面不受限制。The feedback comparator can emit a clock with a fixed pulse width. The pulse width adjustment component can change the clock frequency to change the pulse width for discharge. FIG8 shows an example of pulse width adjustment according to some embodiments of the present invention. As shown, the clock frequency is halved. However, other adjustment methods are also applicable, and the present disclosure is not limited in this respect.
图9和图10示出了图6的衰减控制系统的仿真结果的示例。来自反馈比较器650的输出时钟用于在快速衰减模式下控制放电组件,因此放电电路的占空比由反馈比较器650控制。输出电压由感应输出电压表征,感应输出电压可按比例小于输出电压。Figures 9 and 10 show examples of simulation results for the decay control system of Figure 6. The output clock from the feedback comparator 650 is used to control the discharge component in the fast decay mode, so the duty cycle of the discharge circuit is controlled by the feedback comparator 650. The output voltage is characterized by the sensed output voltage, which may be proportionally smaller than the output voltage.
在图9中,衰减速度设定为5mV/ns。如图所示,感知的输出电压很好地跟随DAC信号。In Figure 9, the decay speed is set to 5mV/ns. As shown, the sensed output voltage follows the DAC signal very well.
在图10中,两个衰减速度分别为5mV/ns和10mV/ns。如图所示,感知的输出电压在相应的衰减速度下很好地跟随DAC信号。In Figure 10, the two decay speeds are 5mV/ns and 10mV/ns. As shown, the sensed output voltage follows the DAC signal well at the corresponding decay speeds.
图11示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。在图11中,开关电容转换器1110、放电晶体管1120、OVP组件1130、与门1140、反馈比较器1150、脉冲宽度调节组件1170、门驱动器1180、UVP组件1190、以及或门1192分别对应于图6的开关电容转换器610、放电晶体管620、OVP组件630、与门640、反馈比较器650、脉冲宽度调节组件670、门驱动器680、UVP组件690、以及或门692,这里不再赘述。图11中的开关组件1160的工作原理与图4中的开关组件460相同,不同于图6中的开关组件660。此外,使用放电晶体管1120放电的占空比是根据OVP信号确定的,其与图4相同,但与图6不同。FIG11 shows an example of an attenuation control system for a switched capacitor converter according to some embodiments of the present invention. In FIG11 , the switched capacitor converter 1110, the discharge transistor 1120, the OVP component 1130, the AND gate 1140, the feedback comparator 1150, the pulse width adjustment component 1170, the gate driver 1180, the UVP component 1190, and the OR gate 1192 correspond to the switched capacitor converter 610, the discharge transistor 620, the OVP component 630, the AND gate 640, the feedback comparator 650, the pulse width adjustment component 670, the gate driver 680, the UVP component 690, and the OR gate 692 of FIG6 , respectively, and are not repeated here. The working principle of the switch component 1160 in FIG11 is the same as that of the switch component 460 in FIG4 , and is different from the switch component 660 in FIG6 . In addition, the duty cycle of the discharge using the discharge transistor 1120 is determined according to the OVP signal, which is the same as FIG4 , but different from FIG6 .
图12、图13和图14示出了图11的衰减控制系统的仿真结果的示例。在图12、图13、图14中呈现了轻负荷下的闭环调节。OVP组件1130的输出时钟用于在快速衰减模式下控制放电组件,因此放电电路的占空比由OVP组件1130控制。输出电压由感应输出电压表征,感应输出电压可按比例小于输出电压。Figures 12, 13 and 14 show examples of simulation results for the decay control system of Figure 11. Closed-loop regulation under light load is presented in Figures 12, 13 and 14. The output clock of the OVP component 1130 is used to control the discharge component in the fast decay mode, so the duty cycle of the discharge circuit is controlled by the OVP component 1130. The output voltage is characterized by the sensed output voltage, which may be proportionally smaller than the output voltage.
在图12中,在轻负载条件下,在衰减模式结束后,输出电压接近新目标,使负载继续放电。当到达新的目标时,反馈组件时钟被发送到开关电容转换器。In Figure 12, under light load conditions, after decay mode ends, the output voltage approaches the new target, allowing the load to continue discharging. When the new target is reached, the feedback component clock is sent to the switched capacitor converter.
在图13中,示出了衰减窗口,在该衰减窗口期间,OVP脉冲被触发,并且放电组件开始工作。In FIG. 13 , a decay window is shown during which the OVP pulse is triggered and the discharge component starts to operate.
在图14中,OVP在衰减模式下触发放电组件。然而,在衰减模式期间负载激增,从而触发UVP。然后反馈组件时钟被发送到开关电容转换器,以避免进一步降低输出电压。In Figure 14, OVP triggers the discharge component in decay mode. However, the load surges during decay mode, triggering UVP. The feedback component clock is then sent to the switched capacitor converter to avoid further reduction in the output voltage.
在图12和图13中,负载电流较小。当接收到衰减完成信号时,输出电压将根据负载电流衰减到新目标。在图14中,衰减模式期间出现了较大的负载电流,触发了UVP分量。然后开关电容转换器再次运行。In Figure 12 and Figure 13, the load current is small. When the decay completion signal is received, the output voltage decays to the new target according to the load current. In Figure 14, a large load current appears during the decay mode, triggering the UVP component. Then the switched capacitor converter operates again.
图15示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。在图15中,开关电容转换器可以用C2VR PTR芯片来实现。但其它开关电容转换器也适用。本公开在该方面不受限制。可以用迟滞比较器来实现反馈比较器。但是,其他比较器也适用。本公开在该方面不受限制。如图15所示的目标参考电压DAC2和OVP阈值DAC3由数字控制单元(DCU)控制。此外,OVP组件和反馈比较器的时钟也分别由DCU提供。如图所示,向反馈比较器提供时钟选择单元,以调节例如1GHz C2VR时钟。FIG15 shows an example of an attenuation control system for a switched capacitor converter according to some embodiments of the present invention. In FIG15 , the switched capacitor converter can be implemented with a C2VR PTR chip. However, other switched capacitor converters are also applicable. The present disclosure is not limited in this respect. The feedback comparator can be implemented with a hysteresis comparator. However, other comparators are also applicable. The present disclosure is not limited in this respect. The target reference voltage DAC2 and the OVP threshold DAC3 shown in FIG15 are controlled by a digital control unit (DCU). In addition, the clocks of the OVP component and the feedback comparator are also provided by the DCU respectively. As shown in the figure, a clock selection unit is provided to the feedback comparator to adjust, for example, a 1GHz C2VR clock.
在图15中,放电组件由一组放电晶体管实现。它们可以并联排列。来自DCU的信号d2a_decay_en可以控制放电窗口。在一些实施例中,所有放电晶体管在放电窗口期间同时开启。在一些实施例中,放电晶体管异步开启。如图所示,另一信号d2a_ovp_trig可以通过内部生成的放电门脉冲控制放电晶体管交替打开。In FIG15 , the discharge component is implemented by a set of discharge transistors. They can be arranged in parallel. A signal d2a_decay_en from the DCU can control the discharge window. In some embodiments, all discharge transistors are turned on simultaneously during the discharge window. In some embodiments, the discharge transistors are turned on asynchronously. As shown in the figure, another signal d2a_ovp_trig can control the discharge transistors to turn on alternately through an internally generated discharge gate pulse.
图16和图17示出了图15的衰减控制系统的仿真结果的示例。如图所示,当一组放电晶体管中的一个或多个放电晶体管具有单独的开启时间时,尖刺电流降低。在图16中,放电均匀分布在10个不重叠的时钟周期中。放电电流约为780mA,放电时间为10ns。在图17中,通过进一步改进放电时钟模式,将不重叠时钟相位增加到20个。放电电流进一步降低到350mA,并持续20ns的时间。FIG16 and FIG17 show examples of simulation results of the decay control system of FIG15. As shown in the figure, when one or more discharge transistors in a group of discharge transistors have a separate turn-on time, the spike current is reduced. In FIG16, the discharge is evenly distributed in 10 non-overlapping clock cycles. The discharge current is about 780mA and the discharge time is 10ns. In FIG17, by further improving the discharge clock pattern, the non-overlapping clock phases are increased to 20. The discharge current is further reduced to 350mA and lasts for 20ns.
图18示出了根据本发明的一些实施例的用于开关电容转换器的衰减控制系统的示例。在图18中,快速衰减是在现有的开关电容转换器结构内设计的。换句话说,现有的开关电容转换器将增加额外的模式,称为快速衰减模式。在此模式中,接通Vout到接地端VSS的路径,并且该控制可以基于前面实施例中描述的任何方法。FIG18 shows an example of an attenuation control system for a switched capacitor converter according to some embodiments of the present invention. In FIG18 , fast attenuation is designed within the existing switched capacitor converter structure. In other words, the existing switched capacitor converter will add an additional mode, called the fast attenuation mode. In this mode, the path from Vout to the ground terminal VSS is turned on, and the control can be based on any of the methods described in the previous embodiments.
在本公开中,受控放电电路被引入到传统的开关电容转换器控制回路中。在放电模式或衰减模式下,开关电容转换器的反馈时钟不发送给开关电容转换器。利用本公开的解决方案,可以将开关电容转换器修改为能够双向调节(既上调又下调)的转换器。可以满足任何衰减速度。此外,由于OVP和UVP,增强了对负载的保护。In the present disclosure, a controlled discharge circuit is introduced into a conventional switched capacitor converter control loop. In the discharge mode or decay mode, the feedback clock of the switched capacitor converter is not sent to the switched capacitor converter. With the solution of the present disclosure, the switched capacitor converter can be modified into a converter capable of bidirectional regulation (both up and down regulation). Any decay speed can be met. In addition, due to OVP and UVP, the protection of the load is enhanced.
虽然参考特定实现方式描述了以下实施例,但实施例在这个方面不受限制。特别是,预期本文描述的实施例的类似技术和教导可被应用到其他类型的电路、半导体器件、处理器、系统等。例如,公开的实施例可被实现在任何类型的计算机系统中,包括服务器计算机(例如,塔式、机架式、刀片式、微服务器等)、通信系统、存储系统、任何配置的桌面型计算机、膝上型计算机、笔记本计算机、以及平板计算机(包括2:1平板、平板手机等)。Although the following embodiments are described with reference to specific implementations, the embodiments are not limited in this respect. In particular, it is expected that similar techniques and teachings of the embodiments described herein can be applied to other types of circuits, semiconductor devices, processors, systems, etc. For example, the disclosed embodiments can be implemented in any type of computer system, including server computers (e.g., tower, rack, blade, microserver, etc.), communication systems, storage systems, desktop computers of any configuration, laptop computers, notebook computers, and tablet computers (including 2:1 tablets, tablet phones, etc.).
此外,公开的实施例还可被用在其他设备中,例如,手持设备、片上系统(systemson chip,SoC)、以及嵌入式应用。手持设备的一些示例包括诸如智能电话之类的蜂窝电话、互联网协议设备、数码相机、个人数字助理(personal digital assistant,PDA)、以及手持PC。嵌入式应用通常可包括微控制器、数字信号处理器(digital signal processor,DSP)、网络计算机(NetPC)、机顶盒、网络集线器、广域网(wide area network,WAN)交换机、可穿戴设备、或者能够执行下文教导的功能和操作的任何其他系统。此外,实施例可被实现在具有标准语音功能的移动终端中,例如,移动电话、智能电话和平板手机,和/或被实现在不具有标准无线语音功能通信能力的非移动终端中,例如,许多可穿戴设备、平板设备、笔记本计算机、桌面型计算机、微服务器、服务器等。In addition, the disclosed embodiments may also be used in other devices, such as handheld devices, systems on chip (SoC), and embedded applications. Some examples of handheld devices include cellular phones such as smart phones, Internet protocol devices, digital cameras, personal digital assistants (PDAs), and handheld PCs. Embedded applications may typically include microcontrollers, digital signal processors (DSPs), network computers (NetPCs), set-top boxes, network hubs, wide area networks (WANs), wearable devices, or any other system capable of performing the functions and operations taught below. In addition, embodiments may be implemented in mobile terminals with standard voice functions, such as mobile phones, smart phones, and tablet phones, and/or implemented in non-mobile terminals that do not have standard wireless voice function communication capabilities, such as many wearable devices, tablet devices, notebook computers, desktop computers, micro servers, servers, etc.
现在参考图19,示出的是根据本发明的实施例的系统的一部分的框图。如图19所示,系统1900可包括包含处理器1910的各种组件,该处理器1910如图所示是多核处理器。处理器1910可经由外部电压调节器1960耦合到电源1950,该外部电压调节器1960可执行第一电压转换,以向处理器1910提供主调节电压Vreg。Referring now to FIG. 19 , a block diagram of a portion of a system according to an embodiment of the present invention is shown. As shown in FIG. 19 , the system 1900 may include various components including a processor 1910, which is a multi-core processor as shown. The processor 1910 may be coupled to a power supply 1950 via an external voltage regulator 1960, which may perform a first voltage conversion to provide a main regulation voltage Vreg to the processor 1910.
可以看出,处理器1910可以是包括多个核1920a–1920n的单管芯处理器。此外,每个核可与集成电压调节器(integrated voltage regulator,IVR)1925a–1925n相关联,该IVR接收主调节电压并且生成待被提供到处理器的与该IVR相关联的一个或多个代理的操作电压。因此,可以提供IVR实现方式以允许对电压进行细粒度控制,并从而允许对每个单独核的功率和性能进行细粒度控制。这样,每个核可以以独立的电压和频率进行操作,这实现了很大的灵活性并且提供了很宽的机会来平衡功耗与性能。在一些实施例中,对多个IVR的使用使得能够将组件分组到分离的电力平面中,使得电力被IVR调节并仅供应到该组中的那些组件。在功率管理期间,在处理器被置于某个低功率状态下时,一个IVR的给定电力平面可被掉电或断电,而另一IVR的另一电力平面保持活跃或者被完全供电。类似地,核1920可包括独立的时钟生成电路(例如,一个或多个锁相环(phase lock loop,PLL))或者与独立的时钟生成电路相关联,以独立地控制每个核1920的操作频率。As can be seen, the processor 1910 can be a single-die processor including multiple cores 1920a-1920n. In addition, each core can be associated with an integrated voltage regulator (IVR) 1925a-1925n, which receives a main regulation voltage and generates an operating voltage for one or more agents associated with the IVR to be provided to the processor. Therefore, an IVR implementation can be provided to allow fine-grained control of voltage, and thereby allow fine-grained control of the power and performance of each individual core. In this way, each core can operate at an independent voltage and frequency, which enables great flexibility and provides a wide opportunity to balance power consumption and performance. In some embodiments, the use of multiple IVRs enables components to be grouped into separate power planes, so that power is regulated by the IVR and supplied only to those components in the group. During power management, when the processor is placed in a low-power state, a given power plane of an IVR can be powered down or powered off, while another power plane of another IVR remains active or fully powered. Similarly, cores 1920 may include or be associated with independent clock generation circuits (eg, one or more phase lock loops (PLLs)) to independently control the operating frequency of each core 1920 .
仍参考图19,额外的组件可存在于处理器内,包括输入/输出接口(interface,IF)1932、另一接口1934、以及集成存储器控制器(integrated memory controller,IMC)1936。可以看出,这些组件中的每一者可由另外的集成电压调节器1925x来供电。在一个实施例中,接口1932可实现针对快速路径互连(Quick Path Interconnect,QPI)互连结构的操作,该互连结构提供包括多个层的缓存一致性协议中的点到点(point-to-point,PtP)链路,该多个层包括物理层、链路层和协议层。转而,接口1934可经由外围组件互连快速(Peripheral Component Interconnect Express,PCIeTM)协议来通信。Still referring to FIG. 19 , additional components may be present within the processor, including an input/output interface (IF) 1932, another interface 1934, and an integrated memory controller (IMC) 1936. As can be seen, each of these components may be powered by an additional integrated voltage regulator 1925 x . In one embodiment, the interface 1932 may implement a The interface 1934 may communicate via a Peripheral Component Interconnect Express (PCIe ™ ) protocol.
还示出了功率控制单元(power control unit,PCU)1938,该PCU 1938可包括以下电路:该电路包括用于执行关于处理器1910的功率管理操作的硬件、软件和/或固件。可以看出,PCU 1938经由数字接口C向外部电压调节器1960提供控制信息,以使得电压调节器生成适当的调节电压。PCU 1938还经由另一数字接口C向IVR 1925提供控制信息,以控制生成的操作电压(或者使得相应的IVR在低功率模式下被禁用)。在各种实施例中,PCU 1938可包括各种功率管理逻辑单元来执行基于硬件的功率管理。这种功率管理可以是完全受处理器控制的(例如,由各种处理器硬件控制,并且可以由工作负载和/或功率约束、热约束或其他处理器约束来触发),和/或功率管理可响应于外部源(例如,平台或功率管理源或系统软件)而被执行。Also shown is a power control unit (PCU) 1938, which may include the following circuits: The circuits include hardware, software and/or firmware for performing power management operations with respect to the processor 1910. It can be seen that the PCU 1938 provides control information to the external voltage regulator 1960 via a digital interface C so that the voltage regulator generates an appropriate regulated voltage. The PCU 1938 also provides control information to the IVR 1925 via another digital interface C to control the generated operating voltage (or cause the corresponding IVR to be disabled in a low power mode). In various embodiments, the PCU 1938 may include various power management logic units to perform hardware-based power management. Such power management may be completely processor-controlled (e.g., controlled by various processor hardware and may be triggered by workload and/or power constraints, thermal constraints or other processor constraints), and/or power management may be performed in response to an external source (e.g., a platform or power management source or system software).
在图19中,PCU 1938被示出为作为处理器的单独逻辑而存在。在其他情况下,PCU1938可在核1920中给定的一个或多个核上执行。在一些情况下,PCU 1938可被实现为被配置为执行其自己的专用功率管理代码(有时称为P代码)的(专用或通用)微控制器或者其他控制逻辑。在另外的其他实施例中,PCU 1938待执行的功率管理操作可在处理器外部实现,例如,借由单独的功率管理集成电路(power management integrated circuit,PMIC)或者处理器外部的另一组件来实现。在另外的其他实施例中,PCU 1938待执行的功率管理操作可在BIOS或其他系统软件内实现。In FIG. 19 , PCU 1938 is shown as existing as separate logic of the processor. In other cases, PCU 1938 may execute on a given one or more cores in core 1920. In some cases, PCU 1938 may be implemented as a (dedicated or general purpose) microcontroller or other control logic configured to execute its own dedicated power management code (sometimes referred to as P-code). In still other embodiments, the power management operations to be performed by PCU 1938 may be implemented external to the processor, for example, by a separate power management integrated circuit (PMIC) or another component external to the processor. In still other embodiments, the power management operations to be performed by PCU 1938 may be implemented within the BIOS or other system software.
实施例可特别适合于多核处理器,在多核处理器中,多个核中的每一者可在独立的电压和频率点进行操作。如本文所使用的,术语“域”用于意指在相同的电压和频率点操作的硬件和/或逻辑的集合。此外,多核处理器还可包括其他非核处理引擎,例如,固定功能单元、图形引擎等。这种处理器可包括除了核以外的独立域,例如,与图形引擎相关联的一个或多个域(本文中称为图形域)、以及与非核电路相关联的一个或多个域(本文中称为系统代理)。虽然多域处理器的许多实现方式可被形成在单个半导体管芯上,但其他实现方式可由多芯片封装实现,在该多芯片封装中,不同的域可存在于单个封装的不同半导体管芯上。Embodiments may be particularly suitable for multi-core processors, in which each of the multiple cores may operate at independent voltage and frequency points. As used herein, the term "domain" is used to refer to a collection of hardware and/or logic that operates at the same voltage and frequency point. In addition, a multi-core processor may also include other non-core processing engines, such as fixed function units, graphics engines, etc. Such a processor may include independent domains other than the core, for example, one or more domains associated with the graphics engine (referred to herein as graphics domains), and one or more domains associated with non-core circuits (referred to herein as system agents). Although many implementations of multi-domain processors may be formed on a single semiconductor die, other implementations may be implemented by a multi-chip package in which different domains may be present on different semiconductor dies in a single package.
虽然为了图示的方便而没有示出,但应理解在处理器1910内可存在额外的组件,例如,非核逻辑、以及诸如内部存储器之类的其他组件,例如,缓存存储器层次体系的一个或多个级别等。此外,虽然在图19的实现方式中是用集成电压调节器来示出的,但实施例不限于此。例如,可从外部电压调节器1960或者调节电压的一个或多个额外的外部源向片上资源提供其他调节电压。Although not shown for ease of illustration, it should be understood that additional components may exist within the processor 1910, such as non-core logic, and other components such as internal memory, such as one or more levels of a cache memory hierarchy, etc. In addition, although shown with an integrated voltage regulator in the implementation of FIG. 19 , embodiments are not limited thereto. For example, other regulated voltages may be provided to the on-chip resources from the external voltage regulator 1960 or one or more additional external sources of regulated voltage.
应注意,本文描述的功率管理技术可独立于基于操作系统(operating system,OS)的功率管理(operating system-based power management,OSPM)机制并且与其互补。根据一个示例OSPM技术,处理器可以以各种性能状态或水平——所谓的P状态——进行操作,即从P0至PN。总体上,P1性能状态可对应于OS可以请求的最高保证性能状态。除了这个P1状态以外,OS还可请求更高的性能状态,即P0状态。这个P0状态因而可以是机会模式、超频模式、或高速(turbo)模式状态,在这些模式状态下,当功率和/或热预算可用时,处理器硬件可将处理器或者其至少一些部分配置为以高于保证频率的频率进行操作。在许多实现方式中,处理器可包括在P1保证最大频率之上、直到超出到特定处理器最大峰值频率的多个所谓的分段频率(bin frequency),这些分段频率在制造期间被烧熔或以其他方式写入到处理器中。此外,根据一个OSPM机制,处理器可以以各种功率状态或水平进行操作。关于功率状态,OSPM机制可以指定不同的功耗状态,通常称为C状态:C0、C1至Cn状态。当核活跃时,该核以C0状态来运行;当核空闲时,其可被置于核低功率状态,也被称为核非零C状态(例如,C1-C6状态),其中每个C状态均处于更低的功耗水平(因此,C6是比C1更深度的低功率状态等依此类推)。It should be noted that the power management techniques described herein may be independent of and complementary to the operating system (OS)-based power management (OSPM) mechanism. According to an example OSPM technique, the processor may operate in various performance states or levels, so-called P states, i.e., from P0 to PN. In general, the P1 performance state may correspond to the highest guaranteed performance state that the OS may request. In addition to this P1 state, the OS may also request a higher performance state, i.e., the P0 state. This P0 state may thus be an opportunity mode, an overclocking mode, or a high-speed (turbo) mode state, in which the processor hardware may configure the processor or at least some of its parts to operate at a frequency higher than the guaranteed frequency when power and/or thermal budgets are available. In many implementations, the processor may include multiple so-called bin frequencies above the P1 guaranteed maximum frequency, until exceeding the maximum peak frequency of a particular processor, which are burned or otherwise written into the processor during manufacturing. In addition, according to an OSPM mechanism, the processor may operate in various power states or levels. Regarding power states, the OSPM mechanism can specify different power consumption states, usually referred to as C-states: C0, C1 to Cn states. When a core is active, it runs in the C0 state; when a core is idle, it can be placed in a core low power state, also referred to as a core non-zero C-state (e.g., C1-C6 states), where each C-state is at a lower power consumption level (so C6 is a deeper low power state than C1, and so on).
应理解,许多不同类型的功率管理技术在不同的实施例中可被单独或组合使用。作为代表性示例,功率控制器可控制处理器按某种形式的动态电压频率缩放(dynamicvoltage frequency scaling,DVFS)来被功率管理,在该动态电压频率缩放中,一个或多个核或其他处理器逻辑的操作电压和/或操作频率可被动态地控制以在某些情形中降低功耗。在一个示例中,可利用可从加州圣克拉拉的英特尔公司获得的增强型英特尔SpeedStepTM技术来执行DVFS,来以最低的功耗水平提供最优的性能。在另一示例中,可利用英特尔TurboBoostTM技术来执行DVFS,以使得一个或多个核或其他计算引擎能够基于状况(例如,工作负载和可用性)而以高于保证操作频率的频率进行操作。It should be understood that many different types of power management techniques may be used alone or in combination in different embodiments. As a representative example, a power controller may control a processor to be power managed by some form of dynamic voltage frequency scaling (DVFS), in which the operating voltage and/or operating frequency of one or more cores or other processor logic may be dynamically controlled to reduce power consumption in certain situations. In one example, DVFS may be performed using enhanced Intel SpeedStep TM technology available from Intel Corporation of Santa Clara, California, to provide optimal performance at the lowest power consumption level. In another example, DVFS may be performed using Intel TurboBoost TM technology to enable one or more cores or other computing engines to operate at a frequency higher than the guaranteed operating frequency based on conditions (e.g., workload and availability).
在某些示例中可使用的另一种功率管理技术是工作负载在不同计算引擎之间的动态调换。例如,处理器可包括以不同的功耗水平操作的非对称核或其他处理引擎,使得在功率受约束的情形中,一个或多个工作负载可被动态切换为在更低功率的核或其他计算引擎上执行。另一种示例性功率管理技术是硬件工作周期循环(hardware duty cycling,HDC),其可使得核和/或其他计算引擎根据工作周期被周期性地启用和禁用,从而使得一个或多个核可在工作周期的非活跃时间段期间被设为不活跃并且在工作周期的活跃时间段期间被设为活跃。Another power management technique that may be used in some examples is the dynamic swapping of workloads between different computing engines. For example, a processor may include asymmetric cores or other processing engines that operate at different power consumption levels, such that in a power-constrained situation, one or more workloads may be dynamically switched to execute on a lower-power core or other computing engine. Another exemplary power management technique is hardware duty cycling (HDC), which may cause cores and/or other computing engines to be periodically enabled and disabled according to a duty cycle, such that one or more cores may be set to inactive during an inactive time period of a duty cycle and set to active during an active time period of a duty cycle.
当在操作环境中存在约束时也可使用功率管理技术。例如,当遇到功率约束和/或热约束时,可通过降低操作频率和/或电压来降低功率。其他功率管理技术包括扼制指令执行速率或者限制指令的调度。此外,给定的指令集架构的指令有可能包括关于功率管理操作的明确或隐含指引。虽然是利用这些特定示例来进行描述的,但应理解在特定实施例中可使用许多其他功率管理技术。Power management techniques may also be used when there are constraints in the operating environment. For example, when power constraints and/or thermal constraints are encountered, power may be reduced by reducing the operating frequency and/or voltage. Other power management techniques include throttling the execution rate of instructions or limiting the scheduling of instructions. In addition, instructions of a given instruction set architecture may include explicit or implicit guidance about power management operations. Although described using these specific examples, it should be understood that many other power management techniques may be used in specific embodiments.
现在参考图20,示出的是根据本发明的实施例的处理器的框图。在图20的实施例中,处理器2000可以是包括多个域的SoC,每个域可被控制为以独立的操作电压和操作频率进行操作。作为具体的示意性示例,处理器2000可以是可从英特尔公司获得的基于Architecture CoreTM的处理器(例如,i3、i5、i7或另外的这种处理器)。然而,其他低功率处理器(例如,可从加州森尼维尔市的超微半导体公司(AMD)获得的低功率处理器、来自ARM控股有限公司或其被许可方的基于ARM的设计、或者来自加州森尼维尔市的MIPS技术公司或者其被许可方或采用者的基于MIPS的设计)可取而代之存在于其他实施例中,例如,苹果A7处理器、高通骁龙处理器或者德州仪器OMAP处理器。这种SoC可用于低功率系统(例如,智能电话、平板计算机、平板手机计算机、UltrabookTM计算机、或者其他便携式计算设备)中,该低功率系统可包含具有基于异构系统架构的处理器设计的异构系统架构。Referring now to FIG. 20 , a block diagram of a processor according to an embodiment of the present invention is shown. In the embodiment of FIG. 20 , the processor 2000 may be a SoC including a plurality of domains, each of which may be controlled to operate at an independent operating voltage and operating frequency. As a specific illustrative example, the processor 2000 may be a SoC based on Intel® FPGA available from Intel Corporation. In some embodiments, the SoC may be used in a processor having an Intel Core 2 Duo Architecture Core TM (e.g., an i3, i5, i7, or another such processor). However, other low-power processors (e.g., low-power processors available from Advanced Micro Devices, Inc. (AMD) of Sunnyvale, California, ARM-based designs from ARM Holdings, Inc. or its licensees, or MIPS-based designs from MIPS Technologies, Inc. of Sunnyvale, California or its licensees or adopters) may be substituted in other embodiments, such as an Apple A7 processor, a Qualcomm Snapdragon processor, or a Texas Instruments OMAP processor. Such a SoC may be used in a low-power system (e.g., a smartphone, a tablet computer, a phablet computer, an Ultrabook TM computer, or other portable computing device) that may include a heterogeneous system architecture having a processor design based on a heterogeneous system architecture.
在图20中所示的高级别视图中,处理器2000包括多个核单元2010a-2010n。每个核单元可包括一个或多个处理器核、一个或多个缓存存储器以及其他电路。每个核单元2010可支持一个或多个指令集(例如,x86指令集(具有已随着较新版本添加的一些扩展);MIPS指令集;ARM指令集(具有诸如NEON之类的可选附加扩展)或者其他指令集或者其组合。应注意,核单元中的一些可以是异构资源(例如,具有不同的设计)。此外,每个这种核可耦合到缓存存储器(未示出),该缓存存储器在一个实施例中可以是共享级别二(L2)缓存存储器。非易失性存储装置2030可被用于存储各种程序和其他数据。例如,此存储装置可用于存储微代码的至少一些部分、诸如BIOS之类的引导信息、其他系统软件等。In the high-level view shown in Figure 20, the processor 2000 includes multiple core units 2010a-2010n. Each core unit may include one or more processor cores, one or more cache memories, and other circuits. Each core unit 2010 may support one or more instruction sets (e.g., the x86 instruction set (with some extensions that have been added with newer versions); the MIPS instruction set; the ARM instruction set (with optional additional extensions such as NEON) or other instruction sets or combinations thereof. It should be noted that some of the core units may be heterogeneous resources (e.g., with different designs). In addition, each such core may be coupled to a cache memory (not shown), which in one embodiment may be a shared level two (L2) cache memory. The non-volatile storage device 2030 may be used to store various programs and other data. For example, this storage device may be used to store at least some portions of microcode, boot information such as BIOS, other system software, etc.
每个核单元2010还可包括接口(例如,总线接口单元),来使得能够互连到处理器的额外电路。在一个实施例中,每个核单元2010耦合到可充当主缓存一致片上互连结构的一致结构,该一致结构转而耦合到存储器控制器2035。转而,存储器控制器2035控制与诸如DRAM之类的存储器(在图20中为了图示的方便而没有示出)的通信。Each core unit 2010 may also include an interface (e.g., a bus interface unit) to enable interconnection to additional circuits of the processor. In one embodiment, each core unit 2010 is coupled to a coherent fabric that may serve as a primary cache coherent on-chip interconnect fabric, which in turn is coupled to a memory controller 2035. In turn, the memory controller 2035 controls communication with a memory such as a DRAM (not shown in FIG. 20 for ease of illustration).
除了核单元以外,处理器内还存在额外的处理引擎,包括至少一个图形单元2020,该图形单元2020可包括一个或多个图形处理单元(graphics processing unit,GPU),以用于执行图形处理,并可用于执行图形处理器上的通用操作(所谓的GPGPU操作)。此外,可存在至少一个图像信号处理器2025。信号处理器2025可被配置为处理从在SoC内部或者在片外的一个或多个捕获设备接收的传入图像数据。In addition to the core units, there are additional processing engines within the processor, including at least one graphics unit 2020, which may include one or more graphics processing units (GPUs) for performing graphics processing and may be used to perform general-purpose operations on a graphics processor (so-called GPGPU operations). In addition, there may be at least one image signal processor 2025. The signal processor 2025 may be configured to process incoming image data received from one or more capture devices within the SoC or off-chip.
还可存在其他加速器。在图20的图示中,视频编码器2050可执行包括对视频信息进行编码和解码的编码操作,例如为高清晰度视频内容提供硬件加速支持。还可提供显示控制器2055来加速显示操作,包括为系统的内部和外部显示器提供支持。此外,可存在安全性处理器2045,以用于执行诸如安全引导操作、各种密码操作等之类的安全性操作。Other accelerators may also be present. In the illustration of FIG. 20 , a video encoder 2050 may perform encoding operations including encoding and decoding video information, such as providing hardware acceleration support for high-definition video content. A display controller 2055 may also be provided to accelerate display operations, including providing support for internal and external displays of the system. In addition, a security processor 2045 may be present for performing security operations such as secure boot operations, various cryptographic operations, and the like.
每个单元的功耗可经由功率管理器2040来控制,该功率管理器2040可包括用于执行本文描述的各种功率管理技术的控制逻辑。The power consumption of each unit may be controlled via a power manager 2040, which may include control logic for performing the various power management techniques described herein.
在一些实施例中,处理器2000还可包括耦合到一致结构的非一致结构,其中各种外围设备可耦合到该一致结构。一个或多个接口2060a-2060d实现与一个或多个片外设备的通信。这种通信可经由各种通信协议,例如PCIeTM、GPIO、USB、I2C、UART、MIPI、SDIO、DDR、SPI、HDMI、以及其他类型的通信协议。虽然在图20的实施例中是在这个高级别示出的,但应理解本发明的范围在这个方面不受限制。In some embodiments, the processor 2000 may also include a non-uniform structure coupled to a uniform structure, wherein various peripheral devices may be coupled to the uniform structure. One or more interfaces 2060a-2060d enable communication with one or more off-chip devices. Such communication may be via various communication protocols, such as PCIe ™ , GPIO, USB, I2C , UART, MIPI, SDIO, DDR, SPI, HDMI, and other types of communication protocols. Although shown at this high level in the embodiment of Figure 20, it should be understood that the scope of the present invention is not limited in this respect.
现在参考图21,示出的是示例SoC的框图。在图21的实施例中,SoC2100可包括各种电路来针对多媒体应用、通信和其他功能实现高性能。这样,SoC 2100适合于包含到各种各样的便携设备和其他设备中,例如,智能电话、平板计算机、智能TV等。在示出的示例中,SoC2100包括中央处理器单元(central processor unit,CPU)域2110。在一个实施例中,多个单独的处理器核可存在于CPU域2110中。作为一个示例,CPU域2110可以是具有4个多线程核的四核处理器。这种处理器可以是同构或异构处理器,例如,低功率和高功率处理器核的混合。Now referring to Figure 21, shown is a block diagram of an example SoC. In the embodiment of Figure 21, SoC2100 may include various circuits to achieve high performance for multimedia applications, communications and other functions. In this way, SoC 2100 is suitable for inclusion in a variety of portable devices and other devices, such as smart phones, tablet computers, smart TVs, etc. In the example shown, SoC2100 includes a central processor unit (CPU) domain 2110. In one embodiment, multiple separate processor cores may exist in the CPU domain 2110. As an example, the CPU domain 2110 may be a quad-core processor with 4 multi-threaded cores. Such a processor may be a homogeneous or heterogeneous processor, such as a mixture of low-power and high-power processor cores.
转而,提供GPU域2120来在一个或多个GPU中执行高级图形处理,以处理图形和计算API。DSP单元2130除了可提供发生在多媒体指令的执行期间的高级计算以外,还可提供一个或多个低功率DSP来处理低功率多媒体应用,例如,音乐重放、音频/视频等。转而,通信单元2140可包括各种组件来经由各种无线协议提供连通性,例如,蜂窝通信(包括3G/4GLTE)、诸如BluetoothTM之类的无线局域协议、IEEE 802.11等。In turn, the GPU domain 2120 is provided to perform high-level graphics processing in one or more GPUs to handle graphics and computing APIs. In addition to providing high-level computing that occurs during the execution of multimedia instructions, the DSP unit 2130 can also provide one or more low-power DSPs to process low-power multimedia applications, such as music playback, audio/video, etc. In turn, the communication unit 2140 may include various components to provide connectivity via various wireless protocols, such as cellular communications (including 3G/4G LTE), wireless local area protocols such as Bluetooth TM , IEEE 802.11, etc.
此外,多媒体处理器2150可用于执行对高清晰度视频和音频内容的捕获和重放,包括对用户姿态的处理。传感器单元2160可包括多个传感器和/或传感器控制器来与存在于给定平台中的各种片外传感器交互。图像信号处理器(image signal processor,ISP)2170可执行关于来自平台的一个或多个相机(包括静态相机和视频相机)的捕获内容的图像处理。In addition, the multimedia processor 2150 may be used to perform capture and playback of high-definition video and audio content, including processing of user gestures. The sensor unit 2160 may include multiple sensors and/or sensor controllers to interact with various off-chip sensors present in a given platform. The image signal processor (ISP) 2170 may perform image processing on captured content from one or more cameras (including still cameras and video cameras) of the platform.
显示处理器2180可提供对与给定像素密度的高清晰度显示器的连接的支持,包括无线地传输内容以用于在这种显示器上重放的能力。此外,位置单元2190可包括全球定位系统(Global Positioning System,GPS)接收器,该GPS接收器具有对多个GPS星座的支持,以向应用提供使用这种GPS接收器获得的高度准确的定位信息。应理解,虽然在图21的示例中是以这组特定的组件来示出的,但许多变化和替代是可能的。The display processor 2180 may provide support for connection to a high-definition display of a given pixel density, including the ability to wirelessly transmit content for playback on such a display. In addition, the location unit 2190 may include a Global Positioning System (GPS) receiver with support for multiple GPS constellations to provide applications with highly accurate positioning information obtained using such a GPS receiver. It should be understood that although shown with this particular set of components in the example of Figure 21, many variations and alternatives are possible.
现在参考图22,示出的是可与实施例一起使用的示例系统的框图。可以看出,系统2200可以是智能电话或者其他无线通信器。基带处理器2205被配置为执行关于待从系统发送或者被系统接收的通信信号的各种信号处理。转而,基带处理器2205耦合到应用处理器2210,应用处理器2210可以是系统的主CPU,以用于执行OS和其他系统软件、以及诸如许多公知的社交媒体和多媒体app之类的用户应用。应用处理器2210还可被配置为执行针对设备的各种其他计算操作。Referring now to FIG. 22 , shown is a block diagram of an example system that may be used with an embodiment. As can be seen, system 2200 may be a smartphone or other wireless communicator. Baseband processor 2205 is configured to perform various signal processing on communication signals to be sent from or received by the system. In turn, baseband processor 2205 is coupled to application processor 2210, which may be the main CPU of the system for executing the OS and other system software, as well as user applications such as many well-known social media and multimedia apps. Application processor 2210 may also be configured to perform various other computing operations for the device.
转而,应用处理器2210可耦合到用户界面/显示器2220,例如,触摸屏显示器。此外,应用处理器2210可耦合到存储器系统,该存储器系统包括非易失性存储器(即,闪速存储器2230)以及系统存储器(即,动态随机存取存储器(dynamic random access memory,DRAM)2235)。还可看出,应用处理器2210还耦合到捕获设备2241,例如,可记录视频和/或静态图像的一个或多个图像捕获设备。In turn, the application processor 2210 may be coupled to a user interface/display 2220, such as a touch screen display. In addition, the application processor 2210 may be coupled to a memory system that includes non-volatile memory (i.e., flash memory 2230) and system memory (i.e., dynamic random access memory (DRAM) 2235). It can also be seen that the application processor 2210 is also coupled to a capture device 2241, such as one or more image capture devices that can record video and/or still images.
仍参考图22,通用集成电路卡(universal integrated circuit card,UICC)2240也耦合到应用处理器2210,该通用集成电路卡包括订户身份模块并且可能包括安全存储装置及密码处理器。系统2200还可包括安全性处理器2250,该安全性处理器2250可耦合到应用处理器2210。多个传感器2225可耦合到应用处理器2210以使得能够输入各种感测的信息,例如,加速度计和其他环境信息。音频输出设备2295可提供接口来输出声音,例如,以语音通信、播放的或流媒体音频数据等的形式。Still referring to FIG. 22 , a universal integrated circuit card (UICC) 2240 is also coupled to the application processor 2210, which includes a subscriber identity module and may include a secure storage device and a cryptographic processor. The system 2200 may also include a security processor 2250, which may be coupled to the application processor 2210. A plurality of sensors 2225 may be coupled to the application processor 2210 to enable input of various sensed information, such as accelerometers and other environmental information. An audio output device 2295 may provide an interface to output sound, for example, in the form of voice communications, played or streaming audio data, etc.
如还图示的,提供了近场通信(near field communication,NFC)无接触接口2260,其经由NFC天线2265在NFC近场中进行通信。虽然在图22中示出了分离的天线,但应理解,在一些实现方式中,可提供一个天线或者不同组天线来实现各种无线功能。As also illustrated, a near field communication (NFC) contactless interface 2260 is provided that communicates in the NFC near field via an NFC antenna 2265. Although separate antennas are shown in FIG22 , it should be understood that in some implementations, one antenna or different groups of antennas may be provided to implement various wireless functions.
功率管理集成电路(power management integrated circuit,PMIC)2215耦合到应用处理器2210以执行平台级功率管理。为此,PMIC 2215可向应用处理器2210发出功率管理请求以根据需要进入某些低功率状态。此外,基于平台约束,PMIC 2215还可控制系统2200的其他组件的功率水平。A power management integrated circuit (PMIC) 2215 is coupled to the application processor 2210 to perform platform-level power management. To this end, the PMIC 2215 may issue power management requests to the application processor 2210 to enter certain low-power states as needed. In addition, based on platform constraints, the PMIC 2215 may also control the power levels of other components of the system 2200.
为了实现待被发送和接收的通信,各种电路可被耦合在基带处理器2205和天线2290之间。具体而言,可存在射频(radio frequency,RF)收发器2270和无线局域网(wireless local area network,WLAN)收发器2275。总体上,RF收发器2270可用于根据给定的无线通信协议来接收和发送无线数据和呼叫,给定的无线通信协议例如是3G或4G无线通信协议,例如,其是根据码分多址(code division multiple access,CDMA)、全球移动通信系统(global system for mobile communication,GSM)、长期演进(long termevolution,LTE)或其他协议的。此外,可存在GPS传感器2280。还可提供其他无线通信,例如,对无线电信号(例如,AM/FM)和其他信号的接收或发送。此外,经由WLAN收发器2275,还可实现本地无线通信。In order to enable communications to be sent and received, various circuits may be coupled between the baseband processor 2205 and the antenna 2290. Specifically, there may be a radio frequency (RF) transceiver 2270 and a wireless local area network (WLAN) transceiver 2275. In general, the RF transceiver 2270 may be used to receive and send wireless data and calls according to a given wireless communication protocol, such as a 3G or 4G wireless communication protocol, for example, which is based on code division multiple access (CDMA), global system for mobile communication (GSM), long term evolution (LTE) or other protocols. In addition, there may be a GPS sensor 2280. Other wireless communications may also be provided, such as the reception or transmission of radio signals (e.g., AM/FM) and other signals. In addition, via the WLAN transceiver 2275, local wireless communications may also be achieved.
现在参考图23,示出的是可与实施例一起使用的另一示例系统的框图。在图23的图示中,系统2300可以是移动低功率系统,例如,平板计算机、2:1平板设备、平板手机、或者其他可转换的或独立的平板系统。如图所示,存在SoC 2310,并且其可被配置为作为设备的应用处理器进行操作。Referring now to FIG. 23 , a block diagram of another example system that may be used with embodiments is shown. In the illustration of FIG. 23 , system 2300 may be a mobile low-power system, such as a tablet computer, a 2:1 tablet device, a tablet phone, or other convertible or standalone tablet system. As shown, there is a SoC 2310, and it may be configured to operate as an application processor of the device.
各种设备可耦合到SoC 2310。在示出的图示中,存储器子系统包括耦合到SoC2310的闪速存储器2340和DRAM 2345。此外,触摸面板2320耦合到SoC 2310以提供显示能力和经由触摸的用户输入,包括在触摸面板2320的显示器上提供虚拟键盘。为了提供有线网络连通性,SoC 2310耦合到以太网接口2330。外设中枢(peripheral hub)2325耦合到SoC2310以实现与各种外围设备的交互,例如,各种外围设备可通过各种端口或其他连接器中的任何一者耦合到系统2300。Various devices may be coupled to the SoC 2310. In the illustrated diagram, the memory subsystem includes a flash memory 2340 and a DRAM 2345 coupled to the SoC 2310. In addition, a touch panel 2320 is coupled to the SoC 2310 to provide display capabilities and user input via touch, including providing a virtual keyboard on the display of the touch panel 2320. To provide wired network connectivity, the SoC 2310 is coupled to an Ethernet interface 2330. A peripheral hub 2325 is coupled to the SoC 2310 to enable interaction with various peripheral devices, for example, various peripheral devices may be coupled to the system 2300 through any of a variety of ports or other connectors.
除了SoC 2310内的内部功率管理电路和功能以外,PMIC 2380还耦合到SoC 2310以提供基于平台的功率管理,例如,基于系统是被电池2390供电还是经由AC适配器2395被AC电力供电。除了这个基于电源的功率管理以外,PMIC 2380还可基于环境和使用状况来执行平台功率管理活动。此外,PMIC 2380可以向SoC 2310传达控制和状态信息以引起SoC2310内的各种功率管理动作。In addition to the internal power management circuits and functions within the SoC 2310, the PMIC 2380 is coupled to the SoC 2310 to provide platform-based power management, for example, based on whether the system is powered by the battery 2390 or by AC power via the AC adapter 2395. In addition to this source-based power management, the PMIC 2380 can also perform platform power management activities based on environmental and usage conditions. In addition, the PMIC 2380 can communicate control and status information to the SoC 2310 to cause various power management actions within the SoC 2310.
仍然参考图23,为了提供无线能力,WLAN单元2350耦合到SoC2310并且转而耦合到天线2355。在各种实现方式中,WLAN单元2350可根据一个或多个无线协议来提供通信。23, to provide wireless capabilities, a WLAN unit 2350 is coupled to the SoC 2310 and in turn to the antenna 2355. In various implementations, the WLAN unit 2350 may provide communications according to one or more wireless protocols.
如还图示的,多个传感器2360可耦合到SoC 2310。这些传感器可包括各种加速度计、环境和其他传感器,包括用户姿态传感器。最后,音频编解码器2365耦合到SoC 2310以提供到音频输出设备2370的接口。当然应理解,虽然在图23中是以这个特定实现方式示出的,但许多变化和替代是可能的。As also illustrated, a plurality of sensors 2360 may be coupled to the SoC 2310. These sensors may include various accelerometers, environmental and other sensors, including user gesture sensors. Finally, an audio codec 2365 is coupled to the SoC 2310 to provide an interface to an audio output device 2370. It should be understood, of course, that although shown in FIG. 23 with this particular implementation, many variations and alternatives are possible.
现在参考图24,示出了诸如笔记本、UltrabookTM或其他小外形参数系统之类的代表性计算机系统2400的框图。在一个实施例中,处理器2410包括微处理器、多核处理器、多线程处理器、超低电压处理器、嵌入式处理器、或者其他已知的处理元件。在图示的实现方式中,处理器2410充当主处理单元和中央中枢以用于与系统2400的各种组件中的许多进行通信,并且可包括如本文所述的功率管理电路。作为一个示例,处理器2410被实现为SoC。Referring now to FIG. 24 , a block diagram of a representative computer system 2400 such as a notebook, Ultrabook ™ or other small form factor system is shown. In one embodiment, the processor 2410 comprises a microprocessor, a multi-core processor, a multi-threaded processor, an ultra-low voltage processor, an embedded processor, or other known processing element. In the illustrated implementation, the processor 2410 acts as a main processing unit and a central hub for communicating with many of the various components of the system 2400, and may include power management circuitry as described herein. As an example, the processor 2410 is implemented as a SoC.
在一个实施例中,处理器2410与系统存储器2415通信。作为说明性示例,系统存储器2415是经由多个存储器设备或模块来实现的,以提供给定量的系统存储器。In one embodiment, processor 2410 is in communication with system memory 2415. As an illustrative example, system memory 2415 is implemented via multiple memory devices or modules to provide a fixed amount of system memory.
为了提供对诸如数据、应用、一个或多个操作系统等之类的信息的持久性存储,大容量存储装置2420还可耦合到处理器2410。在各种实施例中,为了实现更薄和更轻的系统设计以及为了改善系统响应能力,可经由SAD来实现这个大容量存储装置,或者可主要使用硬盘驱动器(hard disk drive,HDD)来实现该大容量存储装置,其中较小量的SAD存储装置充当SAD缓存来使得能够在掉电事件期间对情境状态和其他这种信息进行非易失性存储,从而使得在系统活动重起时可发生快速上电。图24中还示出的是,闪存设备2422可耦合到处理器2410,例如,经由串行外围接口(serial peripheral interface,SPI)来耦合。这个闪存设备可提供对系统软件的非易失性存储,包括基本输入/输出软件(basic input/output software,BIOS)以及系统的其他固件。To provide persistent storage of information such as data, applications, one or more operating systems, and the like, a mass storage device 2420 may also be coupled to the processor 2410. In various embodiments, to achieve a thinner and lighter system design and to improve system responsiveness, this mass storage device may be implemented via a SAD, or may be implemented primarily using a hard disk drive (HDD), with a smaller amount of SAD storage acting as a SAD cache to enable non-volatile storage of contextual states and other such information during a power-off event, so that a fast power-up may occur when system activity is restarted. Also shown in FIG. 24 is that a flash memory device 2422 may be coupled to the processor 2410, for example, via a serial peripheral interface (SPI). This flash memory device may provide non-volatile storage for system software, including basic input/output software (BIOS) and other firmware for the system.
各种输入/输出(I/O)设备可存在于系统2400内。具体而言,在图24的实施例中示出的是显示器2424,其可以是还提供了触摸屏2425的高清晰度LCD或LED面板。在一个实施例中,显示器2424可经由显示互连结构耦合到处理器2410,该显示互连结构可被实现为高性能图形互连结构。触摸屏2425可经由另一互连结构耦合到处理器2410,在一实施例中,该另一互连结构可以是I2C互连结构。如图24中还示出的,除了触摸屏2425以外,借由触摸的用户输入还可经由触摸板2430发生,该触摸板2430可被配置在机壳内并且还可耦合到与触摸屏2425相同的I2C互连结构。Various input/output (I/O) devices may be present within system 2400. Specifically, shown in the embodiment of FIG. 24 is a display 2424, which may be a high definition LCD or LED panel that also provides a touch screen 2425. In one embodiment, display 2424 may be coupled to processor 2410 via a display interconnect structure, which may be implemented as a high performance graphics interconnect structure. Touch screen 2425 may be coupled to processor 2410 via another interconnect structure, which may be an I 2 C interconnect structure in one embodiment. As also shown in FIG. 24, in addition to touch screen 2425, user input by touch may also occur via a touch pad 2430, which may be configured within the housing and may also be coupled to the same I 2 C interconnect structure as touch screen 2425.
为了感知计算和其他的目的,系统内可存在各种传感器,并且各种传感器可按不同的方式耦合到处理器2410。某些惯性和环境传感器可通过传感器中枢2440(例如,经由I2C互连结构)耦合到处理器2410。在图24所示的实施例中,这些传感器可包括加速度计2441、环境光传感器(ambient light sensor,ALS)2442、指南针2443、以及陀螺仪2444。其他环境传感器可包括一个或多个热传感器2446,在一些实施例中,这些热传感器2446经由系统管理总线(SMBus)总线耦合到处理器2410。For sensory computing and other purposes, various sensors may be present within the system and may be coupled to the processor 2410 in different ways. Certain inertial and environmental sensors may be coupled to the processor 2410 via a sensor hub 2440 (e.g., via an I 2 C interconnect structure). In the embodiment shown in FIG. 24 , these sensors may include an accelerometer 2441, an ambient light sensor (ALS) 2442, a compass 2443, and a gyroscope 2444. Other environmental sensors may include one or more thermal sensors 2446, which in some embodiments are coupled to the processor 2410 via a system management bus (SMBus) bus.
在图24中还可看出,各种外围设备可经由低引脚数(low pin count,LPC)互连结构耦合到处理器2410。在示出的实施例中,各种组件可通过嵌入式控制器2435被耦合。这种组件可包括键盘2436(例如,经由PS2接口耦合)、风扇2437、以及热传感器2439。在一些实施例中,触摸板2430也可经由PS2接口耦合到EC 2435。此外,诸如可信平台模块(trustedplatform module,TPM)2438之类的安全性处理器也可经由这个LPC互连结构来耦合到处理器2410。It can also be seen in FIG. 24 that various peripherals can be coupled to the processor 2410 via a low pin count (LPC) interconnect structure. In the illustrated embodiment, various components can be coupled via an embedded controller 2435. Such components can include a keyboard 2436 (e.g., coupled via a PS2 interface), a fan 2437, and a thermal sensor 2439. In some embodiments, a touchpad 2430 can also be coupled to the EC 2435 via a PS2 interface. In addition, a security processor such as a trusted platform module (TPM) 2438 can also be coupled to the processor 2410 via this LPC interconnect structure.
系统2400可以以各种方式与外部设备进行通信,包括无线地通信。在图24所示的实施例中,存在各种无线模块,其中每一者可对应于被配置用于特定的无线通信协议的无线电装置。用于诸如近场之类的短距离中的无线通信的一种方式可经由NFC单元2445,在一个实施例中,该NFC单元2445可经由SMBus与处理器2410进行通信。应注意,经由这个NFC单元2445,彼此很接近的设备可通信。The system 2400 can communicate with external devices in various ways, including wirelessly. In the embodiment shown in Figure 24, there are various wireless modules, each of which can correspond to a radio configured for a specific wireless communication protocol. One way to wirelessly communicate in a short distance such as a near field can be via an NFC unit 2445, which in one embodiment can communicate with the processor 2410 via SMBus. It should be noted that via this NFC unit 2445, devices that are very close to each other can communicate.
从图24中还可看出,额外的无线单元可包括其他短距离无线引擎,包括WLAN单元2450和BluetoothTM单元2452。使用WLAN单元2450,可以实现Wi-FiTM通信,而经由BluetoothTM单元2452,可发生短距离BluetoothTM通信。这些单元可经由给定的链路与处理器2410进行通信。24, additional wireless units may include other short-range wireless engines, including a WLAN unit 2450 and a Bluetooth ™ unit 2452. Using the WLAN unit 2450, Wi-Fi ™ communications may be implemented, while short-range Bluetooth ™ communications may occur via the Bluetooth ™ unit 2452. These units may communicate with the processor 2410 via a given link.
此外,无线广域通信,例如根据蜂窝或其他无线广域协议的无线广域通信,可经由WWAN单元2456发生,该WWAN单元2456转而可耦合到订户身份模块(subscriber identitymodule,SIM)2457。此外,为了实现对位置信息的接收和使用,还可存在GPS模块2455。应注意,在图24所示的实施例中,WWAN单元2456和诸如相机模块2454之类的集成捕获设备可经由给定的链路进行通信。In addition, wireless wide area communications, such as wireless wide area communications according to cellular or other wireless wide area protocols, may occur via a WWAN unit 2456, which in turn may be coupled to a subscriber identity module (SIM) 2457. In addition, to enable the reception and use of location information, a GPS module 2455 may also be present. It should be noted that in the embodiment shown in FIG. 24, the WWAN unit 2456 and an integrated capture device such as a camera module 2454 may communicate via a given link.
为了提供音频输入和输出,可经由数字信号处理器(digital signal processor,DSP)2460来实现音频处理器,该DSP 2460可经由高清晰度音频(high definition audio,HDA)链路耦合到处理器2410。类似地,DSP 2460可与集成编码器/解码器(CODEC)及放大器2462进行通信,该集成CODEC及放大器2462转而可耦合到输出扬声器2463,该输出扬声器2463可被实现在机壳内。类似地,放大器及CODEC 2462可被耦合为从麦克风2465接收音频输入,该在一实施例中,麦克风2465可经由双阵列麦克风(例如,数字麦克风阵列)来实现,以提供高质量音频输入,从而实现对系统内的各种操作的由语音激活的控制。还应注意,音频输出可从放大器/CODEC 2462被提供到耳机插孔2464。虽然在图24的实施例中是以这些特定组件来示出的,但应理解本发明的范围在这个方面不受限制。To provide audio input and output, an audio processor may be implemented via a digital signal processor (DSP) 2460, which may be coupled to the processor 2410 via a high definition audio (HDA) link. Similarly, the DSP 2460 may communicate with an integrated coder/decoder (CODEC) and amplifier 2462, which in turn may be coupled to an output speaker 2463, which may be implemented within the housing. Similarly, the amplifier and CODEC 2462 may be coupled to receive audio input from a microphone 2465, which in one embodiment may be implemented via a dual array microphone (e.g., a digital microphone array) to provide high quality audio input, thereby enabling voice activated control of various operations within the system. It should also be noted that audio output may be provided from the amplifier/CODEC 2462 to a headphone jack 2464. While shown with these specific components in the embodiment of FIG. 24, understand the scope of the present invention is not limited in this regard.
以下段落描述了各种实施例的示例。The following paragraphs describe examples of various embodiments.
示例1包括一种用于开关电容转换器的衰减控制电路。该衰减控制电路包括过压保护(OVP)组件,所述OVP组件被配置为响应于所述开关电容转换器的输出电压大于OVP阈值来输出OVP信号。该衰减控制电路还包括放电组件,所述放电组件被配置为响应于所述OVP信号和衰减使能信号两者来对所述开关电容转换器的输出电压进行放电。Example 1 includes an attenuation control circuit for a switched capacitor converter. The attenuation control circuit includes an overvoltage protection (OVP) component configured to output an OVP signal in response to an output voltage of the switched capacitor converter being greater than an OVP threshold. The attenuation control circuit also includes a discharge component configured to discharge the output voltage of the switched capacitor converter in response to both the OVP signal and an attenuation enable signal.
示例2包括示例1所述的衰减控制电路。该衰减控制电路还包括开关组件,所述开关组件被配置为:响应于所述OVP信号和所述衰减使能信号两者来禁用所述开关电容转换器;以及响应于衰减完成信号来启用所述开关电容转换器。Example 2 includes the decay control circuit of Example 1. The decay control circuit further includes a switch component configured to: disable the switched capacitor converter in response to both the OVP signal and the decay enable signal; and enable the switched capacitor converter in response to a decay completion signal.
示例3包括示例1或2所述的衰减控制电路。该衰减控制电路还包括欠压保护(UVP)组件,所述UVP组件被配置为响应于所述开关电容转换器的输出电压小于UVP阈值来输出UVP信号。所述放电组件被配置为响应于所述UVP信号或衰减完成信号来停止对所述开关电容转换器的输出电压的放电。Example 3 includes the decay control circuit of Example 1 or 2. The decay control circuit further includes an undervoltage protection (UVP) component, the UVP component being configured to output a UVP signal in response to the output voltage of the switch capacitor converter being less than a UVP threshold. The discharge component is configured to stop discharging the output voltage of the switch capacitor converter in response to the UVP signal or the decay completion signal.
示例4包括示例1至3中任一项所述的衰减控制电路。该衰减控制电路还包括开关组件,所述开关组件被配置为:响应于所述OVP信号和所述衰减使能信号两者来禁用所述开关电容转换器;以及响应于所述UVP信号或所述衰减完成信号来启用所述开关电容转换器。Example 4 includes the attenuation control circuit of any one of Examples 1 to 3. The attenuation control circuit further includes a switch component configured to: disable the switched capacitor converter in response to both the OVP signal and the attenuation enable signal; and enable the switched capacitor converter in response to the UVP signal or the attenuation completion signal.
示例5包括示例1至4中任一项所述的衰减控制电路。所述放电组件的放电时段是基于所述OVP信号的。Example 5 includes the decay control circuit of any one of Examples 1 to 4. A discharge period of the discharge component is based on the OVP signal.
示例6包括示例1至5中任一项所述的衰减控制电路。所述放电组件的放电时段是基于所述开关电容转换器的时钟信号的。Example 6 includes the decay control circuit of any of Examples 1 to 5. A discharge period of the discharge component is based on a clock signal of the switched capacitor converter.
示例7包括示例1至6中任一项所述的衰减控制电路。所述放电组件包括位于所述开关电容转换器外部的一个或多个晶体管,所述一个或多个晶体管被配置为耦合在所述开关电容转换器的输出电压端和接地端之间。Example 7 includes the decay control circuit of any one of Examples 1 to 6. The discharge component includes one or more transistors located outside the switched capacitor converter, and the one or more transistors are configured to be coupled between an output voltage terminal of the switched capacitor converter and a ground terminal.
示例8包括示例1至7中任一项所述的衰减控制电路。所述放电组件包括多个晶体管,所述多个晶体管被配置为在放电期间交替开启。Example 8 includes the decay control circuit of any of Examples 1 to 7. The discharge component includes a plurality of transistors configured to be alternately turned on during discharge.
示例9包括示例1至8中任一项所述的衰减控制电路。所述放电组件包括位于所述开关电容转换器内的路径,所述路径被配置为耦合在所述开关电容转换器的输出电压端和所述开关电容转换器的接地端之间。Example 9 includes the decay control circuit of any one of Examples 1 to 8. The discharge component includes a path within the switched capacitor converter, the path configured to be coupled between an output voltage terminal of the switched capacitor converter and a ground terminal of the switched capacitor converter.
示例10包括示例1至9中任一项所述的衰减控制电路。所述衰减使能信号是在衰减模式或稳态模式下触发的。Example 10 includes the attenuation control circuit of any one of Examples 1 to 9. The attenuation enable signal is triggered in a decay mode or a steady-state mode.
示例11包括一种计算机系统。该计算机系统包括:存储器;和处理器,所述处理器与所述存储器耦合。所述处理器包括用于开关电容转换器的衰减控制电路。所述衰减控制电路包括过压保护(OVP)组件,所述OVP组件被配置为响应于所述开关电容转换器的输出电压大于OVP阈值来输出OVP信号。所述衰减控制电路还包括放电组件,所述放电组件被配置为响应于所述OVP信号和衰减使能信号两者来对所述开关电容转换器的输出电压进行放电。Example 11 includes a computer system. The computer system includes: a memory; and a processor, the processor coupled to the memory. The processor includes an attenuation control circuit for a switched capacitor converter. The attenuation control circuit includes an overvoltage protection (OVP) component, the OVP component configured to output an OVP signal in response to an output voltage of the switched capacitor converter being greater than an OVP threshold. The attenuation control circuit also includes a discharge component, the discharge component configured to discharge the output voltage of the switched capacitor converter in response to both the OVP signal and an attenuation enable signal.
示例12包括示例11所述的计算机系统。所述衰减控制电路还包括开关组件,所述开关组件被配置为:响应于所述OVP信号和所述衰减使能信号两者来禁用所述开关电容转换器;以及响应于衰减完成信号来启用所述开关电容转换器。Example 12 includes the computer system of Example 11. The decay control circuit further includes a switch component configured to: disable the switched capacitor converter in response to both the OVP signal and the decay enable signal; and enable the switched capacitor converter in response to a decay completion signal.
示例13包括示例11或12所述的计算机系统。所述衰减控制电路还包括欠压保护(UVP)组件,所述UVP组件被配置为响应于所述开关电容转换器的输出电压小于UVP阈值来输出UVP信号。所述放电组件被配置为响应于所述UVP信号或衰减完成信号来停止对所述开关电容转换器的输出电压的放电。Example 13 includes the computer system of Example 11 or 12. The decay control circuit further includes an undervoltage protection (UVP) component, the UVP component configured to output a UVP signal in response to the output voltage of the switch capacitor converter being less than a UVP threshold. The discharge component is configured to stop discharging the output voltage of the switch capacitor converter in response to the UVP signal or the decay completion signal.
示例14包括示例11至13中任一项所述的计算机系统。所述衰减控制电路还包括开关组件,所述开关组件被配置为:响应于所述OVP信号和所述衰减使能信号两者来禁用所述开关电容转换器;以及响应于所述UVP信号或所述衰减完成信号来启用所述开关电容转换器。Example 14 includes the computer system of any one of Examples 11 to 13. The decay control circuit further includes a switch component configured to: disable the switched capacitor converter in response to both the OVP signal and the decay enable signal; and enable the switched capacitor converter in response to the UVP signal or the decay completion signal.
示例15包括示例11至14中任一项所述的计算机系统。所述放电组件的放电时段是基于所述OVP信号的。Example 15 includes the computer system of any of Examples 11 to 14. A discharge period of the discharge component is based on the OVP signal.
示例16包括示例11至15中任一项所述的计算机系统。所述放电组件的放电时段是基于所述开关电容转换器的时钟信号的。Example 16 includes the computer system of any of Examples 11 to 15. A discharge period of the discharge component is based on a clock signal of the switched capacitor converter.
示例17包括示例11至16中任一项所述的计算机系统。所述放电组件包括位于所述开关电容转换器外部的一个或多个晶体管,所述一个或多个晶体管被配置为耦合在所述开关电容转换器的输出电压端和接地端之间。Example 17 includes the computer system of any one of Examples 11 to 16. The discharge component includes one or more transistors located outside the switched capacitor converter, the one or more transistors configured to be coupled between an output voltage terminal of the switched capacitor converter and a ground terminal.
示例18包括示例11至17中任一项所述的计算机系统。所述放电组件包括多个晶体管,所述多个晶体管被配置为在放电期间交替开启。Example 18 includes the computer system of any of Examples 11 to 17. The discharge component includes a plurality of transistors configured to be alternately turned on during discharge.
示例19包括示例11至18中任一项所述的计算机系统。所述放电组件包括位于所述开关电容转换器内的路径,所述路径被配置为耦合在所述开关电容转换器的输出电压端和所述开关电容转换器的接地端之间。Example 19 includes the computer system of any of Examples 11 to 18. The discharge component includes a path within the switched capacitor converter, the path configured to be coupled between an output voltage terminal of the switched capacitor converter and a ground terminal of the switched capacitor converter.
示例20包括示例11至19中任一项所述的计算机系统。所述衰减使能信号是在衰减模式或稳态模式下触发的。Example 20 includes the computer system of any one of Examples 11 to 19. The decay enable signal is triggered in a decay mode or a steady state mode.
示例21包括一种用于开关电容转换器的衰减控制方法。该衰减控制方法包括响应于所述开关电容转换器的输出电压大于OVP阈值来触发OVP组件输出OVP信号。该衰减控制方法还包括响应于所述OVP信号和衰减使能信号两者来开启放电组件以对所述开关电容转换器的输出电压进行放电。Example 21 includes an attenuation control method for a switched capacitor converter. The attenuation control method includes triggering an OVP component to output an OVP signal in response to an output voltage of the switched capacitor converter being greater than an OVP threshold. The attenuation control method also includes turning on a discharge component in response to both the OVP signal and an attenuation enable signal to discharge the output voltage of the switched capacitor converter.
示例22包括示例21所述的衰减控制方法。该衰减控制方法还包括:响应于所述OVP信号和所述衰减使能信号两者来禁用所述开关电容转换器;以及响应于衰减完成信号来启用所述开关电容转换器。Example 22 includes the attenuation control method of Example 21. The attenuation control method further includes: disabling the switched capacitor converter in response to both the OVP signal and the attenuation enable signal; and enabling the switched capacitor converter in response to a attenuation completion signal.
示例23包括示例21或22所述的衰减控制方法。该衰减控制方法还包括:响应于所述开关电容转换器的输出电压小于UVP阈值来触发UVP组件输出UVP信号。该衰减控制方法还包括:响应于所述UVP信号或衰减完成信号来关闭所述放电组件以停止对所述开关电容转换器的输出电压的放电。Example 23 includes the attenuation control method described in Example 21 or 22. The attenuation control method further includes: in response to the output voltage of the switch capacitor converter being less than the UVP threshold, triggering the UVP component to output a UVP signal. The attenuation control method further includes: in response to the UVP signal or the attenuation completion signal, closing the discharge component to stop discharging the output voltage of the switch capacitor converter.
示例24包括示例21至23中任一项所述的衰减控制方法。该衰减控制方法还包括:响应于所述OVP信号和所述衰减使能信号两者来禁用所述开关电容转换器;以及响应于所述UVP信号或所述衰减完成信号来启用所述开关电容转换器。Example 24 includes the attenuation control method of any one of Examples 21 to 23. The attenuation control method further includes: disabling the switched capacitor converter in response to both the OVP signal and the attenuation enable signal; and enabling the switched capacitor converter in response to the UVP signal or the attenuation completion signal.
示例25包括示例21至24中任一项所述的衰减控制方法。所述放电组件的放电时段是基于所述OVP信号的。Example 25 includes the decay control method of any one of Examples 21 to 24. A discharge period of the discharge component is based on the OVP signal.
示例26包括示例21至25中任一项所述的衰减控制方法。所述放电组件的放电时段是基于所述开关电容转换器的时钟信号的。Example 26 includes the decay control method of any one of Examples 21 to 25. A discharge period of the discharge component is based on a clock signal of the switched capacitor converter.
示例27包括示例21至26中任一项所述的衰减控制方法。所述放电组件包括位于所述开关电容转换器外部的一个或多个晶体管,所述一个或多个晶体管被配置为耦合在所述开关电容转换器的输出电压端和接地端之间。Example 27 includes the attenuation control method of any one of Examples 21 to 26. The discharge component includes one or more transistors located outside the switched capacitor converter, and the one or more transistors are configured to be coupled between an output voltage terminal of the switched capacitor converter and a ground terminal.
示例28包括示例21至27中任一项所述的衰减控制方法。所述放电组件包括多个晶体管,所述多个晶体管被配置为在放电期间交替开启。Example 28 includes the decay control method of any one of Examples 21 to 27. The discharge component includes a plurality of transistors configured to be alternately turned on during discharge.
示例29包括示例21至28中任一项所述的衰减控制方法。所述放电组件包括位于所述开关电容转换器内的路径,所述路径被配置为耦合在所述开关电容转换器的输出电压端和所述开关电容转换器的接地端之间。Example 29 includes the attenuation control method of any one of Examples 21 to 28. The discharge component includes a path within the switched capacitor converter, the path configured to be coupled between an output voltage terminal of the switched capacitor converter and a ground terminal of the switched capacitor converter.
示例30包括示例21至29中任一项所述的衰减控制方法。所述衰减使能信号是在衰减模式或稳态模式下触发的。Example 30 includes the attenuation control method of any one of Examples 21 to 29. The attenuation enable signal is triggered in a decay mode or a steady-state mode.
示例31包括一种用于开关电容转换器的衰减控制的设备。该设备包括用于执行示例21至30中的任一项方法的装置。Example 31 includes an apparatus for attenuation control of a switched capacitor converter. The apparatus includes means for performing any of the methods of Examples 21 to 30.
示例32包括一种计算机可读介质,其上存储有指令,该指令当被处理器电路执行时使得处理器电路执行示例21至30中任一项所述的方法。Example 32 includes a computer-readable medium having instructions stored thereon that, when executed by a processor circuit, cause the processor circuit to perform the method of any one of Examples 21 to 30.
示例33包括一种衰减控制电路,用于执行示例21至30中的任一项方法。Example 33 includes an attenuation control circuit for performing any of the methods of Examples 21 to 30.
示例34包括一种计算机系统,该计算机系统包括存储器和与该存储器耦合的处理器。该处理器包括衰减控制电路,该衰减控制电路被配置为执行示例21至30中的任一项方法。Example 34 includes a computer system comprising a memory and a processor coupled to the memory. The processor includes an attenuation control circuit configured to perform any of the methods of Examples 21 to 30.
示例35包括一种计算机系统,该计算机系统包括存储器和与该存储器耦合的处理器。该处理器包括如示例1至10所述的衰减控制电路。Example 35 includes a computer system comprising a memory and a processor coupled to the memory. The processor includes the attenuation control circuit as described in Examples 1 to 10.
尽管为了描述的目的在本文中说明和描述了某些实施例,但是在不脱离本公开的范围的情况下,为了实现相同目的而规划的各种替代和/或等同实施例或实现方式可以替代所示出和所描述的实施例。本申请旨在涵盖本文所讨论的实施例的任何改编或变化。因此,易于理解的是,本文描述的实施例仅由所附权利要求及其等同范围限制。Although certain embodiments are illustrated and described herein for descriptive purposes, various alternative and/or equivalent embodiments or implementations planned to achieve the same purpose may replace the embodiments shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptation or variation of the embodiments discussed herein. Therefore, it is readily understood that the embodiments described herein are limited only by the appended claims and their equivalents.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310365255.7A CN118783751A (en) | 2023-04-07 | 2023-04-07 | Apparatus and method for fast decay control of switched capacitor converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310365255.7A CN118783751A (en) | 2023-04-07 | 2023-04-07 | Apparatus and method for fast decay control of switched capacitor converter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118783751A true CN118783751A (en) | 2024-10-15 |
Family
ID=92994180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310365255.7A Pending CN118783751A (en) | 2023-04-07 | 2023-04-07 | Apparatus and method for fast decay control of switched capacitor converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118783751A (en) |
-
2023
- 2023-04-07 CN CN202310365255.7A patent/CN118783751A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7416706B2 (en) | Systems, equipment, and methods for optimal throttling of processors | |
US20170187187A1 (en) | Multiple input single inductor multiple output regulator | |
TWI630476B (en) | Processor,machine-readable medium and system for performing dynamic power control of platform devices | |
US11119555B2 (en) | Processor to pre-empt voltage ramps for exit latency reductions | |
US9766683B2 (en) | Interconnect to communicate information uni-directionally | |
US20130191667A1 (en) | Connected standby sleep state | |
US10761579B2 (en) | Supercapacitor-based power supply protection for multi-node systems | |
US10948968B2 (en) | Controlling processor performance scaling based on context | |
US20230315192A1 (en) | System, apparatus and method for dynamic thermal distribution of a system on chip | |
US20140189225A1 (en) | Independent Control Of Processor Core Retention States | |
US20200285294A1 (en) | Multi-level loops for computer processor control | |
US9141167B2 (en) | Apparatus and method to manage energy usage of a processor | |
KR20210158746A (en) | Usb type-c subsystem power management | |
CN114008562A (en) | Workload-based dynamic energy performance preference using adaptive algorithms | |
KR20110109997A (en) | Electronic device, power control method and power management device | |
US10860083B2 (en) | System, apparatus and method for collective power control of multiple intellectual property agents and a shared power rail | |
CN118783751A (en) | Apparatus and method for fast decay control of switched capacitor converter | |
CN118777681A (en) | Digital Current Sensor System for High Switching Frequency Voltage Regulators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |