CN1187535A - Miniature algae producing system of pipe air lift magnetic treatment optical biological reactor and monitoring method thereof - Google Patents

Miniature algae producing system of pipe air lift magnetic treatment optical biological reactor and monitoring method thereof Download PDF

Info

Publication number
CN1187535A
CN1187535A CN97114340A CN97114340A CN1187535A CN 1187535 A CN1187535 A CN 1187535A CN 97114340 A CN97114340 A CN 97114340A CN 97114340 A CN97114340 A CN 97114340A CN 1187535 A CN1187535 A CN 1187535A
Authority
CN
China
Prior art keywords
chamber
connected
control valve
pipe
gas
Prior art date
Application number
CN97114340A
Other languages
Chinese (zh)
Other versions
CN1064403C (en
Inventor
郭祀远
李志勇
李琳
蔡妙颜
肖凯军
郑必胜
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to CN 97114340 priority Critical patent/CN1064403C/en
Publication of CN1187535A publication Critical patent/CN1187535A/en
Application granted granted Critical
Publication of CN1064403C publication Critical patent/CN1064403C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • C12M29/08Air lift
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Abstract

A microalgae production system is composed of photobiologic reactor as main body, feeder, air supply unit, collecting unit and monitor-control unit, all of which are connected via pipeline and signallines to each other. Its monitor and control method includes acquiring various parameters by sensors, electrodes and probes arranged in photobiologic reactor, converting obtained parameter signals into digital signals, inputting the digital signals to computer, testing and processing the culture parameters, and outputting analog signal from computer to control the parameters and in turn to control the growing speed and output of microalgae. Its advantages are increasing growing speed and output of microalgae, low pollution, simple structure and low cost.

Description

管道气升式磁处理光生物反应器微藻生产系统及监控方法 Microalgae photobioreactor system and method for monitoring airlift pipe Magnetization

本发明是管道气升式磁处理光生物反应器微藻生产系统及其监控方法,属生物工程技术领域,特别涉及微藻的生产设备与优化控制技术。 The present invention is a pipeline processing optical magnetic airlift bioreactor system and a monitoring method microalgae, belongs to the field of biological engineering, and in particular relates to optimization of microalgae production equipment control technology.

目前国内外的螺旋藻、小球藻、杜氏藻等微藻的养殖普遍采用开放式浅水道生产系统。 Spirulina is currently at home and abroad, Chlorella, Dunaliella and other microalgae breeding widespread use of open shallow water channel production systems. 尽管其操作比较简单,但其存在着如下不足:(1)由于受系统外环境的影响,难于保持微藻养殖的最佳条件;(2)由于是开放式生产系统,会很易受到灰尘、昆虫、杂菌的污染,故难于实行高质量的纯种养殖;(3)由于是浅水道生产系统,水分容易蒸发,造成其盐度增加,使微藻生长速度缓慢;(4)由于此种养殖系统的光路较长,光照面积与体积之比较低,致使光能和CO2的利用率不高,无法实现高细胞密度生物养殖;(5)占地面积大、藻液浓度低、微藻产量低,如螺旋藻的产量仅为0.5g/L(细胞干重)左右,因此生产成本高、收获费用高。 Despite its operation is relatively simple, but there are the following defects: (1) due to the influence by the environment outside of the system, it is difficult to maintain optimum conditions of microalgae culture; (2) production systems because it is open, it will be vulnerable to dust, insects, bacteria contamination, it is difficult to implement high-quality pure culture; (3) the production system because it is shallow channel, water easily evaporates and the salinity increases, microalgae slow growth; (4) due to this longer light path culture systems, the illumination area to volume is relatively low, resulting in energy and CO2 utilization is not high, can not achieve a high cell density culture organisms; large (5) covers an area of ​​low concentration of algae, microalgae production low, such as Spirulina produced only 0.5g / L (dry cell weight) or so, and therefore high production costs and high harvesting costs.

本发明的目的是研究设计出一种新型高效的、可实现生产过程自动监测与控制、培养与收获一体化、可实现高细胞密度连续性生产的全封闭管道气升式循环磁处理光生物反应器微藻生产系统及其监控方法。 Study object of the present invention is to design a new and efficient, automatic monitoring and control of the production process, the integration of culture and harvest, can achieve high cell density continuous production of pipe closed magnetic treatment airlift photobioreactor is microalgae production system and monitoring method. 将流体力场、光场与磁场等物理场有机结合,达到强化微藻生长过程的目的,并采用在线检测与计算机监控等新技术实现生产过程的优化控制,从而克服和解决现有微藻生产系统所存在的难于保持微藻养殖最佳条件、占地面积大、微藻产量低、成本高且无法实现高细胞密度生物养殖等缺点和问题。 The physics fluid force field, magnetic field and light, and combination to achieve the purpose of strengthening the microalgae growth process, and the introduction of new technologies and computer line detection monitoring to optimize control of the production process, to overcome and to solve the conventional microalgae the existing system is difficult to maintain optimum conditions for microalgae cultivation, large footprint, low microalgae production, high cost and can not achieve a high cell density bio-farming and other shortcomings and problems.

本发明是通过下述结构技术方案和方法技术方案来实现的:管道气升式循环磁处理光生物反应器微藻生产系统的结构组成示意图如图1所示,它主要由管道气升式磁处理光生物反应器主体、加料装置、供气装置、收获装置及监控装置五部分构成,具体构成是:它由带式输送机1、回转过滤机2、电泵3、空气压缩机4、通气管道5、空气过滤器6、取液管道7、总气流控制阀8、空气控制阀9、气体流量计10、CO2钢瓶11、气体流量计12、气升室13、恒定磁场可调装置14、CO2控制阀15、热交换器16、除气室(贮液罐)17、挡板18、溢出管19、温度传感器20、pH电极21、温度仪22、排气管23、pH测定仪2 4、溶解氧测定仪25、计算机26、光照度计27、O2电极28、浊度仪29、加液管30、浊度传感器31、液体流量计32、光强度控制装置33、测光探头34、萤光灯35、气降室(受光管道)36、蠕动泵37、 The present invention is achieved by the following technical solutions and structural solutions METHOD: airlift pipe processing optical magnetic structure microalgae bioreactor system shown in Figure 1. The composition, which is mainly composed of magnetic airlift pipe processing photobioreactor body, charging means, supply means, and control means harvesting device five parts, a specific configuration of: it consists of a belt conveyor 1, the rotary filter 2, pump 3, the air compressor 4, the vent duct 5, the air filter unit 6, the liquid conduit 7, the total gas flow control valve 8, the air control valve 9, the gas flow meter 10, CO2 cylinder 11, gas flow meter 12, the air lift chamber 13, a constant magnetic field device 14 is adjustable, CO2 control valve 15, the heat exchanger 16, the degassing chamber (reservoir tank) 17, a shutter 18, an overflow pipe 19, a temperature sensor 20, pH electrode 21, temperature gauge 22, exhaust pipe 23, pH meter 24 , dissolved oxygen meter 25, computer 26, the light meter 27, O2 electrodes 28, 29 turbidimeter, adding the liquid pipe 30, the turbidity sensor 31, the liquid flow meter 32, the light intensity controller 33, probe 34 photometry, firefly light 35, gas descending chamber (light pipe) 36, a peristaltic pump 37, 液控制阀38、新鲜培养液贮存罐39共同相互连接构成,其相互连接关系为:将数支萤光灯35依次并列排列,再将气降室(受光管道)36围绕萤光灯35缠绕数圈,气降室36上端向上引出依次穿过恒定磁场可调装置14和热交换器16与除气室17相连接,除气室17中间安装挡板18,其正上方安装引出排气管23,其左右两侧安装引出溢出管19和加液管30,溢出管19装于除气室内略高于挡板18处,加溢管30安装于略高于溢出管19之处,在除气室17的左下部安装引出气升室13与通气管5相连接后再与气降室(受光管道)36相互连接构成整个光生物反应器的循环通路,在气升室13与气降室36的连接处安装引出取液管7,液体流量计32安装于恒定磁场可调装置14上下方与气降室36相连接,构成管道气升式磁处理光生物反应器主体;新鲜培养液贮存罐39通过加液控制阀38及管道与蠕动泵37相连接后 Fluid control valve 38, fresh medium storage tank 39 which are interconnected together, which is connected to the relationship between: the number of fluorescent lamp 35 are sequentially arranged in parallel branches, and then the gas descending chamber (light pipe) 36 is wound around a number of fluorescent lamps 35 ring, the upper end of the air chamber 36 drop passes through a constant magnetic field drawn upwardly adjustable means 14 and the heat exchanger 16 and the degassing chamber 17 is connected to the degassing chamber 17 intermediate the bezel 18, which is mounted directly above an exhaust pipe 23 leads , left and right sides leads overflow pipe 19 is mounted and the charging tube 30, the overflow pipe 19 to the degassing chamber mounted slightly above the shutter 18, plus overflow tube 30 is attached to the overflow pipe 19 is slightly higher than, the degassing the lower left portion of chamber 17 is mounted lead airlift chamber circulation passage after 13 connected to the breather pipe 536 interconnecting the gas descending chamber (light pipe) constitute the entire optical bioreactor, in an airlift chamber 13 and the gas down chamber 36 junction pipe 7 was taken mounting lead, a constant liquid flow meter 32 is attached to the adjustable magnetic field on the gas down below the chamber 14 means 36 is connected to the pipe constituting the magnetic treatment airlift photobioreactor body; fresh medium storage tank 38 with the peristaltic pump 37 and pipe 39 is connected to control valve Dosing 再通过管道与除气室17右上侧的加液管30相连接构成加料装置,CO2钢瓶11通过CO2控制阀15及管道与气体流量计12相连接,空气压缩机4通过空气过滤器6及空气控制阀9及管道与气体流量计10相连接;气体流量计10、12的引出管道并联连接后,再通过总气流控制阀8及管道与通气管道5相连接,这就构成了系统的供气装置;带式输送机1通过传送带与回转过滤机2相连接,再通过其贮液槽与溢出管19相连接构成系统的收获装置;温度传感器20、pH电极21、O2电极28、浊度传感器31依序置于除气室(贮液罐)17内的液面以下,再分别与温度仪22、pH测定仪24、溶解氧测定仪25、浊度仪29相连接,测光探头34置于气降室36中间外部朝向萤光灯35处并与光照度计27相连接,温度仪22、pH测定仪24、溶解氧测定仪25、光照度计27、浊度仪29均分别通过计算机的不同输入端口与计算机26相连接 Then connected to the charging device configured, 11 12 CO2 cylinder is connected via a flow meter 15 and the conduit and the gas control valve by adding CO2 liquid pipe 30 and plenum pipe 17 in addition to the upper right, the air compressor 4 through the air filter 6 and the air the control valve 9 and the duct 10 is connected with a gas flow meter; flowmeter after gas discharge conduit 10, 12 is connected in parallel, and then connected to the control valve 8 and the duct 5 with the total air flow the air duct, which constitutes a gas supply system apparatus; belt conveyor 12 is connected to the rotary filter by a conveyor belt, and then harvested by means of the system constituting the sump and which is connected to the overflow pipe 19; 28, turbidity sensor temperature sensor 20, pH electrode 21, O2 electrode 31 are sequentially placed in the degassing chamber (reservoir tank) 17 of the liquid level, and then the temperature device 22, pH measuring device 24, respectively, dissolved oxygen meter 25, 29 is connected to turbidity, the probe 34 is set photometry gas down to the intermediate chamber 36 toward the outside of the fluorescent lamp 35 and 27 is connected to the light meter, temperature gauge 22, pH meter 24, dissolved oxygen meter 25, the light meter 27, 29 are respectively turbidimeter different computers the input port 26 is connected to the computer 空气控制阀9、CO2控制阀15、光强度控制装置33、加液控制阀38通过计算机的不同输出端。 Air control valve 9, CO2 control valve 15, the light intensity control means 33, 38 controlled by a computer Dosing different output end valve. 与计算机26相连接共同构成监测与控制部分。 And computer 26 are connected together and configured to monitor control section.

本生产系统的计算机监控原理方框图如图2所示,其监控程序流程图如图3所示。 Computer monitoring block diagram of the principle of the production system shown in Figure 2, which monitors the program flow chart shown in Figure 3. 其监控方法如下:从设置于光生物反应器除气室17内的温度传感器20、pH电极21、O2电极28、浊度传感器31及设置于气降室36中的测光探头34中获取相应的各类参数的电信号,经A/D转换器40转换成数字信息通过串行接口输入计算机26以实现微藻参数的检测与处理。 Monitoring method which is as follows:, pH electrode 21, 28, the turbidity sensor 31 and the photometry sensor 34 disposed in the gas descending chamber 36 is acquired from the O2 electrode in addition to the temperature sensor 17 is disposed within the plenum to a respective photobioreactor 20 the various parameters of the electrical signal converted by the a / D converter 40 into digital information into the computer via the serial interface 26 to enable detection and processing parameters microalgae. 通过D/A转换器41将从计算机26输出的数字信号转化为模拟信号,再分别传送至空气控制阀9及CO2控制阀15来控制通气量的大小、CO2比例,从而控制藻液的pH值、循环速度、溶解氧浓度。 Output from the computer 26 via the D / A converter 41 into an analog signal into a digital signal, and then were transferred to a CO2 air control valve 9 and control valve 15 to control the magnitude of ventilation, CO2 ratio, thereby controlling the pH of the algae solution , circulation rate, dissolved oxygen concentration. 然后通过PIO转换器45输出高低电压构成的各种信息并分别传送至新鲜培养液加液控制阀38来控制加进新鲜培养液的量多少,通过光强度控制装置33及收获电泵3控制微藻所受光强度大小、生物量浓度、收获速度,从而调控微藻的生长,实现微藻生产过程的在线优化监测与控制。 Then various kinds of information through the low voltage output constituting the PIO converter 45 and are transferred to fresh culture medium was added to control the control valve 38 add much amount of fresh medium, harvesting device 33 and the micro-pump 3 is controlled by the light intensity control alginic suffered light intensity level, biomass concentration, harvesting speed, thereby regulating the growth of algae, microalgae production process for online monitoring and control optimization. 其中光强度的控制是通过控制工作(点亮)萤光灯的支数来实现,藻液温度的控制是根据不同的藻种来保持最佳生长温度范围。 Wherein the light intensity control is achieved by controlling the operation (lighting) of the fluorescent lamp count, temperature control algae solution is to maintain optimum growth temperature range depending on the algae species. 由于微藻生长过程的信息获取与处理并不要求十分迅速,所以其控制程序可用BASIC语言按图3所示的计算机监控流程图进行编制,计算机26还可以把优化监控资料输送到监控显示器43进行实时显示和输送到打印机44进行打印。 Since the growth of microalgae information acquisition and processing procedure does not require very rapidly, so that the control program can be compiled BASIC language computer monitoring by the flowchart shown in FIG. 3, the computer 26 may also monitor data to optimize the delivery to the monitor 43 for display real-time display and delivered to the printer 44 for printing.

本发明与现有技术相比有如下优点和有益效果:(1)由于本微藻养殖系统引入磁场进行磁处理,利用生物的磁效应,可以显著提高微藻的生长速度、增加产量,并能改善如氨基酸、蛋白质、多糖等营养组成的含量;(2)由于采用管道气升连续循环方式,能产生稳定均匀的搅拌效果,可避免传统的机械搅拌造成的藻体损伤及能源浪费,且更有利于溶解氧的溢出,有利于藻细胞更充分地吸收营养成分及光能;(3)由于采用内部光照,使光能利用率明显增高,特别由于管道气升连续循环方式,藻液有规律地反复进入受光区造成一定的明暗效应,更有利于微藻的生长与代谢;(4)由于采用外部热交换装置,避免了直接加热造成藻液局部过热而导致微藻死亡;(5)采用在线检测与计算机控制技术来进行自动控制,调节微藻生长的各种主要因素——如温度、光照度、pH值 The present invention over the prior art has the following advantages and beneficial effects: (1) Since the microalgae culture systems introduced into the magnetic field for processing by the biological effects of magnetic, can significantly increase the growth rate of the algae, increasing yield, and can improve the nutritional content of amino acids, proteins, polysaccharides and other components; (2) the use of a continuous cycle gas lift pipeline, result in stable uniform stirring effect can be avoided traditional mechanical stirring algae and energy waste caused by injury, and more DO favor overflow, algal cells more conducive to sufficiently absorb light energy and nutrients; (3) the use of an internal light, significantly increased utilization of light energy, especially since the air-lift pipe in a continuous loop, algae solution regular repeatedly entering the light receiving region of the shading effect caused by a certain, more conducive to the growth and metabolism of the microalgae; (4) the use of external heat exchange device, avoiding direct heating caused by local overheating caused by algae solution microalgae death; (5) using line detection and computer control techniques to automatic control, a variety of factors regulating the growth of algae - such as temperature, light intensity, pH, 溶解氧、细胞浓度等,实现微藻生产过程连续性及高细胞密度生产的自动优化控制;(6)实现微藻养殖与收获一化;(7)采用全封闭生产系统,减少了水分蒸发、减少了污染物及外界环境条件变化造成的影响,有利于微藻的高效纯种培养;(8)采用管道式,可不受地理环境影响,并具有高的光照面积与培养体积之比,有利于高细胞密度培养;(9)将本系统的除气室加挡板间隔以兼作贮液罐,可解决管道式光生物反应器培养体积小的缺陷问题,使其更适合实际生产的需要;(10)本生产系统结构简单、能耗低、易于扩大生产。 Dissolved oxygen concentration cell, automatic optimization control microalgae production process and a high cell density continuous production; and (6) achieve a microalgae culture and harvest of; (7) The closed production system, reducing the evaporation of water, reduces the impact of pollutants and environmental change of external conditions, contribute to the efficient culture of microalgae pure; (8) using the pipeline, can not affect the geographical environment, and has high illumination area to volume ratio of the culture, facilitate high cell density cultures; (9) the degassing chamber of the present system serves to increase the baffle spacing storage tank, pipeline resolves culture photobioreactor small volume defects, making it more suitable for practical production; ( 10) The production system is simple, low energy consumption, easy to expand production.

下面对说明书附图进一步说明如下:图1为管道气升式循环磁处理光生物反应器微藻生产系统的结构组成示意图,图2为本微藻生产系统的计算机监控原理框图,图3为其计算机监控程序流程图。 The following description of the accompanying drawings as further described below: FIG. 1 is a structural diagram of a magnetic conduit airlift bioreactor processing optical system microalgae, FIG. 2 is a computer monitoring system microalgae block diagram, FIG. 3 is a which computer program flowchart of the monitoring.

本发明的实施方式可为如下:(1)可按图1、图2所示,设计、加工、制造或选购本生产及控制系统的各组成部件。 Embodiments of the invention may be as follows: (1) 1, as shown, design, processing, manufacturing or various optional components of the present production and control system according to FIG. 2 FIG. 主要部件如:管道气升循环磁处理光生物反应器的气升室13可采用较细的透明玻璃管或塑料管制成;除气室17采用透明有机玻璃板用机加工方法加工制成;气降室36采用比气升室13较粗的透明玻璃管或塑料管制成;光源35采用日用荧光灯;恒定磁场可调装置14可采用可调电磁感应线圈或采用不同磁场强度的永久磁铁;热交换器16可采用实验室常用的控温水浴装置或其它通用控温装置;蠕动泵37可采用RDB--9型蠕动泵;空气压缩机4可采用永磁式ACO--777型;空气过滤器6可由活性类、玻璃丝等材料填制而成,回转过滤机表面材料可选如帆布等能让水分子透过的材料;计算机26可选用8098单片机;温度传感器20选用3TC--PT100型;pH电极21可选用E--201型复膜pH电极;溶氧电极28可采用DO--24型;浊度仪29及浊度传感器31可选用配套的LT300--LA型浊度仪;测光探头34可采用GK型光电 The main components: a magnetic loop air-lift pipe airlift bioreactor chamber processing optical glass or transparent plastic tubing 13 can be smaller; degassing chamber 17 using a transparent plexiglass plate formed by machining method of machining; gas drop chamber 13 thicker than 36 using a transparent glass or plastic chamber gas lift tubing; household fluorescent lamp using a light source 35; a constant magnetic field device 14 may employ an adjustable permanent magnet or an electromagnetic induction coil is adjustable with different magnetic field strength; thermal exchanger 16 can be commonly used laboratory temperature water bath temperature control means or other commonly used; peristaltic pump 37 may be employed RDB - 9 peristaltic pump; air compressor 4 can be permanent magnet ACO - 777 type; the air filter 6 may be an active type, made of glass wool and other fill material, the surface material may be selected rotary filter material such as canvas allows water molecules to pass through; optional computer 26 8098; 20 temperature sensor selection 3TC - PT100 type; pH electrode 21 optional E - 201 laminating type pH electrode; DO electrode 28 may be employed DO - 24 type; turbidity turbidity sensors 29 and 31 can be selected supporting LT300 - LA turbidimeter; measured GK optical probe 34 can be photoelectric 感器;A/D模数转换器40可选用AD7701型;D/A数模转换器41可选用AD667型12位D/A转换器;PIO转换器45可选用Z80--PIO型;(2)采用一般的机加工方法或制造现有光生物反应器的常规方法,加工制造本系统中的管道气升式磁处理光生物反应器的组成部件,然后按图1、图2所示,并按上面说明书所述的连接关系进行安装,便能较好地实现本微藻生产系统。 Sensor; A / D analog-digital converter 40 can be selected type AD7701; D / A analog converter 41 can be selected AD667 type 12-bit D / A converter; the PIO converter 45 can be selected Z80 - PIO type; (2 ) using the general method or a machining method for the conventional manufacture of conventional photobioreactor, the manufacturing components of the system in pipeline processing optical magnetic airlift bioreactor, and in Figure 1, Figure 2, and press installation according to the description above connection relationship, can better achieve this microalgae production systems. 然后按上面说明书所述的本生产系统的监控方法,并按图3所示的监控程序流程图编制软件程序,再结合上面说明书所述的本生产系统的作用原理和监控原理进行运行调试和试验,便能较好地实现本发明。 Then monitoring method according to the above description of the present production system, according to FIG. 3 shown in the flowchart monitor preparation software program, and then binding the above principle and the monitoring principle according to the present specification, the production system will be running the debug and test the present invention is able to achieve better.

Claims (2)

1.一种包含有电泵、空气压缩机、通气管道、输液管道的管道气升式循环磁处理光生物反应器微藻生产系统,其特征在于:它由管道气升式循环磁处理光生物反应器主体、加料装置、供气装置、收获装置及监控装置五部分连接构成,具体构成是它由带式输送机(1)、回转过滤机(2)、电泵(3)、空气压缩机(4)、通气管道(5)、空气过滤器(6)、取液管道(7)、总气流控制阀(8)、空气控制阀(9)、气体流量计(10)、CO2钢瓶瓶(11)、气体流量计(12)、气升室(13)、恒定磁场可调装置(14)、CO2控制阀(15)、热交换器(16)、除气室(贮液罐)(17)、挡板(18)、溢出管(19)、温度传感器(20)、pH电极(21)、温度仪(22)、排气管(23)、pH测定仪(24)、溶解氧测定仪(25)、计算机(26)、光照度计(27)、O2电极(28)、浊度仪(29)、加液管(30)、浊度传感器(31)、液体流量计(32)、光强度控制装置(33)、测光探头(34)、萤光 An electric pump comprising, an air compressor, an air duct, infusion of pipeline processing Airlift loop magnetic photobioreactor algae production system, comprising: a pipeline it airlift photobioreactor Magnetization five of the reactor body, charging means, supply means, and control means connected to harvesting device configuration, a specific configuration of the belt conveyor is that it (1), the rotary filter (2), pump (3), an air compressor (4), the air duct (5), the air filter (6), a tapping conduit (7), the total gas flow control valve (8), the air control valve (9), a gas flow meter (10), CO2 cylinder bottles ( 11), the gas flow meter (12), the air lift chamber (13), an adjustable constant magnetic field means (14), CO2 control valve (15), heat exchanger (16), the degassing chamber (storage tank) (17 ), the baffle (18), an overflow pipe (19), a temperature sensor (20), pH electrode (21), thermometer (22), an exhaust pipe (23), pH meter (24), dissolved oxygen meter (25), a computer (26), light meter (27), O2 electrode (28), turbidity (29), adding the liquid pipe (30), a turbidity sensor (31), fluid flow meter (32), light intensity control means (33), the metering probe (34), fluorescent (35)、气降室(受光管道)(36)、蠕动泵(37)、加液控制阀(38)、新鲜培养液贮存罐(39)共同相互连接构成,其相互连接关系为:将数支萤光灯(35)依次并列排列,再将气降室(受光管道)(36)围绕萤光灯(35)缠绕数圈,气降室(36)上端向上引出依次穿过恒定磁场可调装置(14)和热交换器(16)与除气室(17)相连接,除气室(17)中间安装挡板(18),其正上方安装引出排气管(23),其左右两侧安装引出溢出管(19)和加液管(30),溢出管(19)装于除气室内略高于挡板(18)处,加液管(30)安装位置略高于溢出管(19),在除气室(17)的左下部安装引出气升室(13)与通气管(5)相连接后再与气降室(受光管道)(36)相连接构成整个光生物反应器的循环通路,在气升室(13)与气降室(36)的连接处安装引出取液管(7),液体流量计(32)安装于恒定磁场可调装置(14)上下方与气降室(36)相连接,构成管道气升式磁处理光生 (35), the gas descending chamber (light pipe) (36), peristaltic pump (37), and fluid control valve (38), fresh medium storage tank (39) together which are interconnected, which interconnected relationship: the number of branched fluorescent lamp (35) sequentially arranged in parallel, and then lowering the gas chamber (light pipe) (36) around the fluorescent lamp (35) wound several times, the gas descending chamber (36) passes through the upper end of the stationary magnetic field drawn upwardly adjustable means (14) and the heat exchanger (16) and the degassing chamber (17) is connected to the degassing chamber (17) is mounted intermediate the baffle (18), which is mounted directly above an exhaust pipe leads (23), which is about two overflow mounting side lead tube (19) and the charging tube (30), the overflow tube (19) mounted to the flap slightly degassing chamber (18), adding the liquid pipe (30) is mounted slightly above the overflow line ( 19), the lower left portion in the degassing chamber (17) is mounted drawn airlift chamber (13) and the vent pipe (5) and then is connected is connected to the gas descending chamber (light pipe) (36) constitute the entire photobioreactor the circulation passage, mounted in an airlift junction chamber (13) lowering the gas chamber (36) takes the extraction tube (7), the liquid flow meter (32) mounted on an adjustable constant magnetic field means (14) and the lower gas drop chamber (36) is connected, constituting the magnetic treatment airlift pipe photogenerated 反应器主体,新鲜培养液贮存罐(39)通过加液控制阀(38)及管道与蠕动泵(37)相连接后,再通过管道与除气室(17)右上侧的加液管(30)相连接构成加料装置;CO2钢瓶(11)通过CO2控制阀(15)及管道与气体流量计(12)相连接,空气压缩机(4)通过空气过滤器(6)及空气控制阀(9)及管道与气体流量计(10)相连接;气体流量计(10)、(12)的引出管道并联连接后,再通过总气流控制阀(8)及管道与通气管(5)相连接,这就构成了系统的供气装置;带式输送机(1)通过传送带与回转过滤机(2)相连接后再通过其贮液槽与溢出管(19)相连接构成系统的收获装置;温度传感器(20)、pH电极(21)、O2电极(28)、浊度传感器(31)依序置于除气室(贮液罐)(17)内的液面以下,再分别与温度仪(22)、pH测定仪(24)、溶解氧测定仪(25)、浊度仪(29)相连接,测光探头(34)置于气降室(36)中间外部朝向荧光灯(35)处并与光照度计 After the reactor body, fresh medium storage tank (39) is connected to a control valve (38) and pipe with a peristaltic pump (37) by adding a liquid, and then through a pipe to the degassing chamber (17) the upper right side of the dosing tube (30 feeding means configured) is connected; CO2 cylinder (11) is connected via CO2 control valve (15) with a gas flow meter and pipe (12), an air compressor (4) through the air filter (6) and the air control valve (9 ) and piping and gas flow meter (10) is connected; gas flow meter (10), in parallel (12) is connected to the discharge conduit, and then the control valve (8) and the total gas flow through the conduit and the vent pipe (5) is connected, This constitutes a gas supply device of the system; harvesting device constituting the system after the belt conveyor (1) is connected to the rotary filter by a conveyor belt (2) is connected with the reservoir through which the overflow tube (19); temperature a sensor (20), pH electrode (21), O2 electrode (28), a turbidity sensor (31) are sequentially placed in the degassing chamber (storage tank) (17) below the liquid level, and then each thermometer ( 22), pH meter (24), dissolved oxygen meter (25), turbidity (29) is connected to the metering probe (34) placed in the gas descending chamber (36) towards the outside of the intermediate fluorescent lamp (35) and at and light meter (27)相连接,温度仪(22)、pH测定仪(24)、溶解氧测定仪(25)、光照度计(27)、浊度仪(29)均分别通过计算机的不同输入端口与计算机(26)相连接。 (27) is connected to a temperature meter (22), pH meter (24), dissolved oxygen meter (25), light meter (27), turbidity (29) are respectively different input port of a computer ( 26) is connected. 空气控制阀(9)、CO2控制阀(15)、光照度控制装置(33)、加液控制阀(38)通过计算机的不同输出端口与计算机(26)相连接共同构成监测与控制部分。 Air control valve (9), CO2 control valve (15), the illuminance control means (33), and fluid control valve (38) is connected to constitute the monitoring and control portion through a different output port of a computer (26).
2.一种包含有电泵、空气压缩机、通气管道、输液管道的管道气升升式磁处理光生物反应器微藻生产系统的监控方法,其特征在于:从设置于光生物反应器除气室(17)内的温度传感器(20)、pH电极(21)、O2电极(28)、浊度传感器(31)及设置于气降室(36)中的测光探头(34)中获取相应的各种参数的电信号,经A/D转换器(40)转换成数字信息,通过串行接口输入计算机(26)以实现微藻参数的检测与处理,通过D/A转换器(41)将从计算机(26)输出的数字信号转化为模拟信号,再分别传送至空气控制阀(9)及CO2控制阀(15)来控制通气量的大小、CO2所占比例,从而控制藻液的pH值、循环速度、溶解氧浓度。 A monitoring method comprising Magnetic liter bioreactor processing optical system microalgae pipeline gas pump, air compressor, air ducts, pipes liter infusion, wherein: the light from the bioreactor is provided in addition to gas chamber temperature sensor (20) in (17), pH electrode (21), O2 electrode (28), a turbidity sensor (31) and the metering chamber is provided in the gas down the probe (34) (36) acquires various parameters corresponding electrical signal, converted by the a / D converter (40) into digital information, input into the computer via the serial interface (26) to enable detection and processing parameters microalgae, the D / a converter (41 ) from the computer (26) output from the digital signal into an analog signal, and then were transferred to an air control valve (9) and CO2 control valve (15) to control the ventilation of the size, the proportion of CO2 to the algae solution control pH, circulation rate, dissolved oxygen concentration. 然后通过PIO转换器(45)输出高低电压构成的各种信息分别传送至新鲜培养液加液控制阀(38)来控制加进新鲜培养液的量多少,通过光强度控制装置(33)及收获电泵(3)控制微藻所受光强度大小、生物量浓度、收获速度,从而调控微藻的生长,实现微藻生产过程的在线优化监测与控制,其中光强度的控制是通过控制工作(点亮)荧光灯的支数来实现,藻液温度的控制是根据不同藻种来保持在最佳生长温度范围。 Then (45) and low voltage output constituting the various types of information are transferred via the PIO converter to fresh medium plus hydraulic control valve (38) controlling the amount of fresh medium added much, by the light intensity control means (33) and Harvesting pump (3) controlling the size of the light intensity suffered microalgae, biomass concentration, harvesting speed, thereby regulating the growth of algae, microalgae production process for online monitoring and control optimization, wherein the light intensity is controlled by control operation (point bright count) of the fluorescent lamp is achieved, the temperature is controlled to algae solution is maintained at the optimum growth temperature range depending on the algae species.
CN 97114340 1997-12-31 1997-12-31 Miniature aglae producing system of pipe air lift magnetic treatment optical biological reactor and monitoring method CN1064403C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 97114340 CN1064403C (en) 1997-12-31 1997-12-31 Miniature aglae producing system of pipe air lift magnetic treatment optical biological reactor and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 97114340 CN1064403C (en) 1997-12-31 1997-12-31 Miniature aglae producing system of pipe air lift magnetic treatment optical biological reactor and monitoring method

Publications (2)

Publication Number Publication Date
CN1187535A true CN1187535A (en) 1998-07-15
CN1064403C CN1064403C (en) 2001-04-11

Family

ID=5172899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 97114340 CN1064403C (en) 1997-12-31 1997-12-31 Miniature aglae producing system of pipe air lift magnetic treatment optical biological reactor and monitoring method

Country Status (1)

Country Link
CN (1) CN1064403C (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1115407C (en) * 1998-11-05 2003-07-23 四川大学华西医院 Composite field 3-D cell cultivation equipment
CN100497582C (en) 2005-03-24 2009-06-10 上海交通大学 Bioreactor system for nerve stem cell to amplify in large scale and long time
CN102008930A (en) * 2010-11-12 2011-04-13 同济大学 Photo-biological reaction device for removing carbon dioxide from flue gas
CN101760429B (en) 2008-12-17 2012-07-04 新奥科技发展有限公司 Simple and easy cylindrical reaction vessel for microalgae culture
CN102604823A (en) * 2012-01-17 2012-07-25 上海泽泉科技有限公司 System for monitoring oxygen content and physiological activities of microalgae in closed photo-bioreactor
CN102642984A (en) * 2012-04-20 2012-08-22 上海化工研究院 Automatic natural environment continuous waterflow simulation test device
CN103031249A (en) * 2012-12-10 2013-04-10 北京农业智能装备技术研究中心 Parameter monitoring and controlling system for biological microalgae reaction vessel
CN101748054B (en) 2008-12-17 2013-06-19 新奥科技发展有限公司 Photobioreactor for cultivating microalgae
CN103756886A (en) * 2014-01-26 2014-04-30 武汉凯迪工程技术研究总院有限公司 High-density continuous culture method and device for microalgae
CN104630067A (en) * 2015-02-02 2015-05-20 新奥科技发展有限公司 Pollution preventing and treating method for microalga breeding
CN105002089A (en) * 2015-06-30 2015-10-28 上海交通大学 Culture system for microalgae energy efficiency optimization and method thereof
CN105087355A (en) * 2015-09-17 2015-11-25 中国石油大学(北京) Photo-bioreactor system for breeding algae
CN105462807A (en) * 2014-09-09 2016-04-06 嘉兴泽元生物制品有限责任公司 Novel multifunctional airlift tube photobioreactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA06014099A (en) 2004-06-04 2007-05-09 Xcellerex Inc Disposable bioreactor systems and methods.

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1115407C (en) * 1998-11-05 2003-07-23 四川大学华西医院 Composite field 3-D cell cultivation equipment
CN100497582C (en) 2005-03-24 2009-06-10 上海交通大学 Bioreactor system for nerve stem cell to amplify in large scale and long time
CN101760429B (en) 2008-12-17 2012-07-04 新奥科技发展有限公司 Simple and easy cylindrical reaction vessel for microalgae culture
CN101748054B (en) 2008-12-17 2013-06-19 新奥科技发展有限公司 Photobioreactor for cultivating microalgae
CN102008930A (en) * 2010-11-12 2011-04-13 同济大学 Photo-biological reaction device for removing carbon dioxide from flue gas
CN102604823A (en) * 2012-01-17 2012-07-25 上海泽泉科技有限公司 System for monitoring oxygen content and physiological activities of microalgae in closed photo-bioreactor
CN102642984A (en) * 2012-04-20 2012-08-22 上海化工研究院 Automatic natural environment continuous waterflow simulation test device
CN103031249B (en) * 2012-12-10 2014-07-02 北京农业智能装备技术研究中心 Parameter monitoring and controlling system for biological microalgae reaction vessel
CN103031249A (en) * 2012-12-10 2013-04-10 北京农业智能装备技术研究中心 Parameter monitoring and controlling system for biological microalgae reaction vessel
CN103756886A (en) * 2014-01-26 2014-04-30 武汉凯迪工程技术研究总院有限公司 High-density continuous culture method and device for microalgae
CN103756886B (en) * 2014-01-26 2016-01-13 武汉凯迪工程技术研究总院有限公司 A kind of method of micro-algae high-density cultured continuously and device thereof
WO2015110031A1 (en) * 2014-01-26 2015-07-30 武汉凯迪工程技术研究总院有限公司 Method and device for high-density continuous culture of microalgae
CN105462807A (en) * 2014-09-09 2016-04-06 嘉兴泽元生物制品有限责任公司 Novel multifunctional airlift tube photobioreactor
CN104630067A (en) * 2015-02-02 2015-05-20 新奥科技发展有限公司 Pollution preventing and treating method for microalga breeding
CN105002089A (en) * 2015-06-30 2015-10-28 上海交通大学 Culture system for microalgae energy efficiency optimization and method thereof
CN105087355A (en) * 2015-09-17 2015-11-25 中国石油大学(北京) Photo-bioreactor system for breeding algae

Also Published As

Publication number Publication date
CN1064403C (en) 2001-04-11

Similar Documents

Publication Publication Date Title
US5958761A (en) Bioreactor and system for improved productivity of photosynthetic algae
Xue et al. Growth of Spirulina platensis enhanced under intermittent illumination
CN101838606B (en) Airlift loop bioreactor through microalgae photoautotrophic-photoheterotrophic coupling for carbon emission reduction in sewage treatment
US20110070632A1 (en) Photo bioreactor and cultivation system for improved productivity of photoautotrophic cell cultures
CN100587054C (en) Novel multi-section flat type photo-bioreactor
CN101280271A (en) Production unit for microalgae industrialization and method for producing microalgae
CN1213139C (en) Photosynthesis bioreactor system for industrial production of micro algae
Grima et al. Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor
CN1317379C (en) Pipeline photobioreactor for scale culture of microalgae
CN101870950B (en) Device for culturing microalgae
CN101555455B (en) Culture/harvesting method of microalgae and system
CN101575567A (en) Method for culturing microalgae by illumination way and reactor thereof
CN1311729C (en) Assembled plant culturing apparatus
CN2234443Y (en) Spirulina photosynthesis reactor
CN101597567B (en) Photobioreactor
CN101050419B (en) Production apparatus for culturing tiny alga and production method
CN101659922B (en) Closed raceway pond microalgae culture system
CN2351950Y (en) Algae cultivation reactor
ES2645251T3 (en) Continuous or discontinuous flow photobioreactor and use procedure
CN1201826A (en) Spirulina light illuminating tower-tray optic bio-reactor culturing system and its controlling method
CN101654653B (en) Light bioreactor for culturing microalgae systematically
CN103086520B (en) Device and method for producing biodiesel in coupling way by treating livestock and poultry breeding wastewater
CN1314795C (en) Pneumatically liftable photo-biologic reactor for high density culture of algae
Rusch et al. The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production
CN201420083Y (en) Cultivation reaction vessel for intermittent plant tissue and organ immersion

Legal Events

Date Code Title Description
C10 Entry into substantive examination
C06 Publication
C14 Grant of patent or utility model
C19 Lapse of patent right due to non-payment of the annual fee