CN1184692C - Multilayer silicon galide material on insulating layer and its prepn - Google Patents

Multilayer silicon galide material on insulating layer and its prepn Download PDF

Info

Publication number
CN1184692C
CN1184692C CN 01126543 CN01126543A CN1184692C CN 1184692 C CN1184692 C CN 1184692C CN 01126543 CN01126543 CN 01126543 CN 01126543 A CN01126543 A CN 01126543A CN 1184692 C CN1184692 C CN 1184692C
Authority
CN
China
Prior art keywords
sige
layer
material
substrate
silicon
Prior art date
Application number
CN 01126543
Other languages
Chinese (zh)
Other versions
CN1332478A (en
Inventor
张苗
安正华
林成鲁
沈勤我
刘卫丽
Original Assignee
中国科学院上海冶金研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海冶金研究所 filed Critical 中国科学院上海冶金研究所
Priority to CN 01126543 priority Critical patent/CN1184692C/en
Publication of CN1332478A publication Critical patent/CN1332478A/en
Application granted granted Critical
Publication of CN1184692C publication Critical patent/CN1184692C/en

Links

Abstract

本发明涉及一种多层结构绝缘层上锗化硅材料及制备方法,其特征在于材料或为SiGe层/SiO The present invention relates to a silicon germanium material and a method of preparing a multilayer structure on the insulating layer, wherein the layer of material is SiGe or / SiO

Description

一种多层结构绝缘层上锗化硅材料及制备方法 Silicon materials and a method for preparing a multilayer structure on the insulating layer germanide

技术领域 FIELD

本发明是一种以外延和离子注入工艺来形成绝缘层上锗化硅(SiGe-On-Insulator)多层结构新型微电子材料及制备方法,属于微电子领域。 The present invention is an ion implantation and epitaxial process to form an insulating layer on a silicon germanium (SiGe-On-Insulator) structure of a new multilayer microelectronic materials and preparation methods, microelectronics field.

背景技术 Background technique

SiGe、SOI(silicon-on-insulator)是当前微电子领域的先进材料。 SiGe, SOI (silicon-on-insulator) is the current microelectronics advanced materials. SOI电路具有高速、低压、低功耗、抗辐照等优点,在便携式通讯系统、抗辐照器件等方面具有重要应用。 SOI circuits having high speed, low voltage, low power consumption, radiation hardness, etc., have important applications in a portable communication system, anti-irradiation devices and the like. 由于SOI材料中二氧化硅埋层的存在,所以利用表层硅制造的器件与衬底实现了介质隔离,寄生效应小,器件性能尤其是速度性能明显改善。 Due to the presence of the buried silicon dioxide layer of the SOI material, the surface layer of the substrate using a device made of silicon to achieve a dielectric isolation, small parasitic effects, especially the device performance significantly improved speed performance. 但是传统SOI材料表层薄膜还是Si材料,利用这种材料制造的器件还是硅器件,其性能如速度仍然受到硅材料本身的特性限制。 However, conventional thin film SOI or Si material skin material, using a device or a silicon device made of such a material, its performance characteristics such as speed limit continues to be a silicon material itself.

SiGe材料与器件的出现,使得硅基材料有了应用于高频领域的可能,SiGe器件正在打介入原本仅GaAs类器件才适合用的应用领域。 Appears SiGe materials and devices that may be used in silicon-based materials with high-frequency fields, SiGe devices are playing intervention had only a GaAs-based device is suitable for applications used. IBM、Motorola等公司已成功开发出应用于便携式通讯系统的SiGe RF电路。 IBM, Motorola and other companies have been successfully developed for portable communications systems SiGe RF circuit. 在硅衬底上的SiGe材料可以通过控制Ge的组分、生长厚度来控制SiGe的应变、能带结构、晶体质量等等。 SiGe material on a silicon substrate may be controlled by the components of strained SiGe, the thickness of controlling the growth of Ge, the band structure of the crystal quality and the like. 利用无应变SiGe层来得到张应变Si薄层是SiGe材料具有非常诱人应用前景的发展方向之一。 Using non-strained SiGe layer to obtain a tensile strained Si thin layer is one of the development SiGe material having a very attractive prospect. 为得到无应变的高质量SiGe材料,传统的方法是先在硅衬底上生长几微米的Ge组分递变缓冲层,再生长Ge组分固定的SiGe层。 In order to obtain high quality unstrained SiGe material, the conventional method is to grow a few microns on a silicon substrate, a buffer layer graded Ge content, the fixed Ge content regrown SiGe layer. 这种方法不仅外延成本高,更重要的是缺陷密度较高的SiGe缓冲层必将影响器件性能。 This approach not only the high cost of epitaxial, more importantly, a higher defect density SiGe buffer layer will affect device performance.

发明内容 SUMMARY

本发明提出将SiGe和SOI技术结合在一起形成SiGe-On-Insulator新材料及制备方法。 The present invention proposes technologies SOI and SiGe SiGe-On-Insulator new together forming material and preparation method. 即首先在单晶硅衬底或含有高质量缓冲层的硅衬底上外延SiGe材料,以得到满足器件制造需要的高质量的SiGe材料,再通过氧离子注入与高温退火工艺,在SiGe层下面形成氧化埋层,将用于制造器件的SiGe层与衬底和缓冲层材料隔开,不仅消除了高缺陷密度的缓冲层对器件的影响,还可实现器件与衬底的电学隔离,兼有SiGe与SOI两种先进材料的优点。 First, on a single crystal silicon substrate or a silicon substrate containing a high-quality epitaxial SiGe buffer layer material, to obtain a high-quality SiGe material manufactured to meet the needs of the device, through the oxygen ion implantation and high temperature annealing process, following the SiGe layer forming a buried oxide layer, a SiGe layer with the substrate and the buffer layer material separated from the device, not only eliminates the influence of high defect density of the buffer layer of the device, the device can achieve electrical isolation of the substrate, both advantages of the two materials advanced SiGe and SOI. 此外,本发明中还提出直接在硅衬底上生长Ge成分固定的厚度小于应变临界值的SiGe,然后利用在注氧隔离的方法形成SiGe-On-Insulator材料,可大大降低SiGe外延成本。 Further, the present invention also provides a constant thickness Ge SiGe grown directly on a silicon substrate component is less than the critical strain value, and is formed using SiGe-On-Insulator oxygen barrier material in the injection method, can greatly reduce the cost of epitaxial SiGe.

本发明的特征在于提供的多层结构绝缘层上SiGe材料或为SiGe层/SiO2埋层/缓冲层/Si衬底的结构;在Si衬底上形成多个重复的SiGe层和SiO2层,或在Si衬底的缓冲层上形成多个SiGe层和SiO2层。 Feature of the present invention is that the insulating layer provided in the multilayer structure or a SiGe material is SiGe layer / layer / buffer layer structure / SiO2 buried Si substrate; forming a plurality of repeating SiO2 layer and a SiGe layer on a Si substrate, or a plurality of SiGe layer and SiO2 layer formed on the buffer layer of the Si substrate. 它是利用发展较为成熟的外延工艺和离子注入工艺来得到具有隔离结构的SiGe衬底材料,兼有SiGe与SOI的优点,实现器件有源区与衬底材料的电学隔离,减小寄生效应,改善器件的高频性能,降低功耗,从而满足光电子领域、无线通讯领域的市场需求。 It is the use of more mature epitaxial process and ion implantation process is used to obtain a substrate material having a SiGe isolation structure, the advantages of both SOI and SiGe, while the device active region and electrically isolated from the substrate material, to reduce parasitic effects, improve the high frequency performance of the device, reduce power consumption, to meet market demand optoelectronics, field of wireless communications. 器件工艺与成熟的硅集成电路工艺兼容。 Mature device processing compatible with silicon integrated circuit technology. 以SiGe-on-insulator材料为衬底,将可制备具有双轴张应变Si层的各种器件。 In SiGe-on-insulator substrate materials, various devices having a biaxial tensile strained Si layer may be prepared. 另一方面,SiGe/SiO2的界面的高反射率和SiGe材料本身优异的光学性质为这种材料在光电子方面的广泛应用奠定了基础。 On the other hand, excellent optical properties itself high reflectivity interface SiGe / SiO2 and SiGe material as such materials are widely used in optoelectronic basis.

一种利用外延和氧离子注入工艺形成SiGe-On-Insulator多层结构材料的具体制备方法是:1.首先选取单晶p-或n-Si(100)片作为衬底,经严格的常规集成电路工艺清洗后,去除表面自然氧化层后,利用分子束外延(MBE)或者超高真空化学气相淀积(UHVCVD)等薄膜生长方法在硅片上外延SiGe层,形成SiGe/Si异质结,也可以先生长一层薄Si层,薄单晶硅层的厚度为5-20纳米,然后再生长SiGe层,厚度在百纳米量级或更薄,具体视Ge组分等参数而定。 Specific preparation method using an oxygen ion implantation process and the epitaxial SiGe-On-Insulator formed multilayer structure materials are: 1. First select a single crystal p- or n-Si (100) substrate as the substrate, the strict conventional integrated after the washing process circuit, removing the surface native oxide layer, molecular beam epitaxy (MBE) or ultra-high vacuum chemical vapor deposition (UHVCVD) and the like SiGe layer epitaxial thin film growth on a silicon wafer to form a SiGe / Si heterojunction, Mr may be a long thin Si layer, the thickness of the thin single crystal silicon layer is 5-20 nm, and then re-grown SiGe layer, the thickness of hundred nanometers or less, depending on the parameters given Ge content and the like. 生长SiGe层时,可以在硅上直接生长组分恒定、小于临界厚度的SiGe薄膜,Ge组分小于30%;也可以先生长Ge组分逐渐增加的SiGe缓冲层,厚度在0.5-5微米,最后再生长组分固定的SiGe层,Ge组分可以是0-100%之间的任意值,具体视SiGe缓冲层厚度及器件应用需要而定。 SiGe layer is grown, can be grown directly on the silicon component constant, smaller than the critical film thickness of SiGe, Ge content less than 30%; SiGe buffer layer may be gradually increased long Mr. Ge content, thickness 0.5-5 microns, Finally, the growth of the fixed component SiGe layer, Ge component may be any value between 0-100%, depending on the thickness of the SiGe buffer layer and device applications needs. 生长时可以进行一定的掺杂。 It can be grown in certain doping. 生长温度为450℃~800℃。 The growth temperature was 450 ℃ ~ 800 ℃. 缓冲层厚度1.5-3微米。 The buffer layer thickness 1.5-3 microns.

2.利用束式或等离子体注入机进行氧离子注入,注入能量为50~200keV,具体由需要的注入深度来决定。 2. The use of a plasma beam type injection machine or oxygen ion implantation, implantation energy of 50 ~ 200keV, determined by the particular implantation depth desired. 注入剂量为1017/cm2~1018/cm2,衬底温度略低于SiGe生长时的温度,如400℃-750℃。 Implantation dose of 1017 / cm2 ~ 1018 / cm2, the substrate temperature just below the temperature at which the growth of SiGe as 400 ℃ -750 ℃.

3.高温退火前,可选择先在SiGe上生长一层Si、SiO2、Si3N4或者其他多层结构薄膜,作为退火保护层。 3. Before high temperature annealing selectively grown on the SiGe layer of the first Si, SiO2, Si3N4 films or other multi-layer structure, as an annealing protective layer. 然后在1200℃-1350℃,N2、Ar或其他具有退火保护性能的气氛下进行热处理,退火气氛中可以选择加入少量O2如0.5%-5%(体积比)。 Then 1200 ℃ -1350 ℃, heat treatment at N2, Ar, or other protective properties of the annealing atmosphere having, the annealing atmosphere may be selected as a small amount of 0.5% to 5% O2 (by volume). 退火时间为30分钟至8小时不等。 Annealing time ranging from 30 to 8 minutes. 退火的目的是恢复离子注入对表层SiGe的损伤,同时调节SiGe的应变状态,并使注入的氧离子聚集形成二氧化硅埋层。 The purpose of annealing is to restore the ion implantation damage to the surface layer of SiGe, the SiGe while adjusting the strained state, and the oxygen ion implanted layer is aggregated to form a buried silicon dioxide.

4.最后去除表面的退火保护层。 4. The final annealing is a surface protective layer is removed. 需要时可在对表面进行处理,提高表面平整度等,以满足器件级应用的需要。 It may be needed to surface treatment to improve the surface flatness and the like, to meet the needs of the application-level device.

5.只需重复上述工艺过程,直至得到需要的多层(SiGe层/SiO2层)/Si衬底或者多层(SiGe层/SiO2层)/缓冲层/Si衬底结构。 5. simply repeat the above process until a multilayer (SiGe layer / SiO2 layer) / Si substrate or a multi-layer (SiGe layer / SiO2 layer) / layer / Si substrate structure required to obtain buffered.

工艺流程图如附图1所示:左侧(1-1)表示的是:在硅上直接外延的组分固定的SiGe层,厚度SiGe的临界厚度约100纳米(具体数值由Ge组分和生长工艺决定),氧离子可以注入到SiGe层下部或硅衬底的顶部。 As the process flow diagram shown in Figure 1: a left side (1-1) are: direct on the silicon epitaxial SiGe layer fixed component, the critical thickness of about 100 nm SiGe (Ge content and the specific value growth depends on the process), the oxygen ions may be implanted into the SiGe layer on top of the lower portion or a silicon substrate. 形成的是SiGe/SiO2/Si结构。 Formed is a SiGe / SiO2 / Si structure.

右侧(1-2)表示的是:先在硅衬底上外延递变Ge组分的SiGe缓冲层,然后再生长Ge组分固定的SiGe层,厚度可以较厚(如1微米),氧离子可以注入到组分固定的SiGe层内或缓冲层的顶部。 Right (1-2) is represented by: first epitaxial graded Ge content SiGe buffer layer on a silicon substrate, and then growing the fixed Ge content SiGe layer, the thickness may be thicker (e.g., 1 micron), oxygen ions may be implanted into the top of the stationary component or buffer layer of SiGe. 形成的是SiGe/SiO2/缓冲层/Si结构。 Formed is a SiGe / SiO2 / buffer layer / Si structure.

利用本发明提供的一种多层结构绝缘层上SiGe材料制备的各种应变异质结构的微电子器件如SiGe异质结构、MOSFET、MODFET等,具有很好的器件性能,尤其是在亚百纳米级器件、低功耗互补型金属氧化物半导体(CMOS)器件、高频器件、光电集成领域有广阔的应用前景。 A multilayer structure using a variety of the insulating layer of the present invention provides a material produced strained SiGe heterostructure microelectronic device such as a SiGe heterojunction structure, MOSFET, MODFET the like, having a good device performance, particularly in sub-one hundred nanoscale devices, low power complementary metal oxide semiconductor (CMOS) devices, high-frequency devices, optoelectronic integrated structure has wide application prospects.

附图说明 BRIEF DESCRIPTION

图1是本发明提供的制备多层结构绝缘层上SiGe材料的工艺流程示意图。 FIG 1 is a schematic process flow diagram for making a multilayer SiGe material on the insulating layer structure according to the present invention is provided.

左侧(图1-1)是在硅衬底上直接外延组分固定的SiGe层,形成结构为SiGe/SiO2/Si的新型SOI材料工艺流程;右侧(图1-2)是先在硅衬底上外延递变Ge组分的SiGe缓冲层,然后生长Ge组分固定SiGe层,形成结构为SiGe/SiO2/缓冲层/Si的工艺流程。 Left (FIG. 1-1) is a direct extension of the fixed component of the SiGe layer on a silicon substrate, forming SOI structures is a novel material SiGe / SiO2 / Si of the process; the right (FIG. 1-2) is a first silicon an epitaxial graded SiGe buffer layer on the substrate Ge content, and the growth of the fixed Ge content SiGe layer formed structure SiGe / SiO2 / buffer layer / Si process flow.

图中:1-硅衬底 2-外延SiGe层3-外延递变Ge组分的SiGe缓冲层 4-退火保护层5-SiO2埋层。 REFERENCE NUMERALS 1: silicon substrate 2- 3- epitaxial SiGe layer epitaxial graded Ge content SiGe buffer layer annealed 4- 5-SiO2 protective layer buried layer.

具体实施方式 Detailed ways

下面通过实施例对本发明的可行性进行说明,但不限制本发明的内容。 Here will be described the feasibility of the present invention by way of example, but do not limit the present invention.

实施例1n-(100)单晶硅上采用分子束外延(MBE)外延一厚度为10纳米的单晶硅薄膜,然后外延厚度小于100纳米、Ge组分恒定为15%的SiGe层,生长温度为650℃,以60KeV的能量向硅衬底中注入剂量为4E17/cm2的氧离子,使注入的氧分布在SiGe/Si下界面以及硅衬底顶部,注入时衬底温度保持为550℃。 Example 1n- embodiment using the single-crystal silicon (100) molecular beam epitaxy (MBE) epitaxial with a thickness of 10 nm monocrystalline silicon thin film, and epitaxial thickness less than 100 nm, Ge is 15% of the constant component of the SiGe layer, the growth temperature of 650 ℃, at an energy of 60KeV implanted into the silicon substrate at a dose of oxygen ions 4E17 / cm2 and the implanted oxygen distribution in the top of the SiGe / Si interface and the silicon substrate, when implanted into the substrate temperature was kept at 550 ℃. 利用LPCVD在SiGe/Si圆片上沉积一层厚度为100纳米的SiO2保护层。 It is deposited by LPCVD to a thickness on a SiGe / Si wafers of 100 nm SiO2 protective layer. 在1280℃,在Ar+1%O2气氛中退火3小时。 At 1280 ℃, annealing in an atmosphere of Ar + 1% O2 for 3 hours. 最后,用稀HF将表层SiO2层除去,得到结构为SiGe/SiO2/Si的SOI材料。 Finally, the SiO2 layer surface was removed with dilute HF, to obtain an SOI structure material SiGe / SiO2 / Si of. 可用于制作、抗辐照、高速、低功耗CMOS电路。 It can be used for production of, anti-irradiation, high-speed, low-power CMOS circuit.

实施例2采用UHVCVD首先在p-(100)单晶硅衬底上生长Ge成分从0到20渐变的SiGe缓冲层,厚度为2微米,然后生长Ge组分为20%、厚度为500纳米的SiGe层,整个SiGe生长温度为600℃。 Example 2 UHVCVD first (100) growth of Ge from the SiGe buffer layer component 0-20 gradient, a thickness of 2 m, and 20% growth of Ge on a monocrystalline silicon component substrate p-, having a thickness of 500 nm SiGe layer, the entire SiGe growth temperature is 600 ℃. 以160KeV的能量SiGe中注入剂量为7E17/cm2的氧离子,注入的氧分布在SiGe层内,注入时衬底温度保持为550℃。 At an energy of 160 KeV SiGe oxygen ion implantation dose of 7E17 / cm2, the implanted oxygen distribution in the SiGe layer, is injected into the substrate temperature was kept 550 ℃. 在1350℃,Ar+0.5%O2(体积比)气氛中退火5小时。 At 1350 ℃, Ar + 0.5% O2 (by volume) in the annealing atmosphere for 5 hours. 得到具体结构为SiGe/SiO2/SiGe/Si的新型SOI材料。 New materials to give a specific structure of SOI SiGe / SiO2 / SiGe / Si of. 可用做光波导与光探测器的先进衬底材料。 The optical waveguide can be used with advanced substrate materials photodetectors.

实施例3n-(100)单晶硅上采用超高真空化学气相淀积(UHVCVD)外延厚度小于50纳米、Ge组分恒定为25%的SiGe层,生长温度为550℃,以30KeV的能量向硅衬底中注入剂量为2.5E17/cm2的氧离子,使注入的氧分布在SiGe/Si下界面以及硅衬底顶部,注入时衬底温度保持为500℃。 Example 3n- (100) using ultra-high vacuum chemical vapor deposition on Si (UHVCVD) epitaxial thickness less than 50 nm, Ge is 25% of the constant component of the SiGe layer, the growth temperature was 550 deg.] C, to an energy of 30KeV silicon substrate implantation dose of oxygen ion 2.5E17 / cm2 and the implanted oxygen distribution in the top of the SiGe / Si interface and the silicon substrate, when implanted into the substrate temperature was kept at 500 ℃. 利用LPCVD在SiGe/Si圆片上沉积一层厚度为10纳米的SiO2保护层,再淀积200纳米的Si3N4形成复合结构的退火保护层。 By LPCVD deposited on the SiGe / Si wafer having a thickness of 10 nm SiO2 protective layer, and then depositing a 200 nm Si3N4 protective layer formed annealing the composite structure. 在1300℃,在Ar气氛中退火6小时。 At 1300 ℃, annealed in an Ar atmosphere for 6 hours. 最后,用除去表层Si3N4和SiO2除去,得到结构为SiGe/SiO2/Si的SOI材料。 Finally, by removing the surface layer Si3N4 and SiO2 was removed to obtain an SOI structure material SiGe / SiO2 / Si of.

实施例4p-(100)单晶硅上采用分子束外延(MBE)外延外延厚度100纳米、Ge组分恒定为10%的SiGe层,生长温度为600℃,以50KeV的能量向硅衬底中注入剂量为3.5E17/cm2的氧离子,使注入的氧分布在SiGe/Si下界面以及硅衬底顶部,注入时衬底温度保持为450℃。 Example 4p- (100) single-crystal silicon using the molecular beam epitaxy (MBE) epitaxial epitaxial thickness of 100 nm, Ge is 10% of the component constant SiGe layer growth temperature of 600 ℃, at an energy of 50KeV to silicon substrate oxygen ions are implanted at a dose of 3.5E17 / cm2 and the implanted oxygen distribution in the top of the SiGe / Si interface and the silicon substrate, the substrate temperature was maintained at 450 deg.] C when injected. 在1180℃,在Ar+0.5%O2气氛中退火2小时。 At 1180 ℃, annealing in an atmosphere of Ar + 0.5% O2 for 2 hours. 最后,用稀HF将表层少量SiO2层除去,得到结构为SiGe/SiO2/Si的SOI材料。 Finally, a small amount of the surface with dilute HF to remove the SiO2 layer, resulting in the structure of SOI material SiGe / SiO2 / Si of.

实施例5n-(100)单晶硅上采用超高真空化学气相淀积(UHVCVD)外延一厚度为2.5微米的Ge组分逐渐增加(从0到40%)的薄膜,然后外延厚度200纳米、Ge组分恒定为45%的SiGe层,生长温度为450℃,以100KeV的能量向SiGe层中注入剂量为1E18/cm2的氧离子,注入时衬底温度保持为400℃。 Example 5n- embodiment (100) using ultra-high vacuum chemical vapor deposition (UHVCVD) an epitaxial single crystal silicon having a thickness of 2.5 microns Ge content gradually increases (from 0 to 40%) of the film thickness of 200 nm is then epitaxially, when the constant component of 45% Ge SiGe layer growth temperature of 450 ℃, implanted at an energy of 100KeV to the SiGe layer is an oxygen ion dose of 1E18 / cm2, and implanted into the substrate temperature was kept at 400 ℃. 在1250℃,在Ar+1%O2气氛中退火3小时。 At 1250 ℃, annealing in an atmosphere of Ar + 1% O2 for 3 hours. 最后,用稀HF将表层SiO2层除去,并采用化学机械抛光(CMP)技术处理表面,得到结构为SiGe/SiO2/Si结构。 Finally, the SiO2 layer surface was removed with dilute HF, and chemical mechanical polishing (CMP) technology treated surface, resulting in the structure of SiGe / SiO2 / Si structure. 然后重复外延、氧离子注入和热处理过程,得到SiGe/SiO2/SiGe/SiO2/Si结构,继续重复直至得到需要的层数,即形成SiGe/SiO2/…/SiGe/SiO2/Si的新型多层SOI材料。 Epitaxial then repeated, oxygen ion implantation and heat treatment process, resulting SiGe / SiO2 / SiGe / SiO2 / Si structure, repeated continuously until a desired number of layers, i.e., formation of a new multilayer SOI SiGe / SiO2 / ... / SiGe / SiO2 / Si of material. 可用利用多层界面提高光学反射性能,从而制造探测器等光学器件。 A multilayer optical interface can be used to improve the reflection properties, and the like to produce the detector optics.

Claims (8)

1.一种多层结构绝缘层上SiGe材料,包括硅衬底,其特征在于材料或为SiGe层/SiO2埋层/缓冲层/Si衬底的结构,或在Si衬底上形成多个重复的SiGe层和SiO2层,或在Si衬底的缓冲层上形成多个SiGe层和SiO2层。 A SiGe layer on the multilayer structure of the insulating material comprises a silicon substrate, characterized in that the material or structure layer / buffer layer / Si substrate was buried SiGe layer / of SiO2, or formed on the Si substrate is repeated a plurality of SiGe layer and the SiO2 layer, or a plurality of layers and SiGe buffer layer on the SiO2 layer in the Si substrate.
2.按权利要求1所述的多层结构绝缘层上SiGe材料,其特征在于SiGe层/SiO2埋层/缓冲层/Si衬底结构中表层SiGe层Ge组分固定,为0-100%间的任一值,具体视缓冲层而定。 2. The multilayer structure as claimed in claim insulating layer on said SiGe material. 1, characterized in that the substrate structure SiGe layer / SiO2 buried layer / buffer layer / Si Ge content in the SiGe layer surface is fixed, between 0-100% of any value, depending on the buffer layer may be.
3.按权利要求1所述的多层结构的绝缘层上SiGe材料的制备方法,其特征在于采用外延在单晶硅衬底或生长有缓冲层的单晶硅衬底上外延生长SiGe单晶薄膜,形成异质结构,然后经氧离子注入和高温退火热处理在外延SiGe层下形成一个二氧化硅埋层,实现表层SiGe薄膜与衬底材料的电学隔离。 3. Preparation method of SiGe material on the insulating layer of the multilayer structure according to claim 1, characterized in that the epitaxial crystal growth on a single crystal silicon substrate SiGe epitaxially grown single crystal silicon substrate or a buffer layer film heterojunction is formed, and then forming a silicon dioxide layer buried under the epitaxial SiGe layer by oxygen ion implantation and high temperature annealing, to achieve electrical isolation of the surface of the SiGe film and the substrate material.
4.按权利要求3所述的多层结构绝缘层上SiGe材料的制备方法,其特征在于硅衬底上外延生长SiGe前,可以先生长一层薄的单晶硅膜,厚度为5-20纳米。 4. A method of preparing SiGe material on the insulating layer of the multilayer structure as claimed in claim 3, characterized in that before epitaxially growing SiGe on a silicon substrate, a single crystalline silicon thin Mr. long film having a thickness of 5-20 nm.
5. 按权利要求3所述的多层结构绝缘层上SiGe材料的制备方法,其特征在于所述单晶硅上外延SiGe层,或直接生长组分固定的SiGe薄层,或生长Ge组分逐渐增加的SiGe缓冲层,最后生长组分固定的SiGe层;缓冲层厚度在1.5-3微米之间,生成的组分固定的SiGe厚度为百纳米数量级;生长温度为450℃-800℃。 The preparation of SiGe material on the insulating layer of the multilayer structure as claimed in claim 3, wherein said single crystal silicon on SiGe epitaxial layer, a thin layer of SiGe is grown directly, or fixed component, or a growth Ge content the SiGe buffer layer is gradually increased, and finally the fixed component of the growth of a SiGe layer; a buffer layer thickness between 1.5 microns, the resulting thickness of a SiGe constant one hundred nanometers; growth temperature is 450 ℃ -800 ℃.
6.按权利要求3所述多层结构绝缘层上SiGe材料的制备方法,其特征在于氧离子的能量为50-200keV,剂量为1017/cm2-1018/cm2,注入时衬底温度低于SiGe生长时的温度,为400℃-750℃。 6. A method of preparing SiGe material on the insulating layer 3 multilayer structure as claimed in claim, characterized in that the energy of the oxygen ions is of 50-200, a dose of 1017 / cm2-1018 / cm2, while the substrate temperature is lower than SiGe injection the growth temperature for 400 ℃ -750 ℃.
7.按权利要求3所述多层结构绝缘层上SiGe材料的制备方法,其特征在于高温退火热处理是在1200-1350℃,氮气、氩气或其它保护气氛下,并可以加入少量氧气,退火时间为0.5-8小时。 7. A method of preparing SiGe material on the insulating layer of the multilayer structure according to claim 3, characterized in that the high-temperature annealing is at 1200-1350 deg.] C, nitrogen, argon, or other protective atmosphere, and may add a small amount of oxygen, annealing time is 0.5-8 hours.
8.按权利要求3所述多层结构绝缘层上SiGe材料的制备方法,其特征在于在退火热处理之前在氧离子注入后的SiGe表层生长一层硅、二氧化硅或氮化硅单层薄膜作为退火保护层,或以多层结构的薄膜作为退火保护层。 8. A method of preparing SiGe material on the insulating layer of the multilayer structure according to claim 3, characterized in that the surface layer of SiGe after the oxygen ion implantation annealing heat treatment prior to the growth layer of silicon, silicon dioxide or silicon nitride layer film the annealing protective layer, a thin film or a multilayer structure as an annealing protective layer.
CN 01126543 2001-08-24 2001-08-24 Multilayer silicon galide material on insulating layer and its prepn CN1184692C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 01126543 CN1184692C (en) 2001-08-24 2001-08-24 Multilayer silicon galide material on insulating layer and its prepn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 01126543 CN1184692C (en) 2001-08-24 2001-08-24 Multilayer silicon galide material on insulating layer and its prepn

Publications (2)

Publication Number Publication Date
CN1332478A CN1332478A (en) 2002-01-23
CN1184692C true CN1184692C (en) 2005-01-12

Family

ID=4666557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 01126543 CN1184692C (en) 2001-08-24 2001-08-24 Multilayer silicon galide material on insulating layer and its prepn

Country Status (1)

Country Link
CN (1) CN1184692C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812495B2 (en) 2002-06-19 2004-11-02 Massachusetts Institute Of Technology Ge photodetectors
US6855436B2 (en) * 2003-05-30 2005-02-15 International Business Machines Corporation Formation of silicon-germanium-on-insulator (SGOI) by an integral high temperature SIMOX-Ge interdiffusion anneal
US7169226B2 (en) 2003-07-01 2007-01-30 International Business Machines Corporation Defect reduction by oxidation of silicon
US7887632B2 (en) 2004-01-15 2011-02-15 Japan Science And Technology Agency Process for producing monocrystal thin film and monocrystal thin film device
US7235812B2 (en) 2004-09-13 2007-06-26 International Business Machines Corporation Method of creating defect free high Ge content (>25%) SiGe-on-insulator (SGOI) substrates using wafer bonding techniques
CN100595928C (en) 2007-12-28 2010-03-24 上海新傲科技股份有限公司;中芯国际集成电路制造(上海)有限公司 Semiconductor substrate, preparing technique and application in advanced three-dimensional electronic packaging
CN104003346A (en) * 2013-02-25 2014-08-27 中芯国际集成电路制造(上海)有限公司 Membrane structure, pressure sensor and electronic device
CN106409649B (en) * 2015-07-30 2019-03-15 沈阳硅基科技有限公司 A kind of multilayer SOI material and preparation method thereof

Also Published As

Publication number Publication date
CN1332478A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
EP0747935B1 (en) Process for preparing an SOI-member
JP2608548B2 (en) A method of manufacturing a semiconductor device
US6723622B2 (en) Method of forming a germanium film on a semiconductor substrate that includes the formation of a graded silicon-germanium buffer layer prior to the formation of a germanium layer
EP0499488B1 (en) Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
CN100437970C (en) Shallow trench isolation process
US6724008B2 (en) Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
EP0553860B1 (en) Process for preparing a semiconductor substrate
US5966620A (en) Process for producing semiconductor article
US6569748B1 (en) Substrate and production method thereof
US7052978B2 (en) Arrangements incorporating laser-induced cleaving
US5882987A (en) Smart-cut process for the production of thin semiconductor material films
US7405142B2 (en) Semiconductor substrate and field-effect transistor, and manufacturing method for same
CN1118085C (en) Semiconductor substrate and method of mfg. same
US6770507B2 (en) Semiconductor wafer and method for producing the same
JP2894562B2 (en) Semiconductor structure comprising manufacturing method and the insulator layer of the insulator embedded in the semiconductor substrate by ion implantation
US7202124B2 (en) Strained gettering layers for semiconductor processes
KR950006967B1 (en) Method of producing a thin silicon-on-insulator layer
Taraschi et al. Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques
US4851078A (en) Dielectric isolation process using double wafer bonding
US5310451A (en) Method of forming an ultra-uniform silicon-on-insulator layer
US7226504B2 (en) Method to form thick relaxed SiGe layer with trench structure
US6991998B2 (en) Ultra-thin, high quality strained silicon-on-insulator formed by elastic strain transfer
US5261999A (en) Process for making strain-compensated bonded silicon-on-insulator material free of dislocations
KR100613182B1 (en) Layer transfer of low defect sige using an etch-back process
KR100385857B1 (en) Fabrication Method of SiGe MODFET with a Metal-Oxide Gate

Legal Events

Date Code Title Description
C10 Entry into substantive examination
C06 Publication
C14 Grant of patent or utility model
ASS Succession or assignment of patent right

Owner name: PROUD OF THE NEW SHANGHAI TECHNOLOGY CO.

Free format text: FORMER OWNER: SHANGHAI INST. OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCI

Effective date: 20090703

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: SHANGHAI INST. OF MICROSYSTEM AND INFORMATION TECH

Free format text: FORMER NAME: SHANGHAI METALLURGY INST., CHINESE ACADEMY OF SCIENCES

C56 Change in the name or address of the patentee

Owner name: SHANGHAI SIMGUI SCIENCE AND TECHNOLOGY CO., LTD.

Free format text: FORMER NAME: PROUD OF THE NEW SHANGHAI TECHNOLOGY CO.

EXPY Termination of patent right or utility model