CN118083923A - 一种大批量制备氮化硅纳米线的方法 - Google Patents

一种大批量制备氮化硅纳米线的方法 Download PDF

Info

Publication number
CN118083923A
CN118083923A CN202410094055.7A CN202410094055A CN118083923A CN 118083923 A CN118083923 A CN 118083923A CN 202410094055 A CN202410094055 A CN 202410094055A CN 118083923 A CN118083923 A CN 118083923A
Authority
CN
China
Prior art keywords
carbon paper
silicon nitride
pressure
furnace
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410094055.7A
Other languages
English (en)
Inventor
王�琦
王保凯
朱立峰
李孟沂
于畅
牛梦阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202410094055.7A priority Critical patent/CN118083923A/zh
Publication of CN118083923A publication Critical patent/CN118083923A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种大批量制备氮化硅纳米线的方法,属于陶瓷材料制备领域。所述方法包括以下步骤:将碳纸按一定长度反复翻折成波浪状,将硅粉和二氧化硅粉末混合,均匀地撒在折叠好的波浪状碳纸夹缝中。将得到碳纸置于石墨炉内,充入氮气至0.1Mpa,并且升温至1300~1700℃;达到反应温度后,用机械泵抽出烧结炉内的氮气使炉内气压下降,保持低气压状态1~20min,然后充入氮气使炉内压力升高,维持1~20min;重复上述抽气、充气过程,直至总的保温时间达到0.5~10h后结束,最终在碳纸表面生成了大批量的氮化硅纳米线。利用本发明制备的氮化硅纳米线工艺简单、原料成本低、产量大,非常适合进行直接工业化生产。

Description

一种大批量制备氮化硅纳米线的方法
技术领域
本发明涉及一种大批量制备氮化硅纳米线的方法,属于陶瓷材料制备技术领域。
背景技术
氮化硅纳米线是一种重要的半导体化合物和陶瓷材料,具有高的长径比、良好的耐高温性、化学稳定性,光电特性、力学特性等一系列优异性能,且其热导率高达270W·m-1·K-1。由于其优异的性能,可在纳米复合材料、光学纳米器件、航空航天、太阳能电池等众多领域有着十分广泛的应用前景。但因生产氮化硅纳米线的成本较高,生产过程不易控制等原因,氮化硅纳米线的实际应用受到了限制。
发明专利《一种高α相氮化硅粉体、超长氮化硅纳米线的制备方法》(公开号:CN110436934.A)通过使用氨气预处理硅粉后,在氮氢氩混合气气氛的条件下,经过慢速升温、分段保温、逐步降低辅助氩气反应生成高α相氮化硅堆积体软块,其上覆有大量的氮化硅纳米线。该方法制备过程中,需要多次改变反应气氛,调整反应温度和升温速率等,实验过程复杂繁琐,耗时长。
发明专利《一种氮化硅纳米线的制备方法和氮化硅纳米线》(公开号:CN107161962.B)将含Fe、Co、Ni、Cu和Mo中的一种或几种的二元、三元或四元层状双羟基金属氢氧化物LDH作为催化剂前驱体,与硅粉均匀混合在载气的保护下将混合物升温至1000~1400℃,用氢气进行预处理10~20min后,在含氮源的气体下进行氮化反应,通过化学气相沉积,并对沉积后的产物进行提纯,获得Si3N4纳米线。这种方法引入金属催化剂,提纯难度较高,生产成本高,不适合进行商业化生产。
发明专利《一种高纯α相氮化硅纳米线的制备方法》(公开号:CN112607715.B)将催化剂搅拌溶解于碳纳米管浆料中,得到含有催化剂的碳纳米管浆料,将含有催化剂的碳纳米管浆料放入冷冻干燥机中,得到冻干的碳纳米管前驱体,将反应硅源粉铺放在石墨坩埚底部,然后将冻干的碳纳米管前驱体放置于反应硅源层表面上,将盛有反应物的石墨坩埚放入管式炉中,反应结束后冷却至室温,洗涤干燥得到高纯α相氮化硅纳米线。该反应制备过程复杂,耗时长,还需要碳纳米管参与反应,制备成本过高,产量小。
可见,要进一步实现大批量氮化硅纳米线的制备,还需要在现有方法基础上进一步改进。
发明内容
本发明是针对目前氮化硅纳米线制备过程中所存在的一些问题进行改进,提出了一种碳热还原法大批量制备氮化硅纳米线的新方法。在本发明中,硅粉和二氧化硅在氮气气氛下生成Si3N4可能的反应包括:
3SiO2(s)+6C(s)+2N2(g)→Si3N4(s)+6CO(g) (1)
3Si(s)+2N2(g)→Si3N4(s) (2)
SiO2(s)+Si(s)→2SiO(g) (3)
3SiO(g)+3C(s)+2N2(g)→Si3N4(s)+CO(g) (4)
其中反应(1)、反应(2)为固相硅源SiO2、Si直接与N2发生碳热还原或直接氮化反应生成氮化硅,反应(3)和(4)为气相硅源SiO与N2发生碳热还原反应生成氮化硅。根据晶体生长机制,一维纳米线一般是在低过饱和度条件下以气-固(VS)机制或气-液-固(VLS)机制生成,即氮化硅纳米线主要通过反应(4)中的气相硅源生成。因此为了提高氮化硅纳米线的产量,必须有针对性地抑制反应(1)和反应(2),促进反应(3)和反应(4)的发生。
本发明利用循环式充放气形成震荡式N2压力对反应进程进行调控:首先通过抽气降低氮气分压,反应(1)和反应(2)中的氮化过程被抑制,避免氮化硅快速形核,同时促进反应(3)正向进行以生成大量的SiO气相;随后充入氮气,由于气相硅源比固相硅源与N2有更快的反应速率,诱导氮化硅按照反应(4)通过气相反应机制大量形核,同时整个过程体系处于负压状态,生成的氮化硅始终维持低的过饱和度,因而促进氮化硅利用表面能的各向异性择优生长为一维形貌。充放气过程循环进行使反应炉内形成震荡式N2压力,从而促使大量氮化硅纳米线的生成。
另外,碳纸的制备机制包括:将碳纸每隔一定距离进行折叠,翻折成为波浪形状,人为制备小角度区域,将原料粉末按一定质量放入波浪状碳纸的夹缝中。在高温条件下二氧化硅和硅粉反应,产生的一氧化硅气体会藏匿于碳纸之间,处于碳纸表面的一氧化硅相对过饱和度过低,可以辅助调控氮化硅的形核和生长过程,使得在一维方向择优生长,氮化硅纳米线在碳纸表面大量生成。
具体而言,本发明的目的是提供一种大批量制备氮化硅纳米线的方法,包括以下步骤:
(1)混料:将硅粉和二氧化硅混合均匀,得到混合粉末。
(2)碳纸制备:将碳纸反复翻折成波浪状,将步骤(1)的混合粉末均匀撒在折好的波浪状碳纸夹缝中。
(3)合成:将步骤(2)中得到碳纸置于石墨炉内,充入氮气至0.1Mpa,并且升温至1300~1700℃;达到反应温度后,用机械泵抽出烧结炉内的氮气使炉内气压下降,保持低气压状态1~20min,然后充入氮气使炉内压力升高,维持1~20min。重复上述抽气、充气过程,直至总的保温时间达到0.5~10h后结束;最终在碳纸表面生成了大批量的氮化硅纳米线。
进一步地,步骤(1)中所述的硅粉平均粒径为50~800目,二氧化硅的平均粒径为0.1~2μm。
进一步地,步骤(1)中所述的硅粉和二氧化硅的质量比为(0.1~5):1,通过球磨将两种粉料混合均匀。根据前述可能发生的反应(1)~(4)进行计算,以及在实验过程中产生的少量蒸汽会挥发不参与反应,最终得到了上述质量比。
进一步地,步骤(2)中使用的碳纸厚度为0.1~5mm,优选为0.2~1mm。
进一步地,步骤(2)中翻折的碳纸间隔长度为2~20cm,优选为3~5mm。碳纸是氮化硅纳米线生长的基体,不同的间隔长度最终得到的氮化硅纳米线的量是不同的。碳纸间隔过小,生长基底少,蒸汽挥发较多,原料浪费严重。碳纸间隔过大,大部分蒸汽挥发不到碳纸的最高位置就发生了反应,高度较高的碳纸表面最终会有极少量的氮化硅纳米线生成,也导致原料浪费。
进一步地,步骤(2)中翻折的波浪形碳纸张开角度为20~45°,优选为25~35°。
进一步地,步骤(2)中每一碳纸夹缝中加入的粉末的质量为0.5~5g。
进一步地,步骤(3)中反应炉的升温速率为5~50℃/min。
进一步地,步骤(3)中在反应炉内氮气压力形成震荡式循环变化,且保温过程始终维持负压,具体特征为抽气后的炉内压力为0.001~0.04Mpa,充气后的炉内压力0.06~0.10Mpa。
进一步地,步骤(3)中抽气过程氮气压力的下降速率为5~50kPa/min,充气过程中氮气压力的升高速率为10~100kPa/min。
本发明还提供了所述方法制备得到的氮化硅纳米线。
本发明的创新思路在于,不需要使用催化剂,在传统的碳热还原法制备氮化硅纳米线的基础上,利用循环抽放气调节氮气分压,对氮化硅纳米线的生长过程进行调控。抽气过程中,氮化过程受到抑制,促使气相硅源的生成,充气过程中,在低过饱和度条件下促使氮化硅纳米线以气固机制生长。且将碳纸翻折成为波浪形状,人为制备了众多小角度区域,辅助调控了氮化硅的形核和生长过程,使得在一维方向上择优生长,氮化硅纳米线在碳纸表面大量生成。
与现有技术相比,本发明的优点在于:
本发明主要原料使用的是Si粉和SiO2粉,原料成本低且易获得、产量大、不使用催化剂、工艺简单、易于实现商业化生产;
该方法通过震荡式气压调控氮化硅形核生长过程,工艺简单,大幅提高产量,而且可以通过改变碳纸的尺寸,实现对氮化硅纳米线宏观尺寸的控制;
本发明制备的氮化硅纳米线具有较高的长径比、热导率高、力学性能优异、纯度较高,在复合材料、散热及储能等领域既有广阔的应用前景。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中合成氮化硅纳米线在碳纸上生长的宏观照片;
图2为实施例1中合成氮化硅纳米线的宏观照片;
图3为实施例1中合成的氮化硅纳米线的扫描电镜SEM照片;
图4为实施例1中合成氮化硅纳米线的XRD图谱;
图5为实施例2中合成的氮化硅纳米线的扫描电镜照片;
图6为实施例2中合成氮化硅纳米线的XRD图谱;
图7为比较例1中合成氮化硅纳米线的宏观照片;
图8为比较例2中合成氮化硅纳米线的宏观照片;
图9为比较例3中合成氮化硅纳米线的扫描电镜SEM照片;
图10为比较例4中合成氮化硅纳米线的宏观照片;
图11为比较例5中合成氮化硅纳米线的宏观照片;
图12为比较例6中合成氮化硅纳米线的宏观照片;
图13为比较例7中合成氮化硅纳米线的宏观照片;
图14为碳纸折叠工艺图。
具体实施方式
为了使本发明的发明目的、技术方案和有益技术效果更加清晰,以下结合具体实施例对本发明进行详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本发明,并非为了限定本发明。
实施例1
将4.5g粒径为100目的硅粉和3g粒度为0.5μm的二氧化硅混合均匀,将厚度为1mm碳纸每隔5cm翻折一次,对应图14中的间隔长度l,使得整张碳纸呈波浪状的形状,波浪形碳纸张开角度为35°,对应图14中的夹角θ,再将混合好的粉末均匀撒在碳纸夹缝中,每个夹缝中混合粉末质量为2.5g。随后将之置于石墨炉中,240分钟升至1500℃保温2h,达到反应温度后,启动机械泵将炉内氮气25kPa/min的抽气速率降至0.04MPa,维持该状态15min后,以25kPa/min的放气速率充入氮气至0.10Mpa,维持该状态15min并且重复上述过程,直至总的保温时间达到2h。反应结束后在碳纸表面得到大批量氮化硅纳米线。
氮化硅纳米线在碳纸上生长的数码图片见图1,黑色碳纸表面几乎被白色絮状产物覆盖,可见氮化硅纳米线产量大。通过镊子,可以将碳纸表面的白色絮状物轻易地揭下来收集,收集的氮化硅纳米线见图2;同时夹缝中会存有灰黑色的混合粉末的反应残余物,这些反应残余物是未完全反应的硅粉和二氧化硅粉末经高温烧结在一起而形成的固体物质。氮化硅纳米线的SEM见图3,可以看出制备的氮化硅纳米线粗细均匀且具有较大的长径比;XRD分析见图4,可以看出制备的氮化硅纳米线存在α-Si3N4、β-Si3N4两个相,不存在其他杂质,即具有很高的纯度。
实施例2
将8g粒径为150目的硅粉和4g粒度为1μm的二氧化硅混合均匀,将厚度为0.2mm的碳纸每隔4cm翻折一次,使得整张碳纸呈波浪状的形状,波浪形碳纸张开角度为25°,再将混合好的粉末均匀撒在碳纸夹缝中,每个夹缝中混合粉末质量为4g。随后将之置于石墨炉中,240分钟升至1600℃保温1h,达到反应温度后,启动机械泵将炉内氮气50kPa/min的抽气速率降至0.03MPa,维持该状态20min后,以50kPa/min的放气速率充入氮气至0.08Mpa,维持该状态20min并且重复上述过程,直至总的保温时间达到4h。反应结束后,在碳纸表面得到大批量的氮化硅纳米线。
制备的氮化硅纳米线SEM图见图5,纳米线生长的比较均匀,具有较大的长径比;XRD分析见图6,可以看出制备的氮化硅纳米线存在α-Si3N4、β-Si3N4两个相,不存在其他杂质,即具有很高的纯度。
比较例1
与实施例1基本相同,不同之处在于保温过程中氮气气压一直处于恒压0.1Mpa。
氮化硅纳米线在碳纸上生长的数码图片见图7,因为氮气一直保持恒压,相较于实施例1,生长驱动力不足,氮化硅纳米线产量较实施例1偏少。
比较例2
与实施例1基本相同,不同之处在于在低气压阶段维持60min,高气压阶段维持60min,即2h的反应过程中仅进行了一次氮气气压的震荡循环。
氮化硅纳米线在碳纸上生长的数码图片见图8,因为只进行了一次震荡循环,氮化硅纳米线生长的非常稀薄,在碳纸上生长不均匀,而且不易从碳纸上揭下来。
比较例3
与实施例2基本相同,不同之处在于低压震荡循环过程中,充入氮气时仅充至0.03MPa。采用这种方法制备的氮化硅纳米线在碳纸上产量极少,氮化硅纳米线的SEM见图9。使用该方法制备的氮化硅纳米线,由于一直处于低氮气分压的状态,生长的驱动力不足,生成的氮化硅纳米线产量很低,且长径比不均匀。
比较例4
与实施例1基本相同,不同之处在于波浪形碳纸张开角度为15°。
氮化硅纳米线在碳纸上生长的数码图片见图10,因为张开角度过小,蒸汽不易挥发,碳纸上层基本没有氮化硅纳米线生长,产量较小。
比较例5
与实施例1基本相同,不同之处在于波浪形碳纸张开角度为60°。
氮化硅纳米线在碳纸上生长的数码图片见图11,因为张开角度过大,蒸汽挥发并未充分接触碳纸进行反应,氮化硅纳米线产量较小。
比较例6
与实施例1基本相同,不同之处在于采用未翻折的石墨碳纸作为反应容器
氮化硅纳米线在未翻折的石墨碳纸上生长的数码图片见图12,由于蒸汽挥发严重,基本未与碳纸进行反应,在表面只生成了薄薄的一层,产量极小且不易收集。
比较例7
与实施例1基本相同,不同之处在于每隔8cm翻折一次,使碳纸呈现波浪形。
氮化硅纳米线在该石墨碳纸上生长的数码图片见图13,由于碳纸间隔过大,蒸汽挥发,大部分蒸汽挥发不到碳纸的最高位置,无法进行反应。可见位于上方的碳纸折痕附近基本没有氮化硅纳米线生成。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求确定的保护范围为准。

Claims (10)

1.一种大批量制备氮化硅纳米线的方法,其特征在于,包括以下步骤:
(1)混料:将硅粉和二氧化硅混合均匀,得到混合粉末;
(2)碳纸制备:将碳纸反复翻折成波浪状,将步骤(1)的混合粉末均匀撒在折好的波浪状碳纸夹缝中;
(3)合成:将步骤(2)中得到碳纸置于石墨炉内,充入氮气至0.1Mpa,并且升温至1300~1700℃;达到反应温度后,用机械泵抽出烧结炉内的氮气使炉内气压下降,保持低气压状态1~20min,然后充入氮气使炉内压力升高,维持1~20min;
重复上述抽气、充气过程,直至总的保温时间达到0.5~10h后结束。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中所述的硅粉和二氧化硅的质量比为(0.1~5):1,通过球磨将两种粉料混合均匀。
3.根据权利要求1所述的方法,其特征在于,步骤(2)中使用的碳纸厚度为0.1~5mm,优选为0.2~1mm。
4.根据权利要求1所述的方法,其特征在于,步骤(2)中翻折的碳纸间隔长度为2~20cm,优选为3~5mm。
5.根据权利要求1所述的方法,其特征在于,步骤(2)中翻折的波浪形碳纸张开角度为20~45°,优选为25~35°。
6.根据权利要求1所述的方法,其特征在于,步骤(2)中每一碳纸夹缝中加入的粉末的质量为0.5~5g。
7.根据权利要求1所述的方法,其特征在于,步骤(3)中反应炉的升温速率为5~50℃/min。
8.根据权利要求1所述的方法,其特征在于,步骤(3)中在反应炉内氮气压力形成震荡式循环变化,且保温过程始终维持负压,具体特征为抽气后的炉内压力为0.001~0.04Mpa,充气后的炉内压力0.06~0.10Mpa。
9.根据权利要求1所述的方法,其特征在于,步骤(3)中抽气过程氮气压力的下降速率为5~50kPa/min,充气过程中氮气压力的升高速率为10~100kPa/min。
10.权利要求1至9任一项所述方法制备得到的氮化硅纳米线。
CN202410094055.7A 2024-01-23 2024-01-23 一种大批量制备氮化硅纳米线的方法 Pending CN118083923A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410094055.7A CN118083923A (zh) 2024-01-23 2024-01-23 一种大批量制备氮化硅纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410094055.7A CN118083923A (zh) 2024-01-23 2024-01-23 一种大批量制备氮化硅纳米线的方法

Publications (1)

Publication Number Publication Date
CN118083923A true CN118083923A (zh) 2024-05-28

Family

ID=91160388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410094055.7A Pending CN118083923A (zh) 2024-01-23 2024-01-23 一种大批量制备氮化硅纳米线的方法

Country Status (1)

Country Link
CN (1) CN118083923A (zh)

Similar Documents

Publication Publication Date Title
Lu et al. Growth of SiC nanorods at low temperature
KR20130085841A (ko) 탄화규소 분말 및 이의 제조방법
CN110436934A (zh) 一种高α相氮化硅粉体、超长氮化硅纳米线的制备方法
Gundiah et al. Carbothermal synthesis of the nanostructures of Al 2 O 3 and ZnO
CN100560487C (zh) 一种低温制备立方碳化硅纳米线的方法
Guo et al. Preparation of SiC nanowires with fins by chemical vapor deposition
CN101325994B (zh) 单晶碳化硅纳米线、其制备方法以及包含所述单晶碳化硅纳米线的过滤器
CN104891456B (zh) 一种一维α‑Si3N4纳米材料及其制备方法
CN118083923A (zh) 一种大批量制备氮化硅纳米线的方法
JP3882077B2 (ja) 酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法
KR100596676B1 (ko) 기상합성법에 의한 단일벽 탄소 나노튜브의 대량 합성 방법
JP2004161561A (ja) 窒化ホウ素ナノチューブの製造方法
CN113788464B (zh) 一种双过渡金属氧化物催化制备氮化硼纳米管的方法
CN109503172A (zh) 一种具有蠕虫状晶粒的多孔碳化硅陶瓷的制备方法
CN102030327A (zh) 一种脉冲激光烧蚀制备硅纳米线的方法
Hu et al. Formation mechanisms of α-Si3N4 crystals from amorphous Si3N4 powder synthesized by a low-temperature liquid-phase method
CN111410197B (zh) 多面体硅晶的制备方法
KR101071282B1 (ko) 메조포러스 실리카로부터 제조된 탄화규소 분말 및 그 제조방법
JP3893465B2 (ja) 窒化ホウ素ナノチューブの製造方法
CN112607715B (zh) 一种高纯α相氮化硅纳米线的制备方法
JP5029987B2 (ja) ナノカーボンの製造方法
CN110642280A (zh) 一种α-Al2O3纳米管及其制备方法
CN114853020B (zh) 一种纳米碳化二钼材料及其制备方法和应用
CN113523270B (zh) 一种基于界面反应及固态相变的金属纳米线阵列的制备方法
KR20110004173A (ko) 메조포러스 알루미나로부터 제조된 질화알루미늄 분말 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination