CN118762897B - 一种高电阻率烧结钕铁硼永磁材料及其制备方法 - Google Patents
一种高电阻率烧结钕铁硼永磁材料及其制备方法 Download PDFInfo
- Publication number
- CN118762897B CN118762897B CN202411241795.5A CN202411241795A CN118762897B CN 118762897 B CN118762897 B CN 118762897B CN 202411241795 A CN202411241795 A CN 202411241795A CN 118762897 B CN118762897 B CN 118762897B
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- powder
- parts
- magnet material
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 67
- 229910001172 neodymium magnet Inorganic materials 0.000 title claims abstract description 54
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 97
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 45
- 239000002086 nanomaterial Substances 0.000 claims abstract description 44
- -1 rare earth fluoride Chemical class 0.000 claims abstract description 42
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 35
- 239000000956 alloy Substances 0.000 claims abstract description 35
- 239000000314 lubricant Substances 0.000 claims abstract description 23
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000003963 antioxidant agent Substances 0.000 claims abstract description 16
- 230000003078 antioxidant effect Effects 0.000 claims abstract description 16
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 230000032683 aging Effects 0.000 claims description 42
- 238000003723 Smelting Methods 0.000 claims description 35
- 238000005245 sintering Methods 0.000 claims description 30
- 238000007873 sieving Methods 0.000 claims description 23
- 238000002156 mixing Methods 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 20
- 238000005266 casting Methods 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- 239000011812 mixed powder Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 9
- 230000002776 aggregation Effects 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 238000005054 agglomeration Methods 0.000 claims description 7
- 238000011049 filling Methods 0.000 claims description 7
- 150000002431 hydrogen Chemical class 0.000 claims description 7
- 238000000462 isostatic pressing Methods 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 7
- 238000010298 pulverizing process Methods 0.000 claims description 7
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 claims description 6
- 229910021332 silicide Inorganic materials 0.000 claims description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 6
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 5
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 claims description 4
- 235000019359 magnesium stearate Nutrition 0.000 claims description 4
- 239000000696 magnetic material Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 16
- 239000004615 ingredient Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- BOTHRHRVFIZTGG-UHFFFAOYSA-K praseodymium(3+);trifluoride Chemical compound F[Pr](F)F BOTHRHRVFIZTGG-UHFFFAOYSA-K 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- FWQVINSGEXZQHB-UHFFFAOYSA-K trifluorodysprosium Chemical compound F[Dy](F)F FWQVINSGEXZQHB-UHFFFAOYSA-K 0.000 description 3
- XRADHEAKQRNYQQ-UHFFFAOYSA-K trifluoroneodymium Chemical compound F[Nd](F)F XRADHEAKQRNYQQ-UHFFFAOYSA-K 0.000 description 3
- LKNRQYTYDPPUOX-UHFFFAOYSA-K trifluoroterbium Chemical compound F[Tb](F)F LKNRQYTYDPPUOX-UHFFFAOYSA-K 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0573—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0576—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明公开了一种高电阻率烧结钕铁硼永磁材料及其制备方法,涉及永磁材料技术领域,由包含下列质量份数的原料制备得到:基底合金细粉95.0‑99.9份、稀土氟化物粉末0.1‑5份、抗氧化剂0.1‑0.3份、润滑剂0.2‑1.2份、航空汽油0.2‑5份、纳米材料0.1‑0.5份;所述基底合金细粉的成分为(PrNd)a(TM)b(HM)cGadBeFe100‑a‑b‑c‑d‑e,29.5≤a≤32.5,0<b≤5,0<c≤0.8,0.3≤d≤0.5,0.88≤e≤0.94,其中TM为Al、Cu、Co、Mn中的一种或多种,HM为Nb、Zr、Hf、Ti、V中的一种或多种。该永磁材料电阻率高,综合磁性能优异。
Description
技术领域
本发明涉及永磁材料技术领域,尤其涉及一种高电阻率烧结钕铁硼永磁材料及其制备方法。
背景技术
随着科技的不断进步,永磁材料在工业电机、白色家电、风力发电等领域的应用越来越广泛。其中,烧结钕铁硼永磁材料以其高磁能积、高矫顽力和高剩磁的特性,成为了应用最广泛的稀土永磁材料。然而,烧结钕铁硼永磁材料在使用过程中也存在一些明显的问题,如温度稳定性不高,容易在高温下失去磁性,以及化学稳定性不强,容易受到腐蚀。这些问题限制了烧结钕铁硼永磁材料在一些特殊环境中的应用。另外,永磁电机在服役过程中会产生涡流损耗,导致温度升高,引起热退磁。这种热退磁是不可逆的,无法再充磁,从而无法保证原有的磁通量。因此,提高烧结钕铁硼永磁材料的电阻率,减小涡流损耗,是提高其服役稳定性的关键。
目前,已有一些尝试通过添加绝缘材料或将磁体切成小块再进行粘胶的方式来降低烧结钕铁硼永磁材料的涡流损耗。然而,这些方法往往会对磁体的磁性能产生较大影响,又或者制备工艺复杂,周期较长,成本高昂。如,授权公告号为CN1048350C的中国发明专利公开了一种具有较高绝缘性的稀土永磁材料。该材料的组成是环氧树脂1-10%,聚乙烯醇缩丁醛为0-10%,硅烷偶联剂为0-8%,环氧聚酯漆为0.5-10%,其余为稀土永磁合金粉。从其结果看,电绝缘性能确实得到了明显提升,但由于大量绝缘添加剂的加入造成了磁体综合磁性能有待进一步改善。
可见,如何提供一种既能提高电阻率,又能保持优良综合磁性能,且制备工艺简单的烧结钕铁硼永磁材料,是当前业内亟待解决的难题。
发明内容
本发明的主要目的在于提供一种电阻率高,综合磁性能优异的高电阻率烧结钕铁硼永磁材料及其制备方法。
为达到以上目的,本发明提供一种高电阻率烧结钕铁硼永磁材料,由包含下列质量份数的原料制备得到:基底合金细粉95.0-99.9份、稀土氟化物粉末0.1-5份、抗氧化剂0.1-0.3份、润滑剂0.2-1.2份、航空汽油0.2-5份;所述基底合金细粉的成分为(PrNd)a(TM)b(HM)cGadBeFe100-a-b-c-d-e,29.5≤a≤32.5,0<b≤5,0<c≤0.8,0.3≤d≤0.5,0.88≤e≤0.94,其中TM为Al、Cu、Co、Mn中的一种或多种,HM为Nb、Zr、Hf、Ti、V中的一种或多种。
优选的,所述高电阻率烧结钕铁硼永磁材料的制备原料还包括:纳米材料0.1-0.5份。
优选的,所述纳米材料为纳米硅化钽、纳米碳化铌、纳米四氧化三铁中的至少一种;所述纳米材料的粒径为10-80nm。
优选的,所述稀土氟化物粉末的粒度为1.0-3.0μm。
优选的,所述稀土氟化物为氟化镨、氟化钕、氟化镝、氟化铽中的至少一种。
优选的,所述抗氧化剂为抗氧化剂1010、抗氧化剂168中的至少一种。
优选的,所述润滑剂为硬脂酸锌、硬脂酸镁中的一种或多种。
本发明的另一个目的,在于提供一种所述高电阻率烧结钕铁硼永磁材料的制备方法,包括如下步骤:
步骤S1、熔炼:将基底合金粉末的成分配方配料,投入熔炼炉中,待熔炼炉内真空度≤3Pa时,熔炼,浇注,过筛得到平均厚度为0.285-0.305mm的甩带片;
步骤S2、制粉:将经过步骤S1制成的甩带片置于氢破碎炉中,抽真空后充氢气破碎,在500-580℃下脱氢5-7h制成粗粉;然后将粗粉与抗氧化剂混合,在氮气保护下采用气流磨工艺获得基底合金的气流磨细粉;
步骤S3、混粉:将经过步骤S2制成的气流磨细粉与稀土氟化物粉末、润滑剂、航空汽油和纳米材料混合均匀后,通过过筛机过筛以减少细粉的团聚,提升稀土氟化物粉末和纳米材料在晶界处的一致性,得到混合粉末;
步骤S4、成型:将经过步骤S3制成的混合粉末在磁场下压型,并进行等静压,得到压坯;
步骤S5、烧结:将经过步骤S4制成的压坯置入真空烧结炉内,在1000-1050℃ 烧结6-12h,得到毛坯;
步骤S6、时效:将经过步骤S5制成的毛坯进行三级时效处理,得到高电阻率烧结钕铁硼永磁材料。
优选的,步骤S1中所述熔炼的温度为1455-1505℃。
优选的,步骤S1中所述浇注的温度为1405-1475℃。
优选的,步骤S2中所述基底合金的气流磨细粉的平均粒度≤2.8μm,D50≤4.0μm。
优选的,步骤S4中所述磁场的磁场强度≥2000Gs。
优选的,步骤S4中所述等静压的压力为180-220Mpa,保压时间5-60s。
优选的,步骤S5中所述真空烧结炉的真空度≤0.05Pa。
优选的,步骤S6中所述三级时效处理的第一阶段时效处理温度为600-860℃,时间为2-4h,第二阶段时效处理温度为360-600℃,时间为2-4h,第三阶段时效处理温度为450-510℃,时间为2-4h。
由于上述技术方案的运用,本发明具有以下有益效果:
(1)本发明公开的高电阻率烧结钕铁硼永磁材料的制备方法,制备工艺简单,操作控制方便,无需专用设备,资金投入少,耗能低,制备效率和成品合格率高,适于连续规模化生产,具有较高的推广应用价值。
(2)本发明公开的高电阻率烧结钕铁硼永磁材料,由包含下列质量份数的原料制备得到:基底合金细粉95.0-99.9份、稀土氟化物粉末0.1-5份、抗氧化剂0.1-0.3份、润滑剂0.2-1.2份、航空汽油0.2-5份;所述基底合金细粉的成分为(PrNd)a(TM)b(HM)cGadBeFe100-a-b-c-d-e,29.5≤a≤32.5,0<b≤5,0<c≤0.8,0.3≤d≤0.5,0.88≤e≤0.94,其中TM为Al、Cu、Co、Mn中的一种或多种,HM为Nb、Zr、Hf、Ti、V中的一种或多种。通过各原料之间的相互配合作用,使得制成的永磁材料电阻率高,综合磁性能优异;通过稀土氟化物粉末在磁体内部引入束缚电子能力强的F元素从而实现磁体整体电阻的提升;通过基底合金的气流磨粉料粒度的合理选取及通过过筛机过筛,实现稀土氟化物粉末和纳米材料在薄区晶界处的均匀分布,从而进一步提升材料的电阻率,此外在烧结过程中采用低温长时间烧结工艺防止晶粒异常长大,使得稀土氟化物和纳米材料添加量的提升对永磁材料的剩磁影响更小,更有助于高性能磁体的批量化制备。通过基底合金细粉成分配方的合理选取,能有效改善永磁材料的综合磁性能。
(3)本发明公开的高电阻率烧结钕铁硼永磁材料,所述高电阻率烧结钕铁硼永磁材料的制备原料还包括:纳米材料0.1-0.5份;所述纳米材料为纳米硅化钽、纳米碳化铌、纳米四氧化三铁中的至少一种。通过纳米材料的加入,与其它原料组分相互配合作用,能进一步改善永磁材料的性能和电阻率。
(4)本发明公开的高电阻率烧结钕铁硼永磁材料,通过制备步骤和工艺参数的合理选取,使得制成的永磁材料综合磁性能更好,电阻率更高;通过三级时效可以减少富稀土晶界相的团聚,使弥散在晶界处的纳米材料和稀土氟化物均匀分布,同时使得起矫顽力增强效果的薄区富晶界相比例增加,矫顽力得以提升。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
实施例1
一种高电阻率烧结钕铁硼永磁材料,由包含下列质量份数的原料制备得到:基底合金细粉95.0份、稀土氟化物粉末0.1份、抗氧化剂0.1份、润滑剂0.2份、航空汽油0.2份;所述基底合金细粉的成分为(PrNd)a(TM)b(HM)cGadBeFe100-a-b-c-d-e,a=29.5,b=5,c=0.1,d=0.3,e=0.88,其中TM为Al,HM为Nb。
所述高电阻率烧结钕铁硼永磁材料的制备原料还包括:纳米材料0.1份;所述纳米材料为纳米硅化钽;所述纳米材料的粒径为10nm。
所述稀土氟化物粉末的粒度为1.0μm;所述稀土氟化物为氟化镨;所述抗氧化剂为抗氧化剂1010;所述润滑剂为硬脂酸锌。
一种所述高电阻率烧结钕铁硼永磁材料的制备方法,包括如下步骤:
步骤S1、熔炼:将基底合金粉末的成分配方配料,投入熔炼炉中,待熔炼炉内真空度≤3Pa时,熔炼,浇注,过筛得到平均厚度为0.285mm的甩带片;
步骤S2、制粉:将经过步骤S1制成的甩带片置于氢破碎炉中,抽真空后充氢气破碎,在500℃下脱氢5h制成粗粉;然后将粗粉与抗氧化剂混合,在氮气保护下采用气流磨工艺获得基底合金的气流磨细粉;
步骤S3、混粉:将经过步骤S2制成的气流磨细粉与稀土氟化物粉末、润滑剂、航空汽油和纳米材料混合均匀后,通过过筛机过筛以减少细粉的团聚,提升稀土氟化物粉末和纳米材料在晶界处的一致性,得到混合粉末;
步骤S4、成型:将经过步骤S3制成的混合粉末在磁场下压型,并进行等静压,得到压坯;
步骤S5、烧结:将经过步骤S4制成的压坯置入真空烧结炉内,在1000℃烧结6h,得到毛坯;
步骤S6、时效:将经过步骤S5制成的毛坯进行三级时效处理,得到高电阻率烧结钕铁硼永磁材料。
步骤S1中所述熔炼的温度为1455℃;步骤S1中所述浇注的温度为1405℃。
步骤S2中所述基底合金的气流磨细粉的平均粒度≤2.3μm,D50≤4.0μm。
步骤S4中所述磁场的磁场强度≥2000Gs;步骤S4中所述等静压的压力为180Mpa,保压时间5s;步骤S5中所述真空烧结炉的真空度≤0.05Pa。
步骤S6中所述三级时效处理的第一阶段时效处理温度为600℃,时间为2h,第二阶段时效处理温度为360℃,时间为2h,第三阶段时效处理温度为450℃,时间为2h。
实施例2
一种高电阻率烧结钕铁硼永磁材料,由包含下列质量份数的原料制备得到:基底合金细粉96份、稀土氟化物粉末1.5份、抗氧化剂0.15份、润滑剂0.4份、航空汽油1.5份;所述基底合金细粉的成分为(PrNd)a(TM)b(HM)cGadBeFe100-a-b-c-d-e,a=30,b=1,c=0.2,d=0.35,e=0.9,其中TM为Cu,HM为Zr。
所述高电阻率烧结钕铁硼永磁材料的制备原料还包括:纳米材料0.2份;所述纳米材料为纳米碳化铌;所述纳米材料的粒径为30nm。
所述稀土氟化物粉末的粒度为1.5μm;所述稀土氟化物为氟化钕;所述抗氧化剂为抗氧化剂168;所述润滑剂为硬脂酸镁。
一种所述高电阻率烧结钕铁硼永磁材料的制备方法,包括如下步骤:
步骤S1、熔炼:将基底合金粉末的成分配方配料,投入熔炼炉中,待熔炼炉内真空度≤3Pa时,熔炼,浇注,过筛得到平均厚度为0.290mm的甩带片;
步骤S2、制粉:将经过步骤S1制成的甩带片置于氢破碎炉中,抽真空后充氢气破碎,在520℃下脱氢5.5h制成粗粉;然后将粗粉与抗氧化剂混合,在氮气保护下采用气流磨工艺获得基底合金的气流磨细粉;
步骤S3、混粉:将经过步骤S2制成的气流磨细粉与稀土氟化物粉末、润滑剂、航空汽油和纳米材料混合均匀后,通过过筛机过筛以减少细粉的团聚,提升稀土氟化物粉末和纳米材料在晶界处的一致性,得到混合粉末;
步骤S4、成型:将经过步骤S3制成的混合粉末在磁场下压型,并进行等静压,得到压坯;
步骤S5、烧结:将经过步骤S4制成的压坯置入真空烧结炉内,在1020℃ 烧结7h,得到毛坯;
步骤S6、时效:将经过步骤S5制成的毛坯进行三级时效处理,得到高电阻率烧结钕铁硼永磁材料。
步骤S1中所述熔炼的温度为1475℃;步骤S1中所述浇注的温度为1425℃;步骤S2中所述基底合金的气流磨细粉的平均粒度≤2.5μm,D50≤4.0μm。
步骤S4中所述磁场的磁场强度≥2000Gs;步骤S4中所述等静压的压力为190Mpa,保压时间20s;步骤S5中所述真空烧结炉的真空度≤0.05Pa。
步骤S6中所述三级时效处理的第一阶段时效处理温度为660℃,时间为2.5h,第二阶段时效处理温度为450℃,时间为2.5h,第三阶段时效处理温度为470℃,时间为2.5h。
实施例3
一种高电阻率烧结钕铁硼永磁材料,由包含下列质量份数的原料制备得到:基底合金细粉97.5份、稀土氟化物粉末3份、抗氧化剂0.2份、润滑剂0.7份、航空汽油3份;所述基底合金细粉的成分为(PrNd)a(TM)b(HM)cGadBeFe100-a-b-c-d-e,a=31,b=3,c=0.4,d=0.4,e=0.91,其中TM为Co,HM为Hf。
所述高电阻率烧结钕铁硼永磁材料的制备原料还包括:纳米材料0.3份;所述纳米材料为纳米四氧化三铁;所述纳米材料的粒径为50nm;所述稀土氟化物粉末的粒度为2.0μm;所述稀土氟化物为氟化镝;所述抗氧化剂为抗氧化剂1010;所述润滑剂为硬脂酸锌。
一种所述高电阻率烧结钕铁硼永磁材料的制备方法,包括如下步骤:
步骤S1、熔炼:将基底合金粉末的成分配方配料,投入熔炼炉中,待熔炼炉内真空度≤3Pa时,熔炼,浇注,过筛得到平均厚度为0.295mm的甩带片;
步骤S2、制粉:将经过步骤S1制成的甩带片置于氢破碎炉中,抽真空后充氢气破碎,在540℃下脱氢6h制成粗粉;然后将粗粉与抗氧化剂混合,在氮气保护下采用气流磨工艺获得基底合金的气流磨细粉;
步骤S3、混粉:将经过步骤S2制成的气流磨细粉与稀土氟化物粉末、润滑剂、航空汽油和纳米材料混合均匀后,通过过筛机过筛以减少细粉的团聚,提升稀土氟化物粉末和纳米材料在晶界处的一致性,得到混合粉末;
步骤S4、成型:将经过步骤S3制成的混合粉末在磁场下压型,并进行等静压,得到压坯;
步骤S5、烧结:将经过步骤S4制成的压坯置入真空烧结炉内,在1030℃ 烧结9h,得到毛坯;
步骤S6、时效:将经过步骤S5制成的毛坯进行三级时效处理,得到高电阻率烧结钕铁硼永磁材料。
步骤S1中所述熔炼的温度为1485℃;步骤S1中所述浇注的温度为1450℃;步骤S2中所述基底合金的气流磨细粉的平均粒度≤2.6μm,D50≤4.0μm。
步骤S4中所述磁场的磁场强度≥2000Gs;步骤S4中所述等静压的压力为200Mpa,保压时间35s;步骤S5中所述真空烧结炉的真空度≤0.05Pa。
步骤S6中所述三级时效处理的第一阶段时效处理温度为780℃,时间为3h,第二阶段时效处理温度为520℃,时间为3h,第三阶段时效处理温度为490℃,时间为3h。
实施例4
一种高电阻率烧结钕铁硼永磁材料,由包含下列质量份数的原料制备得到:基底合金细粉98.9份、稀土氟化物粉末4份、抗氧化剂0.25份、润滑剂1份、航空汽油4份;所述基底合金细粉的成分为(PrNd)a(TM)b(HM)cGadBeFe100-a-b-c-d-e,a=32, b=4,c=0.7,d=0.45,e=0.92,其中TM为Al、Cu、Co、Mn按摩尔比1:1:2:1混合而成,HM为Nb、Zr、Hf、Ti、V按摩尔比1:1:2:3:1混合而成。
所述高电阻率烧结钕铁硼永磁材料的制备原料还包括:纳米材料0.4份;所述纳米材料为纳米硅化钽、纳米碳化铌、纳米四氧化三铁按质量比1:3:5混合而成;所述纳米材料的粒径为70nm;所述稀土氟化物粉末的粒度为2.5μm;所述稀土氟化物为氟化镨、氟化钕、氟化镝、氟化铽按质量比1:1:3:2混合而成;所述抗氧化剂为抗氧化剂1010、抗氧化剂168按质量比3:5混合而成;所述润滑剂为硬脂酸锌、硬脂酸镁按质量比1:3混合而成。
一种所述高电阻率烧结钕铁硼永磁材料的制备方法,包括如下步骤:
步骤S1、熔炼:将基底合金粉末的成分配方配料,投入熔炼炉中,待熔炼炉内真空度≤3Pa时,熔炼,浇注,过筛得到平均厚度为0.302mm的甩带片;
步骤S2、制粉:将经过步骤S1制成的甩带片置于氢破碎炉中,抽真空后充氢气破碎,在570℃下脱氢6.5h制成粗粉;然后将粗粉与抗氧化剂混合,在氮气保护下采用气流磨工艺获得基底合金的气流磨细粉;
步骤S3、混粉:将经过步骤S2制成的气流磨细粉与稀土氟化物粉末、润滑剂、航空汽油和纳米材料混合均匀后,通过过筛机过筛以减少细粉的团聚,提升稀土氟化物粉末和纳米材料在晶界处的一致性,得到混合粉末;
步骤S4、成型:将经过步骤S3制成的混合粉末在磁场下压型,并进行等静压,得到压坯;
步骤S5、烧结:将经过步骤S4制成的压坯置入真空烧结炉内,在1040℃ 烧结11h,得到毛坯;
步骤S6、时效:将经过步骤S5制成的毛坯进行三级时效处理,得到高电阻率烧结钕铁硼永磁材料。
步骤S1中所述熔炼的温度为1500℃;步骤S1中所述浇注的温度为1470℃;步骤S2中所述基底合金的气流磨细粉的平均粒度≤2.7μm,D50≤4.0μm。
步骤S4中所述磁场的磁场强度≥2000Gs;步骤S4中所述等静压的压力为210Mpa,保压时间50s;步骤S5中所述真空烧结炉的真空度≤0.05Pa。
步骤S6中所述三级时效处理的第一阶段时效处理温度为850℃,时间为3.5h,第二阶段时效处理温度为580℃,时间为3.5h,第三阶段时效处理温度为500℃,时间为3.5h。
实施例5
一种高电阻率烧结钕铁硼永磁材料,由包含下列质量份数的原料制备得到:基底合金细粉99.9份、稀土氟化物粉末5份、抗氧化剂0.3份、润滑剂1.2份、航空汽油5份;所述基底合金细粉的成分为(PrNd)a(TM)b(HM)cGadBeFe100-a-b-c-d-e,a=32.5,b=5,c=0.8,d=0.45,e=0.94,其中TM为Mn,HM为Ti。
所述高电阻率烧结钕铁硼永磁材料的制备原料还包括:纳米材料0.5份;所述纳米材料为纳米硅化钽;所述纳米材料的粒径为80nm;所述稀土氟化物粉末的粒度为3.0μm;所述稀土氟化物为氟化铽;所述抗氧化剂为抗氧化剂1010;所述润滑剂为硬脂酸锌。
一种所述高电阻率烧结钕铁硼永磁材料的制备方法,包括如下步骤:
步骤S1、熔炼:将基底合金粉末的成分配方配料,投入熔炼炉中,待熔炼炉内真空度≤3Pa时,熔炼,浇注,过筛得到平均厚度为0.305mm的甩带片;
步骤S2、制粉:将经过步骤S1制成的甩带片置于氢破碎炉中,抽真空后充氢气破碎,在580℃下脱氢7h制成粗粉;然后将粗粉与抗氧化剂混合,在氮气保护下采用气流磨工艺获得基底合金的气流磨细粉;
步骤S3、混粉:将经过步骤S2制成的气流磨细粉与稀土氟化物粉末、润滑剂、航空汽油和纳米材料混合均匀后,通过过筛机过筛以减少细粉的团聚,提升稀土氟化物粉末和纳米材料在晶界处的一致性,得到混合粉末;
步骤S4、成型:将经过步骤S3制成的混合粉末在磁场下压型,并进行等静压,得到压坯;
步骤S5、烧结:将经过步骤S4制成的压坯置入真空烧结炉内,在1050℃ 烧结12h,得到毛坯;
步骤S6、时效:将经过步骤S5制成的毛坯进行三级时效处理,得到高电阻率烧结钕铁硼永磁材料。
步骤S1中所述熔炼的温度为1505℃;步骤S1中所述浇注的温度为1475℃;步骤S2中所述基底合金的气流磨细粉的平均粒度≤2.8μm,D50≤4.0μm。
步骤S4中所述磁场的磁场强度≥2000Gs;步骤S4中所述等静压的压力为220Mpa,保压时间60s;步骤S5中所述真空烧结炉的真空度≤0.05Pa。
步骤S6中所述三级时效处理的第一阶段时效处理温度为860℃,时间为4h,第二阶段时效处理温度为600℃,时间为4h,第三阶段时效处理温度为510℃,时间为4h。
对比例1
一种高电阻率烧结钕铁硼永磁材料,其与实施例1基本相同,不同的是没有添加纳米材料和TM。
对比例2
一种高电阻率烧结钕铁硼永磁材料,其与实施例1基本相同,不同的是没有添加稀土氟化物粉末和HM。
为了进一步说明本发明各实施例涉及到的高电阻率烧结钕铁硼永磁材料的有益技术效果,对实施例1-5及对比例1-2涉及的高电阻率烧结钕铁硼永磁材料进行相关性能测试,测试结果见表1,测试方法如下:根据GB/T3217-2013永磁(硬磁)材料磁性试验方法对其综合磁性能进行检测;电阻率的测试是采用RESISTEST Ⅶ方块电阻测试仪利用四点探针法进行的。
表1
从表1可见,本发明实施例公开的高电阻率烧结钕铁硼永磁材料较对比例产品具有更高的电导率,且综合磁性能优异,纳米材料、TM、稀土氟化物粉末和HM的组合加入对改善上述性能有益。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。
Claims (6)
1.一种高电阻率烧结钕铁硼永磁材料,其特征在于,由包含下列质量份数的原料制备得到:基底合金细粉95.0-99.9份、稀土氟化物粉末0.1-5份、抗氧化剂0.1-0.3份、润滑剂0.2-1.2份、航空汽油0.2-5份、纳米材料0.1-0.5份;所述基底合金细粉的成分为(PrNd)a(TM)b(HM)cGadBeFe100-a-b-c-d-e,29.5≤a≤32.5,0<b≤5,0<c≤0.8,0.3≤d≤0.5,0.88≤e≤0.94,其中TM为Al、Cu、Co、Mn中的一种或多种,HM为Nb、Zr、Hf、Ti、V中的一种或多种;所述纳米材料为纳米硅化钽、纳米碳化铌、纳米四氧化三铁中的至少一种;所述纳米材料的粒径为10-80nm;所述稀土氟化物粉末的粒度为1.0-3.0μm;所述稀土氟化物为氟化镨、氟化钕、氟化镝、氟化铽中的至少一种;所述基底合金细粉的平均粒度≤2.8μm,D50≤4.0μm。
2.根据权利要求1所述的高电阻率烧结钕铁硼永磁材料,其特征在于,所述抗氧化剂为抗氧化剂1010、抗氧化剂168中的至少一种;所述润滑剂为硬脂酸锌、硬脂酸镁中的一种或多种。
3.一种根据权利要求1-2任一项所述高电阻率烧结钕铁硼永磁材料的制备方法,其特征在于,包括如下步骤:
步骤S1、熔炼:按基底合金细粉的成分配方配料,投入熔炼炉中,待熔炼炉内真空度≤3Pa时,熔炼,浇注,过筛得到平均厚度为0.285-0.305mm的甩带片;
步骤S2、制粉:将经过步骤S1制成的甩带片置于氢破碎炉中,抽真空后充氢气破碎,在500-580℃下脱氢5-7h制成粗粉;然后将粗粉与抗氧化剂混合,在氮气保护下采用气流磨工艺获得基底合金的气流磨细粉;
步骤S3、混粉:将经过步骤S2制成的气流磨细粉与稀土氟化物粉末、润滑剂、航空汽油和纳米材料混合均匀后,通过过筛机过筛以减少细粉的团聚,提升稀土氟化物粉末和纳米材料在晶界处的一致性,得到混合粉末;
步骤S4、成型:将经过步骤S3制成的混合粉末在磁场下压型,并进行等静压,得到压坯;
步骤S5、烧结:将经过步骤S4制成的压坯置入真空烧结炉内,在1000-1050℃ 烧结6-12h,得到毛坯;
步骤S6、时效:将经过步骤S5制成的毛坯进行三级时效处理,得到高电阻率烧结钕铁硼永磁材料。
4.根据权利要求3所述高电阻率烧结钕铁硼永磁材料的制备方法,其特征在于,步骤S1中所述熔炼的温度为1455-1505℃;步骤S1中所述浇注的温度为1405-1475℃。
5.根据权利要求3所述高电阻率烧结钕铁硼永磁材料的制备方法,其特征在于,步骤S4中所述磁场的磁场强度≥2000Gs;步骤S4中所述等静压的压力为180-220Mpa,保压时间5-60s;步骤S5中所述真空烧结炉的真空度≤0.05Pa。
6.根据权利要求3所述高电阻率烧结钕铁硼永磁材料的制备方法,其特征在于,步骤S6中所述三级时效处理的第一阶段时效处理温度为600-860℃,时间为2-4h,第二阶段时效处理温度为360-600℃,时间为2-4h,第三阶段时效处理温度为450-510℃,时间为2-4h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411241795.5A CN118762897B (zh) | 2024-09-05 | 2024-09-05 | 一种高电阻率烧结钕铁硼永磁材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411241795.5A CN118762897B (zh) | 2024-09-05 | 2024-09-05 | 一种高电阻率烧结钕铁硼永磁材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118762897A CN118762897A (zh) | 2024-10-11 |
CN118762897B true CN118762897B (zh) | 2025-01-10 |
Family
ID=92951721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411241795.5A Active CN118762897B (zh) | 2024-09-05 | 2024-09-05 | 一种高电阻率烧结钕铁硼永磁材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118762897B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106024239A (zh) * | 2016-07-14 | 2016-10-12 | 安徽万磁电子有限公司 | 一种添加介孔材料的镀锌钕铁硼磁体及其制备方法 |
CN115424800A (zh) * | 2022-09-12 | 2022-12-02 | 金力永磁(包头)科技有限公司 | 一种含有Cu-M相的烧结钕铁硼材料及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI556270B (zh) * | 2012-04-11 | 2016-11-01 | 信越化學工業股份有限公司 | 稀土燒結磁體及製造方法 |
CN105405555B (zh) * | 2015-11-20 | 2018-08-14 | 湖南航天磁电有限责任公司 | 一种含铈钬的烧结钕铁硼永磁材料 |
CN106298219B (zh) * | 2016-08-17 | 2017-09-29 | 宁波永久磁业有限公司 | 一种制备r‑t‑b稀土永磁体的方法及装置 |
CN114914046A (zh) * | 2022-04-25 | 2022-08-16 | 浙江凯文磁业有限公司 | 一种中高性能钕铁硼磁体及制备方法 |
CN114927302B (zh) * | 2022-05-31 | 2025-02-11 | 烟台东星磁性材料股份有限公司 | 稀土磁体及其制备方法 |
CN115938706A (zh) * | 2022-12-08 | 2023-04-07 | 浙江东阳东磁稀土有限公司 | 一种高性能低温度系数稀土永磁材料及其制备方法 |
CN117809923A (zh) * | 2023-12-21 | 2024-04-02 | 宁波同创强磁材料有限公司 | 一种低成本低温度系数烧结r-t-b永磁材料及其制备方法 |
-
2024
- 2024-09-05 CN CN202411241795.5A patent/CN118762897B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106024239A (zh) * | 2016-07-14 | 2016-10-12 | 安徽万磁电子有限公司 | 一种添加介孔材料的镀锌钕铁硼磁体及其制备方法 |
CN115424800A (zh) * | 2022-09-12 | 2022-12-02 | 金力永磁(包头)科技有限公司 | 一种含有Cu-M相的烧结钕铁硼材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118762897A (zh) | 2024-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7220330B2 (ja) | R-t-b系永久磁石材料、製造方法、並びに応用 | |
CN102959648B (zh) | R-t-b系稀土类永久磁铁、电动机、汽车、发电机、风力发电装置 | |
US9082538B2 (en) | Sintered Nd—Fe—B permanent magnet with high coercivity for high temperature applications | |
KR102574303B1 (ko) | 네오디뮴철붕소 자성체재료, 원료조성물과 제조방법 및 응용 | |
CN102543342B (zh) | 铜纳米颗粒掺杂制备的高矫顽力和高耐蚀性烧结钕-铁-硼基永磁材料及制备方法 | |
KR102589802B1 (ko) | 네오디뮴철붕소 자성체재료, 원료조성물과 제조방법 및 응용 | |
JP7312915B2 (ja) | ネオジム鉄ホウ素永久磁石材料、製造方法、並びに応用 | |
US20130093551A1 (en) | R-Fe-B based magnet having gradient electric resistance and method for producing the same | |
CN102959647A (zh) | R-t-b系稀土类永久磁铁、电动机、汽车、发电机、风力发电装置 | |
CN108074693A (zh) | 一种钕铁硼永磁材料及其制备方法 | |
CN113838622A (zh) | 一种高矫顽力烧结钕铁硼磁体及其制备方法 | |
CN110060833B (zh) | 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法 | |
CN103153504B (zh) | R-t-b系稀土类永久磁铁用合金材料、r-t-b系稀土类永久磁铁的制造方法和电动机 | |
CN109859920A (zh) | 一种高抗蚀性富高丰度稀土永磁体及制备方法 | |
Peng et al. | Effects of grain boundary diffusion of PrCu alloy on microstructure and coercivity of hot deformed (Nd, Ce)-Fe-B magnets | |
CN112216460A (zh) | 纳米晶钕铁硼磁体及其制备方法 | |
CN103060657B (zh) | 一种制备高矫顽力和高耐蚀性烧结钕铁硼永磁材料的方法 | |
Fan et al. | A comparative study of NdY-Fe-B magnet and NdCe-Fe-B magnet | |
CN103080355B (zh) | R-t-b系稀土类永久磁铁用合金材料、r-t-b系稀土类永久磁铁的制造方法和电动机 | |
CN106409458A (zh) | 一种电机复合永磁材料及其制备方法 | |
CN118762897B (zh) | 一种高电阻率烧结钕铁硼永磁材料及其制备方法 | |
CN111968818B (zh) | 一种钕铁硼永磁体及其制备方法和应用 | |
CN103060673B (zh) | 一种无需镀层的高耐蚀烧结钕-铁-硼永磁材料的制备方法 | |
CN105118654A (zh) | 一种高热稳定性n48h烧结钕铁硼磁体的制备方法 | |
KR102513836B1 (ko) | 다상 구조 자석의 제조방법 및 그로부터 제조된 다상 구조 자석 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: No. 318 Kexin Road, Wangchun Industrial Park, Ningbo City, Zhejiang Province 315171 Applicant after: Ningbo Tongchuang Magnetic Industry Co.,Ltd. Address before: No. 318 Kexin Road, Wangchun Industrial Park, Ningbo City, Zhejiang Province 315171 Applicant before: NINGBO TONGCHUANG STRONG MAGNET MATERIAL Co.,Ltd. Country or region before: China |
|
GR01 | Patent grant | ||
GR01 | Patent grant |